Selective Approaches for Solving Weak Games

Malte Helmert!, Robert Mattmiiller!, and Sven Schewe?

! Albert-Ludwigs-Universitéit Freiburg
79110 Freiburg, Germany
{helmert|mattmuel}@informatik.uni-freiburg.de
2 Universitit des Saarlandes
66123 Saarbriicken, Germany
schewe@cs.uni-sb.de

Abstract. Model-checking alternating-time properties has recently at-
tracted much interest in the verification of distributed protocols. While
checking the validity of a specification in alternating-time temporal logic
(ATL) against an ezplicit model is cheap (linear in the size of the for-
mula and the model), the problem becomes EXPTIME-hard when sym-
bolic models are considered. Practical ATL model-checking therefore of-
ten consumes too much computation time to be tractable.

In this paper, we describe a novel approach for ATL model-checking,
which constructs an explicit weak model-checking game on-the-fly. This
game is then evaluated using heuristic techniques inspired by efficient
evaluation algorithms for and/or-trees.

To show the feasibility of our approach, we compare its performance to
the ATL model-checking system MOCHA on some practical examples.
Using very limited heuristic guidance, we achieve a significant speedup
on these benchmarks.

1 Introduction

Alternating-time temporal logics like ATL [2] have recently attracted much
interest in the multi-agent community [15,16,14,17]. A typical application of
alternating-time model-checking is the verification of distributed protocols. In
the design of such protocols, we are often interested in the strategic abilities of
certain agents (cf. [15,16,3]). For example, in a contract-signing protocol, it is
important to ensure that while Alice and Bob can cooperate to sign a contract,
Alice is never able to obtain Bob’s signature unless Bob can also obtain Alice’s
signature, and vice versa. Such properties can be expressed in ATL, which ex-
tends the branching-time temporal logic CTL [7] with modalities that quantify
over the strategic choices of groups of agents.

As in the case of CTL, the model-checking problem for ATL reduces to
solving weak games [2]. Weak games are a particular simple version of parity
games, where all vertices within a strongly connected component have the same
color. ATL model-checking therefore seems to be simple: Given an alternating
transition system A (i.e., an ezplicit model for ATL) and a specification ¢, the
size of the weak model-checking game is in O(]A| - |¢|), where |A| denotes the

size of A and |p| the number of subformulas of ¢. The resulting weak game
can be solved in time linear in its size. It thus seems, at first glance, that ATL
inherits the model-checking complexity from CTL. Indeed, MOCHA [3], the
only available tool for ATL model-checking, generalizes a symbolic backward
approach for CTL model-checking [5].

In light of these similarities, it might appear somewhat surprising that the
performance of ATL model checking does not seem to meet the high standards set
by CTL model checking. Kremer and Raskin, for example, observed exceptionally
large time consumption (and, partly, abortions) when model checking simple
properties of small protocols [15]. One possible explanation for this discrepancy
is that, despite the identical model-checking complexity of O(|.A|-|¢]|) for explicit
models, the model-checking complexities of CTL and ATL do not coincide for
symbolic models: while symbolic model-checking is PSPACE-complete for CTL,
it becomes EXPTIME-complete for ATL, as recently shown by van der Hoek
et al. [18]. In practice, model-checkers use succinct symbolic representations for
models, such as RML for MOCHA [3] or PROMELA for SPIN [12], so that the
symbolic model checking complexity is of paramount importance.

In addition to the increased complexity of ATL model-checking, there is a
significant structural difference between model-checking ATL and CTL formu-
las. When we model-check a CTL formula, it is not unusual that the complete
(reachable) state space needs to be explored (consider, e.g., a proof that ¢ holds
during all computations, AGp). For many ATL formulas, there is no such neces-
sity of complete exploration: to prove that a group A of agents can enforce that
¢ globally holds ({(A))Gy), we only need to consider a fragment of the states,
defined by the strategies followed by these agents.

We therefore propose an approach that constructs the explicit model-checking
game from a symbolic representation of the model-checking problem on-the-fly.
Different from a forward-backward approach, we do not start by constructing the
complete set of forward reachable states. Instead, we adopt heuristic best-first
search methods for solving reachability games in and/or-trees to weak games,
and finish a model-checking run as soon as we can prove that the considered set
of states is sufficiently large for one of the players to have a winning strategy.
Our adoption takes into account that, unlike and/or-trees, weak games can not
only be won by a player by reaching winning states, but also by forcing the game
to stay in vertices with a winning color. It turns out that selectively exploring
the space of game vertices is a powerful method for obtaining small proof graphs
and fast evaluation results.

Organization of the Paper. The following section introduces weak games,
followed by Section 3 describing our approach for their solution. We then discuss
the application of these techniques to ATL model-checking in Section 4. We close
with a presentation (Section 5) and discussion (Section 6) of our results.

