
Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Explicit-State Abstraction: A New Method
for Generating Heuristic Functions

Malte Helmert1 Patrik Haslum2 Jörg Hoffmann3

1Albert-Ludwigs-Universität Freiburg, Germany

2NICTA & Australian National University, Australia

3University of Innsbruck, Austria

AAAI 2008, Nectar track

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

One-Slide Summary

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S′

obtained as homomorphism of original state space S.

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

One-Slide Summary

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S′

obtained as homomorphism of original state space S.

Explicit-state abstraction heuristics

You have seen other abstraction heuristics before;
they are called pattern database heuristics.

Ours can do the same and then some.

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Outline

1 Abstractions

2 Projections

3 Explicit-State Abstractions

4 Evaluation

5 Conclusion

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Transition Graphs

Definition (transition graph)

A transition graph is a 5-tuple 〈S, L, A, s0, S?〉:
S: finite set of states

L: finite set of transition labels

A ⊆ S × L× S: labelled transitions

s0 ∈ S: initial state

S? ⊆ S: goal states

Assumption: States are assignments to a set of state variables.

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Running Example

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations:

state variable package: {L,R,A, B}
state variable truck A: {L,R}
state variable truck B: {L,R}

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Abstractions

Definition (abstraction, homomorphism)

Abstraction of transition graph T : pair 〈T ′, α〉 where

T ′ is a transition graph with the same labels

α maps states of T to states of T ′ such that

initial state maps to initial state
goal states map to goal states
transitions 〈s, l, s′〉 map to transitions 〈α(s), l, α(s′)〉

Abstraction (and α) is a homomorphism if T ′ only contains
necessary goal states and transitions.

Abstraction heuristic: h(s) = d?(α(s)) admissible, consistent

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Example: Perfect Abstraction

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR

ALL

BLL

BRL

ALR

BRL

ALL

BLL

ARL

ARR

BRR

BLR

ARL

BLR

ARR

BRR

RRR

RRL

RLR

RRL

RLR

RRR RLL

 perfect heuristic h∗

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Generating Abstractions

Conflicting goals in generating abstractions:

obtain informative heuristic

keep representation small

Abstractions have small representations if they have

few abstract states

succinct encoding for α

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Outline

1 Abstractions

2 Projections

3 Explicit-State Abstractions

4 Evaluation

5 Conclusion

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Projections

One idea to get succinct encodings: projections
 map states to abstract states with perfect hash function

Definition (projection)

Projection πV ′ to variables V ′ ⊆ V: homomorphism α where
α(s) = α(s′) iff s and s′ agree on V ′

shorthand for atomic projections: πv := π{v} (v ∈ V)

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Example: Projection (1)

Project to {package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Example: Projection (2)

Project to {package, truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BLR

BLL BRR

BRL

BLL

BLR

BRR

BRL

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Example: Projection (2)

Project to {package, truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Problems of Projections

abstraction heuristics for projections are
pattern database (PDB) heuristics

must keep number of reflected variables (pattern) small

price in heuristic accuracy:

consider generalization of running example:
N trucks, M locations (still one package)

consider any pattern that is proper subset of V
h(s0) ≤ 2 no better than atomic projection to package

(maximizing over patterns or additive patterns do not help either)

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Outline

1 Abstractions

2 Projections

3 Explicit-State Abstractions

4 Evaluation

5 Conclusion

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Explicit-State Abstraction Heuristics: Main Idea

Main idea

(due to Dräger, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Explicit-State Abstraction Heuristics: Key Insights

Key insights:

1 Information of two abstractions A and A′ of the same
transition system can be composed by a simple
graph-theoretic operation (synchronized product A⊗A′).

2 Under suitable conditions (factored transition systems),
the complete state space can be recovered
using only atomic projections:⊗

v∈V
πv is isomorphic to πV .

 build fine-grained abstractions from coarse ones

3 When intermediate results become too big,
we can shrink them by aggregating some abstract states.

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Computing Explicit-State Abstractions

Generic abstraction computation algorithm

abs := all atomic projections πv (v ∈ V).
while abs contains more than one abstraction:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstraction

N : parameter bounding number of abstract states

Questions for practical implementation:

Which abstractions to select? composition strategy

How to shrink an abstraction? shrinking strategy

How to choose N?

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Outline

1 Abstractions

2 Projections

3 Explicit-State Abstractions

4 Evaluation

5 Conclusion

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Guiding Questions for Evaluation

Comparison to state of the art

Is this competitive with the state of the art?

Compare scaling behaviour to other heuristics:
blind, hmax, PDB

 next slide

Comparison to pattern databases

How does this compare to well-chosen PDB heuristics?

compare to approach of Haslum et al. (2007)

compare scaling behaviour and runtime

compare heuristic quality, preprocessing time, search time

 details in the ICAPS 2007 paper

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Comparison to State of the Art

Comparison to state of the art

Is this competitive with the state of the art?

Compare scaling behaviour to other heuristics:
blind, hmax, PDB

Domain abs blind hmax PDB

Pipes-NoTankage 19 14 15 15
Pipes-Tankage 13 10 10 7
Satellite 6 4 5 6
Logistics 18 6 6 16
PSR 5 3 4 4
TPP 7 5 6 6

total 68 42 46 54

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Comparison to Pattern Databases: Theory

As powerful as PDBs

PDB heuristics are a special case of our abstraction heuristics,
and arise naturally as a side product.

Get additivity for free

If P and P ′ are additive patterns, then
for all h-preserving abstractions A of πP and A′ of πP ′ ,
the abstraction heuristic for A⊗A′ dominates hP + hP ′

.

Greater representational power

In some planning domains where PDBs have unbounded error
(Gripper, Schedule, two Promela variants), we can
obtain perfect heuristics in polynomial time with suitable
composition/shrinking strategies.

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Outline

1 Abstractions

2 Projections

3 Explicit-State Abstractions

4 Evaluation

5 Conclusion

Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Conclusion

Summary

clean, flexible approach to computing heuristics

works very well for planning and model checking

Future work:

more theory

more experiments

more informed abstraction strategies

comparison of abstraction strategies

determine/adjust abstraction size dynamically

	Abstractions
	Projections
	Explicit-State Abstractions
	Evaluation
	Conclusion

