
On the Expressive Power of Non-Linear Merge-and-Shrink Representations

Malte Helmert and Gabriele Röger and Silvan Sievers
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Abstract
We prove that general merge-and-shrink representations are
strictly more powerful than linear ones by showing that there
exist problem families that can be represented compactly
with general merge-and-shrink representations but not with
linear ones. We also give a precise bound that quantifies
the necessary blowup incurred by conversions from general
merge-and-shrink representations to linear representations or
BDDs/ADDs. Our theoretical results suggest an untapped
potential for non-linear merging strategies and for the use
of non-linear merge-and-shrink-like representations within
symbolic search.

Introduction
Merge-and-shrink (M&S) abstraction is a framework for de-
riving abstractions in factored state-space search problems
such as those occurring in classical planning. It was orig-
inally introduced for model-checking (Dräger, Finkbeiner,
and Podelski 2006; 2009) and later adapted to planning
(Helmert, Haslum, and Hoffmann 2007; 2008), where the
original concepts were generalized further (e.g., Nissim,
Hoffmann, and Helmert 2011a; Helmert et al. 2014; Sievers,
Wehrle, and Helmert 2014).

The merge-and-shrink framework has been intensely
studied recently for many reasons. Classical planning sys-
tems based on merge-and-shrink abstraction heuristics have
shown excellent performance (e.g., Helmert, Haslum, and
Hoffmann 2007; Nissim, Hoffmann, and Helmert 2011b).
Merge-and-shrink abstractions strictly generalize pattern
databases (e.g., Culberson and Schaeffer 1998), a highly in-
fluential approach for deriving search heuristics. They offer
a clean “algebraic” approach for reasoning about and ma-
nipulating abstractions (e.g., Sievers, Wehrle, and Helmert
2014). They dominate many other classes of classical
planning heuristics in terms of expressive power (Helmert
and Domshlak 2009) and are among the few heuristic ap-
proaches that can derive perfect heuristics in polynomial
time in nontrivial cases (Nissim, Hoffmann, and Helmert
2011a; Helmert et al. 2014), thus offering polynomial-time
optimal planning algorithms for these cases.

Last, but certainly not least, the merge-and-shrink frame-
work offers links between the two successful but largely
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disjoint research areas of heuristic search planning and
planning as symbolic search due to a relationship be-
tween merge-and-shrink representations with so-called lin-
ear merging strategies and binary (Bryant 1985) and al-
gebraic (Bahar et al. 1993) decision diagrams (BDDs and
ADDs) that was first observed by Bonet (personal commu-
nications) and recently studied in more depth (Edelkamp,
Kissmann, and Torralba 2012; Torralba, Linares López, and
Borrajo 2013; Helmert et al. 2014; Torralba 2015).

The existing theoretical studies of the expressive power
of merge-and-shrink representations are limited to the lin-
ear case, partly because the existing theory did not allow
for efficient implementations of general non-linear abstrac-
tions until recently. However, with the development of
generalized label reduction (Sievers, Wehrle, and Helmert
2014) this has changed, and non-linear merge-and-shrink
abstractions have subsequently been shown to outperform
previous linear ones (Sievers, Wehrle, and Helmert 2014;
Fan, Müller, and Holte 2014; Sievers et al. 2015).

Developing nontrivial theoretical results for the general
(non-linear) case has turned out to be much more challeng-
ing than in the linear case. The most detailed theoretical
work on merge-and-shrink representations (Helmert et al.
2014) does not offer theoretical insights comparing the gen-
eral to the linear case, but makes a number of conjectures
entailing that general merge-and-shrink representations are
strictly more powerful than linear ones. In this paper, we
prove these conjectures correct.

Merge-and-Shrink Representations
The merge-and-shrink framework has mainly been used to
derive heuristic functions for state-space search. For the pur-
poses of this paper, however, it is useful to consider merge-
and-shrink representations as a general mechanism for rep-
resenting functions mapping variable assignments into some
set of values, independently of their concrete use in state-
space search (where the variable assignments are states, and
they are mapped to numerical heuristic values).

Definition 1. Let V be a set of variables, each with a finite
domain dom(v) 6= ∅.

An assignment of a variable set V is a function α defined
on V with α(v) ∈ dom(v) for all v ∈ V . We write vars(α)
for the variable set V (i.e., for the domain of definition of α).



Taking a general perspective helps emphasize that our re-
sults, in particular those regarding limitations in the linear
case, are inherent properties of the representations as such,
and not just due to the particular way that specific abstrac-
tions and abstraction heuristics are constructed. The con-
sequences in the context of planning heuristics are then an
immediate corollary of the general representation result.

In terms of presentation, this means that we do not need to
formally introduce semantics for planning tasks or transition
systems, as the results are independent of these aspects. In-
stead, we directly define merge-and-shrink representations.
Throughout the paper, we assume that some underlying fi-
nite set of variables V is given.

Definition 2. Merge-and-shrink representations (MSRs) are
defined inductively as follows. Each MSRM has an asso-
ciated variable set vars(M) ⊆ V and an associated finite
value set val(M) 6= ∅.

An MSRM is either

• atomic, in which case |vars(M)| = 1 and the variable in
vars(M) is called the variable ofM, or

• a merge, in which case it has a left component ML
and right componentMR, which are MSRs with disjoint
variable sets. In this case, vars(M) = vars(ML) ∪
vars(MR).

Each MSRM has an associated table, writtenMtab.

• IfM is atomic with variable v, its table is a function
Mtab : dom(v)→ val(M).

