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1. Introduction

This work is concerned with the classical planning problem, which can be
informally defined as follows:

Given a description of the current situation (an initial state) of an
agent, the means by which the agent can alter this situation (a set
of actions) and a description of desirable situations (a goal), find a
sequence of actions (a plan) that leads from the current situation to
one which is desirable.

We will later make these notions more precise by formally defining the
italicized terms, but for this introduction, the intuitive definition will do.
Instances of the classical planning problem, called planning tasks, can model
all kinds of abstract reasoning problems in areas as diverse as elevator control,
the transportation of petroleum products through pipeline networks, or the
solution of solitaire card games.

These applications have little in common apart from the fact that, at a
suitable level of abstraction, they can be precisely modelled using the notions
of initial states, actions, and goals. In the elevator example, the initial state
is given by the current location of the elevator and the locations of passengers
waiting at different floors to board the elevator. The set of actions comprises
movements of the elevator between different floors along with the ensuing
activities of passengers boarding and leaving the elevator. The goal specifies
a destination floor for each passenger. In the pipeline example, the initial
state describes the initial contents of the pipelines and of the areas they
connect. Actions model the changes in the contents of a pipeline as products
are pumped through it, and a typical goal requires a certain amount of some
petroleum product to be available at a certain location. In the card game
example, the initial state is given by a randomly dealt card tableau. The set
of actions models the different ways of moving cards between piles that are
allowed by the rules of the game. The goal consists of achieving a certain
arrangements of the cards.



2 1. Introduction

1.1 Planning is Hard

Because planning is not limited to a particular application area, or indeed
any finite set of application areas, it is an example of general problem solving,
and in fact the planning problem was first introduced to the Artificial Intel-
ligence community under that name. Classical planning has been an active
research area for about half a century, with Newell and Simon’s work on the
General Problem Solver [91] usually seen as a starting point. For a historical
perspective on planning research, we refer to the collection of classical papers
edited by Allen et al. [1], and to a more recent survey by Weld [109].

One of the well-established facts about the planning problem is that it
is hard. In the very general variants commonly studied in the early days of
planning research, it is known to be undecidable [37]. This is mostly due to
the fact that in a general planning task, infinitely many possible world states
may need to be considered, so that solution attempts cannot be restricted to
plans of bounded length.

Thus, it is now much more common to consider planning formalisms where
each task only has a finite number of world states. The prototypical examples
of such formalisms are the relational (i. e., non-numerical) fragment of the
PDDL language [36, 40, 88] and its more restricted STRIPS subset (not to be
confused with the original STRIPS formalism [38, 81], which allows for infinite
state spaces and is undecidable [37].) Planning in these two formalisms is
EXPSPACE-complete [37]. Both formalisms can be restricted further to less
compact propositional encodings, in which case planning becomes PSPACE-
complete [17, 37]. This is, of course, still very hard.

1.2 Understanding the Problem

How do we solve such a hard problem? In his 1945 classic How to Solve
It, mathematician George Pólya describes a four-step strategy to problem
solving. Here is the first and most important step:

“First, you have to understand the problem.” [96, p. 5]

This is solid general advice. To solve the planning problem, that is to
say to design efficient planning algorithms, it is important to understand the
planning problem. Is it difficult? Can we prove that it is difficult? Are there
relevant special cases which are easier to solve than others?

This thesis contributes to the understanding of the planning problem by
formally analyzing those special cases which have attracted most attention in
the past decade, namely the standard benchmark domains of the International
Planning Competitions [7, 63, 83, 84, 88]. This is the topic of Part I, Planning
Benchmarks.
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Because planning is general problem solving, planning tasks are commonly
called planning problems in the literature. We generally steer clear of this ter-
minology in this thesis, to avoid confusion between a planning problem – a
certain, specific planning task with a given initial state, set of actions, and
goal – and the planning problem – the algorithmic problem of finding solu-
tions to planning tasks. However, the fact that planning tasks are also prob-
lems to be solved means that Pólya’s recommendation is equally applicable
to their solution: To solve a planning task, one has to understand it.

Without any kind of intuition of which actions are useful for achieving
the goals in a certain situation, the problem solver is more or less limited
to blindly exploring the space of possible solutions, which is usually a fruit-
less endeavour. Given that we are interested in algorithmic approaches to
planning, this “understanding” must be arrived at algorithmically. One well-
established approach to informed planning algorithms is the use of heuristic
search techniques [15, 65, 87]. (Not entirely coincidentally, Pólya’s work is
also responsible for introducing the word heuristic into modern scientific dis-
course, although not quite with the meaning in which it is generally used in
Artificial Intelligence.)

This thesis contributes to the practice of solving planning tasks by pre-
senting a new approach to heuristic planning based on two central ideas:
reformulating planning tasks into a form in which its logical structure is
more apparent than in the original specification, and exploiting the infor-
mation encoded in the causal graphs and domain transition graphs of these
reformulated tasks. This is the topic of Part II, Fast Downward.

The two parts are largely self-contained; however, they are linked by his-
torical and conceptual ties. In Part I, we show that about half of the classical
planning benchmarks are closely related to transportation planning. The the-
oretical analyses show that most of these domains have a conceptually very
simple internal structure, and can easily be solved by polynomial planning
algorithms. However, despite their seeming simplicity, these planning tasks
pose a significant challenge to state of the art planning algorithms, which are
of course not optimized towards specific planning domains. The observation
that the common structure of simple transportation tasks is not sufficiently
exploited by common planning techniques served as the inspiration and mo-
tivation for the core algorithmic ideas of Part II.
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2. The Role of Benchmarks

Given the theoretical hardness of classical planning, the chance of developing
practically usable solution algorithms appears slim. However, modern plan-
ning systems developed since the 1990s such as Graphplan [13], SATPLAN
[72–75], HSP [15] and FF [65] have demonstrated their ability to solve plan-
ning tasks of considerable size. Their efficiency, or – put a bit more carefully
– their perceived efficiency is somewhat at odds with the theoretical hardness
of planning.

To understand why we can observe such good planner performance, we
must consider the methods with which the performance of planning systems
is evaluated. This is the topic of the following Section 2.1, which will lead
us a discussion of planning benchmarks in Section 2.2 and their theoretical
properties in Section 2.3. In the penultimate Section 2.4, we briefly introduce
a set of standard benchmarks. The chapter concludes with an overview of the
first part of the thesis in Section 2.5.

2.1 Evaluating Planner Performance

Planning systems are usually evaluated empirically by measuring their run-
time on a number of planning tasks. In most evaluations, these tasks are
not generated completely randomly, but taken from a number of so-called
benchmark domains, families of related planning tasks often modelled after
real-world planning activities such as vehicle routing, machine-shop schedul-
ing, or assembly problems.

Benchmark domains are limited: They do not span the complete space
of planning tasks definable in the PDDL language. Before we turn to a de-
tailed discussion of these domains, it is thus worth asking whether planner
evaluations based on such a restricted set of instances is a good practice.

For this purpose, let us contrast the planning problem with the classical al-
gorithmic problem of sorting a sequence of numbers. For the sorting problem,
it would be quite unusual to evaluate an algorithm based on its performance
on a set of arbitrary predefined “benchmark sequences”. Instead, one would
typically use one or both of the following modes of evaluation:
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– Worst-case evaluation: The algorithm is evaluated by determining themax-
imal runtime for a given instance size. Worst-case evaluations are usually
theoretical analyses using the asymptotic O- and Θ-notations [23].

– Average-case evaluation: The algorithm is evaluated by determining or
estimating the average runtime for a given instance size. In some cases,
average-case evaluations can be conducted theoretically, but for more com-
plicated algorithms, one often resorts to experimental studies involving
statistical sampling of the problem space.

Worst-case evaluations and average-case evaluations are not limited to
the sorting problem, of course. They are general metrics for algorithm per-
formance. Would they not make better alternatives for planner evaluations
than considering benchmark tasks?

Indeed, it can be argued that evaluating planners by using tasks from
benchmark domains is a flawed approach [99]. A benchmark task taken from
one of the classical domains like Blocksworld or Logistics is not at all
representative of an average planning task drawn randomly from the full prob-
lem space. In particular, for many of these benchmark domains the problem
of deciding whether a given task admits a solution is easy (i. e., polynomially
solvable), in stark contrast to the fact that PDDL planning is EXPSPACE-
complete and planning in a fixed domain (i. e., with a fixed set of predicates)
is PSPACE-complete in general [37]. How then can an evaluation which is
limited to “simple” special cases accurately assess the performance of a plan-
ning algorithm? To address this question, let us discuss the two alternatives
of worst-case and average-case evaluation.

2.1.1 Worst-Case Evaluation

To evaluate a sorting algorithm, one would normally start by analyzing its
worst-case behaviour. If it is worse than the optimal (for comparison sorts
[23]) O(n log n) bound, the algorithm would typically be rejected immedi-
ately. On the other hand, a propositional planning algorithm with exponential
space requirements in the worst case is considered acceptable, even though
polynomial space is sufficient. Indeed, no commonly used complete planning
algorithm is guaranteed to occupy sub-exponential space.

Similar to space bounds, worst-case time bounds of planning algorithms
are considered equally unimportant in practice. For example, it is not difficult
to construct planning tasks for which a typical “planning as satisfiability” [72–
75] algorithm requires time which is doubly exponential in the number of state
variables, while a naive breadth-first search algorithm with duplicate checking
runs in (singly) exponential time. Yet the former approach is considered to be
state of the art for optimal propositional planning [63], while no-one would
seriously consider the latter.

Indeed, people are even willing to (grudgingly) accept incomplete plan-
ning techniques which will (necessarily or subject to some randomness in the
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algorithm) fail in some cases [45, 66, 77, 90], while such behaviour would be
completely unacceptable for a sorting algorithm.

How can this discrepancy between sorting and planning be explained?
The key to understanding why worst-case analyses of planning algorithms
are not very useful is that in the worst case, all planning algorithms are bad.
Propositional planning is PSPACE-complete, general (non-numerical) PDDL
planning even EXPSPACE-complete. It is thus extremely unlikely that poly-
nomial algorithms exist for the former, and for the latter, this possibility can
even be ruled out theoretically. Exponentially scaling algorithms will always
be too slow for some instances. Even though they might be asymptotically
optimal, they will always be practically incomplete in the sense that there
will be relevant planning tasks that they cannot solve within reasonable time
bounds. Therefore, for the planning problem, even asymptotically optimal al-
gorithms are of limited usefulness unless they can improve on the worst-case
behaviour in practice.

2.1.2 Average-Case Evaluation

If we cannot make our algorithms work well for all planning tasks, the next
best thing is making them work well most of the time. Unfortunately, “most
of the time” is an ill-defined concept. Given that there are infinitely many
planning tasks, any planning algorithm will be efficient for infinitely many
instances and inefficient for infinitely many instances. Indeed, the only ex-
ceptions to this rule are those algorithms which are inefficient for almost all
instances and thus not really worthy of consideration. Average case analy-
ses offer a way of comparing “typical” algorithm performance despite these
difficulties.

For an average case analysis, a measure for the size of an instance is
required. For the sorting problem, the size of an instance is usually considered
to be the length of the input sequence. For the planning problem, one could
use the number of state variables or operators (or some combination thereof)
or the encoding length in a planning formalism such as PDDL as a measure
of size.

Having decided on a size measure, the algorithm is evaluated by averag-
ing some performance criterion for all instances of a certain size. In practice,
there are typically too many instances of any given size to consider, so the
real performance criterion is approximated by statistical sampling, consider-
ing only a subset of inputs. For the sorting problem, the usual performance
criteria are the number of comparisons performed by the algorithm or its
runtime; for planning, runtime is typically considered.

One difficulty in average-case evaluations of planning algorithms is that
the distribution of runtimes is often heavy-tailed. If some tasks take expo-
nentially longer to solve than others, they will dominate the average runtime
to the extent that other tasks contribute very little to the overall result. In
such situations, it is questionable whether the evaluation result accurately
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captures “typical” algorithm performance. Even worse, some tasks might not
be solvable at all within practical resource limits, which makes averaging over
runtime impossible. Therefore, it is also common to consider the median run-
time or count the percentage of tasks solved within a given timeout instead
of taking averages.

To evaluate the overall performance of an algorithm, one would then ob-
serve how performance scales with increasing input size, usually by estimat-
ing performance for a limited number of sizes and extrapolating a curve from
that. In addition to such statistical techniques, it is sometimes possible to de-
termine the average case behaviour of an algorithm with analytical methods,
but this is rare for non-trivial planning algorithms.

How useful are average case analyses? For the sorting problem, very useful.
Indeed, analyzing the average case is one of the most important techniques for
the evaluation of modern sorting algorithms. By averaging running time (or
number of comparisons) for uniformly chosen permutations of a certain fixed
input sequence, one usually obtains a measurement of algorithm performance
which predicts the suitability to practical applications fairly well. Of course,
even for the sorting problem, a careful algorithm analysis would also need to
consider inputs which are not completely random, such as sequences which
are already sorted, or presorted to some degree. Still, no-one would doubt
the usefulness of pure average-case experiments.

Planning algorithms can be analysed in a similar fashion, and such analy-
ses have been conducted by Bylander [18] and Rintanen [99]. However, their
results are somewhat disappointing. In particular, the vast majority of plan-
ning tasks in Bylander’s model can be solved by the following very simple
algorithm:

1. If there is a goal condition that is not satisfied in the initial state and
does not appear as the effect of any operator, report that the task has
no solution.

2. Otherwise, starting from the initial state, repeatedly apply some operator
which increases the number of satisfied goals, until no such operator can
be found.

3. If a goal state was reached, return the sequence of operators that were
applied in the previous step; otherwise fail.

It is evident that this algorithm is practically useless for all interesting
applications of classical planning despite being “good on average”.

To obtain more practically significant results, Rintanen’s study refines
Bylander’s model somewhat and focuses on “hard” instances in the phase
transition region of the problem space [21]. Concentrating on this hard region,
the study compares the performance of three prototypical planning systems
(FF [65], LPG [42] and a SATPLAN-like planner [101]) on these tasks, finding
that the satisfiability planner vastly outperforms FF and LPG as the problem
instances grow in size. Rintanen notices that this observed behaviour does not
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reflect their relative performance on typical benchmark tasks from planning
domains like Blocksworld or Logistics.

Rintanen argues that this shows that typical planning benchmarks do
not reflect the structure of “hard” planning problems. He reasons that the
prevalence of the planning benchmarks has led to an inordinate focus on
heuristic techniques, which are of limited usefulness for hard planning tasks,
as the comparatively bad performance on FF on the randomly generated
instances shows. However, this argument can also be turned around. Even
though they are often derided as “toy problems”, the planning benchmarks
are the closest available approximations to real-world applications of classical
planning. On these benchmarks, FF usually outperforms SATPLAN by a
huge margin, not least due to the fact that for many of these domains, FF is
provably polynomial [61, 62] while SATPLAN solves an NP-hard problem, as
we will show in the following chapters. Thus, the outcome of the average-case
analysis runs counter to conventional wisdom in planner evaluation, which we
may interpret as a sign that random tasks do not match typical application
tasks very well, and are thus of limited applicability in practice.

The truth is somewhere in between these two positions. In particular,
one particular caveat when evaluating modern planning systems such as FF
against the classical planning benchmarks is that these systems have been
developed with the benchmarks in mind. For example, the Goal Agenda
Management technique used in IPP and FF [65, 78] is motivated by the
Blocksworld domain, and the new heuristics we describe in Part II of
this thesis is inspired by “transportation domains” such as Logistics and
Mystery. Evaluating a planning system on the same set of benchmarks that
were instrumental to its development is clearly a dangerous practice.

On the other hand, heuristic planners like FF have also demonstrated
good performance on benchmark domains that were introduced after the
planner’s conception, which indicates that the lessons learned from the earlier
benchmarks that have factored into the planning system’s design may be
similarly applicable to other practically interesting planning domains.

2.2 Planning Benchmarks Are Important

From the preceding discussion, it should be apparent that whether or not the
community’s focus on benchmark domains constitutes a healthy trend is a
matter of some debate. In addition to Rintanen’s criticism that they represent
an uncharacteristically easy fragment of the general planning problem, it can
be argued that current practice in classical planning research focuses too
much on raw benchmark performance, and too little on original ideas. This
has led to a certain uniformity of planning approaches, with three of the five
best-performing planners in the non-optimizing propositional track of the 4th
International Planning Competition [63] being some variation of Hoffmann’s
FF.
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But irrespective of which side one takes in this debate, it is a fact that
the benchmark domains do play an important role in evaluating planning
algorithms. It has become a very rare occurrence that a paper discussing new
techniques for classical planning is published without presenting performance
results for some of the benchmarks.

Moreover, a number of benchmark domains are relevant for other reasons
besides their use as a testing vehicle. Domains such as Miconic-10 and
PSR are modelled after application problems which are intrinsically useful to
solve, although the classical planning variant of PSR is somewhat restricted
in scope compared to the original non-deterministic formulation [79, 107].
As another example, the operations research community has been studying
vehicle routing problems like the capacitated dial-a-ride problem for a long
time due to its significance for logistics applications [10]. These problems
are closely related to transportation planning domains acting as common
benchmarks such as Logistics, Mystery or Grid.

2.3 Theoretical Analyses of Planning Benchmarks

In summary, empirical experiments with planning benchmarks have become
the standard for performance evaluation in classical planning. Running time
on tasks from domains like Logistics or Blocksworld is often used for
comparing the relative merits of planning techniques, or, put a bit more
provocatively, to draw the line between good and bad ones. However, without
further knowledge about these benchmark domains, it is very difficult to
gauge the efficiency of a planning system in absolute terms. If no planning
system performs well in a given domain, does that mean that they are all
poor, or is that domain intrinsically hard? If they all perform well, is this
because of their strength or because of the simplicity of the task?

2.3.1 Why Theoretical Analyses Are Useful

To address such questions, planning domains can be analysed from the view-
point of computational complexity.

Theoretical knowledge of the complexity of planning in a particular do-
main is not only useful for judging the runtime behaviour of planning systems.
It also helps in assessing the trade-off between planners that plan quickly and
planners that generate short plans. For the general planning problem, finding
an optimal plan is just as easy – or just as difficult – as finding an arbitrary
plan. For a particular benchmark domain, these problems might well be of
different complexity. In domains where generating optimal plans is a problem
that can be solved in polynomial time, there are fewer reasons to be content
with non-optimal plans and generating overly long plans can be viewed as
a deficiency of a planning algorithm. On the other hand, in domains where
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there is a difference in computational complexity between non-optimal and
optimal planning, striving for optimality clearly demands a price in runtime
performance, which the user of a planning system might not always be willing
to pay. We will prove that most common benchmark domains belong to the
latter category, which goes a long way towards explaining why heuristic plan-
ners like FF dramatically outperform optimizing planners like Graphplan in
many domains.

Another point in favour of theoretical analyses is their potential to expose
sources of hardness in planning domains. For instance, if we discovered that
in a hypothetical Pac-Man domain, plans can be generated in polynomial
time if there is a single ghost, while the corresponding problem with multiple
ghosts is NP-hard, then this would allow us to draw the conclusion that one
source of hardness in this domain is the presence of multiple ghosts.

2.3.2 Published Results on Benchmark Complexity

Because of these issues it is rather surprising that so far, there is relatively
little research aimed at understanding the standard benchmark domains, with
the only notable exception being the Blocksworld domain.

Gupta and Nau analyse the complexity of Blocksworld planning both
in its standard form and in several variants, such as ones with blocks of
different size. They prove that while non-optimal Blocksworld planning is
a simple polynomial problem, finding optimal plans is NP-hard [50]. Selman
refines these results by showing that it is possible, in polynomial time, to
generate plans that are as most a constant factor as long as the shortest
one, but that this factor cannot be brought arbitrarily close to 1 unless P =
NP [104]. Slaney and Thiébaux provide a deep and thorough analysis of
the algorithmics and empiricism of Blocksworld planning, including the
identification of efficient non-optimal and optimal planning algorithms and
an investigation of phase transitions [105].

However, for other planning benchmark domains, previous work on com-
putational complexity appears to be non-existent.

2.4 Standard Benchmarks

Seeing that domain-specific complexity results for planning problems appear
to be useful, the question arises which domains are of particular interest. It
is evident that it is neither feasible nor desirable to investigate every single
planning domain that has been considered in the literature. So which domains
should we focus on? Ten years ago, this question would have been difficult
to answer. Many publications would introduce their own planning domains
which would never be considered again in another paper, and apart from
a few classical planning domains like Blocksworld or TowersOfHanoi,
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there would be little or no consensus about which planning domains could
be considered “standard”.

However, with the advent of the International Planning Competitions (ab-
breviated as IPC in the following), this situation has changed [7, 63, 83, 84, 88].
Instigated in 1998 and held as a biennial event since then, the competitions
have led to a consolidation of classical planning benchmarks to the extent
that most current research on classical PDDL planning exclusively relies on
the competition domains (Fig. 2.1) for benchmarking. The proceedings of the
main annual planning conferences since the first planning competition clearly
show this:

IPC1 Assembly
Grid
Gripper
Logistics
Movie
Mystery
MysteryPrime

IPC2 Blocksworld
FreeCell
Logistics
Miconic-10
Schedule

IPC3 Depots
Driverlog
FreeCell
Rovers
Satellite
Zenotravel

IPC4 Airport
Pipesworld
Promela
PSR
Satellite

Fig. 2.1. Domains from the International Planning Competitions

– The ECP 1999 proceedings [11] contain eight papers on classical planning
techniques. All of these use at least the Blocksworld or Logistics do-
main in their evaluations, but only two use IPC domains exclusively. The
other six papers use a number of other planning domains mostly from the
UCPOP [94] suite.

– The AIPS 2000 proceedings [22] contain nine papers on classical planning
techniques. All of these use at least two IPC domains, with Logistics,
Blocksworld, Gripper and Grid considered three or more times. How-
ever, six of the papers also include one non-IPC domain (most commonly
Rocket), and one paper uses two non-IPC domains (Ferry and Tow-

ersOfHanoi).
– The ECP 2001 proceedings [19] contain six papers on classical planning
techniques. IPC domains are predominantly used in all papers, with only
one paper using more than one other domain (however, that paper also
uses all the IPC domains available at the time).

– The AIPS 2002 proceedings [46] contain seven papers on classical plan-
ning techniques, three of which use IPC domains exclusively for evaluation
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purposes. The other four papers use IPC domains predominantly, but also
consider a variety of other domains.

– The ICAPS 2003 proceedings [48] contain two papers on classical plan-
ning techniques, both of which use IPC domains exclusively for evaluation
purposes.

– The ICAPS 2004 proceedings [112] contain six papers on classical plan-
ning techniques, five of which use IPC domains exclusively for evaluation
purposes. The remaining paper uses five IPC domains and Briefcase.

– The ICAPS 2005 proceedings [12] contain eight papers classical planning
techniques, seven of which use IPC domains exclusively for evaluation pur-
poses. The remaining paper uses two IPC domains and TowersOfHanoi.

2.5 Summary and Overview

Summarizing this chapter, we have made the following observations:

– Planning algorithms are usually evaluated empirically, using benchmark
domains. Other modes of evaluation, like general worst-case or average-
case analyses are altogether less appropriate, and thus rare.

– Benchmark domains are important. Besides their role for performance mea-
surements, benchmark domains are also used for identifying shortcomings
of planning systems or as inspiration for new planning techniques. More-
over, some of them model relevant application problems and are thus in-
trinsically interesting.

– Little is known about most benchmark domains. With the exception of
Blocksworld, the benchmark domains are not formally analysed in the
planning literature.

– The IPC domains form a set of standard benchmarks. Most papers pub-
lished in recent years use domains from the International Planning Com-
petitions exclusively for performance evaluations.

Following these observations, we dedicate the rest of this part to a formal
analysis of the IPC benchmark domains. The following chapters are organized
as follows:

– In Chapter 3, we develop the formal background necessary for our analysis.
In particular, we define a formal notion of planning domain and introduce
the plan existence and bounded plan existence decision problems as well as
the minimum plan generation optimization problem. We also provide some
reductions between these problems.

– In Chapter 4, we informally introduce the IPC planning domains.
– In Chapter 5, we introduce two families of planning domains related to
transportation planning and route planning and present detailed complex-
ity results for these.
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– In Chapter 6, we present detailed complexity results for a number of IPC
planning domains related to transportation or route planning.

– In Chapter 7, we present detailed complexity results for those IPC planning
domains which are not related to transportation or route planning.

– In Chapter 8, we summarize the findings of this part and draw conclusions.

Most of the material presented in this part is based on work that we have
published previously. In particular, the decision complexity results for the
planning domains from the first two International Planning Competitions and
the Transport domain family were first presented in the author’s Master’s
thesis [52] and published in an article in the Artificial Intelligence Journal
[55]. Part of these results are also included in an article presented at ECP
2001 [53]. The complexity results for the domains from IPC4 are included
in an article presented at ICAPS 2006 [58]. Those approximation results in
the planning competition domains (but not in the general Transport and
Route domain families) which are not implied by the decision complexity
results are included in an article presented at ECAI 2006 [59]. The complexity
results for the domains from IPC3 and for the Route domain family as well
as all approximation results for the Transport and Route domain families
are previously unpublished.

The approximation results in the Grid domain and in some of the do-
mains in the Transport family are the result of joint work with Robert
Mattmüller [86] and Michael Drescher [29].
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To be able to state precise results for the planning benchmarks, we first
need to formalize them. In this chapter, we lay the foundations for such for-
malizations. The following Section 3.1 provides a brief introduction into the
theory of minimization problems and their formal properties, in particular
their classification into approximation classes. In Section 3.2, planning do-
mains are introduced as examples of minimization problems. Finally, Section
3.3 contains some general classification results and reductions applying to all
planning domains.

3.1 Optimization Problems

We assume that the reader is familiar with the basic notions of complex-
ity theory, such as decision problems and the complexity classes P, NP and
PSPACE, and refer to the literature for definitions [41].

Classical complexity theory is concerned with yes/no-questions. Does a
given planning task have a solution? Does it have a solution with certain
properties (e. g., using no more than a certain number of operators)? In many
cases, analyzing the theoretical difficulty of answering such questions already
provides a clear picture of the hardness of planning in a certain domain.
However, in some cases it does not. For example there are domains where
it is easy to find some solution in polynomial time, but difficult to find an
optimal solution. In such a situation, it is natural to ask just how close to
optimality we can get without sacrificing polynomial runtime.

For addressing such questions, the tools of classical complexity theory are
somewhat limited. A more adequate framework is provided by the theory
of approximation algorithms, which we will now introduce. We will keep our
discussion brief, referring to the textbook by Ausiello et al. [6] for a more
thorough treatment. For the most part, our presentation follows theirs.

3.1.1 Minimization Problems

The central concept in the theory of approximation algorithms is that of
optimization problems, which play the same role that decision problems do in
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classical complexity theory. Optimization problems are either minimization
problems or maximization problems.

Definition 3.1.1. minimization problem
A minimization problem is a 3-tuple 〈I,S,m〉 with the following compo-
nents (Σ and Γ are finite alphabets):

– I ⊆ Σ∗ is a polynomial-time recognizable set of instances.
– S : I → 2Γ

∗

is a solution function, which maps instances I ∈ I to a
(possibly empty) set of solutions of I.

– m :
⋃

I∈I({I} × S(I)) → N0 is a polynomial-time computable measure
function, which maps an instance I ∈ I and a solution S for I to a
natural number called its measure.

An instance I ∈ I is called solvable if S(I) 6= ∅, and unsolvable other-
wise.

Maximization problems are similarly defined. However, we do not need
them for this thesis, so we do not introduce them formally.

Similar to common notation in complexity theory, in practice the instances
and solutions of a minimization problem are described by graphs, sets or
functions rather than words over an alphabet, and it is assumed that a “rea-
sonable encoding” is used for representing such mathematical structures in
contexts that require “proper” words, for example as inputs to Turing Ma-
chines. Such leniency is justified by the fact that problems that differ only in
encoding share the same approximability (and complexity) properties if the
encoding lengths are polynomially related. For all the minimization problems
introduced in this thesis, recognizing instances and computing measures is
an easy task, so we do not describe these when defining a problem. Although
measure functions are formally defined to take both the instance and the so-
lution as an argument, we usually omit the instance and write m(S) instead
of m(I, S) to simplify notation, when the instance is clear from context.

Our definition of minimization problems generalizes the usual definition
[6] (called the “standard definition” in the following) in two ways. First, we
do not require that the lengths of solutions are polynomially bounded in the
length of the instance. Solutions to planning tasks typically do not satisfy this
polynomial length bound property because it is often possible to “waste time”
by applying inconsequential actions indefinitely. More importantly, there exist
planning tasks for which no short solutions exist. To model the planning
problem faithfully, we thus need the ability to specify exponentially long
solutions. The second extension is that we allow for solutions of measure 0
– it is more common to demand that measure functions map to the positive
integers. We will see shortly how these extensions influence the definition of
the common approximation classes.

Two examples of minimization problems are given by the Minimum Ver-

tex Cover and Minimum Set Cover problems, which we will use for a
number of reductions in the following chapters.
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Problem 3.1.1. Minimum Vertex Cover

The Minimum Vertex Cover problem is defined as follows:

Instance: A graph 〈V,E〉.
Solution: A subset of vertices U ⊆ V such that for all edges {u, v} ∈ E,

u ∈ U or v ∈ U .
Measure: |U |.

Problem 3.1.2. Minimum Set Cover

The Minimum Set Cover problem is defined as follows:

Instance: A finite set S and collection C of subsets of S.
Solution: A set cover of S, i. e., a subset D ⊆ C such that each element of

S is contained in some set in D.
Measure: |D|.

3.1.2 Approximation Algorithms

Informally, the algorithmic task associated with a minimization problem is
that of computing, for a given instance, a solution with measure as small as
possible. If an instance has no solution, the algorithm must detect this. We
will now formalize these notions, starting with algorithms that do not provide
any guarantee regarding the quality of the generated solutions.

Definition 3.1.2. approximation algorithm
Let P = 〈I,S,m〉 be a minimization problem.

An approximation algorithm A for P is a Turing Machine which,
given an instance I ∈ I, recognizes whether or not it is solvable, and if this
is the case, computes some solution S ∈ S(I).

Depending on the properties of A, we distinguish deterministic and
non-deterministic approximation algorithms, and polynomial-time and
exponential-time approximation algorithms.

We assume a strong notion of non-deterministic computation where it
is allowed for a Turing Machine to compute different solutions if differ-
ent non-deterministic choices are made. (There are weaker notions of non-
deterministic computation where the non-deterministic choices may only in-
fluence whether or not the machine produces a solution at all, but not which
solution is produced [92].) When we speak of the solution computed by a non-
deterministic Turing Machine, we mean one (arbitrarily chosen) solution of
minimal measure among those that it may compute. As usual in complexity

theory, exponential time is understood as “O(2n
k

) for some k ∈ N0”.
Before we can introduce formal notions for approximation algorithms of

different quality, we need to define the concept of performance ratio.

Definition 3.1.3. performance ratio
Let 〈I,S,m〉 be a minimization problem, and let I ∈ I be a solvable instance.
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The optimal measure for I is defined as m∗(I) = minS∈S(I)m(S).
An optimal solution of I is a solution S∗ ∈ S(I) with m(S∗) = m∗(I).
For any solution S ∈ S(I), the performance ratio of S is defined as

the fraction m(S)
m∗(I) , where

0
0 = 1 and k

0 = ∞ for k 6= 0.

For minimization problems, our objective is to generate solutions with
small measure. We are thus chiefly interested in algorithms which can guar-
antee a certain upper bound on the performance ratios of the solutions they
compute.

Definition 3.1.4. f-approximation, c-approximation, optimal algo-
rithm
Let f : N0 → R

+ be a function. An approximation algorithm A for some
minimization problem P = 〈I,S,m〉 is called an f-approximation if, for
all solvable instances I ∈ I, the performance ratio of the solution generated
by A is at most f(|I|).

If f is a constant function f : n 7→ c (c ∈ R), then A is also called a c-
approximation. A 1-approximation is also called an optimal algorithm.

A problem P is called f-approximable (c-approximable, optimizable,
solvable) by a deterministic (non-deterministic) polynomial (exponential)
algorithm if there exists a deterministic (non-deterministic) polynomial-time
(exponential-time) f -approximation (c-approximation, optimal algorithm, ap-
proximation algorithm) for P. The qualifier “deterministic” may be omitted.

3.1.3 Approximation Classes

We can now define a number of approximation classes, which are the opti-
mization problem counterparts of complexity classes in classical complexity
theory.

Definition 3.1.5. approximation classes
The approximation classes PO, FPTAS, PTAS, APX, poly-APX, exp-APX,
PS, NPO, NPS, EXPO and EXPS contain a minimization problem P under
the following conditions:

– for PO (P-optimizable):
P is optimizable by a polynomial algorithm.

– for FPTAS (fully polynomial-time approximation scheme):
P is c-approximable for all real numbers c > 1 by an algorithm with running
time polynomial both in the instance size and in 1

c−1 .
– for PTAS (polynomial-time approximation scheme):
P is c-approximable by a polynomial algorithm for all real numbers c > 1.

– for APX (approximable):
P is c-approximable by a polynomial algorithm for some real number c > 1.

– for poly-APX (poly-approximable):
P is p-approximable by a polynomial algorithm for some polynomial p ∈
R[x].
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– for exp-APX (exp-approximable):
P is f -approximable by a polynomial algorithm for some exponential func-

tion f ∈ O(2n
k

) (k ∈ N0).
– for PS (P-solvable):
P is solvable by a polynomial algorithm.

– for NPO (NP-optimizable):
P is optimizable by a non-deterministic polynomial algorithm.

– for NPS (NP-solvable):
P is solvable by a non-deterministic polynomial algorithm.

– for EXPO (EXP-optimization):
P is optimizable by an exponential algorithm.

– for EXPS (EXP-solvable):
P is solvable by an exponential algorithm.

Note that for class PTAS, unlike FPTAS, the c-approximating algorithm
may have arbitrary dependence on c (i. e., it may grow very fast as c ap-
proaches 1).

Our definition includes four unusual approximation classes not found in
the book by Ausiello et al. [6], namely PS, NPS, EXPS and EXPO. We now
explain why they are necessary for our analysis.

If we followed the standard definition of minimization problems, classes
exp-APX and PS would be identical, so that there would be no need to define
the latter. To see this, consider a problem P ∈ PS. Membership in PS implies
that there exists a deterministic polynomial-time approximation algorithm
which solves P . Running in polynomial-time, such an algorithm can only
generate polynomially large solutions. Moreover, the measure function must
be computable in polynomial time in the size of that solution, and thus also
in polynomial time in the instance size. In polynomial time, it is only possible
to compute exponentially large numbers (rather than, for example, doubly
exponentially large numbers), and thus the measure of any solution computed
by the algorithm is at most exponential in the instance size. According to
the usual definition of minimization problems, this would imply that the
performance ratio of the solution is at most exponential in the task size
because the optimal solution must have a measure of at least 1. However, we
allow for solutions of measure 0, so that this argument does not work. We
thus distinguish between exp-APX and PS.

The approximation class NPS is not required under the standard defini-
tion of minimization problems because it would be identical to NPO: With
the requirement that the size of any solution is polynomially bounded in the
size of the instance, all minimization problems belong to NPO, as it is al-
ways possible to guess an optimal solution in this setting. By contrast, our
more general definition allows for the possibility that optimal solutions are
exponentially long, while non-optimal solutions are short. Problems with this
property belong to NPS, but not to NPO. (Note that the set of solutions of
a given instance is always polynomial-time recognizable in the size of the so-
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lution. This follows from the polynomial-time computability requirement for
measure functions.)

Finally, classes EXPO and EXPS are obvious extensions once exponentially
long solutions are introduced, and should not require further comment.

It is easy to see that PO ⊆ PTAS ⊆ APX ⊆ poly-APX ⊆ exp-APX ⊆
PS ⊆ NPS and PO ⊆ NPO ⊆ NPS and that all these classes are identical
if P = NP. More interestingly, all these inclusions are strict if P 6= NP. For
example, if P 6= NP, then Minimum Vertex Cover belongs to APX \PTAS
and Minimum Set Cover belongs to poly-APX \ APX [6].

Beyond polynomial time, we have NPO ⊆ EXPO ⊆ EXPS and NPS ⊆
EXPS. All these inclusions are strict: To see NPO 6⊇ EXPO and NPS 6⊇
EXPS, consider problems which only have exponentially long solutions. To
see EXPO 6⊇ EXPS, consider problems which have exponentially long non-
optimal solutions and doubly exponentially long optimal solutions.

An inclusion which holds in the standard theory of approximation algo-
rithms, but not in our setting is exp-APX ⊆ NPO. To see this, note that our
definition allows for problems where non-optimal solutions can be generated
in polynomial time by deterministic algorithms, but optimal solutions can-
not be generated in polynomial time by non-deterministic algorithms because
they are exponentially long.

3.1.4 Reductions

Similar to classical complexity theory, the notion of reducibility between prob-
lems is central to the theory of approximation algorithms. Before we introduce
reductions between minimization problems, let us briefly review the defini-
tion of Karp reductions (also called polynomial many-one reductions), which
are the basis of most results in classical complexity theory.

Definition 3.1.6. Karp reduction
Let P and P ′ be decision problems. A Karp reduction between P and P ′

is a polynomial-time computable function mapping positive instances of P
to positive instances of P ′ and negative instances of P to negative instances
of P ′. If there exists a Karp reduction between P and P ′, we say that P is
Karp-reducible to P ′, in symbols P ≤p P ′.