2 Weak Games

A weak game is a tuple G = (Veyen, Vodd, F, vo,), where

— V = Vepen W Viygq is a finite set of vertices, partitioned into Veyen and Viygq,
with a designated initial vertex vy € V.

— ECV xV is a set of edges.

— «a:V — Nis a coloring function, satisfying (v,w) € E = a(v) < a(w

)-
Each vertex v € V has outdegree at least 1 in the directed graph (V, E). For
a vertex v € Viyen, we say that even is the owner of v (owner(v) = even) and
for a vertex v € V44 we say that odd is the owner of v (owner(v) = odd). We
say that the level of v is even (level(v) = even) iff a(v) is even and that that
the level of v is odd (level(v) = odd) iff «(v) is odd. For each natural number
n € a(V) in the mapping of «, the vertices a=!(n) colored with n are called a
level.

The winning condition for weak games is defined in terms of runs. A run of
a game is an infinite sequence vov1vs ... in V¥ such that (v;,v;41) € F is an
edge if v;41 is a successor of v;. A run is winning for player even (odd) iff the
highest color of vertices occurring infinitely often in the run is even (odd). Due
to the monotonicity condition for vertex colors, almost all vertices in a run have
the same color, and every run is winning either for player even or odd.

Weak games are a special form of parity games, and consequently one player
wins with a memoryless strategy [9]. A (memoryless) strategy for player p €
{odd, even} is a mapping s, : V, — V such that (v,v") € E whenever s,(v) = v'.
A run vovive ... is in accordance with a strategy s, iff, for all i € N, v; €
Vp = vit1 = sp(v;) holds. A strategy s, is winning for player p, iff all runs in
accordance with s, are winning for player p.

A vertex v is winning for player p iff she has a winning strategy in the
game (Veyen, Vodd, F, v, @), and a game is won by player p iff the initial vertex is
winning for her. Solving a game means determining by which player it is won.

3 Solving Weak Games

Weak games with n vertices and e edges can be solved in time O(n+e) following
a simple backward approach. For player p € {even, odd} and a given (partial)
labeling of the game vertices as winning for even or winning for odd, define the
p-attractor to be the minimal set V,, such that:

— a vertex v € V with owner(v) = p belongs to V,, if some successor w €
succ(v) is labeled as winning for p or belongs to V,, (player p can choose to
play into a vertex winning for p), and

— avertex v € V with owner(v) # p belongs to V), if each successor w € succ(v)
is labeled as winning for p or belongs to V), (the opponent of p is forced to
play into a vertex winning for p).

The backward algorithm proceeds in phases, iterating until the initial vertex
is labeled as winning for either player. In every phase, it considers the set of
unlabeled vertices V4, whose color is maximal among all unlabeled vertices
and labels the vertices in V4, as winning for p, where p is even (odd) if the

color of the vertices in V’ is even (odd). It then computes the p-attractor V,
and labels the vertices in V,, as winning for p. The algorithm can easily be
implemented in such a way that every vertex and edge is considered only once
(cf. [8,4]), proving the O(n + e) complexity bound.

A disadvantage of this approach is that usually almost all vertices of the
game need to be considered. On the other hand, only a small fragment of the
state space is forward reachable in most model-checking games. An obvious
improvement in such situations is to construct all forward reachable states in a
first phase, and then solve the smaller resulting game using a standard backward
algorithm. The complexity of this approach is linear in the size of the forward
reachable sub-game.

For larger examples, this is still unsatisfactory: knowing a winning strategy
beforehand, it suffices to consider only the fragment of the forward reachable
vertices defined by this strategy. For example, in games corresponding to and/or-
trees of uniform outdegree b > 2 and depth d, exploiting the knowledge of a
winning strategy reduces the number of vertices that need to be considered from
O(b%) to O(b%?) [13]. In other words, the number of vertices to consider is
reduced to its square root.

This raises the question whether we can identify winning states without the
need of completely exploring the game graph. This is obviously the case for ver-
tices which are won because they belong to the attractor of a previously labeled
set of vertices: If all successors of a vertex are winning for p, or if the vertex is
owned by p and has at least one winning successor, then it is winning. However,
it is also possible to define a winning criterion for vertices which are winning for
a player because they belong to a level of that player and the opponent cannot
force a run to leave this level without playing into a losing vertex. For this pur-
pose, we define a force-set of player p € {even, odd} to be a set F' of vertices in
the same level level(F) = {p} with the following properties:

— each vertex v € F with owner(v) = p has some successor w € succ(v) which
belongs to F' or is already labeled as winning for p, and

— each vertex v € F with owner(v) # p only has successors w € succ(v) which
belong to F or are already labeled as winning for p.