• IfM is a merge, its table is a function
Mtab : val(ML)× val(MR)→ val(M).

Merge-and-shrink representations are sometimes referred
to as cascading tables in the literature (Helmert et al. 2014;
Torralba 2015).1

We illustrate the definition with an example, depicted in
Figure 1. The variables are V = {v1, v2, v3} with domains
dom(v1) = dom(v2) = dom(v3) = {1, 2, 3, 4}. The over-
all MSR, M231, is a merge with left component M23 and
right component M1. M23 is a merge with left compo-
nentM2 and right componentM3. M1,M2 andM3 are
atomic.

For the atomic MSRsMi, the variable is vi, the value set
is {1, 2, 3, 4}, and the table is simply the identity function.
The value set ofM23 is also {1, 2, 3, 4}, and its table is the
minimum function: Mtab

23(x, y) = min(x, y). Finally, the
value set of M231 consists of the truth values {T,F}, and
its table is defined byMtab

231(x, y) = T iff x ≥ y.
The purpose of MSRs is to compactly represent functions

defined on assignments as formalized in the next definition.

Definition 3. An MSR M represents a function that maps
assignments of vars(M) to values in val(M). The symbol
M is used both for the function and its representation.

1For readers wondering where the shrinking aspect of merge-
and-shrink factors into the definition: on the representational level,
there is no need for any specific mechanisms related to shrinking,
as this is integrated into the tables. We refer to the literature for a
more detailed discussion (Helmert et al. 2014; Torralba 2015).

M2 M3

x y 1 2 3 4
1 1 1 1 1
2 1 2 2 2
3 1 2 3 3
4 1 2 3 4

M23 M1

x y 1 2 3 4
1 T F F F
2 T T F F
3 T T T F
4 T T T T

M231

Figure 1: Example MSR (value sets and function tables for
identity functions at the leaves omitted).

The function represented by M is defined inductively as
follows, where α is an assignment to vars(M) and α|V ′

denotes the restriction of α to the variable subset V ′:
• IfM is atomic with variable v, then
M(α) :=Mtab(α(v)).

• IfM is a merge, then
M(α) :=Mtab(ML(α|vars(ML)),MR(α|vars(MR))).
In words, an atomic MSR defines an arbitrary function on

the values of the associated variable, and a merge recursively
computes a function value for each of its two components
(where each component looks at a different subset of the
variables) and combines the subresults into the final result.

To illustrate, consider an example assignment for the
MSRM231 defined previously:

M231({v1 7→ 2, v2 7→ 4, v3 7→ 3})
=Mtab

231(M23({v2 7→ 4, v3 7→ 3}),M1({v1 7→ 2}))
=Mtab

231(Mtab
23(M2({v2 7→ 4}),M3({v3 7→ 3})),

M1({v1 7→ 2}))
=Mtab

231(Mtab
23(Mtab

2 (4),Mtab
3 (3)),Mtab

1 (2))

=Mtab
231(Mtab

23(4, 3), 2)

= T iff min(4, 3) ≥ 2

= T

More generally,M231 represents a predicate that is true for
assignment α iff min(α(v2), α(v3)) ≥ α(v1).

The structure of an MSR can be viewed as a tree, with the
overall MSR as the root and each merge having the MSRs of
its components as its children. Such trees are called merging
strategies, and an important special case is the one where
this merging strategy degenerates into a linear sequence.
Definition 4. An MSR is called linear if it is atomic or if it
is a merge whose right component is atomic and whose left
component is linear.

The structure of a linear MSR is fully defined by the se-
quence of associated variables for the leaves of its tree rep-
resentation, read from left to right. We call this sequence the
variable order of the MSR.

The important defining property of a linear MSR is that it
never contains merges of two merges. The requirement that
it is the right component that must be atomic is somewhat
arbitrary, but serves to make the merging strategy for a given
variable order canonical.



The example MSR in Figure 1 is linear, and its variable
order is 〈v2, v3, v1〉. A non-linear MSR is one that is not
linear. Sometimes we speak of general MSRs to emphasize
that we want to include both linear and non-linear MSRs.

We will study the question which functions can be repre-
sented compactly with linear and with general merge-and-
shrink representations. For this purpose, we need to define a
measure for the representation size of an MSR. We assume
that the tables are represented explicitly by their entries, and
hence the total number of table entries dominates the overall
representation size and defines a suitable size measure.
Definition 5. The size of an MSR M, written as ‖M‖,
and the size of its table, written as ‖Mtab‖, are defined in-
ductively as follows. If M is atomic with variable v, then
‖M‖ = ‖Mtab‖ = |dom(v)|. If M is a merge, then
‖Mtab‖ = |val(ML)| · |val(MR)| and ‖M‖ = ‖ML‖ +
‖MR‖+ ‖Mtab‖.

In the example, we obtain ‖M231‖ = 2 ·4 ·4+3 ·4 = 44,
which counts the two 4 × 4 tables for the merges and the
three size-4 tables for the atomic MSRs. If we generalize
the example to a larger domain with D values, we obtain
a representation size of Θ(D2) to define a function on D3

possible variable assignments.
In order to analyze the scalability of MSRs, we need to

consider representation sizes for families of functions.
Definition 6. Let F be a family of functions on variable
assignments. We say that F has compact MSRs if there ex-
ists a polynomial p such that for each function f ∈ F de-
fined over variables Vf , there exists an MSRMf for f with
‖Mf‖ ≤ p(

∑
v∈Vf

|dom(v)|).
We say thatF has compact linear MSRs if additionally all

MSRsMf are linear.
In words, the size of compact representations is at most

polynomial in the sum of the variable domain sizes (i.e., in
the number of variable/value pairs).