In classical complexity theory, Karp reductions are sufficient for most
purposes. Unfortunately, there is no such unifying notion of reducibility for
approximation algorithms. As a case in point, Crescenzi identifies no fewer
than nine types of reductions between optimization problems in his overview
article [24], and these exhibit widely differing properties. Although all of these
have been used in the literature, one of them – approximation-preserving re-
ductions, or AP-reductions for short – have appeared to gain the widest sup-
port in recent years, and might emerge as a kind of “standard” reducibility
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for approximation problems. We thus exclusively use AP-reductions through-
out this work, despite the fact that some results might be somewhat easier
to prove using other notions of reducibility, such as L-reductions [24].

Definition 3.1.7. AP-reduction
Let P = 〈I,S,m〉 and P ′ = 〈I ′,S ′,m′〉 be minimization problems. An AP-
reduction or approximation-preserving reduction between P and P ′ is
a 3-tuple 〈α, f, g〉 with the following components:

– α ≥ 1 is a real-valued parameter.
– f is a function which, given an instance I ∈ I and a real parameter r > 1,
generates an instance f(I, r) ∈ I ′ such that f(I, r) is solvable iff I is
solvable.

– g is a function which, given a solvable instance I ∈ I, a real parameter
r > 1, and some solution S′ ∈ S ′(f(I, r)) with performance ratio at most
r, generates a solution g(I, r, S′) ∈ S(I) to the original instance with per-
formance ratio at most 1 + α(r − 1).

For each fixed value of r, the functions f and g are polynomial-time com-
putable.

If there exists an AP-reduction between P and P ′, we say that P is AP-
reducible to P ′, in symbols P ≤AP P ′.

AP-reducibility is a generalization of Karp-reducibility in a certain sense.
In particular, function f maps instances of the “easier” problem to an in-
stance of the “harder” problem in the same way and subject to the same
constraints as a Karp reduction does. However, this is not enough to provide
a reduction for an optimization problem: We are not just interested in the
solvability of an instance, but also in the quality of the solutions generated by
an approximation algorithm. Therefore, the reduction needs another compo-
nent, which maps solutions to the instance generated by the reduction back to
solutions of the original instance in such a way that “good quality” solutions
are mapped to “good quality” solutions. This mapping is provided by func-
tion g, and the quality guarantee is provided by the condition that solutions
with performance ratio r are mapped back to solutions with performance
ratio at most 1 + α(r − 1).

AP-reductions satisfy the properties that would normally be expected
from reductions. In particular, AP-reducibility is transitive and preserves
membership in most of the optimization classes defined earlier, most impor-
tantly PTAS and APX [6]. However, it does not necessarily preserve member-
ship in PO and FPTAS: Unless P = NP, there exist problems P and P ′ such
that P ≤AP P ′ and P ′ ∈ PO (or P ′ ∈ FPTAS), but P ′ /∈ PO (P ′ /∈ FPTAS).

There are stricter notions of reducibility which do satisfy these properties,
but we do not need them for our purposes. However, we introduce one slight
extension to AP-reductions (not taken from the literature) that we will make
use of in many of our reductions.
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Definition 3.1.8. OP-reduction
Let R = 〈α, f, g〉 be an AP-reduction between minimization problems P and
P ′, let I be the set of instances of P, and let I ′ be the set of instances of P ′.

R is called optimization-preserving iff there exists a constant r > 1
and a polynomial-time computable function br : I × N0 → N0 such that for
all instances I ∈ I and all natural numbers K ∈ N0:

m∗(I) ≤ K iff m∗(f(I, r)) ≤ br(I,K).

In this case, we say that R is an OP-reduction for the approximation
factor r via the bound function br. (In cases where f and br do not
depend on r, we do not mention the approximation factor.)

If there exists an OP-reduction between P and P ′, we say that P is OP-
reducible to P ′, in symbols P ≤OP P ′.

The purpose of OP-reductions is to allow an AP-reduction between P
and P ′ to double as a Karp reduction between their associated decision prob-
lems which ask whether or not an instance of P (or P ′) has a solution of
measure at most K ∈ N0. In particular, if 〈α, f, g〉 is an OP-reduction be-
tween P and P ′ for the approximation factor r via the bound function br,
then 〈I,K〉 7→ 〈f(I, r), b(I,K)〉 is a Karp reduction between their associated
decision problems.

3.2 Formalizing Planning Domains

For our purposes, planning is simply a special kind of minimization problem.
The syntactical aspects of specifying planning tasks are of little importance
to our analysis; we only care about being able to define planning domains in
a way that is reasonably concise and accessible. To provide a clear idea of
the semantical aspects of planning, we first define the notion of state spaces.

Definition 3.2.1. state space
A state space is a 5-tuple S = 〈S, s0, S⋆, O, w〉 with the following compo-
nents:

– S is a finite set of states.
– s0 ∈ S is the initial state.
– S⋆ ⊆ S is the set of goal states.
– O is a finite set of operators, functions mapping states from a subset of
S to S. An operator is called applicable in a given state iff it is defined
on that state. Operators are also called actions.

– w : O → N0 is the operator cost function.

S defines the state transition graph G(S), a labelled, weighted digraph
with vertex set S and an arc labelled o with weight w(o) from s to o(s) for all
operators o and all states s for which o is defined.
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In practice, we will define states in a structured way, for example as tuples
of functions, and describe operators only in terms of the changes to the state
in which they are applied. For example, we might define states as pairs of
functions s = 〈f, g〉 and describe an operator as “o changes g(x) to y”. By
this we mean that o(s) = 〈f, g′〉 where g′(x) = y and g′(x′) = g(x) for all
x′ 6= x.

In most cases – in particular when we do not mention operator costs –
we assume a unit cost model, where the operator cost function is a constant
function mapping to 1. However, there are some settings in which we find it
useful to generalize this model, and thus we allow for arbitrary operator cost
functions, even including operators of cost 0.

We can now define what we mean by a planning domain.

Definition 3.2.2. planning domain
A planning domain D is a function that maps words T (called planning
tasks) over some finite alphabet Σ to state spaces D(T ) = 〈S, s0, S⋆, O, w〉
with the following properties:

– States s ∈ S can be represented in space polynomially bounded by |T |.
– |O| is polynomially bounded by |T |.
– Operator costs are exponentially bounded by |T |.
– There exists a polynomial algorithm which takes T , o ∈ O and s ∈ S as
inputs, decides if s is applicable in o and computes o(s) if this is the case.

– There exists a polynomial algorithm which takes T and s ∈ S as inputs and
decides if s ∈ S⋆.

In practice, the encoding language for planning tasks is usually PDDL
[36, 40, 88]. However, since we are not interested in representational issues
here, we will describe planning tasks in terms of structures that are natural
to the domain at hand (such as roadmap graphs or fuel functions) rather
than encode them in propositional or first-order logic. For our results to be
applicable to planning in PDDL, we must make sure that encoding lengths of
planning tasks in these two different representations are polynomially equiv-
alent. This is the case for all the domains we will investigate, and we will not
explicitly mention encoding lengths in our definitions of planning domains.

The formal restrictions for planning domains capture the properties
of classical (i. e., non-numerical, non-temporal) PDDL-style planning with
schematic operators in a fixed domain. They ensure that the difficulty of
planning in a given domain does not grow without bounds: In particular,
they ensure that we can always plan by exhaustively searching the state
space of a task. If, for example, we would drop the first restriction, there
could be infinitely many states, as in numerical planning, which is generally
undecidable [54].

We can now finally define what a plan is.

Definition 3.2.3. plan
Let D be a planning domain, and let T be one of its tasks. A plan π for T
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is a path in the state space D(T ) leading from the initial state to some goal
state.

The cost or measure of π = π1 . . . πn, in symbols m(π), is defined as
m(π) =

∑n
i=1 w(πi), where w is the operator cost function of D(T ).

In the following, we will identify a task with its state space. For example,
we will speak of the states of a task, rather than of its state space. Moreover,
we will use the notation T ∈ D to denote that T is a task of domain D,
although formally D is actually a mapping defined on a set of tasks, rather
than a set of tasks.

For a given planning domain, we are chiefly interested in the planning
problem for that domain: Given a task of the domain, compute a (preferably
“cheap”) plan, or prove that no plan exists. The theory of minimization
problems provides an adequate formalism for this.

Problem 3.2.1. planning
Let D be a planning domain. The planning problem Plan-D for the do-
main D is the following minimization problem:

Instance: A planning task T ∈ D.
Solution: A plan π for T .
Measure: The cost of the plan, m(π).

In addition to the planning problem proper, we will also consider two
related decision problems. Decision problems have a longer history than op-
timization problem, so that it is possible to utilize a larger body of work for
reductions. Moreover, as we will see in the following section, analyzing the
complexity of these decision problems is often all that is needed to classify
the approximation complexity of the planning problem in a given domain.

Problem 3.2.2. plan existence
Let D be a planning domain. The plan existence problem PlanEx-D for
the domain D is the following decision problem:

Given: A planning task T ∈ D.
Question: Is there a plan for T ?

Plan existence is closely related to the problem of generating a plan for
the task. If the plan existence problem is easy to solve, it is typically easy to
generate a plan; the converse is always true.

Problem 3.2.3. bounded plan existence
Let D be a planning domain. The bounded plan existence problem
PlanLen-D for the domain D is the following decision problem:

Given: A planning task T ∈ D and a natural number K ∈ N0.
Question: Is there a plan π for T with m(π) ≤ K?

Bounded plan existence is related to generating an optimal plan for a task.
If bounded plan existence is easy to solve, it is typically easy to generate an
optimal plan; the converse is always true.
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3.3 General Results and Reductions

Before moving on to the planning domains we are interested in, we now
present some general results which hold for all planning domains. This
reduces the busywork required for classifying the complexity of Plan-D,
PlanEx-D and PlanLen-D.

3.3.1 Upper Bounds

We first observe some general upper bounds.

Theorem 3.3.1. Plan-D ∈ EXPO

Plan-D ∈ EXPO, for any planning domain D.

Proof. Let D be a planning domain. From Definition 3.2.2, there exist poly-
nomials pS and pO such that for any planning task T ∈ D, the number of
states of T is bounded by 2pS(|T |) and the number of operators is bounded
by pO(|T |). Moreover, there is an algorithm with polynomial run-time bound
pa(|T |) which determines for each state s and operator o whether o is appli-
cable in s and what the resulting state o(s) is. Finally, there is an algorithm
with polynomial run-time bound p⋆(|T |) which determines whether or not a
given state is a goal state.

We can thus explicitly create the state transition graph for T in time
O(2pS(|T |) · pO(|T |) · pa(|T |)) (for each state, determine the set of applicable
operators and introduce arcs for them) and mark all goal states in time
O(2pS(|T |) · p⋆(|T |)). Standard graph search techniques [23] find a shortest
path in that graph leading from the initial state to some goal state in time
which is polynomial in the size of the graph. Given such a shortest path, a
plan is easy to generate. Combining the individual run-time bounds, we see
that the total running time of this explicit search algorithm is bounded by
O(2q(|T |)) for some polynomial q, proving that Plan-D ∈ EXPO. ⊓⊔

In general, we cannot do better than exponential time for Plan-D, be-
cause there are planning tasks for which all solutions are exponentially long
in the task size. Therefore, the bound from the previous proof is tight. For
the decision problems, however, we can prove a slightly better result.

Theorem 3.3.2. PlanLen-D ∈ PSPACE

PlanLen-D ∈ PSPACE, for any planning domain D.

Proof. Let D be a planning domain. The following non-deterministic algo-
rithm decides PlanLen-D given a task T ∈ D and cost bound K ∈ N0:

1. Set s to the initial state of the task and k to K.
2. While s is not a goal state:

– Non-deterministically choose an operator o which is applicable in s.
Fail if no such operator exists.
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– Set s to o(s) and reduce k by the cost of o. Fail if k < 0.
3. Succeed.

All steps of the plan (maintaining state s and counter k, testing whether a
state is a goal state, testing for applicability of an operator and applying it)
can clearly be computed in polynomial space. Moreover, it is obvious that
the algorithm can succeed iff the input task has a plan of measure at most
K. Thus, we have provided a non-deterministic polynomial-space algorithm
for PlanLen-D. Savitch’s Theorem [92] implies that PSPACE = NPSPACE,
so that indeed PlanLen-D ∈ PSPACE. ⊓⊔

The following result bounds the complexity of plan existence by the com-
plexity of bounded plan existence. This supports the intuition that the one
problem relates to finding arbitrary plans while the other relates to finding
optimal plans, a harder problem.

Theorem 3.3.3. PlanEx-D ≤p PlanLen-D
PlanEx-D ≤p PlanLen-D, for any planning domain D.

Proof. For a given planning domain D, let pS and pw be polynomials such
that for all tasks T ∈ D the number of states is bounded by 2pS(|T |) and
operator costs are bounded by 2pw(|T |). We can then provide the following
reduction: Given a planning task T ∈ D (a PlanEx-D instance), we compute
the PlanLen-D instance consisting of the same planning task T and the
length bound K = (2pS(|T |) − 1) · 2pw(|T |). This is a polynomial mapping,
since a binary representation of K has only pS(|T |) + pw(|T |) digits. Clearly,
if T has a solution of cost at most K, then T has a solution, so the resulting
instance is solvable only if the original instance is solvable. On the other hand,
if the original instance is solvable by some plan, then it must also be solvable
by a plan which does not traverse the same state several times (parts of a
plan between repeated traversals of the same state can be omitted). Plans
which do not traverse the same state twice cannot have more than 2pS(|T |)−1
actions, each of which cannot cost more than 2pw(|T |). Therefore, the mapping
is indeed a polynomial reduction. ⊓⊔

This gives us our final upper bound:

Theorem 3.3.4. PlanEx-D ∈ PSPACE

PlanEx-D ∈ PSPACE, for any planning domain D.

Proof. This follows immediately from the previous two results. ⊓⊔

3.3.2 Shortest Plan Length

One evident observation is that we cannot efficiently generate plans if the
plans themselves are too long to be written down in reasonable time. In
the framework of classical complexity, this can lead to somewhat unintuitive
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results in the sense that planning is “provably easy” (plan existence, and
maybe even bounded plan existence are polynomial problems), but actually
generating a plan requires exponential algorithms. One class of planning tasks
exhibiting such a property has been studied by Jonsson and Bäckström [68,
70].

In the context of minimization problems, however, we can capture such
anomalies more cleanly. To do so, we start with the following definition.

Definition 3.3.1. admitting short (optimal) plans
A planning domain D admits short plans if there exists a polynomial p
such that for all solvable tasks T ∈ D, the length of some plan for T is at
most p(|T |).

A planning domain D admits short optimal plans if there exists a
polynomial p such that for all solvable tasks T ∈ D, the length of some optimal
plan for T is at most p(|T |).

In both cases, p is called a length bounding polynomial for D.

Of course, a planning domain that admits short optimal plans also admits
short plans. The converse is not necessarily true for domains with super-
polynomial operator costs. However, it is true for all the domains we consider
in this thesis.

Whether or not a planning domain admits short (optimal) plans leads to
a clear distinction in approximation complexity.

Theorem 3.3.5. short plans and approximation classes
Let D be a planning domain.

If D admits short plans, then Plan-D ∈ NPS. Otherwise, Plan-D ∈
EXPO \ NPS.

If D admits short optimal plans, then Plan-D ∈ NPO. Otherwise,
Plan-D ∈ EXPO \ NPO.

Proof. If a planning domain admits short plans, we can, given a solvable
instance, guess a plan and validate that it is indeed a solution within poly-
nomial time, so that Plan-D ∈ NPS. Similarly, if a domain admits short
optimal plans, we can guess and verify an optimal solution in polynomial
time, so that Plan-D ∈ NPO.

On the other hand, if a domain does not admit short plans, then there
cannot be an algorithm that always generates a solution to a solvable instance
in polynomial time, because super-polynomial time is required for writing
down the solution. Hence, Plan-D /∈ NPS. Similarly, if a domain does not
admit short optimal plans, we must have Plan-D /∈ NPO.

With Theorem 3.3.1 we obtain Plan-D ∈ EXPO \ NPS and Plan-D ∈
EXPO \ NPO for the two cases. ⊓⊔
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3.3.3 Approximation Classes of Limited Interest

All of the approximation classes introduced in Definition 3.1.5 are relevant to
the theory of approximation algorithms. However, using the notion of short
plans, we can prove that some of the introduced approximation classes are
of limited interest for planning problems. Before we can to do this, we must
formalize another important property of planning domains.

Definition 3.3.2. having cheap operators
A planning domain D has cheap operators if there exists a polynomial p
such that for all tasks T ∈ D, the operator cost function is bounded by p(|T |).

Such a polynomial p is called a cost bounding polynomial for D.

We remarked before that we usually adopt a unit operator cost model,
so that must planning domains we discuss do have cheap operators. The
following proof is similar to Theorem 3.15 in the textbook by Ausiello et
al. [6].

Theorem 3.3.6. FPTAS is of limited interest
Let D be a planning domain having cheap operators.

If Plan-D ∈ FPTAS, then Plan-D ∈ PO.

Proof. With Plan-D ∈ FPTAS, Theorem 3.3.5 and FPTAS ⊆ NPS, it follows
that D admits short plans. Let pL be a length bounding polynomial for D,
and let pw be a cost bounding polynomial for D.

Due to membership in FPTAS, there must be a planning algorithm for
D which generates c-approximating solutions for tasks T ∈ D in time
q(|T |, 1

c−1), where q grows polynomially in both parameters.

In particular, choose c = 1 + 1
2pL(|T |)pw(|T |) . Then

1
c−1 = 2pL(|T |)pw(|T |)

and hence the running time of the algorithm is polynomial in |T |, pL(|T |)
and pw(|T |), which is still polynomial in |T |.

Because the algorithm is c-approximating, the measure of the plan π
computed by the algorithm is bounded as m(π) ≤ c ·m∗(T ). Substituting the

value of c, we getm(π) ≤ (1+ 1
2pL(|T |)pw(|T |) )m

∗(π) = m∗(T )+ 1
2 ·

m∗(T )
pL(|T |)pw(|T |) .

Because pL is a length bounding polynomial, there exists a plan π′ with
at most pL(|T |) operators, each of which costs at most pw(|T |). Thus, we
must have m∗(T ) ≤ pL(|T |)pw(|T |), as an optimal plan cannot have a larger
measure than π′. We must thus have m(π) ≤ m∗(T ) + 1

2 , and hence m(π) =
m∗(T ), because m(π) and m∗(T ) are natural numbers.

We can thus use the fully polynomial-time approximation scheme to pro-
duce optimal solutions in polynomial time, and hence Plan-D ∈ PO. ⊓⊔

This result is an instance of a general theorem about optimization prob-
lems, namely that any optimization problem in FPTAS\PO must have a mea-
sure function which grows super-polynomially with the instance size. This is
most commonly the case for problems with a strong numerical aspect; one
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well-known example is the Maximum Knapsack problem, which belongs to
FPTAS, but not to PO unless P = NP [6].

Note that the restriction to domains with cheap operators is critical. For
example, for a given propositional formula ϕ of size O(n), it is not difficult
to construct a planning task Tϕ with the following properties:

– The size of Tϕ is polynomial in the size of ϕ, denoted by n.
– Tϕ always has a trivial solution of measure 2n + 1.
– If ϕ is satisfiable, Tϕ has a second solution of measure 2n.

There exist trivial fully-polynomial time approximation schemes for such
planning tasks, but existence of a polynomial-time optimal planning algo-
rithm would imply P = NP.

At the other end of the approximation complexity spectrum, we can prove
a similar result.

Theorem 3.3.7. PS and exp-APX are of limited interest
Let D be a planning domain having cheap operators for which there exists a
polynomial-time algorithm which determines whether or not m∗(T ) = 0 for
a given task T ∈ T and computes a plan of measure 0 if this is the case.

If Plan-D ∈ PS, then Plan-D ∈ poly-APX.

Proof. Let D be a planning domain such that Plan-D ∈ PS. This means that
we must have a polynomial-time planning algorithm forD. A polynomial-time
planning algorithm can only generate polynomial-size plans, and polynomial-
size plans in a domain having cheap operators have polynomial measure.
Thus, the algorithm guarantees a polynomial performance ratio for all input
tasks with m∗(T ) 6= 0. Moreover, input tasks with m∗(T ) = 0 can be opti-
mally solved in polynomial time. Together, this implies Plan-D ∈ poly-APX.

⊓⊔

Note that the requirements of the proof are satisfied in particular for plan-
ning domains with unit operator costs: These clearly have cheap operators,
and tasks can have optimal measure 0 only if they are solved by the empty
plan, which is trivial to determine.

Again, the restriction to cheap operators is necessary, and indeed in the
wider world of optimization, there are problems which belong to exp-APX,
but not to poly-APX unless P = NP, even when measures of 0 are forbidden.
One example of such a problem which is easily expressible as a planning
domain is (a modified version of) Minimum Weighted Satisfiability [6].

It is also easy to see that the requirement to be able to deal with zero-
measure solutions is important. It is easy to define a planning domain which
can be solved by a plan with measure 0 iff a given propositional formula is
satisfiable, and which can always be solved by a plan with measure 1. The
planning problem for such a domain clearly belongs to PS, but not to exp-APX
or poly-APX unless P = NP.
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3.3.4 Relating Planning and (Bounded) Plan Existence

We have claimed before that there is a relationship between the planning
problem and the plan existence and bounded plan existence decision prob-
lems which makes the latter two relevant to our study. Here, we state this
relationship formally.

Theorem 3.3.8. Plan-D vs. PlanEx-D and PlanLen-D
For any planning domain D, the following relationships hold:

– If Plan-D ∈ PO, then PlanEx-D ∈ P and PlanLen-D ∈ P.
– If Plan-D ∈ PS, then PlanEx-D ∈ P.
– If Plan-D ∈ NPO, then PlanEx-D ∈ NP and then PlanLen-D ∈ NP.
– If Plan-D ∈ NPS, then PlanEx-D ∈ NP.
– If PlanLen-D is NP-hard, then Plan-D /∈ PO unless P = NP.
– If PlanEx-D is NP-hard, then Plan-D /∈ PS unless P = NP.

Proof. For the first statement, an optimal polynomial time planning algo-
rithm can be used for polynomially deciding plan existence and bounded
plan existence: Run the algorithm and test if it generates a solution (for plan
existence) or a solution satisfying the given measure bound (for bounded plan
existence).

Similarly, any polynomial time planning algorithm can be used for poly-
nomially deciding plan existence: Run the algorithm, check if it generates a
plan, and accept the input iff it does.

The same arguments works for the third and fourth statement, using non-
deterministic algorithms in place of deterministic ones.

We show the fifth statement by contradiction. Assume that PlanLen-D
were NP-hard and Plan-D were in PO. By the first statement, we have
PlanLen-D ∈ P. Together with the fact that this problem is NP-hard, this
implies P = NP.

The sixth statement follows similarly by contradiction from the second.
⊓⊔

Generally, the theorem states that hardness of the decision problems car-
ries over to hardness of the minimization problem, and easiness of minimiza-
tion carries over to easiness of the decision problems. The converse is not
necessarily true. For example, plan existence might be easy, but the argument
showing that a plan exists might be non-constructive and not easily trans-
latable to an approximation algorithm. Moreover, the minimization problem
may be hard simply because the domain does not admit short plans; however,
this does not preclude the possibility of easy decision problems. (Consider the
TowersOfHanoi domain as an example.)

To provide the maximum amount of information, we will thus only con-
sider the decision problems for proving hardness results, and always work
directly with the planning problems for proving easiness results.



3.3 General Results and Reductions 33

3.3.5 Generalization and Specialization

The final result we want to present in this chapter is quite simple. Never-
theless, it is fundamental to the following analysis and thus worth stating
explicitly.

Theorem 3.3.9. generalization and specialization
Let D and D′ be planning domains such that all tasks of D are tasks of D′,
and for all tasks T ∈ D, we have D(T ) = D′(T ). Then:

– Plan-D ≤OP Plan-D′.
– PlanEx-D ≤p PlanEx-D′.
– PlanLen-D ≤p PlanLen-D′.

Proof. All proofs are simply by embedding: For the AP-reduction, α = 1 and
f maps tasks to themselves and g maps solutions to themselves. To see that
this is also an OP-reduction, consider the bound function which maps a given
bound to itself, independent of the instance.

For plan existence and bounded plan existence, the polynomial reductions
are by the identity function. ⊓⊔

This concludes the chapter. We have presented sufficient formal back-
ground to conduct complexity analyses for planning domains, and shall now
give a brief overview of the domains we are interested in.
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4. The Benchmark Suite

Having formalized planning domains, the question arises how the planning
domains from the International Planning Competitions fit into this frame-
work. We discuss this issue in Section 4.1, then informally introduce the
competition domains in Section 4.2. The concluding Section 4.3 gives an out-
look on the following chapters, in which we present the main technical results
of this part.

4.1 Defining the Competition Domains

How are the planning competition domains defined? This question is not as
straight-forward to answer as it might at first appear. The semantics of a
benchmark domain – how a task is mapped to a state space – is obvious from
their PDDL definitions [7, 63, 83, 88] and causes no further difficulty, maybe
apart from the fact that some of the benchmark domains contain a few quirks
or errors in their formalization that we might want to address.

The real question is: Which tasks should be considered part of a given
domain? Again, the available PDDL definitions help somewhat: Tasks which
cannot be expressed with the official PDDL domain specifications should not
be considered part of the domain. However, being expressible in PDDL with
the given domain specification is a criterion which we consider necessary, but
not sufficient for deciding whether or not a given task belongs to a certain
domain. In many domains, important pieces of information are not (and
cannot be made) explicit in the PDDL domain specification. For example,
the fact that a block cannot sit on top of itself is an important property
of Blocksworld tasks, yet the domain file does not require or imply this
property. Similarly, in domains with a transportation theme like Logistics, it
is usually assumed but not made explicit that locations, carriers and portable
objects are disjoint classes, and hence carriers cannot pick up other carriers
or move locations around.

So there must be a second, restricting criterion to narrow the choice of
tasks. Unfortunately, for most domains this is not formalized in the literature.
Therefore, we must find some way of identifying the “intended” set of tasks in
a given domain. Identifying intent appropriately is of special relevance if our
results are to be employed for judging the performance of planning systems
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on the existing benchmark suites. As an example, consider the Gripper

domain, where a robot moves objects between different rooms. Although the
PDDL definition allows for more general specifications, in all Gripper tasks
which were used for benchmarking, there are only two rooms, all objects are
initially located in the same room as the robot, and all objects need to be
moved to the other room. What is more, the term Gripper task is generally
used only in this restricted sense. For this reason, it makes more sense for
our formal definition of the domain to mirror these implicit constraints and
not exploit the full potential of the PDDL specification of the domain.

So how do we identify an appropriate set of tasks? For the benchmarks
of IPC1 and IPC2, we rely on two sources. The first of these is the set of
benchmark tasks that were used during the competitions. In many cases,
as in the Gripper example above, these already give some very strong in-
dications of intent. The second source is provided by the informal domain
descriptions made available by the competition organizers [7, 88]. For exam-
ple, the requirement that the roadmap graph of Mystery tasks is planar is
taken from McDermott’s description and has been verified for the available
Mystery benchmark tasks. For IPC3, the random task generators that were
used by the competition organizers for generating the benchmark suite have
been the major guiding criterion for our definitions. Finally, for IPC4, a very
thorough article on the competition domains is available [64].

4.2 The Benchmark Suite

Altogether, the benchmark suite comprises 20 domains, some of which
(Miconic-10, Pipesworld, Promela) are further divided into subdomains
(like Miconic-10-SimpleADL, Pipesworld-NoTankage or Promela-

Philosophers). We will formally introduce each of these domains as we
discuss it, rather than providing all the definitions in one place. However, in
order to get an impression of the scope of the benchmarks and to motivate
the structure of our investigation, we now provide short, informal definitions
of all the domains.

4.2.1 IPC1 Domains

The following descriptions are cited from an article by the competition or-
ganizer, Drew McDermott [88]. The only exception is the description of the
Mystery domain, which is taken from the IPC1 website.

Assembly: The goal is to assemble a complex object made of sub-
assemblies. There are four actions: (1) commit resource assembly, (2)
release resource assembly, (3) assemble part assembly, and (4) remove
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part assembly. The sequence of steps must obey a given partial or-
der. In addition, through poor engineering design, many subassem-
blies must be installed temporarily in one assembly, then removed
and given a permanent home in another.

Grid: There is a square grid of locations. A robot can move one grid
square at a time horizontally and vertically. If a square is locked, the
robot can move to it only by unlocking it, which requires having a
key of the same shape as the lock. The keys must be fetched and can
themselves be in locked locations. Only one object can be carried at
a time. The goal is to get objects from various locations to various
new locations.

Gripper: Here, a robot must move a set of balls from one room to
another, being able to grip two balls at a time, one in each gripper.
There are three actions: (1) move, (2) pick, and (3) drop.

Logistics: There are several cities, each containing several locations,
some of which are airports. There are also trucks, which can drive
within a single city, and airplanes, which can fly between airports.
The goal is to get some packages from various locations to various
new locations.

Movie: In this domain, the goal is always the same (to have lots of
snacks to watch a movie). There are seven actions, including rewind-
movie and get-chips, but the number of constants increases with the
problem number.

Mystery: There is a planar graph of nodes. At each node are ve-
hicles, cargo items, and some amount of fuel. Objects can be loaded
onto vehicles (up to their capacity), and the vehicles can move be-
tween nodes; but a vehicle can leave a node only if there is a nonzero
amount of fuel there, and the amount decreases by one unit. The
goal is to get cargo items from various nodes to various new nodes.

MysteryPrime: This is the Mystery domain with one extra ac-
tion, the ability to squirt a unit of fuel from any node to any other
node, provided the originating node has at least two units.

4.2.2 IPC2 Domains

The domains from the 2nd International Planning Competition can be de-
scribed as follows (these descriptions are original):

Blocksworld: This is the classic AI planning domain where blocks
stacked into towers must be rearranged by a robotic arm which can
pick up the top block of a tower and place it on another tower or on
the table. Table space is not limited.
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FreeCell: A solitaire card game where cards are initially dealt into
unordered piles and must be arranged into sorted piles. There is
limited space available for moving cards, and there are constraints
regarding which cards may be placed on top of which other cards in
a pile. Cards may also be moved to a limited number of free cells, but
these can only hold one card at a time, rather than a pile of cards.

Logistics: This is the same domain as in the 1st International Plan-
ning Competition.

Miconic-10: There is an elevator moving between the floors of a
building. There are passengers waiting at various floors. The goal is
to move each passenger to their destination floor. There are three
variants of this domain, including one where special constraints such
as VIP service restrict elevator movement.

Schedule: A set of physical objects must be processed by various
machines to change their physical properties, such as colour, shape
and surface condition. The available equipment consists of a polisher,
a roller, a lathe, a grinder, a punch, a drill press, a spray painter and
an immersion painter.

4.2.3 IPC3 Domains

These descriptions (except for the FreeCell domain) are cited from an
article by the competition organizers, Derek Long and Maria Fox [83]:

Depots: This domain combines the transportation style problem of
Logistics with the well-known Blocks domain.

Driverlog: This problem involves transportation, but with the
twist that vehicles must be supplied with a driver before they can
move.

FreeCell: This is the same domain as in the 2nd International
Planning Competition.

Rovers: This domains was motivated by the 2003 Mars Exploration
Rover (MER) missions and the planned 2009 Mars Science Labora-
tory (MSL) mission. The objective is to use a collection of mobile
rovers to traverse between waypoints on the planet, carrying out a
variety of data-collection missions and transmitting data back to a
lander. The problem includes constraints on the visibility of the lan-
der from various locations and on the ability of individual rovers to
traverse between particular pairs of waypoints.
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Satellite: This domain was inspired by the problem of schedul-
ing satellite observations. The problems involve satellites collecting
and storing data using different instruments to observe a selection of
targets.

Zenotravel: Another transportation problem, inspired by a domain
used in testing the ZENO planner developed by Penberthy and Weld,
in which people must embark onto planes, fly between locations and
then debark, with planes consuming fuel at different rates according
to speed of travel.

4.2.4 IPC4 Domains

These descriptions (except for the Satellite domain) are again cited from
an article by the competition organizers, Jörg Hoffmann and Stefan Edelkamp
[63]:

Airport: In the Airport domain, the planner has to control the
ground traffic on an airport. The task is to find a plan that solves
a specific traffic situation, specifying inbound and outbound planes
along with their current and goal positions on the airport. The planes
must not endanger each other, i. e., they must not both occupy the
same airport “segment” (a smallest road unit), and if plane x drives
behind plane y then between x and y there must be a safety distance
(depending on the size of y).

Pipesworld: The Pipesworld domain is a PDDL adaptation of an
application domain dealing with complex problems that arise when
transporting oil derivative products through a pipeline system. [. . . ]
The pipelines must be filled with liquid at all times [. . . ].

Promela: Promela is the input language of the model checker SPIN,
used for specifying communication protocols. Communication proto-
cols are distributed software systems, and many implementation bugs
can arise, like deadlocks, failed assertions, and global invariance vi-
olations. The model checking problem is to find those errors by re-
turning a counter-example, or to verify correctness by a complete
exploration of the underlying state space. [. . . ]
For IPC-4, two relatively simple communication protocols were se-
lected as benchmarks – toy problem from the Model Checking area.
One is the well-known Dining Philosophers protocol, the other is a
larger protocol called Optical Telegraph.

PSR: PSR is short for Power Supply Restoration. The domain is a
PDDL adaptation of an application domain investigated by Sylvie
Thiébaux and other researchers, which deals with reconfiguring a
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faulty power distribution system to resupply customers affected by
the faults.

Satellite: This is the same domain as in the 3rd International Plan-
ning Competition.

4.3 Domains and Domain Families

Despite their informality, the preceding descriptions should have made two
things very clear:

– On the one hand, the benchmark domains are very diverse in nature, in-
cluding application problems from vastly different application areas.

– On the other hand, there is one reoccurring theme for many of the bench-
mark domains, namely transportation planning.

At least nine of the planning benchmarks (Grid, Gripper, Logistics,
Mystery, MysteryPrime, Miconic-10, Depots, Driverlog, Zeno-

travel) have vehicles (or robots, in the case of Grid and Gripper) trans-
porting objects or people as a central theme. Two of the remaining domains,
namely Rovers and Airport, include route planning as a central compo-
nent, although there is no transportation as such. Some of these domains are
very closely related to each other – this is evident for domains like Mystery

and MysteryPrime, but on closer inspection, we find similar likenesses be-
tween, for example, Logistics and one of the Miconic-10 variants.

For this reason, it is appropriate to consider the broader picture of trans-
portation planning instead of focusing on the individual domains in isolation.
Therefore, in the next chapter we investigate a family of related transporta-
tion planning domains, which includes several IPC domains but also some
natural generalizations and specializations.

In addition to transportation problems, we also consider a related family
of pure route planning domains, which can be interpreted as “degenerate”
transportation planning problems, where initial and target locations of ob-
jects are so close to each other that we can focus on visiting the initial loca-
tions exclusively. While pure route planning problems are uncommon in the
planning benchmark suite, they allow for some elegant reductions and show
connections to related optimization problems from other areas of Computer
Science such as the Travelling Salesperson Problem.

After a thorough discussion of transportation and route planning, we
will return to the competition benchmark suite in Chapters 6 and 7, where
the former discusses those benchmarks related to transportation or route
planning, and the latter discusses the remaining ones.
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Having established transportation planning and route planning as common
concepts in the IPC benchmark suite, we now take an in-depth look at the
complexity of solving such planning problems.

In the following Section 5.1, we introduce the general Transport and
Route domains. In Section 5.2, we present some first upper bounds and gen-
eral reductions. Section 5.3 discusses the plan existence problem and shows
restricted fuel to be a major source of hardness for transportation and route
planning. Section 5.4 shows that optimal planning or polynomial-time ap-
proximation schemes are beyond reach even for quite restricted domain vari-
ants. On the positive side, we see in Section 5.5 that constant-factor approx-
imations are feasible in many cases. However, in many others they are not,
which is shown in Section 5.6. Finally, Section 5.7 summarizes the findings
of this chapter, and Section 5.8 puts them into a wider context.

5.1 Transport and Route

The planning domains that we subsumed under transportation have a num-
ber of commonalities. In particular, these are what we consider the defining
properties of a prototypical transportation benchmark (terminology borrowed
from Long and Fox [82]):

– There is a set of locations (grid squares, rooms, airports, . . . ), which are
connected by roads (adjacent grid squares, doors, airways, . . . ), forming a
roadmap graph.

– There is a set of mobiles (robots, trucks, elevators, . . . ), which traverse the
roadmap.

– There is a set of portables (keys, balls, passengers, . . . ), which can either
be at a location or carried by a mobile.

– These classes of entities are disjoint, and there are no other entities.
– The goal is to move (a subset of) the portables to their respective final
destinations.

Most domains which we consider transportation domains satisfy all these
properties. In particular, this is the case for Grid, Gripper, Logistics,
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Miconic-10, Mystery, MysteryPrime, and Zenotravel. The Driver-

log domain does not quite satisfy the last two properties, because goals can
also be associated with mobiles, not just with portables, and there are drivers
which combine some of the properties of portables and mobiles. The Depots

domain does not quite satisfy the fourth property, because this domain also
features hoists for stacking and unstacking portables, which are neither mo-
biles nor locations or portables. Despite such variations, these five properties
describe the core of a transportation domain fairly accurately.

