On the Complexity of Heuristic Synthesis for Satisficing Classical Planning: Potential Heuristics and Beyond

> Malte Helmert Silvan Sievers Alexander Rovner Augusto B. Corrêa

> > University of Basel, Switzerland

ICAPS 2022

Classical Planning Tasks

SAS^+ representation:

- state variables: $x \in \{0, 1, 2\}, y \in \{0, 1\}, z \in \{0, 1, 2\}$
- initial state:

$$\{x\mapsto 0, y\mapsto 0, z\mapsto 0\}$$

• goal:

$$\{x \mapsto \mathbf{2}, z \mapsto \mathbf{1}\}$$

• actions:

•
$$h_1: 3[x=1] - 3[y=0] + 2[z=1]$$

•
$$h_1: 3[x=1] - 3[y=0] + 2[z=1]$$

•
$$h_1: \mathbf{3}[x=1] - \mathbf{3}[y=0] + \mathbf{2}[z=1]$$

•
$$h_1: 3[x=1] - 3[y=0] + 2[z=1]$$

$$h_1(\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}) = \mathbf{3} + \mathbf{2} = 5$$

•
$$h_1: 3[x=1] - 3[y=0] + 2[z=1]$$
 dimension 1

$$h_1(\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}) = 3 + 2 = 5$$

h₁: 3 [x = 1] - 3 [y = 0] + 2 [z = 1]
h₂: 3 [x = 0 ∧ y = 0] + 3 [z = 1] - 2

dimension 1 dimension 2

$$h_1(\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}) = 3 + 2 = 5$$

Potential Heuristics

- h₀: 7
- $h_1: 3[x=1] 3[y=0] + 2[z=1]$
- h_2 : $3[x = 0 \land y = 0] + 3[z = 1] 2$

- dimension 0
- dimension 1
- dimension 2

$$h_1(\{x \mapsto 1, y \mapsto 1, z \mapsto 1\}) = 3 + 2 = 5$$

study computational complexity of:

Is a given potential heuristic nice? (verification) Does a nice potential heuristic exist? (synthesis) most closely related:

- Pommerening, Helmert, Röger and Seipp (AAAI 2015): polynomial algorithm for verification and synthesis of admissible and consistent potential heuristics of dimension 1
- Pommerening, Helmert and Bonet (AAAI 2017): extend this to dimension 2; verification of consistency coNP-complete for dimension 3

P: solvable in polynomial time

NP: "yes" answers have simple proofs

coNP: "no" answers have simple proofs

 Σ_2^{p} : "yes" answers have simple proofs given an NP oracle

 Π_2^p : "no" answers have simple proofs given an NP oracle

PSPACE: solvable in polynomial space

Part 1: DDA

DDA property of a heuristic (Seipp et al. 2016)

for all alive states:

- descending: there is a successor h(s') < h(s)
- \bullet dead-end-avoiding: dead successors have $h(s') \geq h(s)$

Seipp et al. 2016:

- h is DDA \rightsquigarrow greedy BFS and hill-climbing backtrack-free
- low-dimension DDA potential heuristics are common

DDA Verification

DDA verification for dimension 0

Theorem:

DDA verification for potential heuristics is PSPACE-complete. This already holds for dimension 0.

DDA Synthesis

DDA synthesis for unrestricted potential heuristics

Theorem:

DDA synthesis for unrestricted potential heuristics is in P.

It is PSPACE-complete for restricted cases, such as dimension 0.

DDA Synthesis

DDA synthesis for dimension 0

Theorem:

DDA synthesis for unrestricted potential heuristics is in P.

It is PSPACE-complete for restricted cases, such as dimension 0.

Did we learn anything about potential heuristic synthesis? DDA combines "solvable without backtracking" with "unsolvable for any reason"

 \rightsquigarrow need a better property

Part 2: SDDA

SDDA (solvable DDA) property of a heuristic:

- heuristic is DDA, and
- initial state is alive

SDDA Verification and Synthesis

SDDA verification/synthesis for dimension 1

Theorem:

SDDA verification for potential heuristics is in P for dimension 0 and PSPACE-complete for dimension 1 or higher.

The same is true for SDDA synthesis.

nice:

- no more trivial results; actual insight in reductions
- dimension-1 heuristics can solve PSPACE-complete problems

not so nice:

• everything interesting is hard

reason:

• SDDA property essentially requires perfect dead-end detection

 \rightsquigarrow relax this requirement

Part 3: ∞DDA

∞ DDA property:

replace "alive state" with "state with finite h" in SDDA definition

- $\bullet\,$ states with finite h value have improving successor
- initial state has finite h value

also in paper:

- unrestricted DDA (UDDA)
- predicate-based pruning DDA (PDDA)
- \rightsquigarrow same properties as ∞DDA

∞DDA Verification and Synthesis

 ∞DDA verification/synthesis for dimension 1

Theorem:

 ∞DDA verification for potential heuristics is coNP-complete for dimension 1 or higher.

 ∞ DDA synthesis for potential heuristics is Σ_2^p -complete for dimension 1 or higher.

good news:

- this is what we hoped for: well below PSPACE, yet still very expressive
- interesting connection to $\exists \forall QBF$

bad news:

 no tractability for low dimension (unlike admissibility and consistency)

Beyond & Discussion

I've been lying to you: we did not actually prove these results.

- proved something less satisfying: some results need "compact" heuristics (polynomial number of bits for feature weights)
- required for "guess-and-check" to be in NP

working on it \rightsquigarrow stay tuned!

beyond potential heuristics:

- membership results generalize to any polynomial-space representable, polynomial-time computable heuristic
- hardness results generalize to anything at least as powerful as potential heuristics of dimension 1
- → link to Kolmogorov complexity and universal search algorithms

possible future directions:

- get rid of technical restrictions
- ${\scriptstyle \bullet }$ synthesize $\infty {\rm DDA}$ heuristics
- relationship to generalized representations

Thank You for Your Attention!