Expressive Power of M&S in Previous Work
It is easy to see that merge-and-shrink representations can
represent arbitrary functions on assignments, so the study
of the expressive power of the merge-and-shrink framework
has focused on the (more practically important) question
which functions can be represented compactly.

It is well-known that a family of functions can be repre-
sented compactly with linear merge-and-shrink representa-
tions iff it can be represented compactly with ADDs,2 which
in turn is equivalent to having compact representations by
families of BDDs (e.g., Torralba 2015).

In more detail, Helmert et al. (2014) and Torralba (2015)
both prove results that relate linear MSRs to ADDs rep-
resenting the same function. Translated to our notation,
Helmert et al. show that every linear MSR M can be con-
verted into an equivalent ADD of size O(|V |TmaxDmax),
where V = vars(M), Tmax is the maximum over the

2ADDs only directly support functions over assignments to bi-
nary variables. To bridge this gap, Helmert et al. and Torralba en-
code non-binary variables as contiguous sequences of binary ADD
variables, as commonly done in symbolic planning algorithms.

table sizes of M and its (direct and indirect) subcompo-
nents, and Dmax = maxv∈V |dom(v)|. A finer-grained
analysis, which also follows from Torralba’s results, gives a
slightly better bound of O(‖M‖Dmax). (Note that ‖M‖ =
O(|V |Tmax) because ‖M‖ is the sum ofO(|V |) table sizes,
each of which is individually bounded by Tmax. Hence the
second bound is at least as tight as the first one.)

In the opposite direction, it is easy to convert an ar-
bitrary ADD with N nodes into a linear MSR M with
‖M‖ = O(N · |V |), where V is the set of ADD variables.
The conversion first performs the opposite of Shannon re-
ductions (which, in the worst case, replaces each ADD edge
by a structure of sizeO(|V |)) and then converts the resulting
structure into a linear MSR, which incurs no further blowup.

For non-linear MSRs, no such bounds are known. How-
ever, Helmert et al. (2014) made the following conjecture:

We conjecture that . . . there exists a family Tn of (non-
linear) merge-and-shrink trees over n variables such
that the smallest ADD representation of Tn is of size
Ω((|Tn|max)c log n) for some constant c. Furthermore,
we conjecture that a bound of this form is tight and
that the log n factor in the exponent can be more ac-
curately expressed with the Horton-Strahler number of
the merge-and-shrink tree.

In the following we will prove this conjecture correct, in-
cluding the relation to the Horton-Strahler number. Rather
than working with ADDs, we prove the results directly on
the level of general vs. linear MSRs; the conjectured rela-
tionship to ADDs then follows from the above discussion.
Specifically, we will prove:

1. Every MSRM can be converted into a linear MSR of size
at most ‖M‖HS(M), where HS(M) is the Horton-Strahler
number (see next section) of the merging strategy ofM.
HS(M) is bounded from above by log2 n+ 1, where n is
the number of variables.

2. There exist families of functions which can be compactly
represented by general MSRs, but every linear MSR has
size Ω(‖M‖c log2 n), where c > 0 is a constant, n is the
number of variables, andM is a general MSR represent-
ing the same function.

General to Linear M&S Representations
The Horton-Strahler number (Horton 1945) of a rooted bi-
nary tree is a measure of its “bushiness”. The measure is
high for complete trees and low for thin trees.3 For this pa-
per, it is easiest to define the measure directly for MSRs.
Definition 7. The Horton-Strahler number of an MSR
M, written HS(M), is inductively defined as HS(M) =

1 ifM is atomic
max(HS(ML),HS(MR)) if HS(ML) 6= HS(MR)

HS(ML) + 1 if HS(ML) = HS(MR)

3Horton-Strahler numbers of rooted trees are closely related to
the pathwidth (e.g., Cattell, Dinneen, and Fellows 1996) of the tree
seen as an undirected graph. It can be shown that the Horton-
Strahler number is always in the range {k, . . . , 2k}, where k is
the pathwidth (Mamadou M. Kanté, personal communications).



It is easy to prove inductively that the smallest tree (in
terms of number of nodes) with Horton-Strahler number k is
the complete binary tree with k layers, from which it follows
that Horton-Strahler numbers grow at most logarithmically
in the number of tree nodes.

For MSRs, this implies HS(M) ≤ log2 |vars(M)| + 1.
If M is linear, then HS(M) = 2, unless M is atomic (in
which case HS(M) = 1). More generally, MSRs with small
Horton-Strahler number are “close” to being linear. In this
section we show that general MSRs M can be converted
to linear ones with an increase in representation size that is
exponential only in HS(M). In the following section, we
then show that this blow-up is unavoidable.

Before we can prove the main result of this section, we
show how to convert an MSR with a single violation of the
linearity condition into a linear one. The main result uses
this construction as a major ingredient.

Throughout the section, we will refer to the parts of an
MSRM, by which we mean its direct and indirect subcom-
ponents, includingM itself.
Lemma 1. LetM be a merge MSR whereML andMR are
linear. Then there exists a linear MSRMlin representing the
same function asM with ‖Mlin‖ ≤ ‖ML‖+(|val(ML)|+
1)‖MR‖.
Proof: We demonstrate the construction ofMlin givenM.
To reduce notational clutter, we set L =ML and R =MR
for the two (linear) components of M. Further, we set
r := |vars(R)| and write 〈v1, . . . , vr〉 for the variable order
underlying R. For 1 ≤ i ≤ r, we write Rvar

i for the atomic
part of R with variable vi and Ri for the part of R with
vars(Ri) = {v1, . . . , vi}. (This implies that R1 = Rvar

1 ,
and henceR1, unlike the otherRi, is atomic.)