The Airport and Rovers domains also feature mobiles traversing a
roadmap of locations as a central concept. However, in these domains, there
is no transportation of portables, and the Airport domain in particular
is very different in structure from the transportation domains due to the
fact that vehicles can block each other’s way. However, apart from the fact
that there is no explicit transportation, Rovers is quite similar to a typical
transportation domain, and will be subsumed under the heading of route
planning domains in our analysis.

A common analysis of transportation domains must also consider their
differences. In particular, the various transportation and route planning do-
mains from the IPC benchmark suite differ in the following ways:

– Capacity constraints : In Grid, mobiles can only carry one portable at
a time, in Gripper two portables. In Mystery and MysteryPrime,
mobiles have varying capacities. In Depots, Driverlog, Logistics,
Miconic-10 and Zenotravel, capacity is unbounded.

– Fuel constraints : In Mystery, MysteryPrime and Zenotravel, fuel is
consumed by and required for movement, unlike the other domains.

– Number of mobiles : In Gripper, Grid and Miconic-10, there is only a
single mobile. In the other domains, there can be several.

– Mobile types : In Logistics, a distinction is made between trucks, which
traverse roads within one city, and airplanes, which move between airports
in different cities. In Driverlog, trucks and drivers (which have some, but
not all, properties of mobiles) use different roadmaps. In Rovers, every
rover has a different roadmap.

– Roadmap graph types : In the Depots, Gripper, Logistics, Miconic-10

and Zenotravel domains, the roadmap is a complete graph. In Grid,
it must be a grid, in Mystery and MysteryPrime a planar graph. In
the Rovers domain, the roadmap of each rover must be a tree, and the
roadmaps of drivers and trucks in Driverlog are arbitrary connected
graphs.

– Special features : Some of the competition domains include aspects which
go beyond the common transportation theme. In Depots, portables can
be stacked into towers like in the Blocksworld domain in addition to
be being transported. In Driverlog, trucks can only move when boarded
by drivers. In Grid, new connections between locations can be made by
unlocking doors. In one of the Miconic-10 variants, the passengers in-
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side the elevator impose different constraints on the elevator movement.
In MysteryPrime, fuel can be moved between locations, and in Zeno-

travel, vehicles can refuel. Finally, the Rovers domain has a host of
special features not described here.

We remarked previously that we adopt a unit action cost model for most
planning domains. The domains considered in this chapter are the only major
exceptions to this rule, for three reasons:

– First, weighted variants of transportation or route planning domains are
very natural, arguably more natural than weighted versions of most other
planning domains, because action costs often have precise analogues in
their application domains. For example, road distance, travel time or travel
cost between two locations are natural measures for the cost of movement
actions.

– Second, allowing for action weights gives us greater flexibility in specifying
reductions between planning problems, which is very useful for some of
the competition benchmarks. For example, the Miconic-10-SimpleADL

domain can be naturally linked to a variant of Transport where pickup
and drop operators are free of cost.

– Third, we will be able to prove a very nice – and perhaps somewhat sur-
prising – compilation result which allows us to reduce general action costs
to unit action costs in an approximation-preserving way. With this result,
we can cover the case of general actions with little additional effort.

5.1.1 The Transport Domain

We will now define a transportation domain which subsumes and generalizes
most of these variations apart from the special features, which are too hetero-
geneous too be usefully integrated within a single domain. (We will see in the
following chapter that for many of the domains exhibiting special features,
these do not actually amount to a difference in complexity, so complexity
results obtained in their absence are applicable as well.)

Definition 5.1.1. Transport task
A Transport task is defined by a 9-tuple 〈G,M,P, cap, wm, wp, l0, fuel0, l⋆〉
with the following components:

– G = 〈V,E〉 is the roadmap graph or roadmap. Its vertices V are called
locations, its edges roads.

– M is a finite set of mobiles.
– P is a finite set of portables.
– cap : M → {1, . . . , |P |} is the capacity function. We say that mobile m
has unbounded capacity iff cap(m) = |P |.

– wm :M ×E → N1 ∪ {∞} is the movement cost function. If wm(m, e) 6=
∞, we say that mobile m may access road e. The roadmap graph or
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roadmap Gm of m is the weighted graph obtained by restricting G to those
roads which m may access, weighted by the corresponding movement cost.
We require that each road may be accessed by some mobile.

– wp :M × P → N0 is the pickup cost function.
– l0 : (M ∪ P ) → V is the initial location function.
– fuel0 : V → N0 ∪ {∞} is the initial fuel function.
– l⋆ is a partial function from portables to locations called the goal loca-
tion function. The set of portables on which it is defined are called goal
portables.

The sets V , M and P must be disjoint.

The concepts of locations, roads, mobiles and portables should be clear
from the preceding discussion. The capacity function bounds the number of
portables a given mobile can carry at the same time. The movement and
pickup cost functions can be used to define a variety of action cost models
for transportation tasks.

Our definition allows movement cost functions which vary with the mobile
and road, but not, for example, with the direction in which the road is tra-
versed, or with the number of portables carried by a mobile. Movement costs
must be strictly positive, while picking up and dropping portables, which both
incur costs defined by the pickup cost function, may be free. Pickup cost may
depend on the mobile and portable (although we will rarely need this level
of generality), but not, for example, on the location where the pickup takes
place.

All mobiles and portables have a specified initial location. We require
mobiles to be initially empty, so we do not need a way of specifying the
“initial contents” of a mobile. The fuel function bounds the number of times
that a given location can be left by a mobile. Fuel is associated with locations
rather than mobiles because this is the way it is handled in Mystery and
MysteryPrime. (Zenotravel associates fuel with mobiles, not locations,
but in this domain fuel constraints are less important because mobiles may be
refuelled.) Some portables, namely the set of goal portables, have a specified
final location, given by the goal location function. The location of mobiles or
non-goal portables at the end of plan execution does not matter.

We can now define the Transport planning domain.

Definition 5.1.2. Transport domain
The Transport domain maps Transport tasks with locations V , mobiles
M and portables P to state spaces as follows:

States: Pairs 〈l, fuel〉, where l : M ∪ P → V ∪M is the location
function and fuel : V → N0 ∪ {∞} is the fuel reserve
function. Only portables may have mobiles as their location.

Initial state: 〈l0, fuel0〉, where l0 is the initial location function and fuel0
is the initial fuel function of the task.
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Goal states: Any state 〈l, fuel〉 with l(p) = l⋆(p) for all goal portables p,
where l⋆ is the goal location function of the task.

Operators: A mobile m can move from location v to location v′ in state
〈l, fuel〉 iff {v, v′} is a road which m may access and fuel(v) 6=
0. This action changes l(m) to v′ and reduces fuel(v) by 1
(with ∞ − 1 := ∞). The cost of this action is given by the
movement cost function applied to mobile m and edge {v, v′}.
A mobile m can pick up a portable p in state 〈l, fuel〉 iff
l(p) = l(m) and l(p′) = m for strictly less than cap(m) many
portables p′. This action changes l(p) to m. Its cost is given
by the pickup cost function applied to m and p.
A mobile m can drop a portable p in state 〈l, fuel〉 iff l(p) =
m. This action changes l(p) to l(m). Its cost is given by the
pickup cost function applied to m and p.

Strictly speaking, this definition would imply an infinite number of states
due to the infinite range of the fuel function. However, the number of relevant
(reachable) states is finite in practice because the fuel reserve is bounded by
initial fuel and locations with infinite fuel never change their fuel reserve.

5.1.2 The Route Domain

Route planning domains are similar to, but simpler than transportation do-
mains. They do not feature portables and thus there are no pick-up or drop
actions. Instead, some locations are considered target locations and must be
visited by some mobile during plan execution. It does not matter which mo-
bile visits a given target location, or in which order they are visited. General
Route tasks are defined as follows.

Definition 5.1.3. Route task
A Route task is defined by a 6-tuple 〈G,M,wm, l0, fuel0, V⋆〉 with the fol-
lowing components:

– G = 〈V,E〉 is the roadmap graph or roadmap. Its vertices V are called
locations, its edges roads.

– M is a finite set of mobiles.
– wm :M ×E → N1 ∪ {∞} is the movement cost function. If wm(m, e) 6=
∞, we say that mobile m may access road e. The roadmap graph or
roadmap Gm of m is the weighted graph obtained by restricting G to those
roads which m may access, weighted by the corresponding movement cost.
We require that each road may be accessed by some mobile.

– l0 : M → V is the initial location function. Mobiles must be mapped to
locations which are part of their respective roadmap graph.

– fuel0 : V → N0 ∪ {∞} is the initial fuel function.
– V⋆ ⊆ V is the set of target locations.
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The intuition forRoute tasks is similar to that of Transport tasks. The
only difference is that all components pertaining to portables are removed and
replaced with the set of target locations, which represent locations that must
be visited. The definition of the Route planning domain should contain no
surprises.

Definition 5.1.4. Route domain
The Route domain maps Route tasks with locations V and mobiles M to
state spaces as follows.

States: Pairs 〈l, fuel, V t〉, where l :M → V is the location function,
fuel : V → N0 ∪ {∞} is the fuel reserve function, and
V t ⊆ V⋆ is the set of remaining targets.

Initial state: 〈l0, fuel0, V
t
0 〉, where l0 is the initial location function and

fuel0 is the initial fuel function of the task, and V t
0 contains

exactly those target locations which are not initial locations
of any mobile.

Goal states: Any state 〈l, fuel, V t〉 where V t = ∅.
Operators: A mobile m can move from location v to location v′ in state

〈l, fuel〉 iff {v, v′} is a road which m may access and fuel(v) 6=
0. This action changes l(m) to v′ and reduces fuel(v) by 1
and removes v′ from V t if present. The cost of this action
is given by the movement cost function applied to mobile m
and edge {v, v′}.

5.1.3 Special Cases and Hierarchy

As we saw in the description of the various planning competition domains, we
usually do not need all features of Transport and Route. Some benchmark
domains only feature a single agent (mobile). In others, there are no fuel or
capacity restrictions. All benchmark domains have strict restrictions on the
movement and pickup cost functions. For this reason, we define some special
cases which capture the most frequently occurring restrictions of Transport

and Route.

Definition 5.1.5. Special cases of Transport and Route

Let i ∈ {1,∞, ∗}, j ∈ {1,+, ∗}, k ∈ {1,∞, ∗}, l ∈ {1, ∗} and m ∈ {0, 1, ∗},
and let D be the Transport or Route domain.

The Plan-Transportk
ij-[l,m] and Plan-Routekj -[l] problems are the

restrictions of Plan-Transport and Plan-Route to planning tasks T
with the following properties:

– If i = 1, the capacity of all mobiles must equal 1.
– If i = ∞, the capacity of all mobiles must be unbounded.
– If j = 1, there must be exactly one mobile in T .
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– If j = +, the cost and pickup functions must be defined identically for all
mobiles. (In particular, this implies that all mobiles may access the same
roads.)

– If k = 1, the initial fuel of all locations must equal 1.
– If k = ∞, the initial fuel of all locations must be unbounded.
– If l = 1, the movement cost function may only map to 1 or ∞. We say
that T has unit movement cost.

– If m = 0, the pickup cost function may only map to 0. We say that T has
free pickup.

– If m = 1, the pickup cost function may only map to 1. We say that T has
unit pickup cost.

Parameters i and m only apply to Transport and are omitted for
Route tasks. Parameter k may be omitted, in which case unbounded fuel is
assumed. Moreover, parameters l and m may be omitted, along with the sur-
rounding parentheses, if movement costs (and, for Transport tasks, pickup
costs) are uniform.

When defining restricted Transport or Route tasks, we usually omit
components of the task description which are implied by the restriction. For
example, we may omit the definition of the capacity function for i = 1 or
i = ∞ and the definition of the movement cost function for j 6= ∗ and l = 1.

Considering all possible combinations, this definition defines 162 variants
of Transport and 18 variants of Route. Fortunately, these variants are
related by a generalization/specialization ordering which can be exploited
for complexity classifications. In particular, for all parameters, the option ∗
is more general than the others, so that there are only two maximally gen-
eral variants, Transport∗

∗∗-[∗, ∗] and Route∗∗-[∗]. The number of maximally
specific variants is somewhat larger, but still limited: for i and k, neither 1
nor ∞ is more specific than the other, for j and l, option 1 is most specific,
and for m, neither 0 nor 1 is more specific than the other. This amounts to
eight maximally specific variants for Transport and two for Route. The
specificity ordering is illustrated in Fig. 5.2.

i: capacity 1: one portable ∞: unbounded ∗: varies
j: mobiles 1: one mobile +: one type ∗: many types
k: fuel units 1: one per location ∞: unbounded ∗: varies
l: move cost 1: unit cost ∗: varies
m: pickup cost 0: free 1: unit cost ∗: varies

Fig. 5.1. Summary of restrictions in Transportk
ij-[l, m] and Routek

j -[l]
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i = ∗

i = 1 i = ∞

j = ∗

j = +

j = 1

k = ∗

k = 1 k = ∞

l = ∗

l = 1

m = ∗

m = 0 m = 1

Fig. 5.2. Generalization relationships for the Transport and Route domains.

5.2 General Results

We begin our investigation of Transport and Route by proving some
general results. Along the way, we introduce some additional concepts which
are important to our reductions. Our first observation is that we can limit
our attention to a certain class of plans.

Definition 5.2.1. reasonable plans
A plan for a Transport task is called reasonable if it has the following
properties:

– No portable is dropped at the same location twice.
– All mobiles are empty at the end of plan execution.
– The plan does not end with a movement action, and for every movement
action in the plan, the next non-movement action affects the same mobile.

We first show that we only need to consider planning algorithms which
generate reasonable plans: Any plan can be transformed into a reasonable one
in polynomial time without increasing its measure. In particular, this implies
that a task is solvable if and only if it is solvable by a reasonable plan.

Theorem 5.2.1. reasonable plans are sufficient
Given a plan π for a Transport task, a reasonable plan π′ for the same
Transport task with m(π′) ≤ m(π) can be computed in time polynomial in
|π|.

Proof. We need to change the plan π = π1 . . . πn so that it satisfies the
conditions for reasonable plans. This is quite easy to achieve.

For any two plan steps πi and πj (i < j) where the same portable is
dropped at the same location, all pick-up and drop actions for that portable
in the sequence πi+1 . . . πj can be omitted. By applying this transformation
repeatedly, we satisfy the first condition.
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If a portable is picked up but not dropped at a later step of the plan, the
pick-up step can be removed. Doing this satisfies the second condition.

Finally, if a mobile is moved which is not the next mobile to pick up or drop
a portable, then all its movement operators can be shifted to a later position
in the plan, right before the next step where it picks up or drops a portable.
If the mobile never picks up or drops a portable in the remaining plan, the
movements can be removed altogether. This satisfies the third condition.

Clearly, these transformations can be performed in polynomial time. Be-
cause all transformations only remove or reorder operators, the resulting plan
cannot have a higher cost than the original one. ⊓⊔

The main reason why reasonable plans are important is that they cannot
be overly long.

Theorem 5.2.2. reasonable plans are short
There exists a polynomial p such that |π| ≤ p(|T |) for all T ∈ Transport

and all reasonable plans π for T .

Proof. Because of the first restriction for reasonable plans, such a plan π
cannot contain more than |V |·|P | drop actions, where V is the set of locations
and P is the set of portables of the task. Because of the second restriction, it
then cannot contain more than |V | · |P | pickup actions either. Because of the
third restriction, there are at most |V |−1 movements in between any two non-
movements, or before the first non-movement, and no movement after the last
non-movement. This bounds the number of movements by (|V |−1)·2·|V |·|P |.
The sum of these three terms is 2|V |2|P |, which is clearly polynomial in |T |.

⊓⊔

Combining the previous two properties, we obtain an upper bound for the
complexity of Transport planning.

Theorem 5.2.3. Plan-Transport ∈ NPO

Plan-Transport∗
∗∗-[∗, ∗] ∈ NPO.

Proof. The two previous theorems imply that Transport admits short op-
timal plans. Membership in NPO follows from Theorem 3.3.5. ⊓⊔

Due to the reductions presented in Chapter 3, the general result for the
planning problem can be applied to the plan existence and bounded plan
existence problems as well, and of course it also holds for all the special cases
of the Transport domain.

We could prove an equivalent result for the Route domain family by a
similar line of reasoning. However, we can do better. The next result allows
us to embed the Route domain family in the Transport domain family.
One of its implications is that the Route domain also belongs to NPO, but it
has much more far-reaching consequences. In particular, it allows us to prove
hardness results for Transport by proving hardness results for Route.
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u1 u2 u3

v⋆

u1 u2 u3

v⋆ v⋆

vp⋆

Fig. 5.3. Introducing clones and portable locations. The gray nodes indicate neigh-
bours of target location v⋆; the dotted arc indicates a portable to deliver.

Theorem 5.2.4. Plan-Routekj -[l] ≤OP Plan-Transportk
ij-[l,m]

For all i, k ∈ {1,∞, ∗}, j ∈ {1,+, ∗}, l ∈ {1, ∗} and m ∈ {0, 1, ∗}, we have:
Plan-Routekj -[l] ≤OP Plan-Transportk

ij-[l,m].

Proof. Let T be the given Routekj -[l] task with roadmap graph 〈V,E〉 and
target locations V⋆ ⊆ V . Without loss of generality, assume that no location
in V⋆ is the initial location of a mobile. (Target locations which are also initial
locations define goals which are already satisfied in the initial state and can
thus be ignored.) The reduction is independent of the performance ratio r > 1
and maps to a Transportk

ij -[l,m] task T ′ with the following components:

– The roadmap graph is 〈V ∪ V ′, E ∪ E′〉, i. e., the original roadmap graph
is extended with some new locations and roads. The movement costs and
fuel levels for the original locations and roads are left unchanged.
The new location set V ′ consists of two new locations for each target loca-
tion v⋆ ∈ V⋆. The first, denoted by v⋆ is called the clone of v⋆; the second,
denoted by vp⋆ is called its portable location. The fuel level for these
locations is 1 in the restricted fuel cases (k = 1 or k = ∗) and unbounded
otherwise.
The new road set E′ contains one road between the clone of each target
location v⋆ and each neighbour u of v⋆, with the same movement costs as
the road between u and v⋆. Moreover, it contains roads {vp⋆ , v⋆} and {vp⋆ , v⋆}
connecting each portable location to the corresponding target location and
its clone. The movement cost for these roads is 1 for all mobiles.

– The set of mobiles and their initial locations are the same as in T . The
mobile capacities are all equal to 1 in the bounded capacity cases (i = 1 or
i = ∗) and unbounded otherwise.

– For each target location v⋆ ∈ V⋆, there is a portable initially located at the
corresponding portable location vp⋆ with goal location v⋆.

– All pickup and drop costs are 0 if m = 0 or m = ∗, and 1 otherwise.
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The most important part of the reduction, the mapping of a target loca-
tion of the original task to a set of three locations in the generated task, is
illustrated in Fig. 5.3.

Clearly, the reduction can be performed in polynomial time. We first
show that it maps solvable tasks to solvable tasks. Any plan π for T can be
transformed into a plan π′ for T ′ as follows. For each target location v⋆ ∈ V⋆,
identify a step in the plan where some mobile m is moved from some location
u ∈ V to v⋆. There must be such an action because each target location
must be reached by some mobile to satisfy the original goal, and this can
only be done by entering the locations because no target locations are initial
locations. Replace this movement action by the following sequence of actions:
move m from u to the clone of v⋆, then on to vp⋆ , pick up the portable there,
move to v⋆, drop the portable.

It is easy to verify that this transformation generates a valid plan: All goals
are satisfied, capacity constraints are met because no mobile ever carries more
than one portable, access restrictions are met because all movements either
mirror legal movements in the initial task or move to or from the portable
locations, and fuel constraints are met because this is true for the original
solution, the modifications do not increase the number of times a location
v ∈ V is left, and each clone or portable location is left only once in π′.

Considering the costs of the modified plan, we see that m(π′) = m(π) +
c|V⋆|, where c = 2 if pickup is free (the m = 0 or m = ∗ cases) and c = 4
otherwise: For each target location, the modifications introduce an additional
cost of 2 for moving to each portable location and back and an additional cost
of 2 for picking up and dropping portables unless pickup is free. In particular,
this implies the relationship m∗(T ′) ≤ m∗(T )+ c|V⋆| for the optimal solution
lengths.

To map back a plan π′ for T ′ into a plan π for T , remove all pickup
and drop actions and all movements to and from portable locations, and
replace all movements to and from clones by movements to and from their
corresponding target location.

This clearly results in a plan which only moves along the roads of the
original roadmap and satisfies the access restrictions. Moreover, it visits all
target locations, because for each target location, some vehicle must move
through v⋆ or its clone to the corresponding portable location in π′ to sat-
isfy the goals of the Transport task. To see that π also satisfies the fuel
constraints, we only need to consider target locations with restricted fuel;
unrestricted fuel locations and non-target locations are not critical. So let
v⋆ be a target location with initial fuel level f in the original task T . The
combined initial fuel levels of v⋆ and its clone in T ′ is then f +1, so these two
locations are left at most f + 1 times in π′. One of these movements must
be towards the portable location vp⋆ and is thus no longer represented in π,
so that π indeed contains at most f movement actions leaving v⋆, satisfying
the fuel constraints.
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The mapping from π′ to π does not introduce new actions, it only modifies
actions by replacing clones with their corresponding target locations and
removes some actions. In particular, π′ must contain at least four actions
for each target location which are removed by the mapping: a movement
from the target location or its clone to the corresponding portable location,
a movement in the opposite direction, a pickup action, and a drop action.
We thus have m(π) ≤ m(π′) − c|V⋆|. In particular, this implies m∗(T ) ≤
m∗(T ′)− c|V⋆| and hence, together with the earlier upper bound on m∗(T ′),
m∗(T ) = m∗(T ′)− c|V⋆|.

We can now see that the reduction is approximation-preserving. Given a
plan π′ for T ′ with performance ratio at most r > 1 (thus m(π′) ≤ rm∗(T ′)),
the mapped-back solution π to T has the performance ratio

m(π)

m∗(T )
≤
m(π′)− c|V⋆|

m∗(T )
≤
rm∗(T ′)− c|V⋆|

m∗(T ′)− c|V⋆|
= 1+ (r − 1)

m∗(T ′)

m∗(T ′)− c|V⋆|

≤ 1 + (r − 1)
m∗(T ) + c|V⋆|

m∗(T )

(∗)
≤ 1 + (r − 1)

m∗(T ) + cm∗(T )

m∗(T )

= 1 + (r − 1)(1 + c),

where inequality (∗) holds because |V⋆| ≤ m∗(T ): Any solution to the Route

task must contain at least one movement to each target location, and each
movement has a cost of at least 1. Setting α = 1+c, we see that the reduction
is approximation-preserving. Moreover, because we can determine the opti-
mal plan length for T ′ to be exactly m∗(T ) + c|V⋆|, it is also optimization-
preserving. This concludes the proof. ⊓⊔

The transformation could be simplified significantly for many of the
Route variants. In particular, the introduction of clones is only necessary
for the unit fuel case. In the unbounded fuel case, clones could be omitted
without further adjustments, while in the variable fuel case, they could be
omitted if the fuel level of each target location is increased by one.

One disadvantage of the reduction is that it affects the shape of the
roadmap graphs. For example, if we could prove that some variant of Route

planning were hard for planar graphs, we could not obtain hardness for pla-
nar graphs for the corresponding Transport variants, because the reduction
does not preserve planarity. For this reason, we provide another – much sim-
pler – reduction which does preserve graph structures. Before we do this, we
introduce some relevant classes of graphs and formalize different notions of
“preserving graph structure”. (For now, we only need the simplest kind of
preservation, but it is useful to introduce these concepts together.)

Definition 5.2.2. stretchable, weightable and reducible graphs
Let G be a class of (undirected, unweighted) graphs. For unweighted graphs G
and edge weight functions w, let distG denote the graph-theoretical distance
function in G and let distwG denote the graph-theoretical distance function in
the graph obtained from G by weighting the edges of G according to w.
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The class G is called stretchable if for all graphs G = (V,E) ∈ G and all
numbers K ∈ N1, there exists a graph GK = (VK , EK) ∈ G such that V ⊆ VK
and for all v, v′ ∈ V , distGK

(v, v′) = K · distG(v, v′).
The class G is called weight-expandable if for all graphs G = 〈V,E〉 ∈ G

and all weight functions w : E → N1, there exists a graph Gw = 〈Vw, Ew〉 ∈ G
such that V ⊆ Vw and for all v, v′ ∈ V , distGw

(v, v′) = distwG(v, v
′).

The class G is called reducible if for all graphs G = 〈V,E〉 ∈ G and all
subsets E′ ⊆ E, the graph G′ = 〈V,E′〉 is also contained in G.

Both for stretchability and weight-expandability, we require the mapping
from G and K (or w) to GK (or Gw) to be computable in time polynomial
in the size of G and the magnitude of K (or the maximal edge weight w(e)).

Weight-expandability is a generalization of stretchability, because expand-
ing a graph with a constant weight function has the same effect as stretching
it. It is useful to introduce both concepts separately because we will require
stretchability more often than general weightability.

Examples of weight-expandable graph classes include the class of all
graphs, the class of planar graphs, and the class of trees. Grid graphs are
stretchable, but not weightable, and complete graphs are neither.

Definition 5.2.3. preserving graph classes
Let R be a reduction between two decision or optimization problems defined
(partially or completely) in terms of graphs, and let G be a class of graphs.

We say that R preserves G if graphs from G are always mapped to graphs
from G by R.

When using this definition, we will normally state that a certain reduction
preserves a family of graph classes, rather than a single graph class. For
example, instead of stating that a reduction preserves planarity, we will state
that it preserves all stretchable graph classes, which implies that it preserves
not just planarity, but also grid or tree shape.

In the following proof, we use this definition in its most general form by
stating that the reduction preserves all graph classes (which is only true of
reductions mapping each graph to itself).

Theorem 5.2.5. Plan-Routek1-[l] ≤OP Plan-Transportk
∞1-[l, 0]

For all k ∈ {1,∞, ∗} and l ∈ {1, ∗}, we have:
Plan-Routekj -[l] ≤OP Plan-Transportk

∞j-[l, 0].
The reduction preserves all graph classes.

Proof. Under the given restrictions (a single mobile, unbounded capacity,
free pickup), a much simpler reduction than in the previous theorem maps
Route tasks to Transport tasks as follows:

– Roadmap, movement costs and initial mobile location are not changed by
the mapping.
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– For each target location, there is a portable which must be moved to that
location and is initially located at the initial mobile location.

– The mobile capacity is unbounded, and pickup is free.

Any plan for the Route task can be transformed into a plan for the Trans-

port task which has the same cost: At the start of the plan, pick up all
the portables, and whenever a target location is first visited, drop the corre-
sponding portable. Because pickup is free, this plan has the same cost as the
original plan. On the other hand, any plan for the Transport task can be
transformed into a plan for the Route task with the same cost by omitting
all pickup and drop actions.

It is obvious that these mappings define an optimization-preserving re-
duction. ⊓⊔

This concludes our discussion of general complexity results for Trans-

port and Route, and we will now start examining more restricted cases.

5.3 Plan Existence

In our first foray into the complexity of the Transport and Route do-
mains, we disregard optimization altogether, asking how difficult it is to find
arbitrary solutions. The following two theorems provide a very clear answer
to this question. We start with the positive result, which shows that in the
absence of fuel constraints, transportation tasks are polynomially solvable.
(Recall that if we leave out the fuel parameter from our notation, this denotes
the unbounded fuel case.)

Theorem 5.3.1. Plan-Transport∗∗-[∗, ∗] ∈ poly-APX

The planning problem for Transport∗∗-[∗, ∗] is poly-approximable.

Proof. We are given a Transport∗∗-[∗, ∗] task T with goal portable set P ,
mobiles M and locations V . For all goal portables p ∈ P , mobiles m ∈
M and locations u, v ∈ V connected by a road, we define the minimal
transportation cost cmp (u, v) for transporting p from u to v with m as the
sum of the following operator costs:

– The minimal cost of moving m from its initial location to u, determined
by computing a shortest path in the roadmap of m.

– The cost of picking up p with mobile m.
– The cost of moving m from u to v.
– The cost of dropping p with mobile m.

The minimal transportation cost can be infinite if m cannot reach u from
its initial location, or if it may not access the road {u, v}.

The minimal transportation cost for transporting a given portable from
u to v is defined as cp(u, v) = minm∈M cmp (u, v). The delivery threshold
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for a portable p ∈ P is defined as the minimum number b(p) for which there
exists a path l1 . . . ln in the roadmap from the initial location of p to the
goal location of p such that cp(li, li+1) ≤ b(p) for all i ∈ {1, . . . , n− 1}. The
global delivery threshold is defined as bg = maxp∈P b(p). It is easy to
see that the cost of any solution to T must be at least bg: If a portable is
moved along a road from u to v by some mobile m in the plan, then the plan
must at least include a pickup and drop action for that portable and mobile
and movements from the initial location of m via u to v. In particular, if the
global delivery threshold is infinite, the task is not solvable.

We now show how to construct a solution for solvable tasks which has a
cost which is at most polynomially higher than the global delivery threshold.

For each portable p ∈ P , perform the following steps:

1. Compute the minimal transportation cost cmp (u, v) for all mobilesm ∈M
and locations u, v ∈ V connected by a road.

2. Construct a labelled, weighted, directed multigraph Gp with vertex set V
and an arc from u to v with label m and weight w iff cmp (u, v) = w <∞.

3. Compute a shortest path in Gp leading from the initial location of p to
its goal location, called the delivery path πp. Fail if no such path exists.

4. Iterating over the arcs that constitute the delivery path, let u be the
source and v be the target location of the current arc, and let m be the
mobile with which it is labelled. Add the following steps to the plan:
– Movements of m from its initial location to u (minimizing cost).
– A pickup action for picking up p with m.
– A movement of m to v.
– A drop action for dropping p with m.
– Movements of m back to its initial location (minimizing cost).

These computations can be performed in polynomial time and produce
a solution for I iff the task is solvable. To bound the performance ratio,
observe that for each arc traversed in an iteration of step 4., the cost of the
actions added to the plan is bounded by twice the global delivery threshold.
Because delivery paths are shortest paths, they do not revisit vertices of the
graphs, and hence they consist of no more than |V | − 1 arcs. Because there
are |P | portables to deliver, we can thus bound the performance ratio of the
algorithm by 2|P |(|V | − 1), which is polynomial in the task size. ⊓⊔

In the presence of fuel constraints, however, planing becomes much more
difficult. Plan existence is already NP-hard for the simplest Route variant
involving fuel constraints, and is thus also hard for all Transport variants
involving fuel constraints due to Theorem 5.2.4.

Theorem 5.3.2. PlanEx-Route11 is NP-hard.
Plan existence in the Route11 domain is NP-hard, even when restricted to
planar roadmaps.
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Proof. We reduce from the NP-complete problem of deciding the existence of
a Hamiltonian path with a fixed start vertex in a planar graph [41, Problem
GT39].

Let I be a Hamiltonian Path instance given by a planar graph 〈V,E〉
and start vertex v0 ∈ V . We map this to a Route11 task T ′ with roadmap
〈V,E〉 and initial mobile location v0 where all locations are target locations.
Clearly, this mapping can be computed in polynomial time.

If π is a Hamiltonian path in 〈V,E〉 starting at v0, then the planning task
can be solved by moving the mobile along the path π. On the other hand, if π
is the trajectory of the mobile in a solution to the planning task, then we can
assume that π never revisits any vertex: If the last visited location is a revisit,
then the last step of the plan can be omitted, and revisits cannot happen in
an earlier stage of the plan because a location cannot be left twice due to
fuel constraints. Because π must visit all target locations (i. e., all locations)
to be a solution and starts in v0, this means that 〈V,E〉 has a Hamiltonian
path starting at v0. ⊓⊔

Together with Theorem 5.2.3 and the reduction from Route to Trans-

port, the previous two results define a sharp boundary: All Transport and
Route variants with potentially bounded fuel belong to NPO \ PS (unless
P = NP), and all variants with unbounded fuel belong to poly-APX. In the
following sections, we will refine the latter classification result.

5.4 Hardness of Optimization

The approximation algorithm presented in Theorem 5.3.1 does not achieve
very good performance ratios. We will later show that this is no surprise, and
that we cannot achieve constant factor approximations in general. However,
there might well be special cases in our domain families which do admit very
good polynomial approximation algorithms, maybe even optimal solutions.
We now show that the latter is not the case.

Theorem 5.4.1. Plan-Route1-[1] /∈ PTAS unless P = NP

If P 6= NP, there exists no polynomial-time approximation scheme for
Route1-[1] planning.

The bounded plan existence problem for Route1-[1] is NP-hard.

Proof. We provide an optimization-preserving reduction from 1-2-TSP, the
variant of Travelling Salesperson Problem where distances between
sites are symmetric and either 1 or 2, to Route1-[1]. Because 1-2-TSP /∈
PTAS if P 6= NP and the corresponding decision problem is NP-hard [6,
problem ND33], this proves the theorem.

Let I be the given 1-2-TSP instance, defining a weighted graph 〈V,E,w〉.
This is mapped to a Route11 task T ′ as follows:
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– Compute the unweighted graph Gw = 〈Vw, Ew〉 obtained by weight-
expanding (V,E) with weight function w. This can be done in polynomial
time because weights are polynomially bounded (indeed, even bounded by
the constant 2).

– Select an arbitrary site v0 ∈ V and set G′
w = 〈Vw ∪ {v′0, v

′′
0 }, Ew ∪

{{v0, v′0}, {v
′
0, v

′′
0}}〉, i. e., introduce a new dead-end path of length 2 acces-

sible only from v0.
– The Route task is defined by roadmap graph G′

w, initial mobile location
v0, and target location set V ∪ {v′′0 }.

This computation can clearly be performed in polynomial time. Any
Travelling Salesperson Problem solution π can be mapped to aRoute

solution π′ with cost m(π′) = m(π) + 2 by performing the movements corre-
sponding to the Travelling Salesperson Problem tour (starting from
and ending at location v0), then moving to v′0, and finally to v′′0 . On the other
hand, any plan π′ for T ′ can be mapped back to aTravelling Salesperson

Problem solution π with m(π) ≤ m(π′)− 2 as follows:

1. Ensure that the last action of the plan visits some target location for the
first time, by omitting unnecessary actions at the end of the plan.

2. Ensure that the mobile ends in location v′′0 . If it ends in location v 6= v′′0 ,
v′′0 must be visited earlier, which requires four actions for moving to v′′0
from v0 and back to v0. Remove these four actions, and add actions to
move from v to v′′0 to the end of the plan. This does not increase plan
length, because the graph distance between any location v ∈ V and v′′0
is at most 4.

3. The last location from V visited by the plan must now be v0. Remove
all actions occurring after the last visit to v. There must be at least two
such actions, namely a movement from v0 to v′0 and a movement from v′0
to v′′0 .

4. Return the travelling salesperson tour in which site v ∈ V is the i-th
site of the tour iff it is the i-th distinct location from V visited by the
modified plan. The cost of that tour is then no larger than the length of
the modified plan.

It is easy to see from these observations that m∗(T ′) = m∗(I)+ 2. If π′ is
the given Route solution with performance ratio at most r > 1 and π is the
derived 1-2-TSP solution, we can bound the performance ratio of the latter
by

m(π)

m∗(I)
≤

m(π′)− 2

m∗(T ′)− 2
≤
rm∗(π′)− 2

m∗(T ′)− 2
= 1 +

(r − 1)m∗(T ′)

m∗(T ′)− 2

= 1 + (r − 1)
m∗(I) + 2

m∗(I)

(∗)
≤ 1 + (r − 1)

m∗(I) +m∗(I)

m∗(I)

= 1 + (r − 1) · 2,
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where inequality (∗) holds because we can assumem∗(I) ≥ 2; trivial instances
not satisfying this property can be identified and special-cased in polynomial
time. Thus the reduction is approximation-preserving, and due to the equality
m∗(T ′) = m∗(I) + 2 also optimization-preserving. ⊓⊔

Together with Theorem 5.2.4, this result provides us with a bound to
approximability for all unrestricted fuel domains in the Transport and
Route family. Therefore, if P 6= NP, none of their planning problems belongs
to PO or PTAS.

One interesting question, also relevant to some of the IPC domains, is
whether this result extends to restricted classes of graphs. Indeed, using
very similar reductions fromTravelling Salesperson Problem, we could
prove NP-completeness of bounded plan existence for Route1-[1] also for
planar roadmaps, and even for grids [55]. However, this would only prove
that these planning problems do not belong to PO; in fact, they do ad-
mit polynomial-time approximation schemes when restricted to such graph
classes, because this is the case for the corresponding Travelling Sales-

person Problem variants [5].
Another graph class relevant to the competition domains are complete

graphs. It is very easy to see that the Route1-[1] problem for complete
graphs can be optimally solved in polynomial time. However, the same is not
true for the corresponding Transport variants with unbounded capacity.

Theorem 5.4.2. Plan-Transport∞1-[1, 0/1] /∈ PTAS

If P 6= NP, there exists no polynomial-time approximation scheme for
Transport∞1-[1, 0] planning or Transport∞1-[1, 1] planning, even if the
set of roadmap graphs is restricted to complete graphs.

The corresponding bounded plan existence problems are NP-hard.