Vertices in a force-set F' of player p are winning for player p, following a strategy
which maps vertices in F' to vertices in F' or to vertices labeled as winning for p.

3.1 A Strategic Forward-Backward Approach

Our algorithm for solving weak games incrementally constructs the game graph.
Different from a forward-backward approach, we do not start by constructing
the complete set of forward reachable states, but rather aim at an early (partial)
evaluation of the constructed fragment.

The central data structure of the algorithm is the partial game graph, which
represents a subgraph of the game graph (V, E) of the weak game to be solved.
At any time during the execution of the algorithm, vertices in the partial game
graph are partitioned into three groups:

Procedure ExpandFringeVertex(v: Vertex):

change the status of v from “fringe” to “pending”

for all outgoing edges (v,v’) € E:
add (v,v’) to the partial game graph
if " is unconstructed:

add v’ to the fringe

if v has an evaluated successor v’ € succ(v) with winner(v') = owner(v):
EvaluatePendingVertex (v, owner(v))

else if all successors v’ € succ(v) are evaluated:
EvaluatePendingVertex (v, opponent(owner(v)))

Fig. 1. Expanding a vertex moves it from the fringe to the set of pending vertices and
add its outgoing edges to the graph, creating new fringe vertices where necessary. The
new vertex is immediately evaluated if possible.

— An evaluated vertex v has already been classified as winning for even or
winning for odd, and all outgoing edges (v,w) € E are represented in the
partial game graph.

— A pending vertex v has not yet been classified, but all outgoing edges (v, w) €
E are represented in the partial game graph.

— A fringe vertex v has not yet been classified, and none of its outgoing edges
are is represented in the partial game graph.

Evaluated, pending and fringe vertices are called constructed, while vertices not
represented in the partial game graph at all are called unconstructed.

The central primitive operations of the algorithm are ezpanding a fringe
vertex, which transforms a fringe vertex into a pending vertex and adds its
unconstructed successors to the fringe, and evaluating a pending vertex, which
transforms a pending vertex into an evaluated vertex. Both operations can lead
to the evaluation of further vertices. The overall solving procedure repeatedly ex-
pands vertices and identifies force-sets, triggering the ensuing vertex evaluations
until the initial vertex of the game is evaluated. At this point, the algorithm
stops. We now explain these three parts of the algorithm in sequence.

Expanding a Fringe Vertex. When a fringe vertex is expanded, it is removed
from the fringe and becomes a pending vertex. Pending vertices must have their
outgoing edges represented in the partial game graph, so they are added at this
step, which may lead to the creation of new fringe vertices.

It may be the case that the winner for the expanded vertex can be determined
immediately: If the owner of the vertex can play into a winning vertex, she wins
the expanded vertex. Conversely, if the owner of the vertex is forced to play into
a losing vertex for lack of other possibilities, she loses the expanded vertex. In
either situation, procedure EvaluatePendingVertex is called to mark the vertex
as evaluated and propagate the evaluation result upwards in the partial game
graph where possible. The pseudo-code for the expansion procedure is depicted
in Figure 1.

Procedure EvaluatePendingVertex(v: Vertex, p: Player):
change the status of v from “pending” to “evaluated”
set winner(v) to p
for all pending predecessors v’ € pred(v):
if owner(v') = p:
EvaluatePending Vertex(v', p)
else if v’ has no unevaluated successors:
EvaluatePendingVertex(v', p)

Fig. 2. Whenever a vertex is evaluated as winning for either player, the evaluation
result is propagated up the partial game graph until no further evaluations are possible.

Evaluating a Pending Vertex. The evaluation procedure moves a vertex v
from the set of pending vertices to the set of evaluated vertices and stores the
winning player p in winner(v).

Evaluating a vertex may lead to further winning vertices being found: If
the partial game graph contains a pending predecessor v’ of v which is owned
by p, then p can choose to play into v from there and consequently also wins
v’. A pending predecessor v/ owned by the opponent of p is winning for p if
all its successors are winning for p. In the evaluation procedure, it suffices to
test that such a vertex v’ has no pending or fringe successors; it cannot have
evaluated successors won by the opponent of p, because in that case it would have
been evaluated as winning for the opponent in an earlier call to the evaluation
procedure.

In either case where a winning predecessor v’ is found, the evaluation pro-
cedure is called recursively to mark v’ as winning and propagate the evaluation
result. The pseudo-code for the evaluation procedure is depicted in Figure 2.

Overall Solution Algorithm To solve a weak game, the overall solution algo-
rithm starts with an empty game graph, which only contains the initial vertex
as a fringe vertex.