If R is atomic, then M is already linear and we can set
Mlin =M. In the following we can thus assume r ≥ 2.

We construct a sequence of linear MSRs M0, . . . ,Mr

such thatMlin =Mr is the desired linear representation for
M. To initialize the construction, we setM0 = L. All other
MSRs Mi are merges, so to define them we must specify
their left and right components, value sets, and tables.

For 1 ≤ i ≤ r,Mi is a merge with left componentMi−1

and right component Rvar
i . The value sets are val(Mi) =

val(L)× val(Ri) for all i 6= r and val(Mr) = val(M).
Finally, the tables are defined as follows:

• i = 1:Mtab
1 (l, x) = 〈l,Rtab

1 (x)〉
• 1 < i < r:Mtab

i (〈l, x〉, y) = 〈l,Rtab
i (x, y)〉

• i = r:Mtab
r (〈l, x〉, y) =Mtab(l,Rtab

r (x, y))

To see that this MSR represents the desired function, it is
perhaps easiest to view the evaluation of an MSR for a given
assignment as a bottom-up process. ComputingM(α) with
the original MSR entails first computing L(α|vars(L)), then
R(α|vars(R)) and finally feeding the two component results
intoMtab. During the evaluation ofR, the result for L must
be “remembered” because it will be needed at the end when
plugging the two component results intoMtab.

The linearized MSR emulates this process by first com-
putingL(α|vars(L)) and then propagating the resulting value
l, unchanged, through all the computation steps ofR as part

of the value sets, until the final step, whenR(α|vars(R)) be-
comes available and hence the final result can be computed.

To prove the claimed size bound, observe that all tables
of L occur identically inMlin, so the total size of these ta-
bles in Mlin can be bounded by ‖L‖. Similarly, the tables
of the atomic parts of R occur identically inMlin and their
size can be bounded by ‖R‖. The remaining parts ofMlin

are the merges Mi with 1 ≤ i ≤ r. The size of Mtab
i is

|val(L)| times the size of Rtab
i (in R), and hence the total

size of these tables can be bounded by |val(L)|‖R‖. Sum-
ming these three terms gives the desired overall bound. �

Armed with this construction, we can now proceed to
prove the main result.

Theorem 1. Let Dsum(M) =
∑

v∈vars(M) |dom(v)|. For
every MSRM there is a linear MSRMlin representing the
same function with ‖Mlin‖ ≤ Dsum(M)‖M‖HS(M)−1 ≤
‖M‖HS(M).

Proof: ClearlyDsum(M) ≤ ‖M‖, so it is sufficient to show
‖Mlin‖ ≤ Dsum(M)‖M‖HS(M)−1. This holds for linear
MSRs withMlin = M, so in the following letM be non-
linear. In particular, we will use thatM is not atomic.

Let B be the maximum of |val(P)| over all parts P of
M with P 6= M. We have B + 1 ≤ ‖M‖ because each
value set size |val(P )| contributes to ‖M‖ (in the table of a
merge), and it is not the only term that contributes to ‖M‖
(becauseM is not atomic).

We now prove that every part P of M (including P =
M) can be converted to a linear representation P lin of size
at most Dsum(P)‖M‖HS(P)−1. The claim then follows by
setting P =M.

The proof is by induction over the number of variables
in P . If |vars(P)| = 1, P is atomic and the result holds
because P is already linear and satisfies ‖P‖ = Dsum(P).

For the inductive step, let P be a merge. Let k =
HS(P), kL = HS(PL) and kR = HS(PR). We can ap-
ply the inductive hypothesis to linearize PL and PR, ob-
taining linear representations P lin

L and P lin
R with ‖P lin

L ‖ ≤
Dsum(PL)‖M‖kL−1 and ‖P lin

R ‖ ≤ Dsum(PR)‖M‖kR−1.
If kL > kR, let Q be the MSR with left component P lin

L
and right component P lin

R and the same table and value set
as P . Clearly Q represents the same function as P and sat-
isfies the criteria of Lemma 1, so we can apply the lemma to
receive a linear MSR Qlin with size at most:

‖Qlin‖ ≤ ‖P lin
L ‖+ (|val(P lin

L )|+ 1)‖P lin
R ‖

(*) ≤ ‖P lin
L ‖+ (B + 1)‖P lin

R ‖
≤ ‖P lin

L ‖+ ‖M‖‖P lin
R ‖

≤ Dsum(PL)‖M‖kL−1 + ‖M‖Dsum(PR)‖M‖kR−1

= Dsum(PL)‖M‖kL−1 +Dsum(PR)‖M‖kR

(**) ≤ Dsum(PL)‖M‖k−1 +Dsum(PR)‖M‖k−1

= (Dsum(PL) +Dsum(PR))‖M‖k−1

= Dsum(P)‖M‖k−1

where (*) uses that P lin
L has the same value set as PL, which
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Figure 2: Two assignments for heap predicate ϕ15,9. As-
signment α (top) satisfies the heap condition; assignment α′
(bottom) does not because α′(v3) > α′(v6) and α′(v4) >
α′(v8).

is a part ofM, and hence the value set bound B applies to
it; (**) uses that k = kL > kR in the case considered here.

If kL < kR, we use essentially the same construction, but
make P lin

R the left and P lin
L the right component of Q, which

allows us to swap the roles of kL and kR in the computa-
tion. To represent the same function despite the swapped
subcomponents, we set Qtab(x, y) = P tab(y, x).