Proof. Papadimitriou and Yannakakis proved that the restriction of the
Minimum Vertex Cover problem to graphs where all vertices have a de-
gree of at most 3 is not in PTAS unless P = NP [93]. In addition to the
degree upper bound, we make the further restriction that the degree of each
vertex must be at least 2. This does not affect the hardness result since other
vertices can be trivially dealt with: As long as there are any vertices of degree
1, pick any such vertex, add its neighbour to the vertex cover, and remove
the vertex and its neighbour along with any incident edges from the graph. If
no vertices of degree 1 are left, remove all vertices of degree 0. All decisions
made in this preprocessing step are optimal, so if there were arbitrarily good
approximation results for our restricted graph class, then we could obtain an
arbitrarily good approximation for arbitrary graphs with degree bound of 3
by combining the algorithm for the restricted graph class with the prepro-
cessing technique. A Karp reduction between the related decision problems
can be defined in a similar fashion.
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We now describe the reductions to Transport∞1-[1, 0] planning and
Transport∞1-[1, 1] planning. Given a Minimum Vertex Cover instance
(i. e., a graph) G = 〈V,E〉 where all vertex degrees are either 2 or 3, the
corresponding Transport task T ′ is defined as follows:

– The set of locations is V ∪ {v0}, where v0 is a new location that serves as
the initial location of the only mobile. The roadmap graph is a complete
graph over the location set.

– For each edge {u, v} ∈ E, there is one portable with initial location u and
goal location v and one portable with initial location v and goal location
u.

– Pickup is free when reducing to Transport∞1-[1, 0] and has cost 1 when
reducing to Transport∞1-[1, 1].

This is clearly a polynomial mapping, and G has a vertex cover iff T ′ is
solvable. (In fact, every graph has a vertex cover, and every task T ′ generated
by the reduction has a solution.)

To map a solution π′ to T ′ back into a vertex cover U for G, we define U
to include exactly those vertices from V corresponding to locations visited at
least twice in the plan. To see that this is a vertex cover, assume that it were
not, i. e., that there existed an edge {u, v} ∈ E with u /∈ U and v /∈ U . Then
neither u nor v is visited twice in π′, in which case it is not possible that the
mobile has transported a portable from u to v and a portable from v to u.

To compare the quality of the solutions, we make the following observa-
tions:

– For any vertex cover U ⊆ V , the planning task can be solved by the
following three-phase plan π′:
– In the first phase, move to the locations U in any order, picking up all
portables located there.

– In the second phase, move to the locations V \ U in any order, picking
up portables located there and dropping carried portables when passing
through their goal location.

– In the third phase, again move to the locations U in any order, dropping
carried portables when passing through their goal location.

To see that π′ is indeed a plan for T ′, observe that portables which need
to be delivered from u ∈ U to v /∈ U are picked up in the first and dropped
in the second phase, and portables which need to be delivered to locations
v ∈ U are picked up in the first or second and dropped in the third phase.
The only critical portables are those that need to be moved between two
locations u, v /∈ U . However, such portables do not exist: If there is a
portable to be moved from u to v, then {u, v} ∈ E and the vertex cover U
must include at least one of the two vertices.

– Moreover, if U is an optimal vertex cover, then the plan π′ is optimal. Each
portable needs to be picked up and dropped once, each location visited at
least once, so the only potential savings could be obtained by revisiting
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fewer locations. However, we have argued before that the set of revisited
locations for any plan forms a vertex cover, and there is no smaller vertex
cover than U .

– We thus have the relationship m∗(T ′) = m∗(G) + |V |+4c|E|, where c is 0
if pickup is free and 1 otherwise: Each location in visited in V is visited at
least once (cost |V |), the locations in the optimal vertex cover are revisited
(cost m∗(G)), and there are 2|E| pickup and 2|E| drop actions (total cost
4c|E|).

– On the other hand, for the vertex cover U obtained from a solution π′ to
the planning task, we have m(U) ≤ m(π′)−|V |−4c|E|: π′ must contain at
least one pickup and drop action for each portable (for a total cost of 4c|E|)
and visit each location in |V | at least once (for a total cost of |V |). The
remaining actions in the plan thus have a cost of at mostm(π′)−|V |−4c|E|,
and therefore this number bounds the number of locations that are revisited
by π′.

– We have |V | ≤ |E|, because the number of edges is half the sum of all
vertex degrees and all vertices have at least degree 2. Moreover, we have
|E| ≤ 3m∗(G) because every edge must be covered by some vertex in any
vertex cover (including an optimal one), vertex degrees are bounded by 3.

Putting the pieces, we can estimate the performance ratio of the vertex
cover U obtained from a plan π′ with performance ratio at most r > 1:

m(U)

m∗(G)
≤

m(π′)− |V | − 4c|E|

m∗(T ′)− |V | − 4c|E|
≤
rm∗(T ′)− |V | − 4c|E|

m∗(T ′)− |V | − 4c|E|

= 1 + (r − 1)
m∗(T ′)

m∗(T ′)− |V | − 4c|E|

= 1 + (r − 1)
m∗(G) + |V |+ 4c|E|

m∗(G)
(∗)
≤ 1 + (r − 1)

m∗(G) + 3m∗(G) + 4c · 3m∗(G)

m∗(G)

= 1 + (r − 1) · (4 + 12c),

where inequality (∗) holds because |V | ≤ |E| ≤ 3m∗(G). This proves that
the reduction is approximation-preserving, and due to the equality m∗(T ′) =
m∗(G) + |V |+ 4c|E| also optimization-preserving. ⊓⊔

While the theorem shows that there must be some bound r > 1 for which
there is no r-approximating algorithm for Transport tasks with complete
roadmap graphs if P 6= NP, it does not provide an actual lower bound for
approximability. Indeed, the result by Papadimitriou and Yannakakis does
not provide a lower bound either, but it is known that the Minimum Vertex

Cover problem for graphs with a vertex degree bound of 5 (rather than 3) is
not approximable within 1.0029 unless P = NP [6]. By adjusting the reduction
accordingly, we can exploit this result to show that the planning problem is
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not approximable within 1.000111 (with unit pickup cost) or within 1.000483
(with free pickup) unless P = NP. The best approximation algorithm we
found for this class of Transport tasks (with pickup costs) guarantees a
performance ratio of 7

6 . Obviously, there is still a significant gap between
these two bounds.

5.5 Constant Factor Approximation

With the results from the previous section, we have now established that
all Route and Transport variants with unrestricted fuel belong to poly-

APX, but none of them admits a polynomial-time approximation scheme.
This leaves two possibilities fur such domains: Either they allow constant-
factor approximations and thus belong to APX, or they do not, and belong
to poly-APX \ APX. In this section, we prove results of the former kind. In
summary, we can obtain constant-factor approximations whenever we have
only one mobile type and mobiles either have unbounded or unit capacity.
We first prove the unbounded capacity result.

Theorem 5.5.1. Plan-Transport∞+-[∗, ∗] ∈ APX

The planning problem for Transport∞+-[∗, ∗] is approximable by a constant
factor.

Proof. We are given a Transport∞+-[∗, ∗] task T . We can assume that all
portables are goal portables, since other portables can be ignored. Let G be
the roadmap graph of T weighted with the movement cost function (note that
movement costs are independent of the moving mobile for this Transport

variant). Throughout the proof, we write w(G′) to denote the weight of a
subgraph G′ of G, which is defined as the sum over the weights of all roads
contained in the subgraph.

A delivery graph for T is a subgraph of G in which every portable
start location is connected to its corresponding goal location. (A delivery
graph may have several connected components.) Computing delivery graphs
of small weight is the Minimum Point-To-Point Connection problem,
which is 2-approximable [6, problem GT52]. We can thus, in polynomial time,
compute a delivery graph Gd with cost at most twice as high as the cost of
a minimal weight delivery graph. The roads traversed in any solution to T
must form a delivery graph (otherwise not all portables could be delivered),
and thus we have w(Gd) ≤ 2m∗(T ). We can assume that every connected
component of Gd contains the initial location of a portable; connected com-
ponents which do not have this property can be safely removed, which may
only reduce the weight. (Of course, a reasonable approximation algorithm
for Minimum Point-To-Point Connection would not generate such con-
nected components in the first place.)

A pickup graph for T is a subgraph of G in which the initial location of
each portable is connected to the initial location of some mobile. By extending
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G with a new vertex v0 which is connected to each initial mobile location by
an edge of weight 0, we obtain a modified roadmap graph G̃. It is easy to
see that a subgraph G′ of G is a pickup graph iff G′ together with vertex v0
and its incident edges is a subgraph of G̃ in which v0 and all initial portable
locations are in the same connected component. Subgraphs of small weight
where a certain set of vertices belong to the same connected component are
called Steiner graphs, or more typically Steiner trees, because Steiner graphs
which are not trees can be pruned to obtain a tree which is also a Steiner
graph. Computing Steiner trees of small weight is the Minimum Steiner

Tree problem, which can also be 2-approximated [6, problem ND8]. We can
thus, in polynomial time, compute a pickup graph Gp with cost at most twice
as high as the cost of a minimal weight pickup graph. The roads traversed
in any solution to T must form a pickup graph (otherwise not all portables
could be picked up), and thus we have w(Gp) ≤ 2m∗(T ). We can assume that
every connected component of Gp contains the initial location of a portable,
since other components could be safely removed.

Having computed a delivery graph and a pickup graph, we build the union
of these two graphs and repeatedly eliminate some edge participating in a
cycle until the resulting graph is a forest, which we call the solution graph
Gs. Clearly, w(Gs) ≤ w(Gd) + w(Gp) ≤ 4m∗(T ). The solution graph is both
a delivery graph and a pickup graph because it is constructed from the union
of such graphs, and eliminating edges participating in cycles does not affect
connectivity. Moreover, every connected component of Gs contains the initial
location of a portable (because this is the case both for Gd and Gp), the goal
location of all portables whose initial locations it contains (because these are
connected in Gd), and the initial location of some mobile (because the initial
location of any portable must be connected to such a location in Gp). We
can thus solve the task as follows:

1. For each connected component C = 〈VC , EC〉 of Gs, choose a mobile
m with initial location vm ∈ VC . Compute a tour πC through C which
starts at vm, traverses each road in EC twice, and ends at vm. This is
easily possible in polynomial time by performing a depth-first traversal
of C starting at vm.

2. Move the mobile m along the tour πC , picking up each portable as its
initial location is passed for the first time.

3. After returning to vm, move the mobile m along the tour πC a second
time, dropping each portable at its goal location as it is passed for the
first time on this tour.

This clearly solves the task. To see that this is a constant factor approxi-
mation, observe that the total weight of all edge sets EC is equal to w(Gs),
and that each edge in all such edge sets is traversed exactly four times by the
plan, leading to total movement costs of 4w(Gs) ≤ 16m∗(T ).

Moreover the cost of all pick-up and drop operators in the generated
plan is bounded by m∗(T ), because each portable is only picked up and
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dropped once, and it must be picked up and dropped at least once in any
plan, including optimal ones. (Remember that pickup and drop costs are
independent of the mobile involved for this Transport variant). Thus, the
generated plan is 17-approximating. ⊓⊔

With some minor adaptations and a slightly more careful analysis, the
approximation factor in the previous proof could be reduced to 10. Drescher
proves this for the unit cost model in his Master’s thesis [29].

The unit capacity case can be solved with similar techniques.

Theorem 5.5.2. Plan-Transport1+-[∗, ∗] ∈ APX

The planning problem for Transport1+-[∗, ∗] is approximable by a constant
factor.

Proof. We are given a Transport1+-[∗, ∗] task T . Again, we assume that
all portables are goal portables.

To solve T , we first compute a pickup graph Gp as in the previous proof.
Using the same arguments and techniques as before, we can assume that
w(Gp) ≤ 2m∗(T ), that the computation can be performed in polynomial
time, that every connected component of Gp contains the initial locations of
at least one portable and mobile and that the initial locations of all portables
are present in Gp. The task can then be solved as follows:

1. For each connected component C = 〈VC , EC〉 of Gp, choose a mobile
m with initial location vm ∈ VC . Compute a tour πC through C which
starts at vm, traverses each road in EC twice, and ends at vm.

2. Move the mobile m along the tour πC . Whenever the initial location of
a portable p is reached, interrupt the tour, pick up p, move to the goal
location of p on a shortest path, move back to the initial location of p on
a shortest path, and continue the tour.

This clearly solves the task. To see that this is a constant factor ap-
proximation, we distinguish between movements of empty mobiles (empty
moves), movements of mobiles carrying a portable (delivery moves), and
other actions (pick-ups and drops):

– Delivery moves: For every portable, the total cost for delivery moves in
the generated plan is no higher than the total cost for delivery moves of
the same portable in an optimal plan, because portables are delivered on
a shortest path. Moreover, the total cost of delivery in an optimal plan is
equal to the sum of the delivery costs for the individual portables, because
only one portable can be carried at a time. Thus, the total cost for delivery
moves is bounded by m∗(T ).

– Empty moves: There are two kinds of empty moves: Movements along the
tours in the pickup graphs, and movements from the goal location of a
portable back to its initial location after it has been delivered. The total
cost of movements of the first type is 2w(Gp) ≤ 4m∗(T ), and the total cost



64 5. Transportation and Route Planning

of movements of the second type is equal to the total cost of delivery moves,
because the same roads are traversed, only in the opposite direction. Thus,
we obtain a total bound of 5m∗(T ) for these actions.

– Pickups and drops: These can again be bounded by m∗(T ) because each
portable is only picked up and dropped once.

Adding the three bounds together, we see that the algorithm is 7-
approximating. ⊓⊔

With a slightly more careful analysis, we could see that the algorithm
is actually 6-approximating. In his Master’s thesis, Drescher proves a 4-
approximation result for the unit cost model, using more sophisticated tech-
niques [29].

Note that the algorithm from the previous proof could also be applied to
the unbounded capacity case; after all, mobiles with unbounded capacity can
do everything that mobiles with unit capacity can do. However, this would not
result in a constant-factor approximation. To see this, consider the case with
only one mobile and N portables, all initially located at the same location
as the mobile, and all with the same goal location, which has a distance of
M from the initial location. The algorithm for the unbounded capacity case
would generate a solution of size Θ(N +M), while the algorithm for the unit
capacity case would generate a solution of size Θ(NM).

Summarizing the results of this section, we have shown that constant-
factor approximations for Transport tasks with unbounded fuel can be
provided if we do not allow mobiles to have arbitrary capacity and if we do
not allow mobiles to have different roadmaps. In the following section, we
complete our analysis by proving that both restrictions are necessary.

5.6 Hardness of Constant Factor Approximation

In our earlier analysis of transportation planning [52, 55], we showed that
whether or not there are mobiles of different types does not affect the com-
plexity of the plan existence and bounded plan existence problems for the
family of transportation problems we then studied. Indeed, the results we
presented earlier in this chapter imply that the same is true for the richer
family of transportation and route planning considered here. However, we will
now show that the presence of mobiles of different types has a marked impact
on the achievable approximation quality: Constant factor approximations are
no longer possible, even for simple unit cost route planning problems.

Theorem 5.6.1. Plan-Route∗-[1] /∈ APX

If P 6= NP, there exists no constant-factor approximation algorithm for
Route∗-[1] planning, even in the restricted case where the roadmap graphs
of all mobiles are trees and all mobiles start at the same location.



5.6 Hardness of Constant Factor Approximation 65

Moreover, this problem variant is NP-hard.

Proof. Note that NP-hardness is not implied by our earlier results due to
the restriction to tree roadmaps. We prove both claims by providing an
optimization-preserving reduction from the Minimum Set Cover problem,
which is not in APX unless P = NP, and which has an NP-hard decision
problem.

Let I = 〈S,C〉 be the given set cover instance, and let r > 1 be the given

performance ratio. We define M =
⌈
2|S|
r−1 + 2|S|

⌉
. The corresponding Route

task T ′ has the following components:

– For each element s ∈ S, there is a location vs (called the element location

for s), for each subset Ŝ ∈ C, there is a location v
Ŝ

(called the subset

location for Ŝ), and there are M + 1 start-up locations v0, . . . , vM .
The set of target locations consists of the element locations.

– There are roads connecting each start-up location vi with i < M to the
next start-up location vi+1, roads connecting vM to each subset location
v
Ŝ
(Ŝ ∈ C), and roads connecting each subset location v

Ŝ
(Ŝ ∈ C) to those

element locations vs with s ∈ Ŝ.
– There is one mobile m

Ŝ
for each subset Ŝ ∈ C. All mobiles are initially

located at v0, and all may access all roads except for those incident to
a subset location v

Ŝ
, which may only be accessed by the corresponding

mobile m
Ŝ
.

Plans π′ for T ′ are mapped back to a collection of subsets by choosing
all those subsets Ĉ ⊆ C for which the corresponding subset locations v

Ŝ
are

visited in the plan. This is indeed a set cover: If some element s ∈ S were
included in no subset from Ĉ, then no subset location v

Ŝ
with s ∈ Ŝ would

be visited in π′. These are the only locations from which the target element
location vs can be reached, so π′ would not solve T ′.

To compare the quality of the solutions, we make the following observa-
tions:

– For any set cover Ĉ ⊆ C, the planning task can be solved by a plan of length
M |Ĉ|+ 2|S|: First, move all mobiles corresponding to subsets Ŝ ∈ Ĉ from

v0 to vM . Second, for each element s ∈ S, select a subset Ŝ ∈ Ĉ with s ∈ Ŝ
and move m

Ŝ
from its current location to the element location ms.

In the first phase, each of the |Ĉ| mobiles performs M movements, for a

total cost of M |Ĉ|. In the second phase, two movements are necessary for
each element of S, for a total cost of 2|S|. (Note that both moving from
vM to an element location and moving from one element location to the
next requires two movement actions.)

– Due to the preceding observation, the optimal plan length for T ′ is at most
Mm∗(I) + 2|S| and thus m∗(I) ≥ 1

M
(m∗(T ′)− 2|S|).
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– Set covers generated from a given solution π′ to T ′ have size at most
1
M
m(π′), because each mobile can only reach a single subset location, and

this incurs a cost greater than M for each mobile.

We can thus bound the performance ratio of the set cover Ĉ obtained
from a plan π′ with performance ratio at most r > 1 as follows:

m(Ĉ)

m∗(I)
≤

1
M
m(π′)

1
M
(m∗(T ′)− 2|S|)

≤
rm∗(T ′)

m∗(T ′)− 2|S|

= 1 +
(r − 1)m∗(T ′) + 2|S|

m∗(T ′)− 2|S|
= 1 + (r − 1)

m∗(T ′) + 2|S|
r−1

m∗(T ′)− 2|S|

= 1 + (r − 1)

(
1 +

2|S|
r−1 + 2|S|

m∗(T ′)− 2|S|

)

≤ 1 + (r − 1)

(
1 +

M

m∗(T ′)−M

)

(∗)
≤ 1 + (r − 1)

(
1 +

M
3
2M −M

)
= 1 + (r − 1) · 3

where inequality (∗) holds because we can assume that m∗(T ′) ≥ 3
2M . If

this were not the case, then there would be a set cover of cardinality at most
3
2 , and thus (because the cardinality cannot be fractional) of cardinality at
most 1. Such trivial instances can be special-cased and solved directly. The
reduction is thus approximation-preserving.

To see that it is optimality-preserving, notice thatm∗(I) ≤ K iffm∗(T ′) ≤
KM + 2|S|: If m∗(I) ≤ K, then an optimal set cover can be transformed
into a plan of cost at most KM + 2|S|. On the other hand, if m∗(I) > K
and thus m∗(I) ≥ K + 1, then any solution to T ′ must have cost at least
(K + 1)M > KM + 2|S|. ⊓⊔

The only remaining question is whether or not we can find constant factor
approximations forTransport variants with unbounded fuel, a single mobile
type and variable capacity. We will show that this is likely not the case;
however, for these results, we need a somewhat stronger assumption than P 6=
NP. In particular, we can prove that none of the variable capacity domains
belongs to APX unless each problem in NP belongs to ZPTIME(npoly log n),
the class of problems which can be decided by randomized algorithms with

expected running time O(nlog nk

) for some problem-dependent parameter k ∈
N0. Clearly, P = NP implies NP ⊆ ZPTIME(npoly logn), but we cannot prove
the converse. Thus, the assumption is stronger than P 6= NP.

To complete our analysis, we must prove hardness results for two Trans-

port variants, namely Transport∗1-[1, 0] and Transport∗1-[1, 1]. How-
ever, instead of doing this directly, we start with a proof for the weighted
movement-cost variant Transport∗1-[∗, 0], and later reduce this to the “eas-
ier” cases.
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Theorem 5.6.2. Plan-Transport∗1-[∗, 0] /∈ APX

If NP 6⊆ ZPTIME(npoly logn), there exists no constant-factor approxima-
tion algorithm for Transport∗1-[∗, 0] planning.

Proof. The Minimum Preemptive Capacitated Dial-A-Ride problem is
the variant of Transport∗1-[∗, 0] where the mobile must return to its initial
location at the end of the plan. Gørtz has shown that this problem cannot
be approximated within a constant factor unless NP ⊆ ZPTIME(npoly log n)
[49]. From a c-approximation algorithm for Plan-Transport∗1-[∗, 0], we
could generate a constant-factor approximation for Minimum Preemptive

Capacitated Dial-A-Ride by extending the Transport plan by move-
ments of the mobile back to its original location. This increases plan length
by a factor of 2 at most, and the optimal solution length for the Minimum

Preemptive Capacitated Dial-A-Ride instance is at least as large as
the optimal solution length for the Transport task. Therefore, the per-
formance ratio of the Minimum Preemptive Capacitated Dial-A-Ride

solution thus obtained would be bounded by 2c, a constant. ⊓⊔

It would be nice if the result could be strengthened by showing that it
already holds under the standard P 6= NP assumption. However, this does
not appear to be easily achievable. Before Gørtz’s proof, hardness of approx-
imation for the Minimum Preemptive Capacitated Dial-A-Ride prob-
lem has been an open question for a long time. Her proof is quite complex,
spanning 23 pages, and builds on earlier results by Andrews and Zhang for
the related Minimum Buy-At-Bulk Network Design and Fibre Mini-

mization In Optical Networks problems [2–4]. In fact, one special case
of Minimum Buy-At-Bulk Network Design which Andrews and Zhang
prove to be hard to approximate is essentially a variant ofTransport∗1-[∗, 0]
where movements of the mobile are free when it is empty. Andrews suggests
some ideas for a possible derandomization of his construction in the conclu-
sions of his paper [2], but notes that so far, such derandomization attempts
have borne no fruit.

We next show how arbitrary movement costs can be “compiled away”
by an approximation-preserving reduction, which extends the previous the-
orem to Transport∗1-[1, 0]. Rather than presenting the result just for the
Transport variant to which we will apply it, we prove a more general com-
pilation, which might also be useful for proving results for other members of
the Transport family (for example with restricted roadmap graph classes).

Theorem 5.6.3. Plan-Transportij-[∗, 0] ≤AP Plan-Transportij-[1, 0]
For all i ∈ {1,∞, ∗} and j ∈ {1,+, ∗}, we have:

Plan-Transportij-[∗, 0] ≤AP Plan-Transportij-[1, 0].
The reduction preserves weight-expandable graph classes.

Proof. Let T be the given Transport task with variable movement costs,
and let r > 1 be the desired performance ratio. Note that we cannot simply
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expand the roadmap graph, because edge weights can be exponential in the
task size.

First, we check if T is solvable; if not, we map it to an unsolvable task.
If T is solvable, it is mapped to the task T ′ with unit movement costs as
follows:

1. Compute an upper bound M for the length (not cost) of any reasonable
plan for T . This bound is polynomial in the task size (Theorem 5.2.2).

2. Compute the minimal number B such that T is still solvable if only
roads with movement cost at most B may be used. This can be done in
polynomial time by sorting movement costs, then repeatedly deleting the
most expensive roads until the task becomes unsolvable.
Observe that we must havem∗(T ) ≥ B because the task cannot be solved
if restricted to roads of cost at most B−1, which implies that at least one
more expensive road must be traversed in any plan. Moreover, we must
have m∗(T ) ≤ BM , because T has a solution where no action costs more
than B (recall that pickup is free), and this solution can be converted to
a reasonable solution, which has length at most M .

3. Prune the task by eliminating all roads with cost greater than BM .
Clearly, such roads cannot be traversed in an optimal plan, so this does
not affect the optimal measure.

4. If B ≤ 2M or B ≤ M
r−1 , then the most expensive roads of the (pruned)

task have cost at most 2M2 or at most M2

r−1 . Both values are polynomial
in the task size for fixed r, and thus we can translate the task to an
equivalent task with unit action costs in polynomial time by weight-
expansion. This is clearly approximation-preserving (even optimization-
preserving, as the resulting task has the same optimal measure as the
original one). We can thus assume B ≥ max{2M, M

r−1} in the following.

5. Set α = M
B(r−1) . For each road, change the movement cost to ⌈αw⌉, where

w is the original movement cost. The most expensive action now has cost
⌈αB⌉ = ⌈ M

r−1⌉, which is polynomial in the task size for fixed r.
6. All movement costs are now polynomial, so the task can be converted to a

task T ′ with unit movement cost in polynomial time by weight-expansion.

Solutions π′ to the unit-cost task T ′ are mapped back to solutions of π
in the obvious way, by removing the intermediate locations introduced by
weight-expansion from the trajectories of the mobiles. The plan costs satisfy
the inequality m(π) ≤ 1

α
m(π′), because the cost for every movement between

two locations of T changes from ⌈αw⌉ to w, and ⌈αw⌉
α

≥ w.
Moreover, m∗(T ′) ≤ αm∗(T ) + M : Every plan π for T induces a plan

π′ for T ′ where every movement action in π with cost w corresponds to
⌈αw⌉ ≤ αw + 1 unit cost movement actions in π′. The sum, over all such
movements, over the terms αw adds up to αm∗(T ), and the sum over the 1
terms is bounded by M because π cannot contain more than M movements
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by virtue of being reasonable. Solving this inequality for m∗(T ), we obtain
m∗(T ) ≥ 1

α
(m∗(T ′)−M).

This allows us to bound the performance ratio of a solution π to T ob-
tained from a solution π′ to T ′ as follows:

m(π)

m∗(T )
≤

1
α
m(π′)

1
α
(m∗(T ′)−M)

=
m(π′)

m∗(T ′)−M
≤

rm∗(T ′)

m∗(T ′)−M

= 1 +
(r − 1)m∗(T ′) +M

m∗(T ′)−M
= 1 + (r − 1)

m∗(T ′) + M
r−1

m∗(T ′)−M

≤ 1 + (r − 1)
m∗(T ′) +B

m∗(T ′)− 1
2B

= 1 + (r − 1)

(
1 +

3
2B

m∗(T ′)− 1
2B

)

≤ 1 + (r − 1)

(
1 +

3
2B

B − 1
2B

)
= 1 + (r − 1) · 4.

The reduction is thus approximation-preserving, which concludes the proof.
⊓⊔

Note that this one of the few reductions we present which is not shown
to be optimization-preserving: The necessary rounding step occurring in the
reweighting from w to ⌈αw⌉ loses precision, so that we cannot accurately map
solution bounds for the weighted task to solution bounds for the unit-weight
task. Of course, having established NP-hardness for bounded plan existence
already, we do not need an optimization-preserving reduction anyway.

We remark that the reduction could be easily extended to the case where
pickup and drop actions have unit cost, rather than being free. However,
providing a similar reduction for variable pickup costs seems much more
challenging, because the introduction of variable pickup costs leads to a some-
what complicated trade-off between delivering portables along short routes
and delivering them with a small number of pickup and drop actions.

Being able to compile away weighted movement costs, we can now extend
the hardness result for Transport∗1-[∗, 0] to Transport∗1-[0, 0]. All that
remains to show is that the problem with unit pickup costs is no easier. Again,
we present a reduction which is more general than required.

Theorem 5.6.4. Plan-Transportij-[l, 0] ≤OP Plan-Transportij-[l, 1]
For all i ∈ {1,∞, ∗}, j ∈ {1,+, ∗} and l ∈ {1, ∗}, we have:

Plan-Transportij-[l, 0] ≤OP Plan-Transportij-[l, 1].
The reduction preserves stretchable graph classes.

Proof. Let T be the given Transport task with free pickup, and let r > 1
be the desired performance ratio.

We first compute a polynomial bound M on reasonable plan length for
T and define α = ⌈ M

r−1 +M⌉, which is polynomial in the size of T for fixed
r. The Transportij-[l, 1] task T

′ generated by the reduction is identical to
T except that the roadmap graph is stretched by α. Solutions π′ to T ′ are
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mapped back to solutions π to T in the obvious way, by removing actions
pertaining to auxiliary locations introduced through stretching.

Clearly, we have m(π) ≤ 1
α
m(π′), because each movement in π corre-

sponds to (at least) α movements in π′ and non-movement actions do not
contribute to the cost of π.

On the other hand, for every reasonable solution π to T , there exists a
solution π′ to T ′ with m(π′) ≤ αm(π) +M , where every movement action
has been replaced with α movement actions: The movement cost in π′ is α
times the movement cost in π, which is m(π), and the cost for pickup and
drop actions in a reasonable plan is at most M . In particular, this implies
that m∗(T ′) ≤ αm∗(T ) +M and hence m∗(T ) ≥ 1

α
(m∗(T ′)−M).

This leads to the following bound on the performance ratio of the mapped-
back solution π:

m(π)

m∗(T )
≤

1
α
m(π′)

1
α
(m∗(T ′)−M)

=
m(π′)

m∗(T ′)−M
≤

rm∗(T ′)

m∗(T ′)−M

= 1 +
(r − 1)m∗(T ′) +M

m∗(T ′)−M
= 1 + (r − 1)

m∗(T ′) + M
r−1

m∗(T ′)−M

= 1 + (r − 1)

(
1 +

M
r−1 +M

m∗(T ′)

)
≤ 1 + (r − 1)

(
1 +

α

m∗(T ′)

)

(∗)
≤ 1 + (r − 1)(1 +

α

α
) = 1 + (r − 1) · 2,

where inequality (∗) holds because we can assume that m∗(T ′) ≥ α, because
otherwise T ′ (and consequently T ) is solvable by an empty plan, a situation
which we can special-case. The reduction is thus approximation-preserving.

It is also optimization-preserving because m∗(T ) ≤ K iff m∗(T ′) ≤ αK +
M : We have already argued that m∗(T ′) ≤ αm∗(T ) +M , which shows the
“only if” part, and to show the “if” part, note that m∗(T ) ≥ K + 1 implies
m∗(T ′) ≥ α(K + 1) > αK +M . ⊓⊔

This concludes our presentation of complexity results for Transport and
Route, and we can turn to discussion.

5.7 Summary

We have introduced domain families for transportation and route planning
which are parameterized along five dimensions:

– Mobiles can have unit capacity, unbounded capacity, or arbitrary capacity.
(This only applies to the Transport family.)

– There can be one mobile, several mobiles with identical movement capa-
bilities, or several mobiles with different movement capabilities.



5.7 Summary 71

– Locations can have unbounded fuel, one fuel unit each, or arbitrary
amounts of fuel.

– Movement can incur unit costs, or varying costs depending on the road
and mobile.

– Pickup and drop actions can incur no cost, unit cost, or varying costs de-
pending on the portable and mobile. (This only applies to the Transport

family.)

We have then analysed the decision complexity of planning in these do-
main variants by considering the respective plan existence and bounded plan
existence problems, and we have analysed the approximation complexity of
the respective planning problems with respect to the classes PO, FPTAS,
PTAS, APX, poly-APX, exp-APX, PS, NPO, NPS, EXPO and EXPS. For the
decision problems, we get a very simple classification:

– Plan existence is a polynomial problem if fuel is unrestricted, and NP-
complete otherwise.

– Bounded plan existence is always NP-complete.

These results might lead one to suppose that making distinctions based
on the number, movement capabilities or carrying capacity of mobiles has
no impact on the planning problem at all. However, taking a closer look at
approximability properties, we see that this is not true. Here, we obtained
the following results:

– For domain variants with restricted fuel, the planning problem is in NPO \
PS, unless P = NP.
In other words, for these domains we cannot generate plans in polynomial
time.

– For domain variants with unrestricted fuel and mobiles with different
movement capabilities, the planning problem is in poly-APX \ APX, un-
less P = NP. The same result holds for domain variants with unrestricted
fuel and mobiles with arbitrary capacity. However, this result is subject to
the assumption ZPTIME(npoly logn) 6⊆ NP, which is a stronger statement
than P 6= NP.
In other words, for these domains we can generate plans in polynomial
time, but we cannot guarantee that the generated plans are at most a
constant factor more expensive than optimal ones.

– For all other domain variants, the planning problem is in APX \ PTAS,
unless P = NP.
In other words, for these domains we can generate plans in polynomial
time, and we can guarantee that the generated plans are at most a constant
factor more expensive than optimal ones. However, this factor cannot be
reduced arbitrarily close to 1.

It is interesting to note that the only classification parameters that make
no difference to either decision or approximation complexity are those which
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determine the costs of operators. For propositional planning systems, this
can be considered encouraging news, because it shows that abstracting away
action costs, as is commonly done in PDDL-style planning, does not signifi-
cantly affect the computational properties of the problem at least for the large
class of transportation and route planning benchmarks. Thus, there is hope
that established techniques for propositional planning could be applicable to
more realistic settings without dramatic changes.

To conclude the summary of results, Figs. 5.4 and 5.5 give a graphical
representation of the boundaries of approximability in the Transport and
Route domain families. Due to the large number of domain variants, most
Transport variants with restricted fuel are omitted – all of these belong to
NPO \PS. Moreover, the parameters defining action costs are omitted in the
figures since we could show that they do not affect approximation behaviour.
Each entry in Fig. 5.4 thus actually represents six different Transport vari-
ants, and each entry in Fig. 5.5 represents two different Route variants.

5.8 Beyond Transport and Route

Altogether, we have classified the approximation complexity of 162 trans-
portation domains and 18 route planning domains. Our choice of domain
variants was heavily influenced by the IPC benchmarks we study in the fol-
lowing chapter, because we want to be able to apply our result to those.
Disregarding the IPC benchmarks, there are a number of other variations of
transportation and route planning we have not considered, but which appear
relevant:

– Destinations for mobiles: In addition to goal locations for portables, we
could also specify goal locations for mobiles. For example, in many classical
route planning problems, the mobile must return to its initial location. This
is a minor variation which should not affect any of our classification results.

– Mobiles with limited fuel: Instead of associating fuel bounds with locations,
we could associate fuel bounds with mobiles, thus bounding the number of
movements a given mobile can make. In the one-mobile cases, plan exis-
tence with limited mobile fuel is equivalent to bounded plan existence for
our unbounded fuel domains with free pickup and unit movement costs. All
these problems are NP-hard, so under this variation, plan existence would
become NP-complete in all cases.

– Uniform portables: In another classic variation of the problem, we do not
care which portable is transported to a certain goal location, but only
that some portable, or a certain number of portables, is delivered. In other
words, different portables need not be distinguished. Under this modifica-
tion, it appears that some of the Transport variants become simpler. In
particular, the Transport∗1 domain with uniform portables is essentially
the k-Delivery-TSP problem, which belongs to APX [20].
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Transport11 Transport∞1
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Fig. 5.4. Overview of results for Transport; dotted lines indicated omitted vari-
ants with restricted fuel.
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Fig. 5.5. Overview of results for Route.
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– Portable types: Instead of considering the case where all portables are uni-
form, one could also consider the more general situation where portables
are partitioned into different types, and goals are specified in terms of
portable types. This is at least as hard as the standard Transport do-
main, because each portable might have a different type. We hypothesize
that this variation no longer admits constant-factor approximations for
Transport∞1, but still does for Transport1+.

– Directed roadmaps: The domains could be easily generalized to directed
roadmaps in place of undirected ones. Of course, this can quickly lead
to dead-end situations where no further movement is possible, even with
unlimited fuel. We hypothesize that some cases, such as one mobile of
unbounded or unit capacity, remain polynomially solvable with directed
roadmaps, but many others, such as multiple mobiles of unbounded capac-
ity, no longer admit polynomial solution algorithms unless P = NP.

– Parallel plans: Instead of considering the sum of individual action costs,
parallel plan length or makespan could be used as a solution measure. In
this setting, multiple compatible actions, such as movements of different
mobiles, could occur in parallel, and the cost of a plan would be the time at
which it finishes execution. There are two common notions of parallelism for
transportation problems in planning benchmarks, depending on whether
it is possible to pick up and drop several portables with the same mobile
simultaneously (as in Logistics or Gripper) or not (as in Mystery).
In the case where such simultaneous pick up and drop activities are dis-
allowed, our hardness results for Transport with a single mobile and
the unit pickup cost model apply. In the case where simultaneous pickups
and drops are allowed, our hardness results for Transport with a single
mobile and free pickup apply with a few simple changes. Thus, approximat-
ing parallel plans is no easier than the problems we studied. Determining
whether or not it is harder would require some deeper study.

– Restricted roadmap graphs: We have shown that some of our hardness re-
sults extend to restricted graph classes such as trees, grids, planar graphs or
complete graphs. This analysis could be extended to systematically study
all variants of Transport and Route and a number of relevant graph
classes. Such an undertaking would not just constitute an enormous amount
of work, but also require answers to some exceedingly difficult complex-
ity questions. In particular, some Transport variants for planar or grid
graphs scrape the border between PTAS and APX, and we believe that it
would be difficult to prove either membership or non-membership in PTAS.

This concludes our discussion of general transportation and route plan-
ning. In the next chapter, we reap the fruits of our analysis by applying the
results of this chapter to the IPC domains.



76 5. Transportation and Route Planning



6. IPC Domains: Transportation and Route

Planning

This chapter discusses the approximation properties of the IPC benchmarks
related to transportation planning or route planning. We easily obtain results
for the Gripper (Section 6.1), Mystery and MysteryPrime (Section 6.2),
Logistics (Section 6.3), Zenotravel (Section 6.4), Depots (Section 6.5),
two variants of Miconic-10 (Section 6.6) and Rovers (Section 6.7). The
third variant of Miconic-10 (also Section 6.6) as well as the Grid (Section
6.8), Driverlog (Section 6.9) and Airport (Section 6.10) domains differ
significantly from the Transport and Route families. For them, we provide
proofs from first principles. The chapter ends with a brief summary of results
(Section 6.11).