It then proceeds iteratively by locating force-sets of pending vertices and
evaluating the contained vertices as won by their owner, or if no force-set can
be found, expanding a fringe vertex which can be selected with an arbitrary
selection strategy. This process is repeated until the initial vertex is evaluated
(pseudo-code in Figure 3).

The algorithm is guaranteed to terminate: In each iteration, either a force-set
can be identified or a fringe vertex can be expanded. In particular, if there are
no fringe vertices left, the complete reachable part of the game graph has been
constructed, in which case the set of all pending vertices of maximal color forms
a force-set. (If no pending vertices remain, the initial vertex must already be
evaluated.) It is thus not possible for the overall search procedure to arrive in a
situation where it is impossible to proceed further. It is clear that the algorithm
must terminate after at most 2|V| iterations of the main loop, because each
iteration either moves a vertex from the fringe to the set of pending vertices or
from there to the set of evaluated vertices.

Procedure SolveWeakGame():
initialize the sets of evaluated and pending vertices with ()
initialize the set of fringe vertices with {vo}
while vg is not evaluated:
if we can locate a force-set F' among the set of pending vertices:
for all v € F:
EvaluatePendingVertex(v,level(v))
else:
pick a fringe vertex v
ExpandFringeVertex(v)

Fig. 3. Starting from a partial game graph containing only the initial vertex, expand
vertices and evaluate force-sets until the initial vertex is evaluated.

The remaining open question is how the algorithm locates force-sets. A com-
plete — but expensive — method to identify force-sets is to continuously test if
a force-set exists using a strategy similar to that used by the pure backward
algorithm. However, the complexity of this approach is too high, scaling with
the product of the size of the constructed sub-game and the maximal size of a
single level.

Thus, the algorithm pursues the less ambitious approach of only searching
for force-sets that consist of all pending vertices within a given level. Testing this
property can be performed very efficiently, as we will now discuss. Although it
cannot find all force-sets, it already provides good results (cf. Section 5).

Efficient Implementation. We assume that the basic set operations of adding
an element, removing an element and testing membership can be performed in
constant time. Hash tables with randomized hash functions can achieve this in
the expected case. (If we do not want to resort to randomization, we can instead
use AVL trees, in which case a logarithmic factor needs to be added to our
complexity result.)

We also assume that it is possible to enumerate the set of successor vertices
succ(v) of a given vertex v in time linear in |succ(v)].

Under these assumptions, procedure ExpandFringeVertex only requires time
O(|succ(v)]) for a given vertex v (excluding any time spent within Evaluate-
PendingVertex), and as it is called at most once for each vertex in the partial
game graph, the total time spent in this procedure is O(|E’|), where E’ is the
set of edges in the partial game graph upon termination.

To efficiently determine the pending predecessors of a vertex, we can maintain
sets pred(v) for all constructed vertices, adding each vertex v’ to the predecessor
set of all its successors as it is constructed. (We never need to refer to predecessors
which are not part of the partial game graph.) To efficiently determine whether a
vertex has unevaluated successors, we can keep track of the number of such suc-
cessors for all vertices in the partial game graph. Maintaining the consistency of
these numbers is easy to achieve without increasing the complexity of the search
procedures. Excluding recursive invocations, procedure EvaluatePendingVertex

thus runs in time linear in the number of constructed predecessors of a given
vertex v, again leading to an overall bound of O(|E’|) because each vertex in the
partial game graph is evaluated at most once.

To efficiently track whether the pending vertices of a given level form a
force set, we maintain a single counter for each level which tracks the number
of wiolating vertices in this level, and a set of levels for which this counter is
currently 0. A pending vertex v violates the force-set condition iff it is owned by
the level owner and has no pending successors in the same level or is owned by the
other player and has a fringe successor or a pending successor with a higher color.
(Note that we can ignore evaluated successors for testing the force-set condition
because the propagation of evaluation results is already adequately taken care of
by procedure EvaluatePendingVertex.) We thus only need to keep track of one
additional number for each constructed vertex, which either counts the number
of pending successors in the same level (for vertices v with owner(v) = level(v)),
or the combined number of fringe successors and pending successors with a
higher color (for other vertices). Again, keeping track of these numbers does not
increase the asymptotical run-time of the algorithm.

If, finally, we also maintain a hash table which maps each color in the
partial game graph to the corresponding set of pending vertices, procedure
SolveWeakGame can be implemented in such a way that the overhead for each
call to EvaluatePendingVertex or ExpandFringeVertex is constant, leading to
the following result.

Theorem 1. Procedure Solve WeakGame is a sound and complete algorithm for
the problem of solving weak games. Its runtime is bounded by O(|E’|), where E’
is the set of edges constructed.

The theorem follows from the previous discussion. In particular, termination
and the run-time bound have already been been established, and for soundness,
observe that vertices are only evaluated if they belong to a force-set or if their
evaluation immediately follows from that of already evaluated successors.