Finally, if kL = kR, we use the same construction and
computation as with kL > kR. Step (**) remains correct
because in this case k = kL + 1 = kR + 1.

In all cases, Qlin is the desired linear MSR: we showed
that it meets the size bound, and it represents the same func-
tion as Q, which represents the same function as P . �

Separation of General and Linear M&S
In this section, we show that the size increase in the conver-
sion from general to linear MSRs in Theorem 1 is unavoid-
able in general. To prove the result, we describe a family
of functions which have compact general merge-and-shrink
representations, but do not have compact linear representa-
tions. More precisely, we will show that ifM is a compact
general representation for such a function f , then every lin-
ear representation must have size Ω(‖M‖Θ(log n)), where n
is the number of variables of f . This lower bound matches
the upper bound of ‖M‖HS(M) from the previous section.

The functions we consider are predicates, i.e., they map
to the set of truth values {T,F}. We say that an assignment
α satisfies a predicate ψ if ψ(α) = T. We now introduce the
family of predicates we will study.

Definition 8. Let k ∈ N1, let n = 2k − 1, and let D ∈ N1.
The heap predicate ϕn,D is a predicate defined over vari-
ables V = {v1, . . . , vn} with dom(v) = {1, . . . , D} for all
v ∈ V . An assignment α of V satisfies ϕn,D iff α(vbi/2c) ≤
α(vi) for all 1 < i ≤ n. In this case, we say that α satisfies
the heap condition.

In the following, we omit k, n and D from the notation
when this does not lead to confusion. Observe that k =
Θ(log n), or more precisely k = log2(n+ 1).
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M4526731
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Figure 3: Heap and corresponding merging strategy.

The heap predicate has its name because it is the condi-
tion characterizing sequences of values that represent (min-)
heaps, known from algorithm theory (e.g., Cormen, Leiser-
son, and Rivest 1990). Figure 2 shows two example assign-
ments for heaps of height k = 4, i.e., with n = 24 − 1 = 15
variables. (Ignore the gray shading of some nodes for now.)
We follow the common convention in algorithm theory of
displaying the assignment as a complete binary tree (not to
be confused with trees representing MSRs!), where the vari-
ables are numbered in breadth-first order. With this mode of
display, the heap condition is satisfied iff the value assigned
to each inner node is less than or equal to the values assigned
to its children. The assignment shown at the top satisfies the
heap condition, while the one at the bottom does not.

General M&S Representations for Heaps
It is easy to see that heap predicates can be represented com-
pactly with general merge-and-shrink representations. In
fact, the first MSR we showed in Figure 1 is an example
of this, representing the heap predicate ϕ3,4.

The general case is only slightly more complex and is il-
lustrated for n = 7 variables (k = 3) in Figure 3. The left-
hand side shows the tree order of the heap variables, and the
right-hand side shows the corresponding merging strategy.

The idea is to build merges “along” the tree underlying
the heap. For each variable vi there is a subtree MSR, whose
variable set includes all variables in the subtree of the heap
rooted at vi, and for each inner variable (in the example:
v1, v2, v3) there is a descendant MSR, whose variable set
includes the same variables as the subtree MSR but not vi
itself. For example, M452 is the subtree MSR for v2 and
M45 is the descendant MSR for v2 in Figure 3. For inner
variables vi, the descendant MSR is the merge of the subtree
MSRs of the (heap) children of vi, and the subtree MSR is
the merge of the descendant MSR of vi and an atomic MSR
for vi. Leaf nodes vi of the heap do not have descendant
MSRs, and their subtree MSR is an atomic MSR for vi.

The value sets and tables for these MSRs are constructed
in such a way that each MSR represents the minimum func-
tion over all variables it covers. This can easily be com-
puted locally by setting Mtab(x, y) = min(x, y) every-
where. To complete the construction, we need a way of
determining violations of the heap condition. This is ac-
complished by adding an additional value violation to the
value sets of all merges, which is set at the subtree MSR
of inner variable vi whenever α(vi) is larger than the value
propagated up from the descendant MSR for vi. We de-
fine min(x, y) = violation whenever x = violation or



y = violation, which ensures that violations are propagated
towards the root. To complete the construction, the table at
the root converts violation to F and all other values to T.

Theorem 2. The family of all heap predicates has compact
MSRs.

Proof: It is easy to verify that the MSRs Mn,D described
in the text represent the heap functions ϕn,D. We can bound
the representation size by ‖Mn,D‖ ≤ n ·D+ (n− 1)(D+
1)2 = O(nD2), where the first term counts the n tables
of size D in the atomic MSRs, and the other term counts
the n − 1 tables of size (D + 1)2 (taking into account the
additional violation value) at merges. This is polynomial in
the sum over the domain sizes, which is

∑n
i=1D = nD. �

Linear M&S Representations for Heaps
In our final result, we show that heap predicates cannot be
represented compactly with linear merge-and-shrink repre-
sentations, no matter which variable order is used. Towards
this end, we need some additional definitions relating to as-
signments in the context of heap predicates. Throughout the
section, V = {v1, . . . , vn} refers to the variables of a given
heap predicate ϕn,D.

We make heavy use of partial assignments (assignments
to subsets of variables) in the following. For V ′ ⊆ V , a
V ′-assignment is an assignment for V ′. When we speak of
assignments without further qualification, we mean assign-
ments to all variables V .

Definition 9. Let V be the variable set of some heap predi-
cate ϕn,D, and let V ′ ⊆ V . The unassigned variables of V ′
are the variables V \ V ′. An assignment for the unassigned
variables of V ′ is called a completion of a V ′-assignment.