Throughout the chapter, our proofs typically assume that all portables are
goal portables and the goal location of each portable differs from its initial
location, which is a valid simplification because non-goal portables can be
ignored. We only make an exception for the Depots and Grid domains,
where portables have other relevant properties in addition to being carried
around. (The restriction does not apply to Rovers and Airport, which are
not transportation domains, and in some domains such as Miconic-10, all
portables are required to be goal portables anyway.)

6.1 Gripper

The Gripper domain is a transportation domain with a single mobile (a
robot) with a fixed capacity of two, modelling two grippers for holding objects
which give the domain its name. Despite the fact that there is in general no
polynomial-time approximation scheme for the subproblem of Transport

planning defined by these constraints,Gripper planning is actually very easy
due to another, very significant restriction: There are only two locations in
Gripper tasks.

Definition 6.1.1. Gripper tasks and domain
A Gripper task is a Transport∗1 task with the following properties:

– There are exactly two locations, called A and B, which are connected.
– The mobile has a capacity of 2 and starts at location A.
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– All portables start at location A and must be moved to location B.

The Gripper domain is the Transport domain restricted to Gripper

tasks.

It is not difficult to see that Gripper planning is an easy problem.

Theorem 6.1.1. Plan-Gripper ∈ PO

Optimal plans for Gripper tasks can be generated in polynomial time.

Proof. An optimal plan can clearly be generated by repeating the following
steps until the task is solved:

– Pick up any two portables at A, or one if only one is located at A.
– Move to B.
– Drop all carried portables.
– If the goal is not yet satisfied, move to A.

⊓⊔

This easiness of Gripper planning – which easily extends, with the same
algorithm, to parallel planning – is mostly due to the fact that the roadmap
graph is fixed. Interestingly, the restriction to the fixed roadmap and fixed
carrying capacity are not inherent in the PDDL specification of the Gripper

domain, which allows for varying capacities and more locations (although
the roadmap graph must always be fully connected). In this more general
form, the Gripper domain would belong to APX \ PTAS unless P = NP.
However, given that all IPC Gripper tasks are of the simple form demanded
by our definition, such a general definition of the Gripper domain would be
inappropriate.

6.2 Mystery and MysteryPrime

The Mystery domain earns its name from the curious terminology used in
its PDDL specification. It is a prototypical transportation domain, but this
is obscured by the fact that locations are called foods, mobiles are called
pleasures, portables are called pains and actions are named along similar
lines. Both Mystery and MysteryPrime are fuel-restricted domains.

Definition 6.2.1. Mystery tasks and domain
A Mystery task is a Transport∗

∗+ task with a planar roadmap and finite
fuel at all locations.

The Mystery domain is the Transport domain restricted to Mys-

tery tasks.

The MysteryPrime differs from Mystery only by having an additional
type of actions, which allows moving fuel between locations.
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Definition 6.2.2. MysteryPrime tasks and domain
A MysteryPrime task is a Transport∗

∗+ task with a planar roadmap and
finite fuel at all locations.

The MysteryPrime domain is the Transport domain restricted
to MysteryPrime tasks, with one additional operator type: Fuel may be
squirted from a location v to another location v′ in state 〈l, fuel〉 iff fuel(v) ≥
2. This action reduces fuel(v) by 1 and increases fuel(v′) by 1.

This definition diverges from the PDDL specification of MysteryPrime

in two respects. First, in the PDDL domain there is a (task-specific) upper
bound to the amount of fuel that can be stored at any location, due to the
way numbers are encoded in propositional PDDL. Second, the PDDL domain
contains an error which allows producing fuel by squirting it from a location
v to itself: If location v has k ≥ 2 units of fuel, then squirting fuel from v
to v leads to two separate fuel depots of k + 1 and k − 1 fuel units at v,
effectively doubling the fuel reserve for the location. In both cases, we chose
not to model these aspects of the domain in our definition because they are
somewhat accidental aspects of the PDDL definition. (In any case, neither of
the differences amounts to a difference in complexity.)

Due to the fuel constraints, Mystery and MysteryPrime planning is
hard.

Theorem 6.2.1. Plan-Mystery,Plan-MysteryPrime ∈ NPO \ PS
Mystery and MysteryPrime planning is in NPO, but not in PS unless
P = NP. Hardness already holds if there is only one mobile, which has un-
bounded capacity.

Proof. For non-membership in PS, we show that the plan existence prob-
lem for these domains is NP-hard. This follows immediately from Theorem
5.3.2, which shows hardness for Route11 with planar roadmaps, and Theorem
5.2.5, which shows that this problem is reducible to Transport1

∞1 preserv-
ing graph classes. Note that both Mystery and MysteryPrime generalize
Transport1

∞1; in particular, no squirt actions are possible for tasks with
unit fuel, because squirting requires two fuel units at the origin location.
(This is one of the reasons why we chose to consider unit fuel domains in the
first place.)

Membership in NPO for Mystery follows from the general Transport

result. The MysteryPrime domain also belongs to NPO because it admits
short optimal plans: We can bound the number of non-squirt actions in any
plan by the bound for reasonable Transport solutions, and an optimal
solution never contains more squirt actions than movements, because the
only use for squirting is to enable movements. ⊓⊔
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6.3 Logistics

We now turn to the most commonly used planning benchmark of the last
decade, which has become even more ubiquitous than the Blocksworld

domain.

Definition 6.3.1. Logistics tasks and domain
A Logistics task is a Transport∞∗ task with the following properties:

– Locations are partitioned into sets called cities, and each city has a dedi-
cated location called an airport.

– There are two types of mobiles: trucks move between locations of the same
city along a fully connected road network, and airplanes move between
airports, along a fully connected network of airways.

A Logistics task is called simple if there is only one truck, only one city
and no airplane, or if there is only one airplane, all locations are airports,
and there is no truck.

The Logistics domain is the Transport domain restricted to Lo-

gistics tasks. The SimpleLogistics domain is the Logistics domain
restricted to simple tasks.

The Logistics domain is one of the few domains with different mobile
types, which is generally an indication of difficulty of constant-factor approx-
imations. However, because there are only two different types of mobiles and
the diameter of their roadmaps is small, it is actually fairly easy to prove that
Logistics belongs to APX. In fact, a greedy algorithm which delivers one
portable at a time in the obvious way is already 2-approximating, because it
contains as few non-movement actions as possible and no more movements
than non-movement actions.

However, due to its significance as a commonly used benchmark, we ex-
pend a bit more effort and present some tighter approximations for Logis-

tics. For this purpose, we first define a minimization problem which is closely
related to the SimpleLogistics domain.

Problem 6.3.1. Minimum Feedback Vertex Set

The Minimum Feedback Vertex Set problem is defined as follows:

Instance: A directed graph 〈V,A〉.
Solution: A feedback set, i. e., a subset of vertices U ⊆ V such that the

subgraph induced by V \ U is acyclic.
Measure: |U |.

The Minimum Feedback Vertex Set problem does not admit a
polynomial-time approximation scheme. Whether or not it is in APX is an
open question [6, problem GT 8]. However, here we are not interested in its
approximation properties, but in its relationship to SimpleLogistics plan-
ning, shown by the following theorem.
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Theorem 6.3.1. SimpleLogistics vs. Minimum Feedback Vertex Set

Let T be a SimpleLogistics task, let P the set of portables in T , and let
P̂ ⊆ P be the set of those portables whose initial location is different from
the initial location of the mobile.

The delivery graph of T is the directed graph G′ = 〈V ′, A′〉 where V ′

consists of all locations which are initial or goal location of portables in P̂ ,
and A′ contains an arc from u to v iff there is some portable in P̂ with initial
location u and goal location v.

Then m∗(T ) = 2|P |+ |V ′|+m∗(G′), where m∗(G′) is with respect to the
Minimum Feedback Vertex Set problem.

Moreover, for each feedback vertex set U ′ of G′, a plan for T of length
m∗(T ) = 2|P |+ |V ′|+m(U ′) can be efficiently constructed.

Proof. We first prove the second property. Given a feedback vertex set U ′ ⊆
V ′, we generate the following plan:

1. Pick up all portables at the initial mobile location, if any.
2. Move to all locations in U ′ in any order, picking up all portables located

there.
3. Move to all locations in V ′ \ U ′ in an order which is consistent with the

arcs in the delivery graph, picking up and dropping portables as required.
4. Move to all locations in U ′ in any order, dropping all portables at their

goal locations.

Each portable is picked up and dropped exactly once, accounting for 2|P |
actions. Each location in V ′ is moved to exactly once in the second and third
step, accounting for |V ′| actions. Finally, there are |U ′| = m(U ′) more actions
generated in the fourth step.

The construction is very similar to that used in the proof to Theorem
5.4.2, so that we refrain from a further discussion.

To prove the first property, note that if the feedback vertex set U ′ consid-
ered for the second property is optimal, then a plan of length 2|P | + |V ′| +
m∗(G′) is obtained. Moreover, there cannot be a shorter plan: The number
of pickup and drop actions cannot be reduced, each location in V ′ must be
visited at least once, and the set of locations visited at least twice must form
a feedback vertex set. Again, consult the proof to Theorem 5.4.2 for details.

⊓⊔

We now describe an approximation algorithm for Minimum Feedback

Vertex Set which might generate quite bad solutions in terms of their
performance ratio, but exceeds the optimal measure only by a term growing
slowly in the number of arcs in the given directed graph. Because each arc
is related to a portable in the Logistics task, and each portable requires at
least one pickup and drop action, this extra cost is quite small compared to
the optimal plan length.
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Theorem 6.3.2. Minimum Feedback Vertex Set approximation al-
gorithm
Given a directed graph G = 〈V,A〉, a feedback vertex set of size at most
1
3 |A|+m∗(G) can be computed in polynomial time.

Proof. The algorithm runs in two stages. In the first stage, the algorithm
picks any vertex with degree at least 3, removes it from the input graph
along with all incident arcs, and inserts it into the result set. The stage ends
as soon as no such vertex exists any more.

In the second stage, we compute an optimal feedback vertex set for the
remaining graph and add it to the result set. This is easily possible: Because
no vertex has a degree greater than 2, any cycle in the graph must be dis-
connected from the rest of the graph. (The arcs in the cycle already account
for a degree of 2 of all vertices involved, so none of these vertices can have
further neighbours.) Thus, an optimal feedback vertex set for the remaining
graph simply contains any one vertex from each of the disconnected cycles.

In the first stage, we add at most 1
3 |A| vertices to the result set: In each

step, at least 3 arcs are eliminated, and this can be done at most ⌊ 1
3 |A|⌋

times. In the second stage, we add at most m∗(G) vertices to the result set:
The vertices picked in this stage form an optimal feedback vertex set for the
reduced graph, and since this is a subgraph of the original graph, feedback
vertex sets for the original graph cannot be smaller. ⊓⊔

Combining the previous two results, we get the following classification of
SimpleLogistics.

Theorem 6.3.3. Plan-SimpleLogistics ∈ APX \ PTAS
There exists a polynomial 7

6 -approximation algorithm for SimpleLogistics

planning. However, the problem does not admit a PTAS unless P = NP.

Proof. Non-membership in PTAS was shown in Theorem 5.4.2, because
Transport∞1 with complete graphs is identical to SimpleLogistics.

For the 7
6 -approximation, we combine the Minimum Feedback Vertex

Set approximation algorithm with the result from Theorem 6.3.1. Using the
same notation as in the proof of that theorem, the optimal plan length is
m∗(T ) = 2|P | + |V ′| + m∗(G′), while the length of the generated plan is
m(T ) = 2|P | + |V ′| +m(U ′) for m(U ′) ≤ 1

3 |A
′| +m∗(G′). With |A′| ≤ |P |,

we can thus bound the performance ratio by

m(T )

m∗(T )
≤

2|P |+ |V ′|+ 1
3 |P |+m∗(G′)

2|P |+ |V ′|+m∗(G′)
= 1 +

1
3 |P |

2|P |+ |V ′|+m∗(G′)

≤ 1 +
1
3 |P |

2|P |
=

7

6
.

⊓⊔
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Unfortunately, this result does not easily extend to the general Logistics
domain. General Logistics tasks do not decompose into simple ones because
of the interactions between the subtasks for the different cities. If a portable
must be moved from city A to city B and another portable must be moved
from city B to city A, then the plans for these two cities must be interleaved.

One way of limiting such interactions is to partition the overall planning
problem into three phases : In the first phase, called the outbound phase,
portables are picked up and those which need to be transported to a different
city are brought to the airport. In the second phase, called the airplane phase,
portables are transported between the airports of different cities. Finally, in
the third phase, called the inbound phase, portables are moved to their goal
locations within cities.

The subtasks which need to be solved in each phase are essentially Sim-

pleLogistics tasks, apart from the fact that multiple mobiles may be avail-
able. We could thus use the SimpleLogistics planning algorithm for these
subtasks in hopes of generating a similarly tight approximation for the gen-
eral domain. However, such an analysis would only allow us to compare the
solution quality to that of the best such three-phase solution, which is not
very useful on its own. We would require an additional analysis of how bad
three-phase solutions can get compared to optimal ones. To avoid these com-
plications, we instead present a much simpler direct algorithm (and analysis)
for the general Logistics planning problem which does not rely on our re-
sults for SimpleLogistics, but still leads to a reasonable approximation.

Theorem 6.3.4. Plan-Logistics ∈ APX \ PTAS
There exists a polynomial 4

3 -approximation algorithm for Logistics plan-
ning. However, the problem does not admit a PTAS unless P = NP.

Proof. Non-membership in PTAS follows from the SimpleLogistics result.
We now describe the general approximation algorithm. We can assume that
the given task T is solvable – solvability can easily be decided in polynomial
time by the Transport∗∗ algorithm.

An intra-city portable is a portable where initial and goal location
belong to the same city; other portables are called inter-city portables.

Let L∗
T be the minimal number of truck movements over all plans, let

L∗
A be the minimal number of airplane movements over all plans, and let L∗

O

(other) be the minimal number of non-movement actions over all plans.
We define the following location sets:

– The set of locations V −
T contains all goal locations of intra-city portables, all

non-airport goal locations of inter-city portables, and all airports of cities
where a non-airport location is the initial location of an inter-city portable.
We have |V −

T | ≤ L∗
T because each location in V −

T must be entered by some
truck in any plan.

– The set of locations V +
T contains all initial locations of intra-city portables,

all non-airport initial locations of inter-city portables, and all airports of
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cities where a non-airport location is the goal location of an inter-city
portable. We have |V +

T | ≤ L∗
T because each location in V +

T must be left by
some truck in any plan.

– The set of locations V −
A contains all airports of cities containing the goal

location of an inter-city portable. We have |V −
A | ≤ L∗

A because each location
in V −

A must be entered by some airplane in any plan.
– The set of locations V +

A contains all airports of cities containing the initial
location of an inter-city portable. We have |V +

A | ≤ L∗
A because each location

in V +
A must be left by some airplane in any plan.

Using these sets, we generate a plan as follows:

1. Outbound phase: In each city with at least one location in V +
T ∪ V −

T ,
choose some truck called the city truck for that city. (Such a truck must
exist if the task is solvable.) Move the city truck to all non-airport city
locations in V +

T in any order, picking up all portables initially located
there. Then move it to the airport if it is in V +

T ∪V −
T and drop all carried

inter-city portables. All inter-city portables are now at airports.
2. Airplane phase: If V +

A ∪ V −
A 6= ∅, some airplane must exist if the task

is solvable. Choose one, and move it to all airports in V +
A in any order,

picking up all inter-city portables located there. Then move the airplane
to all airports in V −

A in any order, dropping all portables at their respec-
tive city and picking them up with the city truck if their goal location
is not the airport. All portables are now in their correct city and either
carried by the city truck or already at their goal location.

3. Inbound phase: In each city where the city truck is carrying portables,
move to the non-airport locations in V −

T in any order, dropping portables
at their goal location. (If the city airport is in V −

T , the truck is already
located there, so it need not be moved there.)

This indeed generates a solution to the planning task. (If this is not imme-
diately clear, verify that it works for all seven qualitatively different cases:
portables can be intra- or inter-city, initial locations and goal locations can
be airports or non-airports, and the combination intra-city/airport/airport
is impossible.)

To estimate the performance ratio of the solution, we consider the num-
ber of truck movements LT, the number of airplane movements LA and
the number of non-movement actions LO in the generated plan π. Clearly,
m(π) = LT + LA + LO.

First observe that the number of pickup and drop actions in the plan is
minimal, i. e., LO = L∗

O. In the outbound and inbound phases, the algorithm
generates at most a total of |V +

T | + |V −
T | ≤ 2L∗

T movement actions, moving
to each non-airport in V +

T once in the outbound phase, to each non-airport
in V −

T once in the inbound phase, and moving to an airport once in the
outbound phase only if it is in V +

T ∪ V −
T . Thus, the total number of truck
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movements MT is bounded as LT ≤ 2L∗
T. Similarly, we obtain the bound

LA ≤ 2L∗
A on the number of airplane movements.

Moreover, there are no more movements than non-movements in the plan,
because no mobile moves twice without picking up or dropping a portable in
between, and no mobile moves after its last pickup or drop. Thus, we have
LT + LA ≤ LO.

Finally, we must have m∗(T ) ≥ L∗
T + L∗

A + L∗
O actions (with equality

holding only if some optimal plan minimizes all three types of actions simul-
taneously).

We can thus bound the performance ratio as

m(π)

m∗(T )
≤
LT + LA + LO

L∗
T + L∗

A + L∗
O

(∗)
≤

LT + LA + LO
1
2LT + 1

2LA + LO

= 1 +
1
2LT + 1

2LA

1
2LT + 1

2LA + LO

≤ 1 +
1
2LT + 1

2LA

1
2LT + 1

2LA + LT + LA

= 1 +
1
2
3
2

=
4

3
,

where inequality (∗) holds because LT+LA ≤ 2L∗
T+L

∗
A and hence L∗

T+L
∗
A ≥

1
2LT + 1

2LA. ⊓⊔

6.4 Zenotravel

We continue with a domain to which the Logistics results can be applied
fairly straightforwardly.

Definition 6.4.1. Zenotravel tasks and domain
A Zenotravel task is given by a Transport∞+ task with a complete graph
roadmap and an initial airplane fuel function fuel0 :M → N0, where M
is the set of mobiles of the task. The mobiles of a Zenotravel task are called
airplanes, the portables are called passengers.

The Zenotravel domain maps Zenotravel tasks with locations V ,
airplanes M and passengers P to state spaces as follows:

States: Pairs 〈l, fuel〉, where l : M ∪ P → V ∪M is the location
function and fuel : M → N0 is the airplane fuel reserve
function. Only passengers may have airplanes as their loca-
tion.

Initial state: 〈l0, fuel0〉, where l0 is the initial location function and fuel0
is the initial airplane fuel function of the task.

Goal states: Any state 〈l, fuel〉 where l(p) = l⋆(p) for all goal passengers
p and the goal location function l⋆.

Operators: Move actions are defined as in the Transport domain,
except that movements require a non-zero fuel reserve of the
moving airplane and reduce it by 1.
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Zoom actions are like move actions, but require a fuel re-
serve of at least 2 and reduce it by 2.
Refuel actions for a given airplane are always applicable
and increase its fuel reserve by 1.
Pick up and drop actions are defined as in the Transport

domain.

Zoom actions have no practical use – this is different in non-propositional
variants of Zenotravel, where they require less time to execute than regular
movements. The only slight difference between our definition of the domain
and the PDDL definition is that the latter imposes an upper bound on mobile
fuel. This makes no difference for planning, because it is sensible to only
refuel when and if additional fuel is needed for a movement, i. e., when the
fuel reserve of an airplane is zero. Strictly speaking, our definition leads to an
infinite state space, but it is apparent that this does not cause any practical
problems.

Using our earlier results, the Zenotravel domain is easy to classify.

Theorem 6.4.1. Plan-Zenotravel ∈ APX \ PTAS
The planning problem for Zenotravel is 2-approximable, but it does not
admit a polynomial-time approximation scheme unless P = NP. The latter
result holds even in the restricted case where there is only one airplane, which
has sufficient fuel to never require refuelling in a reasonable plan.

Proof. Non-membership in PTAS follows from the SimpleLogistics result,
because Zenotravel generalizes this domain in the case where fuel con-
straints do not matter, i. e., where all airplanes have more fuel than required
in any reasonable plan.

A given task T is solvable if there is at least one airplane or if it is solved by
the empty plan. For a solvable task not solved by the empty plan, we generate
the following two-phase plan π, where m is an an arbitrary airplane:

1. Pickup phase: Move m to the initial locations of all passengers in any
order, refuelling when necessary. Pick up any passenger upon arriving
their initial location.

2. Delivery phase: Move m to the goal locations of all passengers in any
order, refuelling when necessary. Drop any passengers upon arriving at
their initial location.

Let L∗
M, L∗

R and L∗
O be the total number of movement, refuelling and other

operators in some optimal plan, and let LM, LR and LO be the corresponding
numbers in π. Clearly, m(π) = LM+LR+LO and m∗(T ) = L∗

M+L∗
R+L∗

O ≥
L∗
M + L∗

O.
All locations moved to in the pickup phase must be left by some airplane

at least once in an optimal plan. Thus the number of movements in that
phase is bounded by L∗

M. Similarly, every location moved to in the delivery
phase must be moved to at least once in some optimal plan, so the number
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of movements in that phase is bounded by L∗
M as well, for a total bound

LM ≤ 2L∗
M.

The total number of refuellings is bounded by the number of movements,
so LR ≤ LM. Moreover, LO ≤ L∗

O because the generated plan contains a
minimal number of pickup and drop actions. Finally, LM ≤ LO because every
movement is followed by at least one pickup or drop action.

We can thus bound the performance ratio as

LM + LR + LO

L∗
M + L∗

R + L∗
O

≤
2LM + LO

L∗
M + L∗

O

(∗)
≤

2LM + LO
1
2LM + LO

= 1 +
3
2LM

1
2LM + LO

≤ 1 +
3
2LM

1
2LM + LM

= 1 +
3
2
3
2

= 2,

where inequality (∗) holds because LM ≤ 2L∗
M and hence L∗

M ≥ 1
2LM. ⊓⊔

The performance ratio of the solution could certainly be improved by
using a better approximation algorithm akin to the one for SimpleLogistics.
Note, however, that the analysis of the SimpleLogistics algorithm is not
immediately applicable to Zenotravel tasks with multiple airplanes.

6.5 Depots

The Depots domain is a cross between Blocksworld and SimpleLogis-

tics. It features trucks that transport objects between locations as in Sim-

pleLogistics, but also requires the objects at the individual locations to
be arranged into towers as in Blocksworld, with the particular variant of
Blocksworld being one with multiple arms (called hoists) and limited and
named table positions (called pallets).

Definition 6.5.1. Depots tasks
A Depots task is defined by an 8-tuple 〈V, T,B, P,H, l, l0, p⋆〉 with the fol-
lowing components:

– V is a finite set of locations. The roadmap of the task is the complete
graph over V .

– T is a finite, non-empty set of trucks.
– B is a finite set of blocks.
– P is a finite set of pallets.
– H is a finite set of hoists.
A function p from some set of blocks to T ∪B ∪ P ∪H is called a partial
block position function iff no two blocks are mapped to the same block,
pallet or hoist, and the directed directed graph containing an arc (b, b′) iff
p(b) = b′ is acyclic.
If p is defined for all blocks, it is called a block position function.
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– l : (P ∪H) → V is the location function. For each location v ∈ V , there
must be a pallet p and hoist h with l(p) = v and l(h) = v.

– l0 : T → V is the initial location function.
– p0 is a block position function called the initial block position function.
– p⋆ is a partial block position function called the goal block position func-
tion, and the blocks for which it is defined are called goal blocks. For any
goal block b, p⋆(b) must be a block or a pallet, and if it is a block, then it
must also be in the domain of p⋆.

The sets T , B, P and H are required to be disjoint.

The definition should be intuitive enough to require little additional ex-
planation. The acyclicity requirement for block position functions should be
clear. The requirement on the goal block position functions is somewhat ar-
bitrary, but satisfied for all Depots benchmark tasks, so that we consider it
part of the domain definition. Informally, it demands that if a goal position
is given for a block, then a goal position must also be given for all blocks
below it, including the bottom-most block in its tower, for which the pallet it
rests on must be defined. It is not possible to require that a block be inside a
certain truck or held by a certain hoist in a goal state, but the goal position
of a block may be left unspecified. (The restrictions on the goal may be lifted
or strengthened to require a completely specified goal state without affecting
our complexity results.)

The requirements to have at least one hoist and pallet at each location
are also part of the benchmark suite. The same is true for the requirement
that there must be at least one truck. Note that this last restriction, unlike
the other ones, is critical to our approximation results.

We can now define the Depots domain.

Definition 6.5.2. Depots domain
The Depots domain maps Depots tasks with locations V and trucks T to
state spaces as follows:

States: Pairs 〈l, p〉, where l : T → V is the truck location function,
and p is a block position function.
We say that hoist h holds block b if p(b) = h and that truck
t carries block b if p(b) = t. We say that block b is on top
of block or pallet b′ if p(b) = b′. We say that a block is clear
if it is on top of something and nothing is on top of it, and
that a pallet is clear if nothing is on top of it.
The location of a block that is on top of something is de-
fined as the location of the thing it is on top of (a recursive
definition, where the base case is given by the location of the
pallet at the bottom). A hoist is near to a truck, block or
pallet (and vice versa) if their location are the same.

Initial state: 〈l0, p0〉, where l0 is the initial location function and p0 is the
initial block position function.



6.5 Depots 89

Goal states: Any state 〈l, p〉 with p(b) = p⋆(b) for all goal blocks b, where
p⋆ is the goal block position function.

Operators: A truck can move from any location to any other location
v, which changes its location to v.
A hoist can load a block into a truck if it holds the block and
is near to the truck. This results in the truck carrying the
block.
A hoist can unload a block from a truck if the truck carries
the block, is near to the hoist, and the hoist does not hold
anything. This results in the hoist holding the block.
A hoist can drop a block b onto a block or pallet b′ if it is
holding b, it is near to b′, and b′ is clear. This results in b
being on top of b′.
A hoist can pick up a clear block b if it is near to b and it
is not holding any block. This results in the hoist holding b.

Due to its Blocksworld subproblem, it is a bit of a stretch to call
Depots a “transportation domain”. However, the important point for our
analysis is that it contains enough of a transportation subproblem to apply
the approximation complexity results for the Transport family. This is
indeed the case.

Theorem 6.5.1. Plan-Depots ∈ APX \ PTAS
The planning problem for Depots is 3-approximable, but it does not admit a
polynomial-time approximation scheme unless P = NP. The latter result holds
even in the restricted case where there is only one truck, all blocks are goal
blocks, all blocks are clear in the initial and goal position and all pallets used
in the goal position are initially empty, and in the restricted case where all
blocks are goal blocks and there is only one hoist, one truck and one location.

Proof. Non-membership in PTAS under the first restriction follows from the
SimpleLogistics result, because in this case, the domains are essentially
identical. The main difference is that moving a block from a pallet into a
truck and from a truck into a pallet requires two actions instead of one, but
this does not affect the proof significantly. (Putting blocks on top of other
blocks is still possible, but useless under this restriction.)

Non-membership in PTAS under the second restriction follows from Sel-
man’s result for the Blocksworld domain [104]. His result applies to a
slightly different variant of Blocksworld with unlabelled and unlimited
table positions, but it is easy to adapt the proof to Depots.

For membership, we treat the Depots tasks as a single Blocksworld

task, as if all pallets were present at the same location, and follow the
standardBlocksworld “unstack-stack” approximation algorithm [105]. For
classical Blocksworld, the algorithm works as follows [105]:

1. Move all blocks which need to be moved onto the table.
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2. Move all blocks moved onto the table in the previous step to their final
position in the right order.

To adapt this algorithm to Depots, we use a single truck t to replace the
table: Whenever a block b shall be “moved to the table” in the first phase,
we move the truck to the location of b, pick up b with some hoist, and load b
into the truck. Whenever a block b shall be “moved to its final position” in
the second phase, we move the truck t to the location of the block or pallet
b′ onto which b must be dropped, unload b some hoist, and drop it on top of
b′.

It is easy to see that an optimal solution for the derived Blocksworld

task of a Depots task cannot be shorter than an optimal solution to the
Depots task, L∗. Because the Blocksworld approximation algorithm is
2-approximating, this bounds the number of non-movement actions in the
generated solution by 2L∗.

Finally, one movement action is generated for every two other actions,
bounding the number of movements by L∗, for a total plan length of at most
3L∗, proving the approximation factor of 3. ⊓⊔

We remark that the “unstack-stack” algorithm is indeed 2-approximating
in Blocksworld variants with multiple arms, even though it is usually in-
troduced for the single-arm case. To see this, observe that the approximation
algorithm only uses a single arm, so the measure of the generated plan does
not depend on the number of available arms. Since increasing the number of
arms can never increase the optimal measure, it is sufficient to consider the
performance ratio for tasks with an “unbounded” number of arms (e. g., hav-
ing as many arms as blocks). In this case, it is not hard to see that the plans
generated by “unstack-stack” are always exactly twice as long as optimal
ones.

6.6 Miconic-10

We now turn to the Miconic-10 domain, introduced by Koehler and Schus-
ter [79]. It requires a somewhat more detailed discussion because it is actu-
ally a family of three domains called Miconic-10-STRIPS, Miconic-10-

SimpleADL and Miconic-10-FullADL.
In all three domains, the objective is to transport a number of passengers

between different floors of a building by means of an elevator. This is, of
course, a transportation planning task, and it features a single mobile of
unbounded capacity, unrestricted fuel, and a complete roadmap. Indeed, the
Miconic-10-STRIPS domain is already characterized by this description
almost completely.

Definition 6.6.1. Miconic-10-STRIPS

The Miconic-10-STRIPS domain is a variant of Transport∞1 with a
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complete roadmap where the mobile is called an elevator, the locations are
called floors, and the portables are called passengers.

Instead of saying that the elevator picks up or drops a passenger, we say
that the passenger enters or leaves the elevator.

The only differences between Miconic-10-STRIPS and Transport∞1

with complete roadmaps are that all passengers must be goal passengers and
that passengers may only leave the elevator at their goal floor in Miconic-

10-STRIPS.

This definition is not completely in accordance with the PDDL definition,
in which it is possible for a passenger to enter the elevator multiple times from
his initial floor, even if he is already inside the elevator or at his goal floor.
In the latter case, he can also leave at the goal floor another time. This is a
harmless modelling flaw, which does not affect complexity.

We have already considered the almost identical SimpleLogistics do-
main, so we can keep the discussion of this Miconic-10 variant brief.

Theorem 6.6.1. Plan-Miconic-10-STRIPS ∈ APX \ PTAS
The planning problem for Miconic-10-STRIPS is 7

6 -approximable.
However, the problem does not admit a PTAS unless P = NP.

Proof. The SimpleLogistics proof (Theorem 6.3.3) applies. The two differ-
ences (all passengers are goal passengers, passengers may only leave at their
goal location) do not affect the proof. ⊓⊔

We now introduce the two other Miconic-10 variants. One of them,
Miconic-10-SimpleADL is not much more complicated than Miconic-10-

STRIPS, the difference basically amounting to a different action cost model.
The Miconic-10-FullADL domain, however, is somewhat more compli-
cated, introducing constraints on elevator movement caused by special ser-
vice requirements. We refer to Koehler and Schuster’s work for a motivation
of the different features [79].

Definition 6.6.2. Miconic-10 tasks
A Miconic-10 task is defined by a 6-tuple 〈N,P,A,C, l0, l⋆〉 with the fol-
lowing components:

– N ∈ N1 is the number of floors. The set F = {1, . . . , N} is called the
set of floors. We say that f ′ ∈ F is between f ∈ F and f ′′ ∈ F iff
f ≤ f ′ ≤ f ′′ or f ′′ ≤ f ′ ≤ f .

– P is a finite set of passengers.
– A ⊆ P × F is the access relation. We say that passenger p ∈ P has
access to floor f ∈ F iff (p, f) ∈ A.

– C : P → 2c is the special constraint function, where c = {direct, non-
stop, vip, supervised, attendant, group-1, group-2} is the set of possi-
ble constraints. We say that p ∈ P is a direct-travel passenger if
direct ∈ C(p), and similarly for the other constraints.
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– l0 : P → F is the initial floor function.
– l⋆ : P → F is the goal floor function, which satisfies l⋆(p) 6= l0(p) for all
passengers p ∈ P .

A Miconic-10 task is called simple iff all passengers have access to
all floors and no passenger has special constraints, i. e., C(p) = ∅ for all
passengers p.

We specify the set of floors by a number rather than defining it as an
immediate component of the task (as for the other transportation domains),
because using numbers is a convenient way of obtaining a total order on
floors, which is needed for the direct constraint. Compared to Miconic-

10-SimpleADL, full Miconic-10 tasks impose a number of restrictions on
elevator movement. An elevator may only stop at a floor if all boarded pas-
sengers have access to that floor, VIP passengers must be served before oth-
ers, non-stop passengers must be moved from their initial floor to their goal
floor without intermediate stops, direct-travel passengers may never be trans-
ported downwards (upwards) if their goal location is above (below) their
initial floor, supervised passengers may only be inside the elevator if an at-
tendant is also present, and group 1 and 2 passengers may not be inside the
elevator at the same time.

In addition to these constraints, which are not relevant to Miconic-10-

SimpleADL, the other change compared to Miconic-10-STRIPS is that
there are no individual enter or leave actions. Instead, there is a single stop
action which causes all passengers who have arrived at their destination to
leave the elevator, and causes all passengers waiting to be served to enter.
This models the intuition that activities of the passengers are not controllable
by the agent controlling the elevator. We will now formalize the domain.

Definition 6.6.3. Miconic-10-FullADL and Miconic-10-SimpleADL

domains
The Miconic-10-FullADL domain maps Miconic-10 tasks with floors
F and passengers P to state spaces as follows:

States: 4-tuples 〈f,W,B, S〉, where f ∈ F is the elevator floor and
W ⊆ P , B ⊆ P and S ⊆ P form a partition of the passenger
set into waiting, boarded and served passengers.
A state is illegal iff there is a boarded group 1 passenger
and a boarded group 2 passenger, or if there is a boarded
supervised passenger but no boarded attendant.

Initial state: 〈1, P, ∅, ∅〉.
Goal states: Any state 〈f, ∅, ∅, P 〉.
Operators: The elevator can move to a floor f ′ different from the cur-

rent elevator floor f iff for all boarded direct-travel passen-
gers p, the new floor f ′ is between f and the goal floor of p.
The action changes the elevator floor to f ′.
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The elevator can stop at its current floor f iff the following
conditions are satisfied:
– All boarded passengers have access to f .
– If any non-stop passenger is boarded, f must be the goal
location of one of them.

– All VIPs are served, or there is a waiting VIP with initial
floor f , or there is a boarded VIP with destination floor f .

– The resulting state is not illegal.
In the resulting state, all boarded passengers with goal floor
f are served and all waiting passengers with initial floor f
are boarded.

The Miconic-10-SimpleADL domain is the restriction of Miconic-

10-FullADL to simple Miconic-10 tasks.

Our domain definition is in accordance with the original (informal) de-
scription of the Miconic-10 domain by Koehler and Schuster. It repairs two
flaws of the PDDL definition, which does not implement the VIP service
and non-stop travel constraints correctly. In the PDDL definition, the eleva-
tor is allowed to stop at the initial or goal floor of a VIP passenger even if
the passenger is already boarded or served and other VIP passengers should
take priority. Additionally, the elevator cannot stop at any floor if several
non-stop travel passengers with conflicting destinations have boarded. Both
differences to the PDDL specification are harmless regarding our results: We
will not make use of nonstop passengers in our proofs, and there will only be
one VIP passenger per task, in which case no complications arise.

Note that the special constraints of Miconic-10-FullADL tasks can
easily render the task unsolvable. For example, a task is trivially unsolvable
if there are supervised passengers but no attendants. Before analyzing the
impact of those constraints on the complexity of planning, we briefly discuss
the simple variant.

Theorem 6.6.2. Plan-Miconic-10-SimpleADL ∈ APX \ PTAS
The planning problem for Miconic-10-SimpleADL is 2-approximable.

However, the problem does not admit a PTAS unless P = NP.

Proof. The domain is very similar toTransport∞1-[1, 0] planning with com-
plete graph roadmaps, i. e., the variant of SimpleLogistics where pickup is
free. Non-membership in PTAS for this domain was shown in Theorem 5.4.2.

InMiconic-10-SimpleADL, pickup is not actually free. However, we can
mandate that every movement in a plan should be followed by a stop action,
so that we can assume that stopping is part of moving and all movement
actions have a cost of 2. Scaling all action costs by a constant does not change
approximation properties. The only slight complication is that a solution
might or might not start with a single stop action at the start of the plan.
However, this only affects plan length by an additive constant of 1, which
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can be ignored for reasonably large plans. (Tasks with short plans can be
special-cased.)