4 Games and ATL

4.1 ATL

Alternating-time temporal logic (ATL) extends the classical computation tree
logic (CTL) with path quantifiers {(A)) and [A], expressing that a group A of
agents has a strategy to accomplish a goal (defined by the respective path for-
mula). For a definition of ATL formulas, we first introduce the structures over
which a formula is interpreted. An alternating transition system (ATS) is a tuple

A= <H727Q7QO77T55>7

consisting of a finite set II of atomic propositions, a finite set X of agents,
a finite set @ of states with a designated initial state qg, a labeling function

7 : Q — 2 that decorates each state with a subset of the atomic propositions,
and a transition function § : Q@ x X — 229, Intuitively, 6 maps a state ¢ and
an agent a to the choices available to a at ¢. For any state ¢ € @ and set of
agents A C X, we define the set of joint decisions A(g, A) of A in state ¢ as
A(g, A) = {Nyea Qu | Qa € 6(g,a) for all a € A}. Once all agents a € X have
made their choice Q, € 0(g, a) in a state ¢, the successor state must be uniquely
determined. We thus require § to be defined such that, in any state ¢, all joint
decisions in A(gq, X) are singletons.

ATL formulas are interpreted over an alternating transition system A =
(I, X, Q, qo, 7, 6). An ATL formula can be formed using the following grammar:

@ u= true| false |p|-p|loANele Vel {(A) Oel[A] O ¢l
(ANpUp | [A]pUp | (ADeWe | [A]pWep,

where p € IT is an atomic proposition, and A C X is a set of agents. (Note that
this definition deviates slightly from the original definition of ATL. The variant
we use is strictly more expressive; e. g., in the original definition of ATL {(A) W1
cannot be expressed.) Intuitively, a formula ((A))7 expresses the capability of
the agents in A to enforce the path formula 7 if they always have to make their
choices before the other agents, while [A]7 is the weaker requirement expressing
that the agents in A can enforce the path formula 7 if they only need to fix their
decisions after their opponents made their choices.

For an ATL formula ¢ with atomic propositions IT and an alternating tran-
sition system A = (IT, ¥, Q, qo, 7, 9), ||¢]|la € Q denotes the set of states where
¢ holds. The set ||¢|| 4 is defined inductively along the structure of ¢:

— Atomic propositions are interpreted as follows: |[true|| 4 = Q, ||false||a = 0,

Ipla={qeQlpemn(q)}and|-pla={qe@lp¢)}
— As usual, conjunction and disjunction are interpreted as intersection and

union, respectively: o A|la = [l¢lan|[¢]a and [[oVi]la = [l@llaU[l] 4.

— A state ¢ € Q is in ||[{(A)) O ¢4 if the agents A can make a joint decision
Qa € A(g, A) such that, for all joint decisions Qx4 € A(g, X ~\ A) of the
other agents, ¢ holds in the successor state (Q4 N Qx4 C ||¢]|4)-

— A state ¢ € Q is in ||[JA] O]| 4 if for all joint decisions Qx4 € A(g, X\ A)
of the other agents, the agents A can make a joint decision Q4 € A(q, A)
such that ¢ holds in the successor state (Q4 N Qx<a C ||¢ll4)-

— The remaining temporal operators are defined as fixed points.

o |[{ANpUY||a (J|{A)eW1|| 4) is the smallest (greatest) set X satisfying
lolla € X Clle V|4 with the following property:
For all ¢ € X ~ ||¢]| 4, the agents in A can make a joint decision Q4 €
A(g, A) such that, for all joint decisions Qx4 € A(g, X \ A) of the
other agents, the successor state is in X (Qa N Qx4 € X), and

o [I[A]JeUv||a (|I[A]eWe||.4) is the smallest (greatest) set X satisfying
llla € X ClleV | with the following property:
For all ¢ € X \ |[1]| 4 and all joint decisions Qx4 € A(g, X'\ A) of the
other agents, the agents A can make a joint decision @4 € A(q, A) such
that the successor state is in X (QaNQx.a C X).

A is a model of a specification ¢ iff ¢ holds in the initial state (¢o € ||].4)-

4.2 Weak Games for ATL Model-Checking

Given an ATS A and an ATL formula ¢, model-checking A naturally reduces to
solving a weak model-checking game G%. The vertices of this game essentially
consist of pairs of states of A and subformulas of .