A V ′-assignment σ together with a completion τ forms an
assignment, which we write as σ ∪ τ .

A completion τ is a valid completion for V ′-assignment
σ if σ ∪ τ satisfies the heap condition. A V ′-assignment is
called consistent if it has at least one valid completion.

To illustrate the definition, we refer back to Figure 2. The
variable subset V ′ = {v1, v2, v3, v4, v9, v10} is shaded in
gray, and the unassigned variables are shown in white. We
verify that the V ′-assignment in both parts of the figure is
identical, so the figure shows a V ′-assignment σ together
with a valid completion τ at the top (which proves that σ is
consistent) and an invalid completion τ ′ at the bottom.

We make the following central observation: if the vari-
able set V ′ occurs as a prefix of the variable order of a given
linear MSR for ϕn,D, then the sub-MSR MV ′ with vari-
ables V ′ may only “combine” (map to the same value) V ′-
assignments that have exactly the same valid completions.
Otherwise the final merge-and-shrink representation cannot
faithfully represent the heap predicate. Hence, the number
of elements in val(MV ′) is at least as large as the number
of V ′-assignments that are distinguishable in this sense.4

4The same observation underlies the Myhill-Nerode theorem on
the size of minimal deterministic finite automata (e.g., Hopcroft,
Motwani, and Ullman 2001, Section 4.4) and the Sieling-Wegener
bound for the minimal representation size of BDDs (Sieling and
Wegener 1993).

Definition 10. V ′-assignments σ and σ′ are called equiva-
lent if they have exactly the same set of valid completions.
V ′-assignments that are not equivalent are called distin-
guishable.

We will show that, no matter which variable order is cho-
sen, some part of the linear MSR must have a large number
of distinguishable V ′-assignments. To prove this result, we
will need some more definitions.
Definition 11. The neighbors of vi are its parent in the heap,
vbi/2c (if i > 1) and its children in the heap, v2i and v2i+1 (if
i < 2k−1). A variable vi ∈ V ′ is called a frontier variable
of V ′ if it has an unassigned neighbor.

In the example of Figure 2, the frontier variables of V ′ are
v2 (due to its child v5), v3 (due to its children v6 and v7), v4

(due to its child v8) and v10 (due to its parent v5).
The frontier variables are the ones that relate the variables

assigned in V ′ to the unassigned variables, which makes
them particularly important. It is easy to see that, given
a consistent V ′-assignment, only the values of the frontier
variables matter when deciding whether a given completion
is valid. (We do not prove this result because it does not help
prove a lower bound, but it may serve to provide intuition for
the role of frontier variables.)

We now show that for every variable order, there must
be a sub-MSR of the overall MSR with a certain minimal
number of frontier variables.
Lemma 2. Let V be the variable set of some heap predicate
ϕn,D, and let π = 〈vj1 , . . . , vjn〉 be any variable order of
V . Then there exists some r ∈ {1, . . . , n} such that the set of
variables V ′ = {vj1 , . . . , vjr} defined by the length-r prefix
of π includes at least bk2 c frontier variables.
Proof: The problem of determining an ordering π of the
vertices of a graph that minimizes the maximal number of
frontier variables of any prefix of π has been studied in graph
theory. The minimal number of frontier variables required is
known as the vertex separation number of the graph and is
known to be equal to its pathwidth (Kinnersley 1992).

Here, the graphs we must consider are the complete bi-
nary trees Tk with k layers. Cattell, Dinneen, and Fellows
(1996) show that the pathwidth of Tk is at least bk2 c. �

The basic idea of our main proof is that if there are many
frontier variables, then there exist many V ′-assignments that
need to be distinguished. Towards this end, we introduce
certain properties that will help us determine that given V ′-
assignments are distinguishable.
Definition 12. A V ′-assignment σ is called sorted if σ(vi) ≤
σ(vj) whenever i < j. A V ′-assignment σ is called fraternal
if, for any two variables v, v′ ∈ V ′ that are siblings in the
heap (i.e., v = v2i and v′ = v2i+1 for some 1 ≤ i < 2k−1),
we have σ(v) = σ(v′).

For example, the V ′-assignment shown in gray in Figure 2
is not sorted because σ(v2) > σ(v3) even though 2 < 3.
Furthermore, it is not fraternal because v2 and v3 are siblings
and have different values σ(v2) 6= σ(v3). It would be sorted
and fraternal if we had σ(v2) = 3.

Next, we show that with many frontier variables, many
V ′-assignments are sorted and fraternal.



Lemma 3. Let V be the variable set of some heap predicate
ϕn,D, and let V ′ ⊆ V contain ` frontier variables. Then
there exists a set Σ(V ′) of sorted fraternal V ′-assignments
such that |Σ(V ′)| =

(
D
d`/2e

)
and any two assignments in

Σ(V ′) differ on at least one frontier variable of V ′.

Proof: We say that a variable is sibling-bound if it has a
parent (i.e., is not the root), it is the right child of its parent,
and both the variable and its sibling are in V ′. We say that a
variable is sibling-bound in the frontier if it is sibling-bound
and additionally both the variable and its sibling are in the
frontier. A pivot candidate is a frontier variable that is not
sibling-bound in the frontier.

There can be at most b`/2c variables that are sibling-
bound in the frontier because all such variables must have
other frontier variables (that are not sibling-bound) as their
siblings. Therefore, there are at least `′ = `−b`/2c = d`/2e
pivot candidates. We arbitrarily select `′ pivot candidates
and call them pivots.