For proving the approximation result, we use a very simple approximation
algorithm: In the first phase, move to and stop at all initial floors (beginning
with floor 1 if it is an initial floor). In the second phase, move to and stop at
all goal floors. This solution has a performance ratio of at most 2 because all
movements in the first phase must occur in an optimal plan and all movements
in the second phase must occur in an optimal plan. ⊓⊔

Note that the hardness result critically relies on the fact that the roadmap
of a Miconic-10 task is a complete graph, which is a somewhat questionable
aspect of the domain. In order to take into account the real costs of moving
elevators between distant floors, it would also make sense to investigate a
domain variant where floors are only connected to the floors directly above
and below (or, equivalently, movements between f and f ′ incur a cost of
|f − f ′|).

For Miconic-10-FullADL, these different ways of modelling do not
make a difference, because here, plan existence is already hard.

Theorem 6.6.3. Plan-Miconic-10-FullADL ∈ NPO \ PS
Miconic-10-FullADL planning belongs to NPO, but not to PS unless P =
NP.

Proof. To show membership in NPO, we prove that the domain admits short
optimal plans. An optimal plan never contains more than 2|P | stop actions
for passenger set P , because stop actions have no effect if they do not lead
to a passenger boarding or being served. Moreover, it never contains more
movements than stop actions. Together, this provides a polynomial bound on
optimal plan length.

To show non-membership in PS, we show NP-hardness of plan existence
by reducing from the problem of finding a Hamiltonian path with a fixed
start vertex v1 in a digraph 〈V,A〉 [41, Problem GT39].

The corresponding Miconic-10 task has no direct-travel passengers, so
we can describe the set of floors without referring to their numbers. It consists
of

– the initial elevator floor f0,
– a final floor f∞,
– for each vertex v ∈ V , a vertex start floor fv and vertex end floor f∗

v ,
and

– for each arc 〈u, v〉 ∈ A, an arc floor fu,v.

For each vertex v ∈ V , Fv is the set containing fv, f
∗
v and the arc floors for

all outgoing arcs of v. The set of all floors is denoted by F .
The passengers and their initial and goal floors and constraints are defined

as follows:
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Passenger From To Access to. . . Constraints
p0 f0 fv1 {f0, fv1} vip, attendant

pv (v ∈ V ) f0 fv F \ {f∞} supervised

p∗v (v ∈ V ) fv f∗
v Fv ∪ {f∞} attendant

p∞v (v ∈ V ) f∗
v f∞ F \ {fv} none

pu,v (〈u, v〉 ∈ A) fu,v fv {fu,v, f∗
u, fv} attendant

Assume that it is possible to solve the task. Because p0 is a VIP, the first
stops must be at f0 and fv1 , where all supervised passengers and p∗v1 board.
Because of the access restrictions of that passenger, the journey can only
proceed to floors from Fv1 , and f

∗
v1

is not an option because stopping there
would lead to the only attendant leaving. Thus, the elevator must move to
fv1,v2 (for some vertex v2 that is adjacent to v1) and can then only proceed
to f∗

v1
and then fv2 , where p

∞
v1

and p∗v2 board.
We are now in a similar situation as upon arrival at fv1 , and again, the

elevator will eventually move to some floor fv3 , then fv4 , following the arcs of
the digraph 〈V,A〉 in a path v1 . . . vn until all vertices have been visited once.
No vertex can be visited twice because of the access restrictions for passengers
of type p∞u . So plan existence implies the existence of a Hamiltonian path
starting at v1 in 〈V,A〉.

On the other hand, the previous discussion shows that if a Hamiltonian
path exists, then there exists a sequence of actions leading to a state where
all supervised passengers have been served and the elevator is located at some
floor fv for v ∈ V . No longer requiring attendants, it can then immediately
proceed to f∗

v , then f∞ and finally serve the remaining passengers of type
fu,v (for arcs 〈u, v〉 not part of the Hamiltonian path), one after the other,
completing the plan. ⊓⊔

6.7 Rovers

We now consider the Rovers domain, which is not a transportation domain
as such (although certain objects may be carried, they do not need to be
transported anywhere), but is closely related to Route.

The Rovers domain is motivated by space applications and models the
exploration of a planetary surface by a set of rovers of different capabilities.
It has a quite complex definition.

Definition 6.7.1. Rovers tasks
The set of camera modes is defined as M = {low-res, high-res, colour}.

A Rovers task is defined by an 18-tuple 〈G, vl, R,Rs, Rr, road, O, vis, C,
mode, cal, rC, l0, V

s
0 , V

r
0 , V

s
⋆ , V

r
⋆ , I⋆〉 with the following components:

– G = 〈V,E〉 is a graph whose vertices are called waypoints and whose edges
are called routes.

– Waypoint vl ∈ V is called the lander location.



96 6. IPC Domains: Transportation and Route Planning

– R is a finite set of rovers.
– Rs ⊆ R is the set of rovers equipped for soil analysis.
– Rr ⊆ R is the set of rovers equipped for rock analysis.
– road ⊆ R × E is the access relation. The roadmap of a rover r ∈ R is
the graph Gr = 〈Vr , Er〉 where Er contains all routes reachable from the
lander location using only routes e with 〈r, e〉 ∈ road, and Vr consists of
the waypoints incident to such routes. We require that Gr is a tree for each
rover.

– O is a finite set of image objectives.
– vis ⊆ V × (V ∪O) is the visibility relation between waypoints and way-
points or image objectives. If 〈u, v〉 ∈ vis, we say that u can see v and
that v can be seen from u. We require that vis restricted to V × V is
symmetric and reflexive and that 〈u, v〉 ∈ vis for all routes {u, v} ∈ E.

– C is a finite set of cameras.
– mode : C → 2M is the camera mode function. If m ∈ mode(c) for a
camera c ∈ C, we say that the camera supports m.

– cal : C → O is the calibration target function.
– rC : C → R is the camera location function. If rC(v) = r, we say that
camera c is installed in rover r.

– l0 : R → V is the initial rover location function. We require that l0(r)
is contained in the roadmap of rover r.

– V s
0 ⊆ V is the set of initial soil sample waypoints.

– V r
0 ⊆ V is the set of initial rock sample waypoints.

– V s
⋆ ⊆ V s

0 is the set of soil sample goals.
– V r

⋆ ⊆ V r
0 is the set of rock sample goals.

– I⋆ ⊆ O ×M is the set of image goals.

A Rovers tasks is called simple if there are no rovers equipped for rock
analysis, no image objectives, no cameras, no initial rock sample waypoints,
no rock sample goals and no images goals, if the initial location of all rovers is
the lander location, all rovers are equipped for soil analysis, and the visibility
relation is universal.

There are three types of goals for Rovers tasks. The first two types
require obtaining soil analyses and rock analyses of certain waypoints. These
are essentially visitation goals as in the Route domain. The third type of
goals are image goals, which are in a certain sense disjunctive visitation goals:
To take an image of an objective, a rover equipped with a suitable camera
must visit any waypoint from which the objective can be seen.

The domain is complicated further by the fact that not all rovers can
conduct soil analyses or rock analyses, that not all rovers carry cameras,
and that not all cameras are suitable for each kind of image goal (a camera
must support the desired mode of the image). Moreover, cameras need to
be calibrated against a certain objective before they can be used. A final
complication is that collecting the data with the rovers is not enough to solve
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the task; it must also be communicated to the lander, which can only be done
from waypoints that can see the lander location.

We remark that in the existing Rovers benchmarks, the visibility relation
between rovers and image objectives has a limited structure: For any two
waypoints u and v, either u can see all objectives that v can see, or vice
versa. This simplifies planning somewhat because there is no need to visit
one waypoint u for calibrating a camera and another waypoint v for taking
an image: Either the camera can also be calibrated from v, or the image
can also be taken from u. However, we choose not to model the restriction
because it is unclear whether or not it is intentional and we will see that it
does not affect complexity.

A slight oddity of the IPC Rovers domain which our definition does not
duplicate is that it does not require the visibility relation for waypoints to be
reflexive. In particular, in the IPC tasks the lander location cannot be seen
from itself, which means that a rover cannot communicate with the lander if
they are at the same location. However, this does not make a difference for
approximation complexity.

We now formalize the semantics of Rovers tasks.

Definition 6.7.2. Rovers domain
The Rovers domain maps Rovers tasks with waypoints V , rovers R, cam-
eras C, modes M and objectives O to state spaces as follows:

States: 11-tuples 〈l, V s, V r, Ds, Dr, Di, RF, Cc, V
s
G, V

r
G, IG〉, where l :

R → V is called the rover location function, V s ⊆ V and
V r ⊆ V are the sets of soil sample waypoints and rock
sample waypoints, Ds ⊆ R × V , Dr ⊆ R × V and Di ⊆
R × O ×M are the sets of available soil data, available
rock data and available image data, RF ⊆ R is the set
of full rovers, Cc ⊆ C is the set of calibrated cameras, and
V s
G ⊆ V , V r

G ⊆ V and IG ⊆ O × M are the remaining
soil sample goals, remaining rock sample goals and
remaining image goals.
We say that rover r has soil data for v (similarly, has
rock data for v, has image data for o in mode m) iff
〈r, v〉 ∈ Ds.

Initial state: 〈l0, V s
0 , V

r
0 , ∅, ∅, ∅, ∅, ∅, V

s
⋆ , V

r
⋆ , I⋆〉, where l0, V

s
0 , V

r
0 , V

s
⋆ , V

r
⋆

and I⋆ are as in the definition of Rovers tasks.
Goal states: Any state with no remaining soil sample, rock sample or im-

age goals.
Operators: A rover may move from waypoint v to waypoint w iff its

location is v and these waypoints are adjacent in its roadmap.
This changes its location to w.
A rover equipped for soil analysis may sample soil iff it
is not full and its location v is a soil sample waypoint. This
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results in v no longer being a soil sample waypoint, the rover
being full and the rover having soil data for v.
A rover equipped for rock analysis may sample rocks iff it
is not full and its location v is a rock sample waypoint. This
results in v no longer being a rock sample waypoint, the rover
being full and the rover having rock data for v.
A rover may empty its store iff it is full. This results in
the rover no longer being full.
A rover r may calibrate camera c iff c is installed in r and
the location of r can see the calibration target of c. This
results in c being calibrated.
A rover may take an image of objective o in mode m with
camera c iff c is calibrated and installed in r and supports
mode m and the rover location can see o. This results in the
rover having image data for o in mode m and in c no longer
being calibrated.
A rover may communicate a piece of soil, rock or image
data iff it has that data and if it can see the lander location.
This results in the corresponding goal (if any) being removed
from the remaining goals.

The SimpleRovers domain is the restriction of Rovers to simple tasks.

It is apparent from this definition that the Rovers domain could be
simplified in a number of ways without affecting semantics significantly. For
example, the fact that rock or soil sampling fills the store of the rover is only
important for better-than-constant-factor approximations. If we are content
with constant factor approximations, we can automatically empty the store
of a rover after each sampling operation. Similarly, calibration and image-
taking could be combined into a single action at least for the kind of visibility
relations present in the planning competition benchmark set, as discussed
previously.

At its core, Rovers planning is about visiting a set of waypoints with
rovers of different capabilities (in particular, different roadmaps). We have
seen similar tasks before when discussing the Route family, and indeed the
Route results easily apply to Rovers.

Theorem 6.7.1. Plan-Rovers ∈ poly-APX \ APX
The planning problem for Rovers is poly-approximable. However, the prob-
lem does not admit a constant-factor approximation unless P = NP. The
latter result already holds for the restricted SimpleRovers domain.

Proof. Membership in poly-APX is proved by the following greedy algorithm:

1. As long as there is a remaining soil sample goal u, find a rover equipped
for soil analysis whose roadmap includes u and a waypoint v from which
the lander location can be seen. (Actually, v can always chosen to be
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the lander location itself, but note our remarks on the visibility relation
in the IPC benchmarks.) If no such rover exists, the task is unsolvable.
Otherwise, move the rover to u along a shortest path, sample soil, empty
the rover, move the rover to v and communicate the soil data.

2. Solve rock sample goals in an analogous fashion.
3. As long as there is a remaining image goal, find a rover with a camera

supporting the required mode whose roadmap includes a waypoint u
which can see the calibration target of the camera, a waypoint v which
can see the image objective, and a waypoint w which can see the lander
location. If no such rover exists, the task is unsolvable. Otherwise, move
the rover to u along a shortest path, calibrate the camera, move the
rover to v along a shortest path, take the image in the required mode,
and finally move the rover to w along a shortest path and communicate
the image data.

The algorithm clearly solves the task and can easily be implemented to run
in polynomial time.

To prove the hardness result, we reduce from Route∗ and use Theorem
5.6.1. In particular, we show that Route∗ ≤OP Plan-SimpleRovers by a
reduction which preserves stretchable graph classes.

Given a Route∗ task T and constant r > 1, we setM = 2
⌈
3|V⋆|
r−1 + 3|V⋆|

⌉
,

where V⋆ is the set of target locations of T . The corresponding SimpleRovers

task T ′ is obtained by stretching the roadmap graph of T by the factor M ,
then mapping each mobile to a rover, each mobile roadmap to an identical
rover roadmap and each target location to a soil sample goal.

The optimal measures of T and T ′ satisfy m∗(T ′) ≤ Mm∗(T ) + 3|V⋆|,
because any plan π for T can be transformed into a plan π′ for T ′ by replacing
each movement in π byM corresponding movements in π′ and inserting three
actions whenever a target (soil sample) location is first visited by some rover:
sample soil, empty the store, communicate the soil data.

On the other hand, every plan π′ for T ′ can be efficiently mapped back
to a plan π for T such that m(π) ≤ 1

M
m(π′), by mapping movements back

in the obvious way (which reduces their amount by a factor of at least M)
and removing all non-movement actions.

We now prove that the reduction is approximation-preserving. Given a
plan π′ for T ′ with performance ratio at most r > 1, the mapped-back plan
π for T has the performance ratio
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m(π)

m∗(T )
≤

1
M
m(π′)

1
M
(m∗(T ′)− 3|V⋆|)

=
m(π′)

m∗(T ′)− 3|V⋆|
≤

rm∗(T ′)

m∗(T ′)− 3|V⋆|

= 1 +
(r − 1)m∗(T ′) + 3|V⋆|

m∗(T ′)− 3|V⋆|
= 1 + (r − 1)

m∗(T ′) + 3|V⋆|
r−1

m∗(T ′)− 3|V⋆|

= 1 + (r − 1)

(
1 +

3|V⋆|
r−1 + 3|V⋆|

m∗(T ′)− 3|V⋆|

)

(∗)
≤ 1 + (r − 1)

(
1 +

1
2M

M − 1
2M

)
= 1 + (r − 1) · 2,

where inequality (∗) holds because we can assume that m∗(T ′) ≥ M ; other-
wise, T is solved by the empty plan and thus trivial. Moreover, the reduction is
clearly optimization-preserving becausem∗(T ) ≤ K iffm∗(T ′) ≤ KM+3|V⋆|
for all K ∈ N0. ⊓⊔

The SimpleRovers domain is hard to approximate for a reason we call
positive subgoal interaction. There is a number of subgoals to solve (one for
each soil sample goal), and for each individual goal it is easy to find an
optimal (i. e., minimal length) action sequence for solving only this single
goal. In other words, subgoals are easy to solve. Moreover, solving all subgoals
never requires significantly more actions that the sum for all subgoal costs
(at most twice as much, because it is always possible to return to the initial
rover location after solving a subgoal). In other words, subgoals do not interact
negatively. However, an optimal plan might require significantly fewer actions
than the sum of the individual subgoal costs due to synergies: Moving a rover
towards a particular sample goal may also move it closer to another sample
goal, so that the combined cost of solving both goals is significantly less than
the sum of the individual costs.

The hardness proof for the Route domain fosters this kind of interaction
by constructing, for each mobile, a roadmap which allows solving a certain
set of goals at essentially the same cost as a single goal from the set. Different
mobiles allow solving different sets of goals, but there is overlap between these
sets. A good solution will try to minimize the number of goal sets that are
used to solve all goals. This amounts to a general set covering problem, and
general set covering problems are hard to approximate.

We emphasize this point because it emerges as a common pattern in
all polynomially solvable IPC domains which are hard to approximate by a
constant factor. We will now see two more examples of this phenomenon.

6.8 Grid

In theGrid domain, a robot moves along a graph with a two-dimensional grid
shape (hence the name of the domain) transporting keys. It can carry one key
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at a time, and the goal is to move a certain set of keys to individually specified
locations. So far, this is a variant of the Transport11 domain, which we have
shown to be in APX, but not in PTAS unless P = NP, although we have not
proved hardness for the particular case of Grid roadmaps.

However, there is an additional twist. The Grid domain is different to
the previously discussed benchmarks in that it features a dynamic roadmap:
Locations can be initially locked (and hence inaccessible) and later become
accessible through the invocation of open actions, if the mobile carries an
appropriate key. Apart from these difference, Grid tasks are very much like
regular Transport11 tasks, and we define them in terms of those.

Definition 6.8.1. Grid tasks
A Grid task is defined by a 3-tuple 〈T, L0, U〉 with the following components:

– T is a Transport11 task with a grid roadmap with location set V and
portable set P called the underlying Transport task. Its portables are
called keys, its mobile is called the robot.

– L0 ⊆ V is the set of initially locked locations or doors. It may not
contain the initial location of the robot.

– U ⊆ P × L is the unlock relation. We say that key k ∈ P may unlock
location v ∈ L if 〈p, v〉 ∈ L. For any two keys, we require that the sets of
locations they may unlock are either equal or disjoint.

A Grid task is said to have a static roadmap if its unlock relation is
empty.

Effectively, a Grid task is a special Transport task with two additional
properties: There is a set of locations that are initially inaccessible, and there
is a relation that specifies which keys can be used to gain access to (some
of) these locations. The constraints on the unlock relation imply that two
keys are either functionally equivalent or unrelated. In the original PDDL
description, this is formalized with different “shapes” for keys and locks such
that each key and lock has a specific shape and keys only fit into locks with
matching shapes. We now formalize the semantics of Grid planning.

Definition 6.8.2. Grid domain
The Grid domain maps Grid tasks with underlying Transport task T
to state spaces as follows:

States: Pairs 〈s, L〉 where s is a state of T called the underlying
Transport state and L ⊆ L0 is the set of locked loca-
tions.

Initial state: 〈s0, L0〉, where s0 is the initial state of T and L0 is the set
of initially locked locations.

Goal states: Any state 〈s, L〉 where s is a goal state of the underlying
Transport task.
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Operators: Pickup and drop actions have the same semantics as in
T . Additionally, there exists a swap action for all keys k1
and k2 and locations v, which is defined as the sequential
composition of “drop k1 at v” and “pick up k2 at v”.
Movements to a location v are only applicable if v is not
locked. Apart from this restriction, they have the same se-
mantics as in T .
The robot may unlock location v iff v is locked, the current
robot location is adjacent to v, and the robot carries a key
which may unlock v. In the resulting state, v is no longer
locked.

In an earlier analysis, we have shown that the bounded plan existence
problem for Grid is NP-complete, even when restricted to tasks without
initially locked locations, which is a special case of tasks with static roadmaps
[55]. From the observation that the planning problem for general Grid tasks
is in NPO, it follows that the unlocking aspect does not affect the decision
complexity of Grid planning. However, we will see that the same is not true
when considering approximation complexity.

Theorem 6.8.1. Plan-Grid ∈ poly-APX

The planning problem for Grid is poly-approximable, and it can be approxi-
mated by a constant factor when restricted to tasks with static roadmaps.

Proof. We first prove the second result. In Grid tasks with static roadmaps,
the only difference to a Transport11 tasks is the presence of swap actions.
We say that a Grid plan is swap-free if it does not contain swap actions.
Using a c-approximation algorithm for Transport11 like the one described
in Theorem 5.5.2, we can generate a plan π which is at most c times as long as
an optimal swap-free plan. Moreover, if π∗ is an optimal plan, then an optimal
swap-free plan has a measure bounded by 2m(π∗) (replace each swap in π∗ by
a drop and a pick-up action to obtain a swap-free plan with this property).
Therefore, π has a performance ratio bounded by 2c. In other words, the
Transport11 algorithm is a constant-factor approximation algorithm for
Grid tasks with static roadmaps.

For the first result, we can reduce the general case to the static roadmap
case by repeating the following operations until they can no longer be applied:

– Find a key k that can be reached from the robot location and a locked
location l that can be unlocked by k and which has an adjacent location l′

that can be reached from the robot location. Stop if this is not possible.
– Move to the location of k, pick up k, move to l′, unlock l, move to the
initial location of k, drop k, move back to the initial robot location.

Clearly, this can be done in polynomial time: Each iteration requires only
polynomial time, and each iteration unlocks one of only polynomially many
doors. Moreover, the resulting state after applying these actions differs from
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the initial state only in the fact that it has fewer unlocked locations, which
means that it is certainly solvable if the original task was solvable. From the
resulting state, it is not possible to unlock any further doors, and thus it
can be solved using the techniques for Grid tasks with static roadmaps. The
overall running time is polynomial, which shows that Grid planning belongs
to poly-APX. ⊓⊔

The general Grid planning algorithm appears rather primitive, and one
might hope that it is possible to improve on the performance ratios it obtains.
However, the following result shows that there are limits to such improve-
ments, placing general Grid planning in a different approximation class than
the variant with static roadmaps.

Note that neither of the two earlier hardness proofs forGrid planning [55]
can be easily adapted to show the following non-membership result. One of
them reduces from the Travelling Salesperson Problem for grid graphs
and can only be used to show non-membership in PO, as the generated Grid

instances admit a polynomial-time approximation scheme. The other reduces
from the 3SAT problem and maps to a subclass of Grid tasks which is
2-approximable. A new reduction is thus needed. It is based on a proof by
Robert Mattmüller [86] with only minor modifications.

Theorem 6.8.2. Plan-Grid /∈ APX

If P 6= NP, there exists no constant-factor approximation algorithm for Grid

planning.

Proof. We OP-reduce from Minimum Set Cover. We are given a Minimum

Set Cover instance I = 〈S,C〉 with S = {s1, . . . , sn} and C = {C1, . . . , Ck}
and a parameter r > 1. Let w = max{n, k}, M = (4w + 15)|S| and B =

2
⌈

M
r−1 +M

⌉
. The corresponding Grid task T ′ is defined as follows:

– The grid has width w+1 and height B+5. We refer to the locations of T ′

as pairs 〈x, y〉 ∈ {0, . . . , w} × {0, . . . , B + 4}. The robot is initially located
at 〈0, B〉.

– For each subset Cj ∈ C, there is one key kj initially located at 〈j, 0〉. These
keys are called subset keys.

– For each subset Cj ∈ C and element si ∈ Cj , there is one key kj,i initially
located at 〈j, B + 1〉. These keys are called subset element keys.

– For each element si ∈ S, there is one key k+i initially located at 〈i, B + 3〉
with goal location 〈i, B + 4〉. These keys are called goal keys.

– The initially locked locations are exactly the initial locations of the subset
element keys and goal keys.

– Each subset key kj may unlock location 〈j, B + 1〉, the initial location of
the corresponding subset element keys.

– Each subset element key ki,j may unlock location 〈i, B + 3〉, the initial
location of the goal key corresponding to si.

– Goal keys may not unlock any location.
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To map back a plan π′ for T ′ to a set cover D for I, include a set Cj in D
iff the corresponding subset key kj is used to open a door in π′. To see that
D constitutes a set cover, consider an arbitrary element si ∈ S. The initial
location of the goal key k+i is initially locked and must be opened in π′ by
some subset element key ki,j satisfying si ∈ Cj . Choose j in such a way that
ki,j is this key. Using ki,j requires opening its initial location, which is only
possible with kj , and hence, by the definition of D, the set Cj is included in
D. Because si ∈ Cj and si ∈ S was chosen arbitrarily, this shows that D is
indeed a set cover.

Due to the very large distance between the initial locations of subset keys
and the initial locations of subset element keys and since only one key can be
carried at a time, fetching the subset keys is the bottleneck of any plan, and
good plans will make use of as few subset keys as possible. Formally, for each
subset Cj ∈ D, the plan π′ must contain at least 2B movements to move from
row y ≥ B (containing the initial robot location and subset element keys) to
row 0 (containing the subset keys) and back, and hence m(D) ≤ 1

2Bm(π′).
We now bound m∗(T ′) in terms of m∗(I). Let D∗ ⊆ C be an optimal set

cover. Then the following plan π′ solves T ′:

– For each subset Cj ∈ D∗, do the following:
1. Move from 〈0, B〉 to 〈j, 0〉, pick up the subset key for Cj , move to 〈j, B〉,

open location 〈j, B + 1〉, move to 〈j, B + 1〉, drop the key.
2. For each element si ∈ Cj for which the goal key has not yet been moved

to its goal location, pick up the element key kj,i, move from 〈j, B + 1〉
to 〈i, B +2〉, open location 〈i, B +3〉, move to 〈i, B+3〉, switch key kj,i
with the goal key k+i , move to 〈i, B + 4〉, drop the key, move back to
〈j, B + 1〉.

3. Move back from 〈j, B + 1〉 to 〈0, B〉.

For each iteration of step 1., no more than 2B+w+4 actions are required
(note that j ≤ w), so the sum over all iterations is bounded by (2B + w +
4)|D∗|. For each goal key in step 2., no more than 2w+10 steps are required
(note that i, j ≤ w), summing to (2w + 10)|S| over all iterations. Finally,
for each iteration of step 3., at most w + 1 steps are required, for a sum of
(w+1)|D∗| over all iterations. We thus obtain m∗(T ′) ≤ m(π′) ≤ (2B+2w+
5)|D∗| + (2w + 10)|S| ≤ 2B|D∗|+ (4w + 15)|S| = 2Bm∗(I) +M , where the
last inequality is because |D∗| ≤ |S|.

This allows us to bound the performance ratio of the set cover D con-
structed from a plan π′ for the Grid task T ′ as follows:
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m(D)

m∗(I)
≤

1
2Bm(π′)

1
2B (m∗(T ′)−M)

=
m(π′)

m∗(T ′)−M
≤

rm∗(T ′)

m∗(T ′)−M

= 1 +
(r − 1)m∗(T ′) +M

m∗(T ′)−M
= 1 + (r − 1)

m∗(T ′) + M
r−1

m∗(T ′)−M

= 1 + (r − 1)

(
1 +

M
r−1 +M

m∗(T ′)−M

)

(∗)
≤ 1 + (r − 1)

(
1 +

1
2B

B − 1
2B

)
= 1 + (r − 1) · 2,

where inequality (∗) holds because 1
2B ≥ M

r−1 +M , 1
2B ≥ M and we can

assume that m∗(T ′) ≥ B; otherwise, I is solved by the empty set cover
and thus trivial. Moreover, the reduction is optimization-preserving because
m∗(I) ≤ K iff m∗(T ′) ≤ 2BK +M for all K ∈ N0. ⊓⊔

Having observed that the hardness of approximately solving Grid tasks
is largely due to the necessity of opening locations, one question is just how
hard Grid planning with static roadmaps is. We know that it is not in
PO unless P = NP, and we know that it is in APX. Indeed, using Arora’s
approximation scheme for route planning in grid graphs [5], we can devise (2+
ε)-approximations for all ε > 0, using techniques based on the approximation
algorithm described by Mattmüller [86]. However, we do not know whether
it is possible to improve on this result further and obtain a polynomial-
time approximation scheme for Grid with static roadmaps. At least, there
appears to be no easy way to adapt Arora’s technique to this problem, and
we hypothesize that no such approximation scheme exists.

Besides general Grid planning and the case of static roadmaps, another
variant that is of some interest is the restriction to uniform locks, i. e., tasks
where any given key may either unlock no door or all doors. This class of
tasks is relevant because it includes all Grid benchmarks from the first In-
ternational Planning Competition. It is not hard to prove that this variant of
Grid planning still admits a constant-factor approximation algorithm [86].

6.9 Driverlog

We now turn to the Driverlog domain, the last proper transportation
benchmark we will discuss. In a Driverlog task, a fleet of trucks of un-
bounded capacity transport packages to their goal destinations. All trucks
use the same roadmap, which can be an arbitrary connected graph. At this
level of description, the domain is equivalent to Transport∞+. However, in
addition to trucks, locations and packages, the domain also features drivers.
Drivers are like trucks in being able to traverse locations on their own (using
a different roadmap than trucks, though). However, unlike trucks, they can-
not transport packages. The important property of drivers is that they can
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board trucks, and only trucks which have been boarded by a driver are able
to move. We will see that this aspect of the problem leads to an increase in
complexity.

Definition 6.9.1. Driverlog task
A Driverlog task is defined by a 7-tuple 〈GT, GD, T,D, P, l0, l⋆〉 with the
following components:

– GT = 〈V,ET〉 is a connected graph called the road graph. Its vertices V
are called locations, its edges roads.

– GD = 〈V,ED〉 is a connected graph called the footpath graph. Its edges
are called footpaths. Note that it shares the same vertex set as the road
graph.

– T is a finite set of trucks.
– D is a finite set of drivers.
– P is a finite set of packages. We require that T , D and P are disjoint.
– l0 : T ∪D ∪ P → V is the initial location function.
– l⋆ is a partial function from T ∪D∪P to V called the goal location func-
tion. Its domain is called the set of goal objects; we distinguish between
goal trucks, goal drivers and goal packages.

The definition contains few surprises, maybe apart from the fact that
unlike the other transportation domains we study, Driverlog tasks may
also include goal locations for the mobiles (trucks), and for the drivers. We
now define the domain.

Definition 6.9.2. Driverlog domain
The Driverlog domain maps Driverlog tasks with locations V , trucks
T , drivers D and packages P to state spaces as follows:

States: Functions l : T ∪ D ∪ P → V ∪ T , where only drivers and
packages may be mapped to trucks. For any object o ∈ T ∪
D ∪ P , location v ∈ V and truck t ∈ T we say that o is at v
if l(o) = v and that o is in t if l(o) = t.

Initial state: The initial location function of the task.
Goal states: Any state extending the goal location function of the task.
Operators: A driver may walk to a location v′ ∈ V iff it is at some

adjacent location in the footpath graph. This results in the
driver being at v′. Walk actions have a cost of 2.
A driver may board a truck iff they are at the same location
and there is no driver in the truck. This results in the driver
being in the truck.
A driver may leave a truck iff it is in the truck. This results
in the driver being at the same location as the truck.
A truck may drive to a location v′ ∈ V iff it is at some
adjacent location in the road graph and there is some driver
in it. This results in the truck being at v′.



6.9 Driverlog 107

A truck may pick up a package iff they are at the same
location. This results in the package being in the truck.
A truck may drop a package iff the package is in the truck.
This results in the package being at the same location as the
truck.

Our model is close to the original PDDL definition. The only difference is
that the PDDL definition simulates costs of 2 for walk actions by introducing
intermediate locations in the footpath graph which are never used as initial
or goal locations. The definition with action costs is clearer and more concise.

We first show that Driverlog planning can be solved in polynomial
time.

Theorem 6.9.1. Driverlog ∈ poly-APX

The planning problem for Driverlog is poly-approximable,

Proof. Consider the following algorithm:

– For each goal package which it is not at its goal location, walk to the
initial location of some truck with some driver along a shortest path in the
footpath graph, board the truck, drive the truck to the initial location of
the package along a shortest path in the road graph, pick up the package,
drive the truck to the goal location of the package along a shortest path in
the road graph, drop the package, leave the truck.

– For each goal truck which is not at its goal location, walk to the initial
location of the truck with some driver along a shortest path in the footpath
graph, board the truck, drive to its goal truck location along a shortest
path, leave the truck.

– For each goal driver who is not at his goal location, walk to that goal
location along a shortest path in the footpath graph.

The algorithm runs in polynomial time, generating a solution if the task is
solvable and failing otherwise. (The latter can only happen for tasks that
have no truck or no driver.) ⊓⊔

We now show that generating good-quality plans in the Driverlog do-
main is difficult.

Theorem 6.9.2. Driverlog /∈ APX

If P 6= NP, there exists no constant-factor approximation algorithm for
Driverlog planning. This is true even when restricting the problem to tasks
where there is only a single driver and all goal objects are packages.

Proof. As in the previous non-approximability proofs, we OP-reduce from
Minimum Set Cover. We are given a Minimum Set Cover instance I =
〈S,C〉 and a parameter r > 1. We first check if I is solvable; if not, it is
mapped to some fixed unsolvable Driverlog task. If it is, let M = 16|S|

and B = 2
⌈

M
r−1 +M

⌉
and construct the Driverlog task T ′ defined as

follows:
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– There is a location vH called the hub.
– There are B startup locations v10 , . . . , v

B
0 , with footpaths connecting v10

to the hub and vi0 to vi+1
0 for all i < B. The only driver is originally located

at vB0 . The sequence of B footpaths connecting vB0 to the hub is called the
startup path.

– For each subset Ŝ ∈ C, there are B locations v1
Ŝ
, . . . , vB

Ŝ
. There are foot-

paths connecting the hub to v1
Ŝ
and each location vi

Ŝ
with i < B to the next

location vi+1

Ŝ
. Location vB

Ŝ
is called the subset location corresponding to

Ŝ; the path connecting it to the central location is called the subset path
for Ŝ. Each subset location is the initial location of a truck with no defined
goal.

– For each subset Ŝ ∈ C and element s ∈ Ŝ, there is a subset element
location v

Ŝ,s
, connected to subset location v

Ŝ
by a road.

– For each element s ∈ S, there is an element start location v−s and
an element goal location v+s , connected by a road. The element start

location is connected to each subset element location v
Ŝ,s

for subsets Ŝ
containing s by a footpath. Also for each element s ∈ S, there is a truck and
a package initially located at the element start location v−s . The truck has
no defined goal, and the goal location of the package is the corresponding
element goal location v+s .

– Finally, there is an additional remote location, connected to all other
locations through very long chains of roads and footpaths such that the
distance between the remote location and the locations introduced before is
at least 4B|C|. (The only purpose of this location is to make the road and
footpath graphs connected, as required by the definition of Driverlog

tasks.)

To map back a plan π′ for T ′ to a set cover D for I, first check if m(π′) ≥
4B|C|. If yes (the trivial case), map it back to the trivial set cover C.
Otherwise (the non-trivial case), we can assume that the remote location is

not visited in the plan. In this case, include a set Ŝ in D iff the corresponding
subset location vB

Ŝ
is visited by the driver in π′.

We now show that D is indeed a set cover and that m(D) ≤ 1
4Bm(π′). In

the trivial case, both statements are apparently true, so let us consider the
non-trivial case.

In order to transport any of the packages in π′ to their goal location, the
driver must first walk along the startup path to the hub, then on to some
subset location for a subset Ŝ ∈ C. Once the subset location is reached, the
only packages that can be transported to their goal location without walking
the driver back to the hub are those corresponding to the elements of Ŝ.
Unless these already constitute a set cover, the driver must thus eventually
return to the hub. Due to the placement of the trucks and the road layout,
all trucks will be at the same locations as initially at that point. Therefore,
the driver is essentially in the same situation as initially, except that some
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of the goal packages have been delivered. To transport further goal packages
to their destinations, the driver must again walk to the subset location for a
subset containing an element corresponding to such a package, from where
it is possible to satisfy the goals related to the elements of that subset, and
so on, visiting additional subset locations and thus adding more subsets to
D until all goals are satisfied. This proves one half of our claim: D indeed
constitutes a set cover.

To see that m(D) ≤ 1
4Bm(π′), it is sufficient to consider the actions in

π′ corresponding to traversals of the startup path or subset paths. If m(D)
subset locations are visited in π′, then the driver must traverse a subset path
at least 2m(D) − 1 times (m(D) times coming from the hub and m(D) − 1
times returning to the hub) and traverse the startup path once. Each of these
traversals requires B walk actions, each of which has a cost of 2, for a total
cost of 4Bm(D). We thus getm(π′) ≥ 4Bm(D) and hence m(D) ≤ 1

4Bm(π′).
We now bound m∗(T ′) in terms of m∗(I). Let D∗ ⊆ C be an optimal set

cover. Then the following plan π′ solves T ′:

– For each set Ŝ ∈ C∗:
1. Walk to the hub and then to subset location vB

Ŝ
on a shortest path.

2. For each s ∈ Ŝ such that the package initially located at v−s is not yet at
its goal location, board the truck at the subset location vB

Ŝ
, drive to the

subset element location v
Ŝ,s

, debark, walk to the element start location

v−s , board the truck there, load the package, drive to the element goal
location v+s , unload the package, drive back to v−s , debark, walk back to
v
Ŝ,s

, board the truck, drive back to vB
Ŝ

and debark.

The actions in step 1. of the plan amount to a total cost of 4B|C∗| =
4Bm∗(I): In each iteration, B walk actions are needed to walk to the hub
(either from the initial location or from some subset location), and B walk

actions are needed to walk from the hub to the subset location for Ŝ. Each
of these walk actions incurs a cost of 2.

The actions in step 2. of the plan amount to a total cost of 16 for each
package being delivered (2 walk actions and 12 other actions), for a total cost
of 16|S| =M for the complete plan. Thus, m∗(T ′) ≤ m(π′) = 4Bm∗(I)+M .

