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One-Slide Summary

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S′

obtained as homomorphism of original state space S.
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One-Slide Summary

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S′

obtained as homomorphism of original state space S.

Explicit-state abstraction heuristics

You have seen other abstraction heuristics before;
they are called pattern database heuristics.

Ours can do the same and then some.
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Transition Graphs

Definition (transition graph)

A transition graph is a 5-tuple 〈S, L, A, s0, S?〉:
S: finite set of states

L: finite set of transition labels

A ⊆ S × L× S: labelled transitions

s0 ∈ S: initial state

S? ⊆ S: goal states

Assumption: States are assignments to a set of state variables.
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Running Example

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations:

state variable package: {L,R,A, B}
state variable truck A: {L,R}
state variable truck B: {L,R}
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Abstractions

Definition (abstraction, homomorphism)

Abstraction of transition graph T : pair 〈T ′, α〉 where

T ′ is a transition graph with the same labels

α maps states of T to states of T ′ such that

initial state maps to initial state
goal states map to goal states
transitions 〈s, l, s′〉 map to transitions 〈α(s), l, α(s′)〉

Abstraction (and α) is a homomorphism if T ′ only contains
necessary goal states and transitions.

Abstraction heuristic: h(s) = d?(α(s)) admissible, consistent
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Example: Perfect Abstraction
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RRR RLL

 perfect heuristic h∗
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Generating Abstractions

Conflicting goals in generating abstractions:

obtain informative heuristic

keep representation small

Abstractions have small representations if they have

few abstract states

succinct encoding for α
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Projections

One idea to get succinct encodings: projections
 map states to abstract states with perfect hash function

Definition (projection)

Projection πV ′ to variables V ′ ⊆ V: homomorphism α where
α(s) = α(s′) iff s and s′ agree on V ′

shorthand for atomic projections: πv := π{v} (v ∈ V)
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Example: Projection (1)

Project to {package}:
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Example: Projection (2)

Project to {package, truck A}:
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Example: Projection (2)

Project to {package, truck A}:

LRR
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Problems of Projections

abstraction heuristics for projections are
pattern database (PDB) heuristics

must keep number of reflected variables (pattern) small

price in heuristic accuracy:

consider generalization of running example:
N trucks, M locations (still one package)

consider any pattern that is proper subset of V
h(s0) ≤ 2  no better than atomic projection to package

(maximizing over patterns or additive patterns do not help either)
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Explicit-State Abstraction Heuristics: Main Idea

Main idea

(due to Dräger, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.
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Explicit-State Abstraction Heuristics: Key Insights

Key insights:

1 Information of two abstractions A and A′ of the same
transition system can be composed by a simple
graph-theoretic operation (synchronized product A⊗A′).

2 Under suitable conditions (factored transition systems),
the complete state space can be recovered
using only atomic projections:⊗

v∈V
πv is isomorphic to πV .

 build fine-grained abstractions from coarse ones

3 When intermediate results become too big,
we can shrink them by aggregating some abstract states.
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Computing Explicit-State Abstractions

Generic abstraction computation algorithm

abs := all atomic projections πv (v ∈ V).
while abs contains more than one abstraction:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstraction

N : parameter bounding number of abstract states

Questions for practical implementation:

Which abstractions to select?  composition strategy

How to shrink an abstraction?  shrinking strategy

How to choose N?
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Guiding Questions for Evaluation

Comparison to state of the art

Is this competitive with the state of the art?

Compare scaling behaviour to other heuristics:
blind, hmax, PDB

 next slide

Comparison to pattern databases

How does this compare to well-chosen PDB heuristics?

compare to approach of Haslum et al. (2007)

compare scaling behaviour and runtime

compare heuristic quality, preprocessing time, search time

 details in the ICAPS 2007 paper
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Comparison to State of the Art

Comparison to state of the art

Is this competitive with the state of the art?

Compare scaling behaviour to other heuristics:
blind, hmax, PDB

Domain abs blind hmax PDB

Pipes-NoTankage 19 14 15 15
Pipes-Tankage 13 10 10 7
Satellite 6 4 5 6
Logistics 18 6 6 16
PSR 5 3 4 4
TPP 7 5 6 6

total 68 42 46 54



Explicit-State
Abstraction

Abstractions

Projections

Explicit-State
Abstractions

Evaluation

Conclusion

Comparison to Pattern Databases: Theory

As powerful as PDBs

PDB heuristics are a special case of our abstraction heuristics,
and arise naturally as a side product.

Get additivity for free

If P and P ′ are additive patterns, then
for all h-preserving abstractions A of πP and A′ of πP ′ ,
the abstraction heuristic for A⊗A′ dominates hP + hP ′

.

Greater representational power

In some planning domains where PDBs have unbounded error
(Gripper, Schedule, two Promela variants), we can
obtain perfect heuristics in polynomial time with suitable
composition/shrinking strategies.
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Conclusion

Summary

clean, flexible approach to computing heuristics

works very well for planning and model checking

Future work:

more theory

more experiments

more informed abstraction strategies

comparison of abstraction strategies

determine/adjust abstraction size dynamically
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