We construct the set Σ(V ′) by defining one sorted frater-
nal V ′-assignment σX for each subset X ⊆ {1, . . . , D} of
cardinality `′. There are

(
D
`′

)
such subsets, and the construc-

tion guarantees that σX and σX′ with X 6= X ′ differ on at
least one pivot and hence on at least one frontier variable.

We now describe how to construct σX for a given subset
X . First, assign the values of X to the pivots in index order
(i.e., the lowest value in X goes to the pivot with lowest
index, etc.). This results in a sorted assignment to the pivots.

Next, to each variable in V ′ that is not sibling-bound and
not a pivot, assign the value of the pivot that precedes it in
index order, or 1 if no pivot precedes it. This maintains sort-
edness and results in an assignment to all non-sibling-bound
variables in V ′.

Finally, assign the value assigned to its sibling to each
sibling-bound variable in V ′. This results in a fraternal as-
signment to V ′ and again maintains sortedness.

As an example, consider the set of variables V ′ =
{v1, v2, v3, v4, v9, v10} from Figure 2 with D = 9. The
frontier variables are {v2, v3, v4, v10}, giving ` = 4 and
`′ = 2. The only sibling-bound variable in V ′ is v3, and
the other three frontier variables are pivot candidates. Select
v2 and v4 as the pivots. Let X = {5, 7}. We first assign
the values of X to the pivots in order: σX(v2) = 5 and
σX(v4) = 7. Next, we fill in the remaining non-sibling-
bound variables: σX(v1) = 1, σX(v9) = 7, σX(v10) = 7.
Finally, sibling-bound v3 receives the value of its sibling:
σX(v3) = 5. �

As the final preparation for the main proof, we show that
all assignments constructed in Lemma 3 are distinguishable.

Lemma 4. Let σ and σ′ be two sorted fraternal V ′-
assignments that differ on at least one frontier variable of
V ′. Then σ and σ′ are distinguishable.

Proof: It is easy to see that sorted V ′-assignments are al-
ways consistent. More generally, a V ′-assignment σ is con-
sistent iff for all assigned variables vi, vj ∈ V ′ where vi is
an ancestor of vj in the tree representation of the heap, we
have σ(vi) ≤ σ(vj). We start by describing two special
completions of a given consistent V ′-assignment.
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4
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4 v5
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Figure 4: Top: sorted fraternal V ′-assignment σ (gray
nodes) with its minimal valid completion τmin (white
nodes), satisfying the heap condition. Bottom: sorted fra-
ternal V ′-assignment σ′ (gray nodes) with the same com-
pletion, violating the heap condition for v6 and its child v13.

The minimal valid completion τmin of a consistent V ′-
assignment σ assigns the lowest possible value that pre-
serves consistency to each unassigned variable. It can be
computed by iterating over all unassigned variables in index
order (i.e., from the root towards the leaves) and assigning
to each variable the lowest value that is consistent with its
parent (if the variable has a parent). If the root variable v1

is unassigned, this means setting τmin(v1) := 1. For any
other unassigned variable vi (i > 1), this means assigning
the value of the parent: τmin(vi) := (σ∪τmin)(vb i

2 c). (Note
that when vi is processed, the values of τmin for lower-index
variables have already been constructed, so (σ∪τmin)(vb i

2 c)
is defined.) The top half of Figure 4 shows a V ′-assignment
σ together with its minimal valid completion.

Similarly, the maximal valid completion τ ′max of a con-
sistent V ′-assignment σ′ assigns the highest possible value
that preserves consistency to each unassigned variable. It
can be computed by iterating over all unassigned variables
in reverse index order (i.e., from the leaves towards the root)
and assigning to each variable the highest value that is con-
sistent with its children (if the variable has children). For
unassigned leaf variables vi (i ≥ 2k−1), this means set-
ting τ ′max(vi) := D. For unassigned inner variables vi
(i < 2k−1), this means assigning the minimum value of
the children: τ ′max(vi) := min((σ′ ∪ τ ′max)(v2i), (σ

′ ∪
τ ′max)(v2i+1)). (Again, this computation only depends on
values of τ ′max that have already been constructed.)

We now prove the claim. Let σ and σ′ be sorted frater-
nal V ′-assignments that differ on some frontier variable vi.
Without loss of generality, we can assume σ(vi) < σ′(vi)
(otherwise swap the roles of σ and σ′). We will show that σ
and σ′ are distinguishable by describing a completion that is
valid for one of σ or σ′, but not the other.

Because vi is a frontier variable of V ′, it belongs to V ′ and
has a parent or child that is unassigned. We first consider the
easier case where vi has a child vj (j = 2i or j = 2i + 1)
that is unassigned.

Consider the minimal valid completion τmin of σ. By con-



struction, τmin is a valid completion of σ. From the defi-
nition of minimal valid completions, we have τmin(vj) =
σ(vi). We also have σ(vi) < σ′(vi) and hence τmin(vj) <
σ′(vi), so the child vj has a lower value than its parent vi in
σ′∪ τ . This shows that τmin is not a valid completion for σ′,
which concludes this case of the proof.

Figure 4 illustrates this proof argument, showing two
sorted fraternal V ′-assignments σ (top half) and σ′ (bottom
half) together with the minimal valid completion τmin of σ.
We see that σ ∪ τmin at the top satisfies the heap condition,
while σ′ ∪ τmin at the bottom violates it for v6 (a variable in
V ′ with σ(v6) < σ′(v6)) and its child v13.