This allows us to bound the performance ratio of the set cover D con-
structed from a plan π′ for the Driverlog task T ′ as follows:
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m(D)

m∗(I)
≤

1
4Bm(π′)

1
4B (m∗(T ′)−M)

=
m(π′)

m∗(T ′)−M
≤

rm∗(T ′)

m∗(T ′)−M

= 1 +
(r − 1)m∗(T ′) +M

m∗(T ′)−M
= 1 + (r − 1)

m∗(T ′) + M
r−1

m∗(T ′)−M

= 1 + (r − 1)

(
1 +

M
r−1 +M

m∗(T ′)−M

)

(∗)
≤ 1 + (r − 1)

(
1 +

1
2B

B − 1
2B

)
= 1 + (r − 1) · 2,

where inequality (∗) holds because 1
2B ≥ M

r−1 +M , 1
2B ≥ M and we can

assume that m∗(T ′) ≥ B; otherwise, I is solved by the empty set cover
and thus trivial. Moreover, the reduction is optimization-preserving because
m∗(I) ≤ K iff m∗(T ′) ≤ 4BK +M for all K ∈ N0. ⊓⊔

We remark that the hardness of Driverlog planning is indeed to a major
extent due to the complications introduced by drivers. Interestingly, we can
prove a similar hardness result for the restriction of Driverlog to the case
where there are no packages. This only requires some minor modifications to
the proof. The packages are removed. Instead, we introduce a new location
v+s for each s ∈ S, which is adjacent to v+s on the road graph, but not on the
footpath graph. We call these locations the twins of v+s . There are no further
roads or paths connecting twins to other locations (apart from long roads and
paths to the remote location to ensure connectedness.) Moreover, in addition
to the original driver, which we now call the main driver, we introduce two
new drivers for each element s, one with v+s as the initial location and its
twin as a goal location (called the goal driver for s), and one with the twin
as the initial location and v+s as the goal location (called the twin goal driver
for s).

The main ideas of the reduction apply unchanged; it is still necessary to
move the main driver to enough subset locations to cover all set elements.
Moreover, the length of the plan corresponding to an optimal set cover does
not change significantly: the pickup and drop actions are no longer required,
and instead, whenever a location v+s is entered by a truck driven by the
main driver, the following sequence of actions is generated: debark from the
truck, board it with the goal driver, drive to the twin location, debark, board
with the twin goal driver, drive back, debark, and board the truck with the
main driver. To reflect these modification in the calculations, we only need
to change the definition of M from 16|S| to 22|S|.

6.10 Airport

The last domain considered in this chapter, Airport, is not a transportation
domain, but it has some aspects of a route planning domain, so it is natural
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to discuss it here. It models ground traffic on an airport, i. e., movement of
aircraft along taxiways and runways. Unlike other route planning domains,
Airport tasks are heavily space-constrained: Not only can any given loca-
tion (called a taxiway segment) only be occupied by one aircraft at a time,
there even exist mutual exclusion constraints between segments to the effect
that at most one of them may be occupied at a given time. The purpose of
these constraints is to model realistic safety conditions. Indeed, the Airport

domain is firmly grounded in real-world planning tasks, and some of the IPC4
benchmarks are faithful translations of realistic data from Munich Airport.

Definition 6.10.1. Airport tasks
The set of movement modes for aircraft is defined as M = {pushing,
taxiing, airborne, parked}.

An Airport task is defined by a 9-tuple 〈A,S,RT, RP, RB,m0, s0,m⋆, s⋆〉
with the following components:

– A is a finite set of aircraft.
– S is a finite set of taxiway segments.
– RT ⊆ S × S is the taxiway relation.
– RP ⊆ S × S is the pushback relation.
– RB ⊆ S × S is the blocking relation.
– m0 : A→ {pushing, taxiing} is the initial mode function.
– s0 : A→ S is the initial segment function.
– m⋆ : A→ {airborne, parked} is the goal mode function.
– s⋆ : A→ S is the goal segment function.

The directed graphs GT = 〈S,RT〉, GP = 〈S,RP〉 and GB = 〈S,RB〉
are called the taxiway graph, pushback graph and blocking graph of the
task.

The task is called undirected iff RT, RP and RB are symmetric, planar
iff 〈S,RT ∪ RP〉 is a planar digraph, and regularly constrained iff RT =
RP = RB.

The Airport tasks of IPC4 obey two restrictions not captured by our
definition. First, there are no aircraft whose initial mode is pushing and
goal mode is parked. This would make little sense as the pushing mode is
associated with outbound aircraft only and the parked mode is associated
with inbound aircraft only. Second, the pushback graph is always a subgraph
of the taxiway graph with all arcs reversed. Neither restriction has an impact
on the complexity of the problem because our hardness results already hold
if there are no pushing aircraft at all.

We also omitted some aspects of the PDDL definition [63] to simplify
presentation. First, we do not distinguish between the location and facing
of an aircraft, encoding both properties in its current segment. Compilations
between these two representations are straightforward.

Second, the PDDL domain allows the blocking relation to depend on the
aircraft (via airplane types); however, none of the existing benchmarks makes
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use of this feature. Modelling airplane types would not affect our complexity
results, because we shall see that, even without airplane types, Airport

planning is already as hard as it is possible for a propositional PDDL planning
domain.

Definition 6.10.2. Airport domain
The Airport domain maps Airport tasks with aircraft A, taxiway seg-
ments S and blocking relation RB to state spaces as follows:

States: Pairs 〈m, s〉, where m : A → M is the current mode
function and s : A → S is the current segment func-
tion. We say that an aircraft is pushing (is taxiing,
is airborne, is parked) iff its current mode is pushing

( taxiing, airborne, parked).
We call a state legal iff it satisfies the following blocking
constraints:
– If two aircraft share the same current segment, at least
one must be airborne.

– If an aircraft with current segment u is pushing or taxiing
and another aircraft with current segment v is pushing,
taxiing or parked, then 〈u, v〉 /∈ RB.

Initial state: 〈m0, s0〉, where m0 is the initial mode function and s0 is the
initial segment function of the task.

Goal states: 〈m⋆, s⋆〉, where m⋆ is the goal mode function and s⋆ is the
goal segment function of the task.

Operators: An airplane may move to v if its current segment is u and
either it is taxiing and 〈u, v〉 is an arc in the taxiway graph,
or it is pushing and 〈u, v〉 is an arc in the pushback graph.
This changes the current segment of the airplane to v.
An airplane may start up if it is pushing. This results in it
taxiing.
An airplane may take off if it is taxiing. This results in it
being airborne.
An airplane may park if it is taxiing. This results in it being
parked.
All these actions are only allowed if the resulting state is
legal.

OurAirport state spaces are defined slightly differently from the original
PDDL specification, but have identical semantics. In the PDDL definition,
aircraft “leave the map” when taking off, and they can only take off from
specific runway segments. We ignore airborne aircraft for blocking purposes,
which amounts to the same thing as having them leave the map, and while
we allow take-off everywhere, it never makes sense to take off from a differ-
ent segment than the goal segment of that airplane, and goal segments of
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outbound aircraft are always runway segments. The PDDL domain also con-
tains a minor modelling flaw that allows aircraft to park immediately before
take-off. However, this is never a useful thing to do and hence cannot affect
complexity.

Theorem 6.10.1. Airport planning is PSPACE-complete
Plan existence and bounded plan existence for the Airport domain are
PSPACE-complete. This is true even when only considering undirected, pla-
nar, regularly constrained tasks where all aircraft are taxiing initially and
must be parked in the goal state.

Proof. For a graph G = 〈V,E〉 and a set of tokens T , we define a legal
placement of T on G as an injective function π : T → V such that no two
tokens are placed on adjacent vertices. A legal placement π′ is a successor of
another legal placement π iff they differ on exactly one token t ∈ T , for which
we have {π(t), π′(t)} ∈ E. In other words, to obtain a successor of a legal
placement, move a single token along an edge and verify that this results in
another legal placement.

We show PSPACE-hardness of Airport plan existence by polynomially
reducing from the following (PSPACE-complete) variation of the Sliding To-

kens problem [51]: Given a planar graph G, set of tokens T and legal place-
ments π0, π⋆ of T on G, is there a sequence of legal placements π1, . . . , πM
such that πi is a successor of πi−1 for all i ∈ {1, . . . ,M} and πM = π⋆? (In
the original Sliding Tokens puzzle, tokens are indistinguishable and the goal
has a slightly different form. Only simple adjustments to the hardness proofs
are needed for the modified version; cf. Theorem 23 and Corollary 6 in the
reference [51].)

We now describe the mapping of puzzle instances toAirport tasks. Given
graph G = 〈V,E〉, tokens T and placements π0 and π⋆, we generate an
Airport task with segment set V , aircraft set T , taxiway graph G, pushback
graph G and blocking graph G, initial segment function π0 and goal segment
function π⋆. All aircraft are taxiing in the initial state and must be parked
in the goal state. Clearly, the mapping can be computed in polynomial time.

No solution to the planning task can ever contain push, start up or take
off actions, so we only need to consider move and park actions. If the plan-
ning task has a solution, then the sequence of move actions in such a solution
defines a solution to the puzzle instance. Note that if a taxiing aircraft ever
moved to a segment which is adjacent to the current segment of another (taxi-
ing or parked) aircraft, this would violate the blocking constraints. Similarly,
from a solution to the puzzle we can obtain a sequence of actions that move
each aircraft to its goal location without violating the blocking constraints,
and from that state the task is solved by parking all aircraft. Therefore, the
mapping is indeed a Karp reduction.

Thus, plan existence for restricted Airport tasks is PSPACE-hard, which
implies that bounded plan existence is also PSPACE-hard. Moreover, both
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problems must belong to PSPACE because PDDL planning in any fixed propo-
sitional domain is in PSPACE. This concludes the proof. ⊓⊔

The reduction implies that there exist Airport tasks for which the short-
est plan consists of exponentially many actions. For example, the shortest
solution to the puzzle corresponding to a QBF formula with n quantifier al-
ternations consists of Ω(2n) many steps [51], leading to an Airport task
with a similarly bounded solution length.

Theorem 6.10.2. Plan-Airport ∈ EXPO \ NPS
The planning problem in the Airport domain can be optimally solved in
exponential time, and it cannot be solved (not even sub-optimally) in sub-
exponential time.

Proof. The problem is solvable in exponential time by explicit graph search in
the state space of the given task. Sub-exponential planning algorithm cannot
exist because there are tasks with exponential lower bounds on shortest plan
length. ⊓⊔

We remark that these results for Airport also extend to parallel planning
problems. In particular, parallel solutions can only be shorter than sequential
ones by a linear amount, because at most O(n) many actions can be executed
in parallel (one per aircraft).

As a final remark, we have also proved another polynomial reduction
from the halting problem for polynomially space-constrained Turing Ma-
chines, which only generates deterministic Airport tasks, i. e., instances
where at most one action is applicable at any time. Therefore, Airport

planning is difficult even if no branching is involved. However, the reduc-
tion is less interesting for practical purposes because the generated tasks are
neither undirected, nor planar, nor regularly constrained.

6.11 Summary

This concludes our discussion of route planning and transportation planning
in the IPC benchmark suite. We showed that the planning problems for
this class of domains spans almost the full range of approximation classes,
including PO, APX, poly-APX, NPO and EXPO. The main results from this
chapter are briefly summarized in Fig. 6.1.
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Domain Complexity
Airport EXPO \ NPS
Depots APX \ PTAS
Driverlog poly-APX \ APX
Grid poly-APX \ APX
Gripper PO
Logistics APX \ PTAS
Miconic-10-FullADL NPO \ PS
Miconic-10-SimpleADL APX \ PTAS
Miconic-10-STRIPS APX \ PTAS
Mystery NPO \ PS
MysteryPrime NPO \ PS
Rovers poly-APX \ APX
Zenotravel APX \ PTAS

Fig. 6.1. Complexity results for the IPC transportation domains (if P 6= NP)
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7. IPC Domains: Others

In this chapter, we discuss the complexity of planning in those IPC domains
which cannot be considered variants of transportation or route planning.
There is no common theme to these domains, and consequently, the results
presented for the different domains do not build on each other or on the
results presented in the previous two chapters.

Unlike the transportation and route planning benchmarks, we will en-
counter comparatively few (in fact, only two) domains in which there is a
difference in complexity between optimal and sub-optimal planning. Conse-
quently, we can mostly rely on the classical methods of complexity theory
throughout this chapter.

We consider nine domains, two of which (Promela and Pipesworld)
are further subdivided: Assembly (Section 7.1), Blocksworld (Section
7.2), FreeCell (Section 7.3), Movie (Section 7.4), Pipesworld (Section
7.5), Promela (Section 7.6), PSR (Section 7.7), Satellite (Section 7.8),
and Schedule (Section 7.9). The chapter again ends with a brief summary
of results (Section 7.10).

7.1 Assembly

The first domain considered in this chapter, Assembly, models the con-
struction of composite objects from parts which may themselves be composite
objects.

Definition 7.1.1. Assembly tasks
An Assembly task is defined by a 7-tuple 〈C, T,R, Pp, Pt, (≺+

c )c∈C , (≺−
c )c∈C〉

with the following components:

– C is a finite set of components.
– T is a finite set of tools.
– R ⊆ C × T is called the tool requirements relation. For 〈c, t〉 ∈ R, we
say that c requires t.

– Pp ⊆ C×C is the permanent part relation. The associated digraph must
be a directed tree, the root of which is called the root component. For each
component c, the components c′ with 〈c, c′〉 ∈ Pp are called the permanent
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parts of c. Each component must either have no permanent parts, in which
case it is called atomic, or at least two permanent parts, in which case it
is called composite.

– Pt ⊆ C×C is the transient part relation, which must be disjoint from the
permanent part relation. The union of the two relations, called the part
relation, must be acyclic. For each component c, the components c′ with
〈c, c′〉 ∈ Pt are called the transient parts of c, and the set of components
which are either permanent or transient parts of c are called parts of c.

– For each component c, the assembly order ≺+
c is a partial order on the

parts of c.
– For each composite c, the removal order ≺−

c is a partial order on the
parts of c such that c′ ≺−

c c′′ only if c′′ is a transient part of c.

Intuitively, the objective of an Assembly task is to build an object (the
root component) from its constituent parts. This requires recursively building
the constituents, down to the level of composites which only have atomic
parts. Composites are assembled from their parts by adding one part at a
time, with the possible orderings restricted by the assembly order.

In addition to being assembled, composites can be disassembled, also sub-
ject to ordering constraints. Here, we distinguish between permanent parts
and transient parts of the composite. Permanent parts may only be removed
if no installed part of the composite appears later in the assembly order. In
other words, it is not allowed to remove a permanent part p1 from a com-
posite p if another part p2 with p1 ≺+

p p2 is installed. Transient parts are
different in that their removal is not subject to these constraints, but instead
must respect different requirements: Transient part p2 may only be removed
from p if all parts p1 with p1 ≺−

p p2 are already installed. Another difference
between transient and permanent parts is that transient parts must be re-
moved for completion of the composite (justifying their name). This implies
that the transient parts of a composite are again available for use as parts
after the composite has been built, so that it is possible for a component to be
a transient part of several composites and a permanent part of yet another.

Finally, some assemblies must have tools allocated to them whenever an
object is installed into them or removed from them.

Definition 7.1.2. Assembly domain
The Assembly domain maps Assembly tasks with components C and tools
T to state spaces as follows:

States: Pairs 〈i, a〉, where i : C → C∪{⊥} is the installation func-
tion and a : T → C ∪ {⊥} is the tool allocation function.
We say that a component c ∈ C is installed in c′ ∈ C iff
i(c) = c′, that it is complete iff the components installed in
it are exactly its permanent parts, and that it is available
iff it is complete and i(c) = ⊥.
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We say that a tool t ∈ T is allocated to c ∈ C iff a(t) = c,
that it is unallocated iff a(t) = ⊥, and that a component
c ∈ C is prepared iff all tools it requires are allocated to it
and i(c) = ⊥.

Initial state: 〈∅, a⊥〉, where a⊥ denotes the constant function mapping to
⊥.

Goal states: Any state where the root component is complete.
Operators: A part c′ of a component c may be incorporated into c iff c

is prepared, c′ is available, and all components c′′ with c′′ ≺+
c

c′ are installed in c. In the resulting state, c′ is installed in
c.
A permanent part c′ of a component c may be removed from
c iff c is prepared, c′ is installed in c, and no component c′′

with c′ ≺+
c c′′ is installed in c. In the resulting state, c′ is no

longer installed in c.
A transient part c′ of a component c may be removed from
c iff c is prepared, c′ is installed in c, and all components c′′

with c′′ ≺−
c c′ are installed in c. In the resulting state, c′ is

no longer installed in c.
A tool t may be assigned to a component c iff it is unallo-
cated. In the resulting state, t is allocated to c.
A tool t may be released from a component it is allocated
to. In the resulting state, t is unallocated.

After the earlier intuitive explanation of Assembly tasks, this definition
should contain few surprises. However, it significantly differs from the PDDL
definition, and in a way that affects planning complexity. In particular, in the
PDDL definition, once a component has become complete, it stays complete,
even if it is disassembled into its parts.

For example, consider the (impossible) task of creating a rectangular table
with four legs and an oval table with four legs out of a rectangular board, an
oval board and four legs. In the IPC1 domain specification, it is possible to
build the rectangular table out of the rectangular board and the four legs,
remove the legs (which leaves the rectangular table in its complete state)
and then use the legs and the oval board to build the oval table, creating two
tables. This is a major modelling problem which we do not want to reproduce
in our definition.

However, this means that our results are not directly applicable to the
Assembly domain in the form in which it has been used as a benchmark.
It turns out that this is not so problematic. First, although the domain was
part of the ADL track of IPC1, neither of the two participating ADL plan-
ning systems was able to solve a single competition task, so the domain can
hardly be considered an important benchmark, given the lack of empirical
data available. Second, although there are now planning systems available
which can solve Assembly tasks, the use of the Assembly suite as a bench-
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mark is hampered by the fact that six of the tasks (namely tasks 7, 12–14, 19
and 27) are syntactically flawed, i. e., invalid PDDL. (Our experiments with
Assembly in the second part of this thesis use a corrected task suite, where
we tried to correct these problems in the way that seemed most reasonable
to us.)

Before we discuss the complexity of Assembly planning in the “cor-
rected” domain, let us briefly point out that the planning problem for the
competition domain is at least 2-approximable: One can always solve the task
by sorting the components in a way consistent with the part-of relation, then
build each part in sequence by assigning all required tools to it, incorporat-
ing all parts in a suitable order, removing all parts in a suitable order, and
releasing all required tools. At least all assign and incorporate actions are
necessary in every solution, and there are as many actions of this type as
other actions, so this plan has a performance ratio of at most 2.

We now present our main result for the Assembly domain.

Theorem 7.1.1. Plan-Assembly ∈ EXPO \ NPS
The planning problem in the Assembly domain can be optimally solved in
exponential time, and it cannot be solved (not even sub-optimally) in sub-
exponential time.

Proof. The problem is solvable in exponential time with explicit graph search
in the state space of the given task. Sub-exponential planning algorithm can-
not exist because there are tasks with exponential lower bounds on shortest
plan length. We prove this by presenting a family (Tn)n∈N1

of planning tasks
with task size polynomially bounded in n and m∗(Ti) ≥ ci for all i ∈ N1 for
some constant c > 1.

For all n ∈ N1, task Tn includes atomic components ai and bi for all
i ∈ {1, . . . , n}, composite components Ci for all i ∈ {1, . . . , n}, and no tools.
Composite C1 has two permanent parts, a1 and b1. All other composites
Ci have three permanent parts, ai, bi and Ci−1. Moreover, composites Ci

for i ≥ 3 have i transient parts, namely Ci−2 and all components aj for
j ∈ {1, . . . , i−1}. The assembly and removal orders are given by the transitive
closure of the following orderings:

– ai ≺
+
Ci
bi for all i ∈ {1, . . . , n}.

– bi ≺
+
Ci
Ci−1 for all i ∈ {2, . . . , n}.

– Ci−2 ≺+
Ci
ai ≺

−
Ci
Ci−2 for all i ∈ {3, . . . , n}.

– aj ≺
+
Ci
bi ≺

−
Ci
aj for all i ∈ {3, . . . , n} and all j ∈ {1, . . . , i− 1}.

We now show that a shortest plan for Tn consists of at least Fn actions,
where Fn is the n-th Fibonacci number.

– Task T1 is optimally solved by incorporating a1 and then b1 in C1, leading
to a plan length of 2 ≥ F1.



7.2 Blocksworld 121

– Task T2 is optimally solved by incorporating a2, then a1, then b2 in C2,
removing a1 from C2, building C1 using a plan for T1, then incorporating
C1 in C2, leading to a total plan length of 7 ≥ F2.

– Task Tn for n ≥ 3 is optimally solved by first solving Tn−2 to complete
Cn−2, then incorporating Cn−2 and an in Cn, removing Cn−2 from Cn,
removing all components from Cj for j ≤ n − 2 in an appropriate order
to make the atomic components aj available, incorporating all components
aj for j < n in Cn, incorporating bn in Cn, removing all components aj
for j < n from Cn, solving Tn−1 to complete Cn−1, and then incorporating
Cn−1 in Cn. This requires completely solving the tasks Tn−2 and Tn−1, so
by induction we can prove that m∗(Tn) ≥ m∗(Tn−1)+m

∗(Tn−2). Together
with the lower bounds for m∗(T1) and m∗(T2), the claim follows.

Because Fibonacci numbers grow as Θ
((

1+
√
5

2

)n)
, this concludes the proof.

⊓⊔

Note that unlike the Airport domain considered in the previous chapter,
for which the planning problem also belongs to EXPO \ NPS, plan existence
for Assembly is not at all difficult to solve. In fact, Assembly tasks are
always solvable.

7.2 Blocksworld

As we observed in the introduction, the Blocksworld domain has already
been extensively studied in the planning literature. In particular, Selman has
shown that Blocksworld planning is 2-approximable and thus belongs to
APX, but does not admit a polynomial-time approximation scheme unless
P = NP [104]. Slaney and Thiébaux provide an overview of a number of
approximation algorithms for Blocksworld, show how to implement them
efficiently and provide empirical data for their approximation quality [105].
Owing to the extensive treatment in these two references, we do not need to
discuss this classical domain further.

7.3 FreeCell

The FreeCell domain is based on the popular solitaire card game with the
same name. The original card game is played with a standard deck of 52
cards, initially arranged into eight tableau piles of six or seven cards each.
Cards can be moved between these eight tableau piles, four free cells and
four foundation piles according to the following rules:

– Cards may only be picked up if they occupy a free cell or if they are the
top card of a tableau pile. No more than one card can be picked up at the
same time.
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– Cards may only be dropped in a free cell if it does not currently hold any
other card.

– Cards may only be added to a tableau pile (as its new top card) if that
pile is empty, or the value of the card is one less than the value of the top
card of the pile and it is of a different colour (e. g., the four of spades may
only be added to tableau piles with the five of diamonds or hearts as their
top card).

– Aces may be added to an empty foundation pile. Other cards may only be
added to a foundation pile if their value is one higher than the value of the
top card of the pile and they are of the same suit.

The objective of the game is to move all cards to foundations.
Due to the fixed deck size, the standard FreeCell game only allows

for a constant number of different initial configurations. This is not very
interesting from a complexity theory point of view, because problems with a
finite number of instances can trivially be decided in polynomial time. Thus,
it is necessary to allow varying deck sizes, either by adding new suits or by
adding cards to the existing suits.

Of these, we choose the latter, because it seems the more natural choice. In
fact, the planning competition tasks use the same scaling parameter, although
for these, deck sizes never exceed 52 cards and in most cases, fewer cards are
used. We also allow for a varying number of tableau piles and free cells, but
we will see that our hardness results already hold if the number of free cells
is any fixed constant.

Definition 7.3.1. FreeCell tasks
For all natural numbers n ∈ N0, Cn = {♦,♥,♣,♠}× {1, . . . , n} is called the
n-deck. Its elements are called cards. For a card 〈s, v〉, s is called its suit
and v is called its value. A card is called red if its suit is ♦ or ♥, and black
otherwise.

An n-w-tableau (n,w ∈ N0) is a set of at most w non-empty sequences
of cards in Cn, called tableau piles. Tableau piles may not contain the same
card twice, and two piles of a tableau may not have common cards. The last
card of a tableau pile is called its top card, the subsequence that is obtained by
removing the top card is called the buried part. A card c matches a tableau
pile iff c and the top card of the pile are of different colour and the value of
c is one less than the value of the top card.

A FreeCell task is defined by a 4-tuple 〈n,w, c, T0〉 with the following
components:

– n ∈ N0 is called the suit length.
– w ∈ N0 is called the tableau width.
– c ∈ N0 is called the free cell count.
– T is an n-w-tableau such that each card in Cn appears in exactly one tableau
pile. It is called the initial tableau.
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To readers acquainted with FreeCell, the previous definition should go
without much explanation. One slightly unusual aspect of the definition is
that initial tableaus of FreeCell tasks are not required to contain tableau
piles of (roughly) equal size, as is mandatory in the general game. This is
not an overgeneralization, because the height of tableau piles can be equal-
ized by adding additional cards of lowest value to the smaller piles. These
will be moved to foundations immediately in any reasonable plan, resulting
in the original uneven tableau. Moves of this kind are always optimal and
are hence performed automatically by most FreeCell computer programs.
(When computing performance ratios, one needs to be careful to properly
take account of such “automatic” actions. However, for FreeCell, we shall
see that deciding plan existence is already hard.)

We can now formally define the semantics of legal FreeCell moves by
defining the domain.

Definition 7.3.2. FreeCell domain
The FreeCell domain maps FreeCell tasks with suit length n and
tableau width w to state spaces as follows:

States: Pairs 〈T, F 〉, where T is an n-w tableau simply called the
tableau and F ⊆ Cn is a set of cards called the free cell
cards. We require that |F | is bounded by the free cell count
of the task and that the cards in T and the cards in F are
disjoint. Cards in Cn which are neither in the tableau nor
free cell cards are said to be in foundations.

Initial state: 〈T0, ∅〉, where T0 is the initial tableau of the task.
Goal states: 〈∅, ∅〉 (i. e., no cards are in the tableau or in free cells, so all

cards are in foundations.)
Operators: Operators are composed of pickup subactions and drop

subactions.
There are three kinds of pickup subactions for a given card
c ∈ Cn. Pickup from free cell is applicable iff c is a free
cell card and removes the card from the set of free cell cards.
Pickup from tableau pile is applicable iff c is the top card
of a pile in the tableau and removes the card from this pile.
Pickup from tableau is applicable iff c is the only card of
a pile in the tableau and removes the pile from the tableau.
There are four kinds of drop subactions for a given card
c ∈ Cn. Three of these are converse to the possible pickup
subactions: Drop on free cell is applicable iff the number
of free cell cards is less than the free cell count and adds the
card to the set of free cell cards. Drop on tableau pile is
applicable iff c matches some tableau pile and adds the card
to this tableau pile as the new top card. Drop on tableau
is applicable iff the number of tableau pile is less than the
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tableau width and introduces a new tableau pile consisting
only of c. The fourth drop subaction is drop in founda-
tions, which is applicable iff there is no lower-value card of
the same suit as c in the tableau or the set of free cell cards.
This subaction adds the card to foundations.
The operators of the task are movement actions, which are
defined as the compositions of pickup and drop subactions,
where first an applicable pickup subaction for card c and then
an applicable drop subaction for the same card c is applied
to the current state.

Note that there are two asymmetries between pickup and drop subactions:
First, cards can be dropped in foundations, but not picked up from there.
Second, cards that are picked up from tableau piles can only be dropped again
on that tableau pile if they match it. There is no general requirement that
the top card of a tableau pile matches the buried part; in particular, this is
generally not true in the initial tableau. (And indeed, if it were, then Free-

Cell planning would be trivial, as all cards could be moved to foundations
immediately.)

We will prove that FreeCell planning belongs to NPO but not to PS,
unless P = NP. The inclusion in NPO holds because the domain admits
short optimal plans. Non-membership in PS is due to hardness of the plan
existence problem. Because both parts of the overall proof are rather involved,
we present them separately, beginning with the short plan result.

Theorem 7.3.1. FreeCell admits short optimal plans
FreeCell admits short optimal plans.

Proof. We first note that there are only two kinds of subactions within Free-

Cell plans that cannot be undone immediately by applying an inverse sub-
action: dropping a card in foundations and picking up the top card c of a
tableau pile p where c does not match the buried part of p. If m is the num-
ber of cards of the task, then any plan will contain exactly m subactions
of the first and no more than m subactions of the second kind, because the
number of “mismatches” in the initial tableau is bounded by m. Thus, the
number of non-undoable actions is polynomial in the number of cards and
thus in the size of the instance. Therefore, we only need to come up with
a polynomial bound for the length of any consecutive sequence of undoable
actions appearing within an optimal plan.

To obtain this bound, we present an algorithm that, given an initial and
goal state such that the goal state can be reached from the initial state by only
using undoable actions, calculates a polynomial length action sequence that
accomplishes this state transition. We call this subproblem without “unsafe”
moves the safe FreeCell planning problem.

In fact, we do not bound the actual number of actions but the number
of macro moves (or macros) that are part of the plan, where a macro
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move is a sequence of actions that moves several cards C of a tableau pile –
potentially all of them – onto another tableau pile or to an empty position
in the tableau, by making use of free cells and empty tableau positions as
auxiliary storage. The component actions that form a macro only move cards
from C, but individual cards in C may be moved more than once. It is
possible for a macro to move only one card, so that macros generalize the
regular action set.

Macros using only free cells as auxiliary storage (free cell moves) can
move up to m+1 cards when m free cells are available. This is accomplished
by moving one card of the originating pile into each available free cell, then
moving the top card of that pile to its new location, then moving the cards
from the free cells to that location.

Let N(m, k) be the maximum number of cards that can be moved by
a macro move if m free cells and k empty table positions are available as
auxiliary storage, and let T (m, k) be the maximal number of actions required
for the macro. Clearly, N(m, 0) = m+ 1 and T (m, 0) = 2m+ 1.

Macro moves that use k > 0 free tableau positions to move a set of cards
C can be divided into three simpler sub-macros: First, move a subset of
cards C′ ⊆ C to an auxiliary tableau position with the first sub-macro, then
move the remaining cards C \ C′ to their final destination with the second
sub-macro, and finally move the cards C′ to the destination with the third
sub-macro.

To estimate how many cards can be moved in such a fashion, observe that
the first sub-macro moves |C′| cards and can use k−1 or k tableau positions as
auxiliary storage (depending on whether or not the overall macro moves to an
existing tableau pile or moves to a new tableau pile), and the second and third
sub-macro move |C′| and |C|− |C′| cards and can use k− 1 tableau positions
as auxiliary storage, as the tableau pile containing the cards C′ cannot be
used. Thus, we must have |C′| ≤ N(m, k − 1) and |C| − |C′| ≤ N(m, k − 1)
for an overall bound of |C| ≤ 2N(m, k − 1), so N(m, k) ≤ 2N(m, k − 1). On
the other hand, it is easy to see that it is possible to move 2N(m, k − 1) in
such a fashion, so we have N(m, k) = 2N(m, k − 1).

To estimate how many free cell moves this takes, observe that each of the
three sub-macros can use m free cells, and at least k − 1 auxiliary tableau
positions (having potentially more tableau positions available for the first sub-
macro can only reduce the amount of free cell moves required), so we have
T (m, k) ≤ 3T (m, k− 1). Solving these two recurrences, we obtain N(m, k) =
(m+ 1)2k and T (m, k) ≤ (2m+ 1)3k. For T (m, k), we are only interested in
an upper bound, so we set T (m, k) = (2m+ 1)3k.

Now assume we are applying a macro move which moves n cards. Clearly,
we can assume that at most k′ = ⌈log2 n⌉ auxiliary tableau positions are
used for the macro move, because this amount would be sufficient for the
macro move even if no free cell is available, as n ≤ N(0, k′). Moreover,
we can assume that at most m′ = n free cells are used for the macro
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move. Thus, the total number of actions for the macro move is bounded by
max0≤m≤m′,0≤k≤k′ T (m, k) = T (m′, k′) = (2n+ 1)3⌈log2 n⌉ ≤ (2n+ 1)3log2 n ·

3 = (6n + 3)n
3
2 = O(n

5
2 ). Thus, the number of actions required by a macro

move is polynomially bounded in the instance size. It is thus sufficient to show
that we can solve the safe FreeCell planning problem with polynomially
many macro moves to prove the overall result.

A card is called red-even if it is red and its value is even, or if it is
black and its value is odd. Otherwise, it is called red-odd. In tableau piles,
only red-even cards are added to red-even cards, and only red-odd cards are
added to red-odd cards. Consequently, the same adjectives can be used when
referring to tableau piles. The card on top of another card in a tableau pile
is called the son of that card.

The safe FreeCell problem can be solved in three stages: First, compact
the tableau by making all piles as big as possible, freeing up as many table
positions and free cells as possible. This can clearly be done with a polynomial
number of steps, because each card needs to be made the son of a given other
card as the effect of a macro move at most once.

Second, identify bad son cards, i. e., cards which have a son in both
the current and goal state, and the two son cards are of different suits (they
must have the same value and colour). As long as there are any bad son cards,
choose one of them with maximal value, apply a number of macro moves to
move all cards on top of the bad son card to other locations, using up as few
free cells and empty table positions as possible, then apply a macro move to
move the pile of cards with the correct son on top of the bad son card and
compact the tableau again. This card will now no longer be a bad son card.
Clearly, this takes a polynomial number of macro moves.

Only cards of lower value than the corrected card c are moved in this
process, which means that cards of a higher value than the corrected card
cannot become bad son cards as a result of these movements. We do not care
if cards of a lower value are made bad son cards, because this can be changed
by further iterations of the correction procedure. A card c′ of an equal value
but different colour cannot be made a bad son card because if c is red-even,
all cards moved are red-even and thus cannot be moved on top of c′, and if
c is red-odd, all cards moved are red-odd and again c′ is unaffected.

Finally, the card c′ of an equal value and colour but different suit as c
cannot be made a bad son card by this operation because if c′ has a son in
both the current and goal state, then it must be the correct one: Otherwise
the (newly corrected) son of c would have to be incorrect, too. Thus, after a
number of iterations of this correction procedure that is limited by the total
number of cards, there are no longer any bad son cards.

Once there are no more bad son cards, all that needs to be done to reach
the goal state is rearranging the piles in a way that is inverse to the com-
pacting procedure that formed the first step. The number of macro moves in
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this third part of the action sequence can consequently be bounded by the
same polynomial as for the first part.

Putting the different parts together, we conclude that there is an overall
polynomial bound on the number of actions in an optimal solution to a solv-
able FreeCell task, and thus the domain admits short optimal plans. ⊓⊔

This result establishes that FreeCell planning is in NPO. We now show
that this upper bound on complexity is also a lower bound.

Theorem 7.3.2. PlanEx-FreeCell is NP-hard
The plan existence problem for FreeCell is NP-hard, even when restricted
to tasks without free cells.

Proof. We reduce from 3SAT. Let 〈V,C〉 be a 3SAT instance, where V =
{v1, . . . , vn} is a set of variables and C is a set of clauses over V containing
exactly three literals each. We write li,j for the j-th literal of the i-th clause.
The corresponding FreeCell task is rather intricate and we encourage the
reader to keep a look at Fig. 7.1 during the following discussion to get some
intuition of how propositional formula and planning task are interrelated.

We need some ordering for the literals over V , so we call vi the (2i− 1)-
th literal and ¬vi the 2i-th literal and write lk for the k-th literal. We
define the number of occurrences of lk as the number of pairs 〈i, j〉 such
that li,j = lk, and the corresponding pairs are called the first, second,
. . . occurrence of lk. In which order the occurrences are numbered is of
no importance. Additionally, we define ok, the cumulated number of oc-
currences up to lk, as the sum of the number of occurrences of lk′ for all
k′ ≤ k.

Furthermore, we define the selection value valS as |C| + 2n + 2, the
literal value of lk as valk = valS + 2k + 2ok, the clause value valC as
val2n + 2 and the bottom value valB as valC + 6|C|. In the example of
Figure 7.1, valS = 11, val1 = 15 (for literal v1), val2 = 21 (for ¬v1), val3 = 27
(for v2), val4 = 31 (for ¬v2), val5 = 37 (for v3), val6 = 41 (for ¬v3), valC = 43
and valB = 61.

The FreeCell task has a suit length of valB +4|C| − 2, a tableau width
of 6|C|+ 2|V | + 2 and a free cell count of 0. The initial tableau is arranged
as follows.

The piles of the initial tableau, depicted in Figure 7.1, fall into three
groups. The first 2|V |+1 piles are called the literal selection piles, depicted
at the top of the figure. The next 6|C| piles are called the clause piles,
organized into subgroups of six piles that each relate to a specific clause,
called clause groups. The last pile, holding most of the cards, is called the
big pile, at the bottom of the figure. Note that cards at the top of a pile
are shown near the bottom of the picture, following the usual convention of
FreeCell implementations on computers.

Literal selection piles: The first of these only contains the card
〈♠, valS〉. The other piles contain three cards each. Each of them corresponds
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v1 ¬v1 v2 ¬v2 v3 ¬v3
♠11 ♠15 ♠21 ♠27 ♠31 ♠37 ♠41

♠9 ♣9 ♠7 ♣7 ♠5 ♣5
♦10 ♥10 ♦8 ♥8 ♦6 ♥6

v1 ∨ v2 ∨ v3
♦61 ♥61 ♣61 ♦63 ♥63 ♣63
♦44 ♥44 ♠44 ♦47 ♥47 ♣1
♠13 ♠25 ♠35 ♦43 ♠43 ♠46
♦14 ♦26 ♦36

¬v1 ∨ v2 ∨ v3
♦65 ♥65 ♣65 ♦67 ♥67 ♣67
♦50 ♥50 ♠50 ♦53 ♥53 ♣2
♠19 ♠23 ♠33 ♦49 ♠49 ♠52
♦20 ♦24 ♦34

¬v1 ∨ ¬v2 ∨ ¬v3
♦69 ♥69 ♣69 ♦71 ♥71 ♣71
♦56 ♥56 ♠56 ♦59 ♥59 ♣3
♠17 ♠29 ♠39 ♦55 ♠55 ♠58
♦18 ♦30 ♦40

. . .
♣4

Fig. 7.1. FreeCell task corresponding to (v1 ∨ v2 ∨ v3)∧ (¬v1 ∨ v2 ∨ v3)∧ (¬v1 ∨
¬v2 ∨ ¬v3).
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to a literal, the pile for lk being defined as 〈♠, valk〉〈♠, valS−k−1〉〈♦, valS−k〉
if k is odd and as 〈♠, valk〉〈♣, valS − k〉〈♥, valS − k + 1〉 if k is even.

