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Abstract
The LM-Cut planner uses the landmark-cut heuristic, intro-
duced by the authors in 2009, within a standard A∗ progres-
sion search framework to find optimal sequential plans for
STRIPS-style planning tasks. This short paper recapitulates
the main ideas surrounding the landmark-cut heuristic and
provides pointers for further reading.

Introduction
Heuristic search, either in the space of world states reached
through progression or in the space of subgoals reached
through regression, is a common and successful approach
to classical planning. Apart from the choice of search algo-
rithm, the main feature that distinguishes heuristic planners
is their heuristic estimator. Most current heuristic functions
are based on one of the following four ideas:

1. delete relaxation: e. g., h+ (Hoffmann and Nebel 2001),
hmax (Bonet and Geffner 2001), hadd (Bonet and Geffner
2001), hFF (Hoffmann and Nebel 2001), hpmax (Mirkis
and Domshlak 2007), hsa (Keyder and Geffner 2008)

2. critical paths: the hm heuristic family (Haslum and
Geffner 2000)

3. abstraction: pattern databases (Edelkamp 2001), merge-
and-shrink abstractions (Helmert, Haslum, and Hoffmann
2007), and structural patterns (Katz and Domshlak 2008)

4. landmarks: LAMA’s hLM (Richter, Helmert, and West-
phal 2008; Richter and Westphal 2010) and the admissible
landmark heuristics hL and hLA (Karpas and Domshlak
2009)
These ideas have been developed in relative isolation. For

a long time, apart from Haslum and Geffner’s (2000) result
that hmax is a special case of the hm family (hmax = h1), no
formal connections between these different ideas for devis-
ing heuristic estimators had been known. In a recent paper
(Helmert and Domshlak 2009), we addressed this issue by
proving a number of dominance results, which established,
subject to the usual complexity-theoretic assumption that
polynomial overhead is acceptable, the following relation-
ships:

∗Our presentation in this paper borrows heavily from the earlier
paper in which we introduced the landmark-cut heuristic (Helmert
and Domshlak 2009).

• Landmark heuristics dominate additive hmax heuristics.

• Additive hmax heuristics dominate landmark heuristics.

• Additive critical path heuristics with m ≥ 2 strictly dom-
inate landmark heuristics and additive hmax heuristics.

• Merge-and-shrink abstraction heuristics strictly dominate
landmark heuristics and additive hmax heuristics.

• Pattern database heuristics are incomparable with land-
mark heuristics and additive hmax heuristics.

These statements are informal summaries, and some restric-
tions apply. In particular, the results for landmark heuristics
only apply to relaxation-based landmarks, which are veri-
fiable by a relaxed planning graph criterion. Until very re-
cently, all landmark heuristics in the literature fell into this
class. However, this has changed with the work of Key-
der, Richter, and Helmert (2010), who introduced landmarks
based on the hm heuristic family.

On the positive side, all dominance results are construc-
tive, showing how to compute a dominating heuristic in
polynomial time. Moreover, some of the compilations are
efficient enough to be worth implementing in practice. We
implemented one such construction, from the regular (non-
additive) hmax heuristic to landmarks, to obtain a new heuris-
tic, which we called the landmark-cut heuristic hLM-cut.

The Landmark-Cut Heuristic
The landmark-cut heuristic can alternatively be viewed as a
landmark heuristic, a cost-partitioning scheme for additive
hmax, or an approximation to the (intractable) optimal relax-
ation heuristic h+.

Here, we briefly recapitulate the computation of hLM-cut.
We assume familiarity with fundamental concepts such as
delete relaxation, landmarks, and the hmax and h+ heuris-
tics. For readers who are new to these concepts, we refer to
our original paper on hLM-cut (Helmert and Domshlak 2009)
and the later work by Bonet and Helmert (2010), which re-
lated hLM-cut to hitting sets and showed that a generaliza-
tion of hLM-cut based on hitting sets always achieves the per-
fect delete relaxation estimate h+ when allowed exponential
computation time.

To determine the hLM-cut estimate of a state s, we first
compute hmax(s). If this value is zero or infinite, this implies
that h+(s) is also zero or infinite, respectively, and hence



this is the best possible information that can be extracted
from the delete relaxation of the task. In these cases, we set
hLM-cut(s) = hmax(s).

Otherwise, the cost to solve the delete relaxation of the
given task from state s is finite and nonzero. In this case,
we compute a nontrivial disjunctive action landmark of the
delete relaxation, which is a set L of actions of nonzero cost
such that each relaxed plan solving the task from the given
state must include an action from L.

After computing such a landmark, we add the minimal
cost c among all actions in L to the heuristic value com-
puted so far (which is initialized to 0), reduce the cost of all
actions in L by c, and then start again by recomputing the
hmax values based on the reduced action costs, computing
a new disjunctive action landmark, and so on. The process
ends once action costs have been reduced to the extent that
the hmax estimate of the resulting problem becomes zero.

The main challenge in this computation is finding a suit-
able landmark L. It is not particularly hard to find some
such landmark: the set of all actions of nonzero cost will
do. However, the larger the set L, the more actions will have
their cost reduced at the end of the current iteration of the
main landmark-cut loop, leading to potentially fewer land-
marks that can be extracted in future rounds. The challenge,
then, is in finding a reasonably small such set.

The landmark-cut heuristic addresses this issue by com-
puting so-called justification graphs, which “justify” the
hmax values of the facts of the planning task by linking each
effect of an action a to the most expensive precondition of a
(or one of the most expensive ones, in case of ties).

Arcs in justification graphs are weighted by the costs of
the actions that induce them. A shortest paths in a justifica-
tion graph corresponds to a causal chain whose cost explains
the hmax value of a fact, and cuts in justification graphs (sets
of arcs whose removal disconnects the current state from the
goal) correspond to disjunctive action landmarks. These re-
lationships are explored in more depth by Bonet and Helmert
(2010), who show that all relevant landmarks of the delete
relaxation can be computed as cuts in justification graphs
when arbitrary preconditions are allowed to induce arcs in
the graph (rather than just preconditions with maximal hmax

value).
The landmark selected by the landmark-cut heuristic is

based on a particular cut close to the goal facts of the task,
which is sufficient to guarantee that the final heuristic value
is always at least as large as hmax(s). (In our experiments, it
is usually much larger.)

The LM-Cut Planner
In our earlier work (Helmert and Domshlak 2009), we
demonstrated experimentally that hLM-cut gives excellent ap-
proximations to h+ and compares favourably to other ad-
missible planning heuristics in terms of accuracy. We also
showed that an optimal planner based on A∗ search with the
landmark-cut heuristic was highly competitive with the state
of the art at the time.

The LM-Cut planner entered into IPC 2011 is almost
identical to the system used in these experiments. The only
two changes since then are:

• minor bug fixes and performance improvements in vari-
ous components of the Fast Downward planner that serves
as the basis of our implementation, and

• support for actions of non-unit cost. (While our original
description of the landmark-cut heuristic was fully gen-
eral, our implementation was restricted to the unit-cost
case.)
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