We now consider the remaining case, where vi with
σ(vi) < σ′(vi) has an unassigned parent vj (j = b i2c). (The
two cases are of course not disjoint, but they are exhaus-
tive.) This time, we consider the maximal valid completion
τ ′max of σ′, which by construction is a valid completion of
σ′. We show that it is not a valid completion of σ by demon-
strating τ ′max(vj) > σ(vi), so that the heap condition is vi-
olated between vj and its child vi. More precisely, we will
show τ ′max(vj) = σ′(vi), from which the result follows with
σ′(vi) > σ(vi).

Let vs be the sibling of vi, i.e., the other child of
vj . By definition of maximal valid completions, we have
τ ′max(vj) = min((σ′ ∪ τ ′max)(vi), (σ

′ ∪ τ ′max)(vs)). If
vs ∈ V ′, the values of vi and vs are both defined by σ′,
and we obtain τ ′max(vj) = min(σ′(vi), σ′(vs)) = σ′(vi)
because σ′ is fraternal and hence σ′(vi) = σ′(vs).

If vs /∈ V ′, then it is easy to see from the definition of
maximal valid completions that τ(vs) is a value assigned by
σ′ to some descendant vd of vs that belongs to V ′ (possibly
several layers removed), or the maximal possible value D
if no such descendant exists. In either case, this value is at
least as large as σ′(vi) because σ′(vi) ≤ D unconditionally,
and if the value derives from a descendant vd, then we must
have i < d, from which σ′(vi) ≤ σ′(vd) follows because σ′
is sorted. So also in this case we obtain τ ′max(vj) = σ′(vi),
which concludes the proof. �

We are now ready to put the pieces together.

Theorem 3. The heap predicates do not have compact lin-
ear MSRs.

Proof: We must show that the minimum representation size
required by linear MSRs for ϕn,D grows faster than any
polynomial in nD, no matter which merging strategy (vari-
able order) is chosen. We describe a sequence of heap pred-
icates with a size parameter s ∈ N1 for which the result
can already be established. Then it of course extends to the
family of heap predicates as a whole.

For s ∈ N1, we consider the heap predicate ϕn,D with
k = 4s (and hence n = 2k − 1) and D = s · n. We observe
that D = 1

4kn = 1
4 log2(n + 1)n = O(n log n), and hence

a polynomial size bound in nD exists for the given subset
of heap predicates iff a polynomial size bound in n exists.
Therefore, to show the overall result, it is sufficient to show
that heap predicates of the chosen form do not have linear
MSRs of size O(nc) for any constant c.

Let s ∈ N1, and let k = 4s, n = 2k − 1 and D = s · n.
Let π be any variable order for ϕn,D.

From Lemma 2, π has a prefix consisting of a variable set
V ′ with at least ` = bk2 c = b 4s

2 c = 2s frontier variables.
From Lemma 3, there exists a set Σ(V ′) of sorted fra-

ternal V ′-assignments differing on at least one frontier vari-
able, where |Σ(V ′)| =

(
D
d`/2e

)
=
(

D
d2s/2e

)
=
(
D
s

)
.

From Lemma 4, all assignments in Σ(V ′) are distinguish-
able from each other. Therefore,

(
D
s

)
is a lower bound on

the size of the value set in the sub-MSR for V ′, and hence it
is also a lower bound on the overall representation size.

We have
(
D
s

)
≥
(
D
s

)s
=
(
s·n
s

)s
= ns = n

1
4k =

n
1
4 log2(n+1), which grows faster than any polynomial in n,

concluding the proof. �

We briefly remark that for the application of merge-and-
shrink representations to classical planning, it is easy to con-
struct planning tasks whose perfect heuristics are in 1:1 cor-
respondence with the heap predicates ϕn,D. This implies
that there exist families of planning tasks that can be per-
fectly solved in polynomial time with non-linear merge-and-
shrink heuristics, but not with linear ones. Unfortunately, we
cannot provide details due to space limitations, as a detailed
discussion would require additional background on planning
tasks, transition systems, etc.

Discussion
We showed that general merge-and-shrink representations
are strictly more expressive than linear ones: a general-
to-linear conversion is possible, but incurs an unavoidable
super-polynomial representational blow-up. We bounded
this blow-up from above and below, and the upper and lower
bounds coincide up to a constant factor in the exponent: gen-
eral representations of size ‖M‖ can always be converted to
linear ones of size ‖M‖Θ(log |vars(M)|) and more compact
linear representations do not exist in general. We also pre-
sented a refined upper bound in terms of the Horton-Strahler
number of the merging strategy, which measures how close
a given merging strategy is to the linear case.

Our results offer theoretical justification for the recent in-
terest in non-linear merge-and-shrink abstractions (Sievers,
Wehrle, and Helmert 2014; Fan, Müller, and Holte 2014;
Sievers et al. 2015) and motivate further research in this
area. They also indicate that it may be worth questioning
the ubiquity of BDD representations (which are polynomi-
ally equivalent to linear merge-and-shrink representations)
for symbolic search in automated planning and other ar-
eas. General merge-and-shrink representations retain many
of the properties of BDDs that make them useful for sym-
bolic search, but offer a larger than polynomial advantage
over BDDs in cases where linear variable orders cannot cap-
ture information dependencies well.

Can we build strong symbolic search algorithms using
general merge-and-shrink representations instead of BDDs,
replacing variable orders by variable trees? The same ques-
tion has been asked about sentential decision diagrams (Dar-
wiche 2011), which extend BDDs with a different general-
ization from linear to tree structures and have shown much
initial promise. We believe that there is significant scope for
further investigations in this direction.
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