Constructing the Game Graph. Intuitively, an ATL model-checking game
is concurrently played on the formula tree and on the alternating transition
system. It is technically more convenient to identify an until or wait-for formula
¥ = (A))Y'VY" ((A) € {{(4),[A]},V € {U,W}) with the equivalent formula
"V A (A) O (A)Y'VY". The extended set @ of subformulas of a formula ¢
thus consists of the following formulas:

— each subformula ¥ of ¢,

— for each subformula ¢ = {A)y’' Uy or ¢ = (A)p'Wip" of ¢,
the formulas ¢ = (A) O 1 and ¢ = ¢’ A (A) O ¢, and

— for each subformula 1) = [A]y’'Uy” or ¢ = [AJ'We" of o,
the formulas 1 = [A] O ¢ and U= A [A] O .

The formulas 1), ¥ and 15 are called connected (with the intuition that they
form a strongly connected component in a subformula graph), and formulas of
the form (A) O and [A] O ¢ are called temporal.

The model checking game has two types of vertices:

— For each state ¢ € @ of the model A and formula ¢ € @ in the extended
set of subformulas of ¢, there is a full-move vertex (g,), representing the
situation where ¢ is the current state in the model and formula 1) must be
proved.

— For each temporal formula (A) Oy € @ or [\ A]O € @ in the extended
set of subformulas of ¢, state ¢ € @ and joint decision Q' € A(q, A), there
is a half-move vertex (q,%, A, Q’), representing the situation where ¢ is the
current state in the model, formula ¢ must be proved, and the agents in A
have already made their next joint decision Q’.

It is computationally more convenient to use a variant of weak games where
some vertices, namely those which refer to literals, have no successors, but are
evaluated immediately. Such vertices appear as sinks in the game graph.

The weak model-checking game has the following transitions:

— There is a transition from (gq,) to (¢,v¢’) if ¢’ is a direct subformula of
1, where until and wait-for formulas (A))¥Vi)' are again interpreted as dis-
junetions 4/ v 1 A (4)) O (A)V.

— There is a transition from (g, %) to (q,v, A, Q") if ¢ is a temporal formula.

— There is a transition from (¢, v, A, Q") to (¢/,¢') if ¢ € Q' NQ x4 for some
joint decision Qx4 € A(g, X\ A) of the agents not in A, and ¢p = (4) Ov'.

10

Game Construction. To construct a weak game gj = (Veven, Vodd, E, vo,),
we only need to partition the set V of vertices into two sets Veyen and Viygqq of
vertices, owned by the two players even and odd, find a suitable coloring function,
and define the initial vertex. We assume that the objective of even is to prove
that the model satisfies the formula, while the objective of odd is to disprove
this.

The initial vertex is given by the pair (go,) consisting of the initial state gg of
the model and the formula ¢ to be checked. A proper partition of V follows from
the ATL semantics: Vertices (g, 1) of the model-checking game whose formula
part v is a conjunction or a temporal formula of the form [A] O, and vertices
(q,v, A, Q") whose formula part 1 is a temporal formula of the form ((A)) O ¢’
are owned by player odd; the remaining vertices are owned by player even. A
proper coloring function maps a state (g, {(A)yUy’) or (g, [A]¥Uy’) to an odd
color, and a state (g, {{(A)YW') or (g, [A]¥»W2') to an even color.

While the algorithm is sound and complete for every proper coloring function,
the chosen coloring function can have a significant impact on the performance
of the algorithm introduced in Section 3. The “standard” coloring is designed
to create a small number of colors, which depend only on the formula. While
this is convenient in a pure backwards analysis, it makes finding force-sets more
difficult. In an optimal setting each strongly connected component of the game
graph has a color of its own. While partitioning the game graph into strongly
connected components is not cheaper than a complete evaluation, significant in-
formation can often be drawn from the symbolic representation of an alternating
transition system.

A simple analysis of an RML specification suffices to identify counters that
are only counted up (or down) and flags that are only set (or reset). Such situa-
tions naturally arise, e. g., in the definition of protocols. This allows for a simple
construction of a ranking function on the abstract states, which is preserved by
the concretization. Using such a ranking function results in a significant reduc-
tion of the size of levels, and therefore accelerates model-checking (cf. Section 5).

To achieve small levels, we create a coloring function which assigns the same
color to two states (g,v) and (¢’,’) if and only if ¢ and ¢’ have the same rank
and v and v’ are equivalent or connected. In the protocol benchmark discussed
in Section 5, this increases the number of colors from 2 colors in the standard
coloring to about 5.3 - 1033 colors, leaving the single levels in an accessible size.

5 Benchmarks and Results

To evaluate our algorithm, we implemented it in Java and tested it on some
ATL properties of the Garay and MacKenzie multi-party contract signing pro-
tocol [10], using the RML formalization by Chadha et al. [6].

In particular, we considered the case of five agents (four contract-signing
parties Pp,..., Py and a trusted third party T) and the property of protocol
fairness: A protocol is fair for an agent P; following the protocol iff, whenever
some other agent P; obtains the signature of P;, then F; can obtain the signatures

11

of the other agents, even if they are all dishonest (i. e., do not follow the protocol)
and do not cooperate. In ATL, we can express this property as

AG((\/ has_sig(P;, Pl)) — (P)F /\ has_sig (P, Pj))

J#i J#i

(The common G and F modalities can be expressed in ATL using W and U in
the usual way [5]. The A path quantifier is synonymous with (((})).) Because the
Garay and MacKenzie protocol is asymmetric, protocol fairness must be proved
or disproved separately for each of the four contract-signing parties P;.

As we observed in the introduction, selective explicit-state methods are only
useful when checking properties which can be verified or refuted without con-
sidering the complete reachable state space. Given that the protocol fairness
property is of the form AGyp, verifying it requires constructing all reachable
states. However, as originally shown by Chadha et al. [6], fairness is violated in
the Garay and MacKenzie protocol for the case of i # 4, and thus in this case the
property can serve as a useful benchmark for selective methods. The protocol is
fair for agent Py, so selective algorithms do not work well in this case.

We have model-checked the protocol fairness property for each agent using
three different approaches:

— First, we used the MOCHA model checker, which solves the weak game
corresponding to an ATL formula by a symbolic backward computation.

— Second, we implemented a standard explicit-state forward-searching evalua-
tion strategy, exploring the game graph in depth-first order.

— Third, we considered our strategic forward-backward approach. As a selec-
tion strategy for choosing the next fringe vertex to expand, we employed
a variant of the proof-number search algorithm used for evaluating and/or-
trees [1].

A symbolic (non-strategic) forward-backward algorithm would have been a
good fourth candidate approach, but it appears that no efficient implementation
of such an algorithm is available. To at least compute a lower bound on the
performance of such an algorithm, we performed a complete symbolic forward
exploration — the first stage of a symbolic forward-backward algorithm — of the
game graph using MOCHA'’s symbolic forward exploration capabilities (which
are distinct from its ATL model-checking algorithm and can only be used to
model-check invariants).

To initialize proof numbers for fringe vertices within our strategic forward-
backward approach, we used the FF heuristic [11] with a problem-dependent
goal formula, i.e., for each of the three properties we specified a collection of
literals that we considered to be likely to be satisfied near “interesting” vertices
in the game graph, which biases the exploration towards such vertices. Using
such problem-dependent heuristics of course means that this is merely a semi-
automatic approach: while the algorithm is sound and complete for all possible
heuristics, a reasonable choice of heuristics is important for good performance.

12

MOCHA forward SFB strategic

fairness for Py 21:15:07 failure > 04:19:52 00:01:22
fairness for P» failure failure > 02:41:45 00:01:46
fairness for Ps 10:57:07 failure > 06:25:33 00:01:26
fairness for Py 00:39:14 failure > 10:44:13 failure

Fig. 4. Run-time results for the protocol-fairness property. The four algorithms con-
sidered are MOCHA, explicit forward search, symbolic forward-backward search (SFB;
only forward exploration counted), and strategic forward-backward search. Time is
measured in hours, minutes and seconds (hh:mm:ss).

evaluated pending fringe reachable
fairness for P; 130 934 37036 2.4-10%
fairness for Py 298 2098 51814 7.6-10%
fairness for Ps 628 4765 31952 7.4-10'7

Fig. 5. Numbers of evaluated, pending and fringe vertices generated by the strategic
forward-backward algorithm. The total number of forward-reachable vertices is shown
for comparison.

Using hand-tuned heuristic information is sufficient for the purposes of this in-
vestigation, in which our objective is to demonstrate the usefulness of selective
game-solving approaches in general rather than the development of game-solving
heuristics; however, the latter certainly remains as an important open problem.

The results of our experiment are shown in Figure 4.3 We clearly see that
selectivity pays off on this suite of benchmarks. Simple-minded explicit search
methods like standard forward search cannot cope with this state space at all,
and exhaustive symbolic methods require many hours of solution time where
the selective approach terminates within a few minutes. In particular, it dra-
matically improves on a symbolic forward-backward exploration, which would
require several hours for computing the set of forward reachable states alone. All
this only applies to agents P;, P» and Ps, however. For agent Py, the complete
reachable state space must be considered to prove protocol fairness, and there
is no hope of achieving this with an explicit-state method.

Compared to traditional approaches, one advantage of our algorithm is that
proofs (or refutations) of the checked properties are generated as part of the
search. In particular, the subgraph of the partial game graph induced by the
set of evaluated vertices forms an explicit proof of the property. In comparison,
MOCHA only reports whether a given ATL formula holds or does not hold in
a model, without providing further information. Figure 5 offers some statistics
on the size of the explored state spaces, showing that the generated proofs are
indeed very selective.

3 Experiments were conducted on a standard Linux PC with a 3 GHz CPU and using
a heap limit of 512 MB. All failures are due to running out of memory.

13

6 Discussion

We have presented a new algorithm for solving weak games, such as those aris-
ing from ATL model-checking problems, which is based on the idea of selectively
generating only those parts of the game graph which are relevant to proving
or disproving the hypothesized property. Using a combination of forward explo-
ration to extend a partially constructed game graph and backward propagation
of evaluation results, including the efficient detection of force-sets for situations
where a player can force a run of the game to stay in a given level of the game
graph indefinitely, the algorithm can solve a weak game in time which is linear
in the size of the subgame considered, rather than linear in the size of the game.
In the best case, this can lead to dramatic speedups compared to exhaustive
approaches. In the worst case, the algorithm is still asymptotically optimal.

One significant advantage of the selective search method we present is that,
unlike traditional methods for solving weak games symbolically, it generates a
verifiable proof of the model-checking result. What is more, due to the selective
nature of the search, we can expect such proofs to be comparatively small, be-
cause they are explicitly represented within the algorithm as subgraphs of the
partial game graph that serves as a main data structure.

Of course, the flip side of this advantage is that selective search techniques
only make sense for games where short proofs exist, i.e., where one player can
force the game to remain in a comparatively small fragment of the overall game
graph. If the complete game graph needs to be explored, there is little point
in using a selective method, and one can expect better performance from a
systematic symbolic algorithm.

Future Work. In the current form, the algorithm only finds force-sets that
cover all pending vertices within a level. One might consider strengthening this
approach by initiating an exhaustive evaluation after each expansion, but this is
too expensive to be pursued. An interesting alternative is to use approximative
methods based on the weak or strong connectivity structure of the pending
vertices in a level. Both structures provide useful information since finding a
force-set within a strongly or weakly connected component coincides with finding
a force-set in a level.

Weak connectedness, in particular, can be efficiently tracked using classi-
cal union-find data structures. Thus, distinguishing weakly connected compo-
nents within a level promises a good trade-off between (expensive) continuous
re-evaluations and the coarse approximation of the basic method. Using this
method, worst-case runtime is still quasi-linear in the number |E’| of edges con-
structed by the algorithm, while the constructed subgraph is potentially smaller.

Another method to speed up the detection of force-sets is to use thresholding
forward-backward search, where a complete backward evaluation is initiated after

¢, ¢2, 3, ... steps (for some constant ¢ > 1). On a finer granularity, one could

initiate the evaluation of a level after ¢, ¢?, ¢2, ... vertices of the level have been
constructed. One strength of such a thresholding approach is that it retains the

asymptotically optimal behavior of the basic algorithm.

14

Acknowledgement

This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for
more information.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

L. V. Allis, M. van der Meulen, and H. J. van der Herik. Proof-number search.
Artificial Intelligence, 66(1):91-124, 1994.

R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672-713, 2002.

R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. Mocha: Modularity in model checking. In Proc. CAV, pages 521-525,
1998.

H. R. Andersen. Model checking and boolean graphs. Theor. Comput. Sci.,
126(1):3-30, 1994.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10%° states and beyond. Information and Computation, 98(2):142—
170, 1992.

R. Chadha, S. Kremer, and A. Scedrov. Analysis of multi-party contract signing.
Technical Report 516, Université Libre de Bruxelles, 2004.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs, pages 5271, 1981.

R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal p-calculus. In Proc. CAV 91, pages 48-58, 1992.

E. A. Emerson and C. S. Jutla. Tree automata, p-calculus and determinacy. In
Proc. FOCS, pages 368-377, 1991.

J. A. Garay and P. D. MacKenzie. Abuse-free multi-party contract signing. In
International Symposium on Distributed Computing, volume 1693 of LNCS, pages
151-165, 1999.

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253-302, 2001.

G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279-295,
1997.

D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Artificial
Intelligence, 6(4):293-326, 1975.

S. Kremer. Formal Analysis of Optimistic Fair Exchange Protocols. PhD thesis,
Université Libre de Bruxelles, Brussels, Belgium, Dec. 2003.

S. Kremer and J.-F. Raskin. A game-based verification of non-repudiation and fair
exchange protocols. Journal of Computer Security, 11(3):399-430, 2003.

A. Mahimkar and V. Shmatikov. Game-based analysis of denial-of-service preven-
tion protocols. In IEEE Computer Security Foundations Workshop, pages 287-301,
2005.

M. Ryan and P.-Y. Schobbens. Agents and roles: Refinement in alternating-time
temporal logic. In Proc. ATAL, pages 100-114, 2001.

W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of practical
ATL model checking. In Proc. AAMAS, 2006.

15