Clause groups: Each group is organized as follows. There are six piles
corresponding to the i-th clause. We set the bottom value for the group as
bottom = valB + 4(i − 1) and the base value for the group as base = valC +
6(i− 1).

The first three piles contain four cards each. The first and second of these
are of value bottom and base + 1, respectively; suit does not matter. The
remaining cards depend on the literals in the clause: For 1 ≤ j ≤ 3, the third
and fourth cards of the j-th pile are 〈♠, valk − 2m〉 and 〈♦, valk − 2m+ 1〉,
where k and m are calculated such that 〈i, j〉 is the m-th occurrence of lk.

The other three piles contain three cards each.
The fourth pile is defined as 〈♦, bottom+ 2〉〈♦, base+ 4〉〈♦, base〉.
The fifth pile is defined as 〈♥, bottom+ 2〉〈♥, base+ 4〉〈♠, base〉.
The sixth pile is defined as 〈♣, bottom+ 2〉〈♣, i〉〈♠, base+ 3〉.

Big pile: The top card of this pile is 〈♣, |C|+ 1〉, and below this are all
remaining cards, ordered such that cards of lower value are closer to the top.

We now show that this FreeCell task can be solved if and only if there
is a satisfying assignment to the variables of the logical formula. First assume
there is such a satisfying assignment α : V → {0, 1}. The following strategy
solves the task:

For each i ∈ {1, . . . , n}, move the top two cards from the literal selection
piles that correspond to literals which are true under α to the first literal
selection pile. This releases the bottom cards of some literal selection piles,
spades cards which can then be used to move cards from the clause piles. In
the example of Figure 7.1, for the assignment {v1 7→ 1, v2 7→ 1, v3 7→ 0} these
are the 15, 27 and 41 of spades. These are called the literal choice cards.

The first three piles of each clause group relate to the literals in that
clause. The top two cards of such a pile can be moved to the literal selection
piles if and only if the literal choice card of the corresponding literal has been
revealed.

Because we have a satisfying truth assignment, a literal is satisfied in each
clause, and thus it is possible to remove the top two cards of one of the first
three piles of each clause group. If the new top card is black, the top card of
the fourth pile of the clause group can be moved on top of it; if it is red, the
top card of the fifth pile can be moved. Thus a red card is revealed in the
fourth or fifth pile, and the top card of the sixth pile can be moved on top of
that.

After this has been done for all clauses, the first |C| cards of clubs are
available in the sixth piles of the clause groups and can be moved to foun-
dations, allowing to move the top card of the big pile to foundations. This
reveals many low-valued cards, and it is not hard to see that all cards of values
up to valS can be moved to foundations immediately. This reveals the literal
choice cards of all literals that are false under the chosen assignment, allowing
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to move the top two cards of the clause group piles relating to unsatisfied
literals to the literal selection piles as well.

After this has been done, all piles are ordered by value, with cards of lower
value closer to the top, allowing to move all remaining cards to foundations,
solving the task.

Now assume that the FreeCell task is solvable. It is not possible to
move the bottom card of any tableau pile within the tableau before the top
card of the big pile is moved, because all cards that they could be moved on
top of are buried in the big pile. Before the top card of the big pile is moved,
it is not possible to move the bottom card of any pile to foundations either.
This implies that the first movement of the top card of the big pile cannot
go to an empty tableau position.

On the other hand, it can not be moved on top of any other card as
its first movement, because all possible destination cards are buried under
it. Together, this implies that its first (and thus only) movement must be
directly to foundations.

This in turn requires all lower-valued clubs cards to be moved to foun-
dations first, requiring movements within the clause piles. For each clause
group, the top card of the sixth pile must be moved, and it can only be
moved to the second card of the fourth or fifth pile, requiring the top card
of either of these piles to be moved. These in turn can only be moved on top
of the second (counting from the bottom) card from any of the first three
piles of that clause group. Thus, in each clause group, the top two cards of
one of the first three piles must be moved somewhere else for the task to be
solvable.

The only way this can be done is by uncovering the literal choice cards of
corresponding literals in the way explained in the other direction of the proof.
As it is not possible to uncover the literal choice card for vi and ¬vi at the
same time (for any i), this requires the existence of a satisfying assignments
to the truth variables, completing the proof. ⊓⊔

Putting the previous two theorems together, we get the following classifi-
cation result for FreeCell.

Theorem 7.3.3. Plan-FreeCell ∈ NPO \ PS

FreeCell planning is in NPO, but not in PS unless P = NP. Hard-
ness already holds when only considering tasks without free cells, or with an
arbitrary fixed free cell count.

Proof. Membership in NPO and non-membership in PS for the case of no
free cells follow from the previous two results.

To show hardness for the case of m > 0 free cells, the previous proof
only needs to be slightly modified to ensure that all free cells must become
occupied right at the start of any plan and cannot be cleared before the top
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card of the big pile is moved to foundations. We refer to our earlier work on
the FreeCell domain for details [52]. ⊓⊔

This result concludes our discussion of FreeCell. As our proofs show,
the hardness of planning in this domain is not (or at least not exclusively)
due to the difficulty in allocating free cells or empty tableau positions, but
rather due to the choice of which card to move on top of a tableau pile when
there are two possible options.

7.4 Movie

The objective in the Movie domain is to satisfy certain important prereq-
uisites to watching a movie (such as having chips, having dip, having cheese
and having the movie rewound) by actions such as getting chips, getting dip,
getting cheese and rewinding the movie. Its purpose at IPC1 was to check
if the performance of the competing planning systems degrades in the face
of many objects in the task definitions – in a large Movie task, there are
several dozen types of cheese, but only one of them needs to be obtained to
satisfy the cheese goal. It was found that all planners could quickly solve all
Movie tasks.

From a complexity point of view, this benchmark is not interesting. All
tasks are solved by the same plan, and hence non-optimal, optimal sequential
and optimal parallel planning are all constant time problems in this domain.
There is little point in formally introducing the Movie domain, so we restrict
our discussion to the following observation.

Theorem 7.4.1. Plan-Movie ∈ PO

Optimal plans in the Movie domain can be generated in polynomial time.

Proof. There is a constant bound to the number of states in a Movie task,
so that the planning problem can be optimally solved by explicit search in
the state space. ⊓⊔

7.5 Pipesworld

The Pipesworld domain models the flow of oil-derivative liquids through
pipeline segments connecting areas, and is inspired by applications in the
oil industry [89]. Liquids are modelled as batches of a certain unit size. A
segment must always contain a certain number of batches (i. e., it must always
be full). Batches can be pushed into pipelines from either side, leading to
the batch at the opposite end “falling” into the incident area. Batches have
associated product types, and batches of certain types may never be adjacent
to each other in a pipeline. Moreover, areas may have constraints on how
many batches of a certain product type they can hold.
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Definition 7.5.1. Pipesworld tasks
P = {lco, gasoline, rat-a, oca1, oc1b} is the set of Pipesworld products.
Two products p, p′ ∈ P are called compatible unless p = rat-a and p′ ∈
{oca1, oc1b} or vice versa.

A Pipesworld task is defined by a 10-tuple 〈A,B, ·P, S, ·−, ·+, cap, CS
0 ,

CA
0 , C

A
⋆ 〉 with the following components:

– A is a finite set of areas.
– B is a finite set of batches (of oil-derivative products).
– ·P : B → P maps each batch b ∈ B to its product type or type bP ∈ P . We
say that two batches can interface if their product types are compatible.

– S is a finite set of pipeline segments.
– ·− : S → A maps each pipeline segment s ∈ S to its start area s−.
– ·+ : S → A maps each pipeline segment s ∈ S to its end area s+.
– cap : A× P → N0 is the area capacity function.
– A segment contents function is a function CS : S → B+ mapping each
segment to a non-empty sequence of batches called the contents of that
segment subject to the following restrictions:
– No batch occurs in the contents of multiple segments.
– No batch occurs in the contents of a segment twice.
– All batches which are adjacent in the contents of some segment can in-
terface.

CS
0 is a segment contents function called the initial segment contents.

– An area contents function is a function CA : A → 2B mapping each
area to a set of batches called the initial contents of that area subject to
the following restrictions:
– The contents of different areas are disjoint.
– For all areas a ∈ A and all products p ∈ P , the contents of area a include
at most cap(a, p) batches of type p.

CA
0 : A → 2B is an area contents function called the initial area con-

tents.
We require that each batch either occurs in the contents of some segment in
the initial segment contents, or in the contents of some area in the initial
area contents, but not both.

– CA
⋆ : A→ 2B is an area contents function called the goal area contents.

Note that it is possible to have multiple pipeline segments between the
same pair of areas, which is why we do not model areas and pipeline segments
as directed graphs. Although the terminology (“start area” vs. “end area”)
suggests an asymmetry, batches can be pumped into pipeline segments from
either direction, so the domain is in essence undirected – we just need some
formal way of distinguishing the one end of a segment from the other. We
refer to the number of batches in a segment as the length of that segment.
One important property of the Pipesworld domain is that segments retain
their length throughout plan execution: Whenever a batch is pumped into a
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pipeline segment from one end, the batch at the opposite end of the segment
is pushed out into the adjacent area.

Definition 7.5.2. Pipesworld domain
The Pipesworld domain maps Pipesworld tasks with areas A and seg-
ments S to state spaces as follows:

States: Pairs 〈CS, CA〉, where CS is a segment contents function
and CA is an area contents function. We say that a segment
is in a segment or area iff it is in the contents of that segment
or area.

Initial state: 〈CS
0 , C

A
0 〉, where CS

0 is the initial segment contents and CA
0

is the initial area contents of the task.
Goal states: Any state 〈CS, CA〉 with CA

⋆ (a) ⊆ CA(a) for all areas a ∈ A,
where CA

⋆ is the goal contents function of the task.
Operators: In state 〈CS, CA〉, if s ∈ S is a pipeline segment with con-

tents b1 . . . bn and b ∈ CA(s
−) is a batch that can interface

with b1, then b can be pushed into s. This results in a state
where the new contents of segment s are bb1 . . . bn−1, b is no
longer in CA(s

−), and bn is in CA(s
+).

Similarly, b ∈ CA(s
+) can be pushed into s if it can inter-

face with bn, leading to a state where the contents of s are
b2 . . . bnb, b is no longer in CA(s

+), and b1 is in CA(s
−).

Pushing a batch into a pipeline segment is only allowed if it
results in a legal state, satisfying the constraints imposed by
the area capacity function.

The Pipesworld domain is sometimes called Pipesworld-Tankage,
to contrast it with the following Pipesworld-NoTankage domain.

Definition 7.5.3. Pipesworld-NoTankage domain
The Pipesworld-NoTankage domain is the restriction of Pipesworld

to those tasks where the area capacity for each area and product type is equal
to the total number of batches of that product type.

Note that with our definition of Pipesworld (as in the IPC4 bench-
marks), the set of products and their compatibility relation is fixed. We will
see that Pipesworld planning is already hard for this fixed compatibility
relation.

Our definition of Pipesworld faithfully captures the PDDL specification
except for one modelling flaw of the latter: In some situations, the PDDL
definition allows pushing batches through a pipe even though this violates the
area capacity constraints on the receiving end, making some unsolvable tasks
solvable. This minor difference does not affect the applicability of our results
because these already hold for the Pipesworld-NoTankage domain, where
area capacities can be ignored.
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Theorem 7.5.1. PlanEx-Pipesworld is NP-hard
The plan existence problems for Pipesworld-Tankage and Pipesworld-

NoTankage are NP-hard.

Proof. It is sufficient to prove the result for Pipesworld-NoTankage,
which is a special case of the other domain. We present a Karp reduction
from the satisfiability problem for propositional formulae in conjunctive nor-
mal form where clauses contain at most four literals and each variable occurs
in at most three clauses. This problem is known to be NP-hard [41, LO1].
(We could limit clauses to three literals, but then Fig. 7.3 would look less
symmetric.)

Let χ be the given formula, and let V and C be its variable and clause
sets. Throughout the proof, we refer to batches of type rat-a as white batches,
batches of type oca1 as black batches, and batches of type gasoline as gray
batches. Observe that white batches may not interface with black batches,
while gray batches may interface with anything.

The generated Pipesworld-NoTankage instance is assembled from
components shown in Figs. 7.2 and 7.3, where edges with differently dec-
orated endpoints distinguish different kinds of pipeline segments. The key to
these decorations is shown in Fig. 7.4. The first five kinds of segments all
have length 6|V |+ 1, while the sixth has length 3. The first kind of segment
is filled with 3|V | black batches, then a gray one to interface between black
and white, and then 3|V | white batches. The second and third kind are com-
pletely filled with one product type, and the fourth and fifth are like the
second and third except that the first batch is gray. The sixth kind is like the
fifth, but only contains three batches.

The pipe network contains one copy of the variable gadget structure shown
in Fig. 7.2 for each variable v ∈ V , and one copy of the clause gadget structure
shown in Fig. 7.3 for each clause c ∈ C. The open ends to the right of the
variable gadgets (dotted) are connected to the open ends to the left of the
clause gadgets. In particular, if clause c contains the positive literal v, then
area v′ of the variable gadget is connected to any of the dangling pipeline
segments of the clause gadget for c. Similarly, for negative literals in c, area
¬v′ is connected to a dangling pipeline segment of the clause gadget. Because
every clause contains at most four literals, there are sufficiently many pipes
to make these connections. Because every variable occurs in at most three
clauses, at most three new pipeline segments are connected to either v′ or
¬v′. Any pipeline segments left dangling (for clauses of size three or less) are
removed.

The areas in the variable gadgets labelled 3 are the only areas that are not
initially empty, each of them containing three black batches. In each clause
gadget, the goal requirement is to move the last (rightmost) black batch in the
pipe connecting areas c and c⋆ into area c⋆. We call these pipeline segments
goal pipes.



7.5 Pipesworld 135

This completes the description of the mapping. Clearly, the Pipesworld

task can be generated in polynomial time. We will now show that it has a
solution iff χ is satisfiable.

3

v v′

¬v ¬v′

3

3

Fig. 7.2. Variable gadget.

l1

l2

l3

l4

l12

l34

c c⋆

Fig. 7.3. Clause gadget.

First assume that χ is satisfiable, and that α is a satisfying assignment to
V . For each variable v ∈ V , we push the three black batches in area 3 of the
corresponding variable gadget into the pipe leading to the area denoted by a
literal l satisfied by α (i. e., to area v if α(v) = 1 and to area ¬v otherwise).
This pushes three batches into this area, one of which is gray. We push the
gray batch, then the two white batches into the pipe leading to area l′, making
three black batches available there. We then push one batch into each of the
pipes connecting l′ to clause gadgets.

Due to the way variable gadgets are connected to clause gadgets and
because α satisfies χ, this places at least one batch in one of the areas l1,
l2, l3 or l4 of each clause gadget. In each clause gadget, we choose one such
batch and push it into the pipe leading to l12 or l34, placing a batch in one
of these areas. This batch is then pushed into the pipe leading to c, releasing
a batch there which is pushed into the goal pipe, satisfying the goal for this
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Fig. 7.4. Key to Figs. 7.2 and 7.3.

clause. We thus satisfy the goal in each clause gadget, which shows that the
task is solvable.

Now assume that the task has a solution. Obviously, this requires that
more batches are pushed into each clause gadget than pushed out of them. It
is never possible to push any batch out of a clause gadget unless this batch
has been previously pushed into the clause gadget through the same pipe.
This is because batches moved into l12 from l1 have the wrong colour to be
pushed into l2 and vice versa, and similarly there cannot be a flow between l3
and l4 via l34 or between l12 and l34 via c. (Note that there are not sufficiently
many batches on the left side of the network to push a gray batch out of the
pipes leading to l1, l3 or c.)

We can thus treat the segments connecting variable gadgets to clause
gadgets as “one-way pipes”, which simplifies the analysis because we can
consider each variable gadget in isolation. The important property for variable
gadgets is that we can either have batches in area v′ or in area ¬v′, but never
both. To see this, note that to push even a single batch into area v′, we
must push all three batches from area 3 into area v; otherwise we obtain only
white batches in area v, which cannot be pushed into the pipe connecting to
v′. Moreover, to push a batch into v′, we must make use of the gray batch
from the pipe between 3 and v′ and without pushing that gray batch back
into v (which requires emptying area v′), we cannot push anything back into
area 3.

Therefore, if there is a solution, then there is one where for each variable
only one of the areas v′ and ¬v′ ever contains a batch. Define the truth
assignment α so that α(v) = 1 if area v′ ever contains a batch, and α(v) = 0
otherwise. Then a batch can only be pushed into the clause gadget area li if α
satisfies li. Because at least one batch must be pushed into each clause gadget,
α satisfies at least one literal in every clause, and hence χ is satisfiable. This
concludes the proof. ⊓⊔

Due to the NP-hardness of plan existence for Pipesworld, the planning
problem for this domain cannot belong to PS unless P = NP. Observe that
our hardness proof applies just as well to a variant of Pipesworld where
batches of the same product type are indistinguishable, and hence the goal
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is expressed in term of product types, not batches – a more realistic model of
the underlying application problem.

Unfortunately, we cannot provide an NPO membership result: the ques-
tion whether or not Pipesworld admits short optimal plans is open.

We remark that the hardness of Pipesworld planning is to a large
part due to the interface constraints for incompatible products, and indeed
Pipesworld-NoTankage without interface constraints (all product types
are compatible) is known to admit a polynomial planning algorithm [95].
However, we can prove that bounded plan existence is still NP-hard for this
Pipesworld variant and that it does not admit polynomial-time approx-
imation schemes unless P = NP, placing it somewhere between APX and
poly-APX. Because this domain variant is quite different from the competi-
tion domains, we abstain from presenting these detailed results.

7.6 Promela

PROMELA (Process or Protocol Meta Language) is the input language used
by the SPIN model checker [67]. The Promela planning domain [31] encodes
a subset of PROMELA in PDDL2.2, allowing the application of planning
technology to a certain class of model-checking problems. We first intro-
duce and discuss the general Promela planning domain, then the restricted
subclasses Promela-Philosophers and Promela-OpticalTelegraph,
which were part of the IPC4 benchmark set.

A Promela task defines a distributed system consisting of a set of pro-
cesses, modelling individual components of a distributed system, and queues,
used for communication between processes. The goal is always to find a dead-
lock state, in which no process is able to continue its operation.

Definition 7.6.1. Promela tasks
A Promela task is defined by an 8-tuple 〈P,Q,Σ, cap, (Sp)p∈P , (R

p)p∈P ,
(W p)p∈P , (s

p
0)p∈P 〉 with the following components:

– P is a finite set of processes.
– Q is a finite set of queues.
– Σ is a finite set of messages.
– cap : Q→ N1 is the queue capacity function.
– For each process p ∈ P :
– Sp is a finite set of local states.
– Rp ⊆ Sp ×Q×Σ × Sp is a set of read transitions.
– W p ⊆ Sp ×Q×Σ × Sp is a set of write transitions.
– sp0 ∈ Sp is the initial local state.

We now define the Promela planning domain.
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Definition 7.6.2. Promela domain
The Promela domain maps Promela tasks with processes P with local
states (Sp)p∈P , queues Q and messages Σ to state spaces as follows:

States: Pairs 〈(sp)p∈P , C〉, where (sp)p∈P is the local state vector
and C : Q→ Σ∗ is the queue contents function. For each
process p ∈ P , sp must be a local state of p called the current
local state of the process.

Initial state: 〈sp0, Cǫ〉, where Cǫ is the queue contents function which maps
each queue to the empty message sequence.

Goal states: Any state with no applicable action.
Operators: A process p ∈ P with read transitions Rp can perform a

read transition t = 〈s, q, a, s′〉 ∈ Rp in state 〈(sp)p∈P , C〉
iff sp = s and the first element of C(q) is the message a.
This changes the current local state of process p to s′ and
removes the first element from C(q).
A process p ∈ P with write transitions W p can perform a
write transition t = 〈s, q, a, s′〉 ∈W p in state 〈(sp)p∈P , C〉
iff sp = s and |C(q)| is less than the capacity of queue q.
This changes the current local state of process p to s′ and
appends message a to C(q).

Our definition of the Promela domain differs from the PDDL definition
in some minor ways that do not limit the applicability of our results. These
are discussed towards the end of the section.

Processes can be naturally described by labelled directed graphs, where
vertices correspond to process states and arcs to transitions. For a transition
t = 〈s, q, a, s′〉, the graph contains an arc from s to s′ with the label q : a? if t
is a reading transition and q : a! if t is a writing transition. Fig. 7.5 shows an
example process from Promela-Philosophers. The process corresponds
to a single philosopher in the well-known dining philosophers problem, the
queues L and R to the forks to his left and right. The intuition behind the
model is that writing a message corresponds to putting a fork on the table,
and reading a message corresponds to picking it up. Initial process state 1
is a set-up state in which each philosopher puts one fork on the table. After
leaving this state, philosophers follow a deterministic strategy of repeatedly
requesting the two forks they require in a certain order, then putting them
down again.

Communicating processes are a very expressive formalism for modelling
computations. This makes planning for general Promela tasks hard.

Theorem 7.6.1. Promela planning is PSPACE-complete.
Plan existence and bounded plan existence for Promela tasks are PSPACE-
complete. This is true even if all queues have capacity 1 and the tasks are
deterministic, i. e., at most one action is applicable in any reachable state.
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Proof. We provide a reduction that maps space-restricted Turing Machines
to Promela tasks such that the task has a solution iff the Turing Machine
halts (starting from a blank tape).

LetM be a Turing Machine with state set Z, including initial state z0 ∈ Z
and accepting state z⋆ ∈ Z, tape alphabet Γ , including blank symbol � ∈ Γ ,
and transition function δ : (Z\{z⋆})×Γ → Z×Γ×{−1,+1}. We assume that
the machine has n tape cells, starts at the left-most one, and that attempts to
move past the end of the tape in either direction is an error that terminates
computation (just like reaching the accepting state).

The corresponding Promela task has one tape cell process pi and one
queue qi for each tape cell i ∈ {1, . . . , n}. The set of messages is the set of
Turing Machine states Z. All queues have capacity 1, all tape cell processes
have state set Γ ∪ (Γ × Z), and the initial state of each process is � except
for process p1 with initial state 〈�, z0〉.

For each Turing Machine transition δ(z, a) = 〈z′, a′, ∆〉 and each tape
position i ∈ {1, . . . , n} where i+∆ ∈ {1, . . . , n}, tape cell process pi has the
following transitions:

– A transition from a to 〈a, z〉 which reads z from qi.
– A transition from 〈a, z〉 to a′ which writes z′ to qi+∆.

There is a straightforward correspondence between configurations of the
Turing Machine and states of the corresponding Promela task. If after k
computation steps, the Turing Machine reaches state z with current tape
position i and tape contents a1 . . . an, then after applying 2k actions in the
Promela task, process pi must be in state 〈ai, z〉, each process pj 6= pi must
be in state aj, and all queues must be empty.

We prove this inductively. Clearly, the statement is true for k = 0. Assume
that it is true for k. We can assume that z 6= z⋆ and δ(z, ai) = 〈z′, a′, ∆〉
with i + ∆ ∈ {1, . . . , n} (otherwise the Turing Machine computation stops
and there is nothing to prove). In this situation, the only process that can
perform a local transition is pi, since all other processes are in states that
require reading from a queue, and all queues are empty by the induction
hypothesis. Thus, a transition of pi must be performed, and there is only one
applicable transition for pi in local state 〈ai, z〉, which writes z′ to queue qi+∆

and changes the local state of pi to a
′. After applying this action, all processes

are in a local state where all outgoing transitions are read transitions, but
only process pi+∆ can read from a non-empty queue, so this process acts
next. The only applicable transition is the one that reads message z′ and
changes the local state of pi+∆ from ai+∆ to 〈ai+∆, z

′〉. After applying this
second action, all queues are empty again, and the local process states again
correspond to the Turing Machine configuration as required. This concludes
the inductive proof.

The correspondence between Turing Machine configurations and trajec-
tories in the state space of the Promela task implies that if the Turing
Machine does not halt, then we cannot reach a deadlock in the Promela
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Fig. 7.5. Promela-Philosophers transition graph. State numbers follow the
PDDL specification.

task. On the other hand, if the Turing Machine halts, it either does so by
attempting to go past the tape boundaries or by reaching state z⋆. In both
cases, the Promela task reaches a deadlock, because no local transitions are
possible in the state corresponding to the last Turing Machine configuration
after reaching z⋆ (or before going past the tape boundaries).

Thus, plan existence for Promela tasks is PSPACE-hard, which implies
that bounded plan existence is also PSPACE-hard. Moreover, both problems
must belong to PSPACE because PDDL planning in any fixed propositional
domain is in PSPACE. This concludes the proof. ⊓⊔

This immediately gives us the following classification for the Promela

planning problem.

Theorem 7.6.2. Plan-Promela ∈ EXPO \ NPS
The planning problem in the Promela domain can be optimally solved in
exponential time, and it cannot be solved (not even sub-optimally) in sub-
exponential time.

Proof. The problem is solvable in exponential time with explicit graph search
in the state space of the given task. Sub-exponential planning algorithm can-
not exist because there are tasks with exponential lower bounds on shortest
plan length. (This immediately follows from the previous proof, as there are
space-restricted Turing Machines requiring an exponential number of com-
putation steps.) ⊓⊔

Having established the result for the general Promela domain, we now
turn to the Promela-Philosophers and Promela-OpticalTelegraph

domains. These domains are special cases of Promela where each task is
characterized by a single number. In the former domain, this number de-
fines the number of philosophers in a dining-philosophers style problem. In
the latter, it defines the number of optical telegraphs in a communication
protocol.

Definition 7.6.3. Promela-Philosophers domain
A Promela-Philosophers task is given by a natural number n ≥ 2 and
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Fig. 7.6. Promela-OpticalTelegraph transition graph. State numbers follow
the PDDL specification.

denotes a Promela task with message set {fork}, processes pi and queues
qi (of capacity 1) for all i ∈ {1, . . . , n}. Throughout this section, process and
queue indices of Promela-Philosophers tasks are considered modulo n.
States and transitions of process pi are given by the directed graph in Fig. 7.5,
where the initial process state is state 1, L denotes the queue qi, and R denotes
the queue qi+1.

The Promela-Philosophers domain is the restriction of the Promela

domain to Promela-Philosophers tasks.

Definition 7.6.4. Promela-OpticalTelegraph domain
A Promela-OpticalTelegraph task is given by a natural number n ≥
2 and denotes a Promela task with message set {att, ctl, data, start, stop},
processes pdi and pui and queues qci , q

d
i and qui (of capacity 1) for all i ∈

{1, . . . , n}. Throughout this section, process and queue indices of Promela-

OpticalTelegraph tasks are considered modulo n. States and transitions
of the processes are given by the directed graph in Fig. 7.6, where the initial
process state is state 25. For process pdi , C denotes the queue qci , R denotes
the queue qdi and W denotes the queue qui . For process pui , C denotes the
queue qci , R denotes the queue qui+1 and W denotes the queue qdi+1.

The Promela-OpticalTelegraph domain is the restriction of the
Promela domain to Promela-OpticalTelegraph tasks.

Following their PDDL specification, we assume that the encoding size of
Promela-Philosophers and Promela-OpticalTelegraph tasks grows
linearly in the number of processes. (Of course, more concise descriptions
which only encode the scaling parameter n as a binary number are possible.)

Because of their simple scaling structure, these benchmarks are much
easier to solve than general Promela tasks.

Theorem 7.6.3. Plan-Promela-Philosophers ∈ PO

In the Promela-Philosophers domain, optimal plans can be generated in
polynomial time.
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Proof. To reach a goal state, perform the transitions from 1 to 6 to 3 in all
processes. When all processes are in state 3, they are all blocked, so this is a
solution of length 2n, if n is the number of philosophers.

We now prove optimality. Because there is only one message type and
queues have size 1, queues only have two configurations, full or empty. We
can verify the following invariant: Queue qi is full iff pi is in state 5 or 6 and
pi−1 is in state 1, 3 or 6. Therefore pi cannot be deadlocked in state 1 or 4 (qi
is not full if pi is in state 1 or 4) or in state 5 (qi+1 is not full if pi is in state
5). Therefore, processes can only be blocked in states 6 or 3. However, if all
processes are in state 3 or 6 and pi is in state 6, then qi is not full and hence
pi is not blocked. Therefore, for all processes to be blocked, all of them must
be in state 3. The generated plan clearly is the shortest sequence of actions
achieving this. ⊓⊔

Theorem 7.6.4. Plan-Promela-OpticalTelegraph ∈ PO

In the Promela-OpticalTelegraph domain, optimal plans can be gener-
ated in polynomial time.

Proof. To reach a goal state, first perform the transitions from 25 to 14 to 15
in all processes pdi , then the transition from 25 to 2 in all processes pui . Clearly,
this leads to a deadlock. Optimality can be proved by similar arguments as
for Promela-Philosophers. ⊓⊔

All the results in this section easily generalize to parallel planning.
Clearly, the general PSPACE-completeness result also applies to that setting,
as PSPACE-completeness of plan existence implies PSPACE-completeness of
bounded parallel plan existence for propositional PDDL domains. In the re-
stricted domains, parallelism allows taking the transitions of each process
simultaneously, so that the optimal parallel plan length for any Promela-

Philosophers task is 2, whereas the optimal parallel plan length for any
Promela-OpticalTelegraph task is 3. In the latter case, note that pro-
cess pui can only transition to state 2 after pdi−1 has transitioned to state
15.

Finally, some comments on the differences between our formalization and
the actual PDDL domain. First, the PDDL definition seems to have a minor
flaw in the formalization of writing to queues of capacity 2 or greater. The
hardness proof does not require such queues and they do not occur in the
competition domains, so this does not make a difference. Second, because
of another flaw in the PDDL definition, processes can only be recognized as
blocked in states with at most one outgoing transition; reaching a deadlock in
which some process has two outgoing transitions in its current local state is
not considered a solution, even if all those transitions are blocked. This does
not affect our proofs for the competition domains, but it does mean that the
PSPACE-hardness proof is not immediately applicable to the PDDL specifi-
cation. However, it can be easily adjusted to work around the flaw. Finally,
due to the difficulty of expressing the queue updates and dead-lock condition
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succinctly in PDDL, a single action in our model corresponds to a sequence
of four actions in the PDDL model (assuming the PDDL formulation using
ADL constructs and derived predicates – there are several alternative formu-
lations available), and another action is needed at the end of the plan for each
blocked process with an outgoing transition in the current state. Counting the
number of PDDL actions, the 2n plan length for Promela-Philosophers
thus becomes 9n (2n transitions, n processes), and the 3n plan length for
Promela-OpticalTelegraph becomes 14n (3n transitions, 2n processes).
The optimal parallel plan lengths in the PDDL domains, following the PDDL
definition of concurrency, becomes 9 for Promela-Philosophers and 11 for
Promela-OpticalTelegraph (it is not 14 since some of the “subactions”
can be interleaved).

7.7 PSR

The PSR (power supply restoration) domain was originally introduced for
planning under uncertainty [107]. The deterministic and fully observable vari-
ant described here is part of the IPC4 benchmark suite, and constitutes an
extremely simplified version of the original PSR domain. The domain models
a situation where parts of a power network, consisting of power sources (cir-
cuit breakers), switches and power lines, have turned faulty. Circuit breakers
or switches can be open or closed, with open devices blocking the electrical
current. The objective of a PSR task is to reconfigure the network by opening
and closing devices so that as many lines as possible are fed, while avoiding
to feed any faulty lines (which immediately opens all power sources feeding
them).

Definition 7.7.1. PSR tasks
A PSR task is defined by a 6-tuple 〈D,C,L, F,G,O0〉 with the following
components:

– D is a finite set of devices.
– C ⊆ D is the set of circuit breakers. Devices which are not circuit break-
ers are called switches.

– L is a finite set of (power) lines.
– F ⊆ L is the set of faulty lines.
– G is a connected graph with vertex set D ∪ L called the power network.
It is bipartite, with all edges connecting some device to some line. Circuit
breakers must have degree 1, switches degree 1 or 2, and lines may have
arbitrary degree.

– O0 ⊆ D \ C is the set of initially open devices.

Devices and lines are required to be disjoint.
The feeder tree of a circuit breaker c is the induced subgraph of the

power network which contains c and all lines and devices reachable from c
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without passing through an initially open device. We require that, apart from
the initially open devices, each device and each line must belong to exactly
one feeder tree.

A line l is called feedable iff there exists a path in the power network
leading from a circuit breaker to that line which does not pass through any
faulty lines (including l itself).

Differently to the original PDDL definition, we do not explicitly model
the earth device, which is always open, but rather allow to have switches with
a degree of 1, which leads to the same semantics.

We now define the PSR planning domain.

Definition 7.7.2. PSR domain
The PSR domain maps PSR tasks with devices D, circuit breakers C and
lines L to state spaces as follows:

States: Sets O ⊆ D. We say that a device d ∈ D is open iff d ∈ O,
and that it is closed otherwise. We say that a line l ∈ L is
fed by a circuit breaker c ∈ C iff there exists a path in the
power network from c to l which does not pass through any
open device (including c itself). We say that a circuit breaker
is affected iff a faulty line is fed by it. A state is unsafe iff
there is an affected circuit breaker, and safe otherwise.

Initial state: O0, the set of initially open devices.
Goal states: Safe states in which all feedable lines are fed.
Operators: A device d can be opened iff it is closed and the state is

safe. In the resulting state, d is open.
A device d can be closed iff it is open and the state is safe.
In the resulting state, d is closed.
It is possible to wait iff the state is unsafe. In the resulting
state, all affected circuit breakers are open.

Note that there is no requirement that a line be fed by only one cir-
cuit breaker. However, this is true for the initial state of the PDDL bench-
marks due to the constraints on feeder trees, and it is also guaranteed to hold
throughout plan execution by the planning algorithm we will now present.
Therefore, adding a requirement that no line be fed by multiple circuit break-
ers would not affect our complexity results.

Somewhat surprisingly, optimal plans in PSR can be generated in poly-
nomial time.

Theorem 7.7.1. Plan-PSR ∈ PO

In the PSR domain, optimal plans can be generated in polynomial time.

Proof. Solving PSR tasks requires maintaining safety and feeding all feed-
able lines. The safety property is monotonously increasing in the set of open
devices, i. e., if O ⊆ O′ and state O is safe, then state O′ must also be safe.
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(Recall that we identify states with the corresponding set of open devices.)
The feeding property is monotonously decreasing in the set of open devices,
i. e., if O ⊆ O′ and a certain line is fed in O′, then it is also fed in O. Thus,
the two aspects of solving a PSR task conflict in a certain way. However, as
we shall see, it is possible to deal with them separately by ensuring safety
first, then feeding all feedable lines.

We say that a circuit breaker is dangerous iff it is adjacent to a faulty line,
and a switch is dangerous iff it is adjacent to a faulty line and to a feedable
line.

If the initial state is a goal state, we return the empty plan. Otherwise,
since all lines are fed initially by the circuit breaker in their feeder tree, the
initial state must be unsafe, and the first action in any plan must be a wait
action, which opens all dangerous circuit breakers. We then use open actions
to open all dangerous switches. Like the initial wait action, these actions
must occur in any solution (although not necessarily at this point), because
switches can only be opened by open actions (rather than by waiting, as
for circuit breakers), and dangerous switches must be open in a goal state:
Assume dangerous switch d were closed in a goal state. By definition, it is
adjacent to a feedable line l and faulty line l′. In a goal state, l must be fed
by some circuit breaker c, so l′ is also fed by c, and hence c is affected and the
goal state unsafe, a contradiction. It is also evident that dangerous circuit
breakers must be open in a goal state to ensure safety.

Interestingly, having all dangerous devices open is not just necessary for
safety of a goal state, it is also sufficient for safety of any state. Assume that
this were not the case and there were an unsafe state where all dangerous
devices are open. By definition of safety, in this state there must be a path
π = d1l1 . . . dnln from circuit breaker d1 to faulty line ln where all devices di
are closed. We can assume that ln is the only faulty line on the path (if li
for i < n is faulty, we consider π′ = d1l1 . . . dili instead). If n = 1, then the
circuit breaker d1 is dangerous and therefore not closed, a contradiction. If
n > 1, then line ln−1 is feedable by the path d1l1 . . . dn−1ln−1, and hence dn
connects a feedable line to a faulty line and is dangerous and therefore not
closed, a contradiction.

Therefore, we can solve the task as follows:

– Wait, then open all dangerous switches.
– Compute a set of non-dangerous devices DC of minimal cardinality such
that closing DC leads to all lines being fed. Close these devices.

We already saw that all actions in the first step must occur in any solution.
Moreover, due to the monotonicity of feeding and due to the fact that closing
a device requires a single action per device (unlike opening, which can in
some cases be done more efficiently with the wait action), the generated plan
is clearly optimal provided that safety is not violated by any of the closing
actions. However this is ensured by the fact that having all dangerous devices
open is sufficient for safety.
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Thus, we only need to show how to calculate the set DC in polynomial
time. For this purpose, we apply some transformation to the power network.
First, we remove all dangerous devices along with all lines and devices that
become disconnected from the circuit breakers by this operation. Clearly,
since all dangerous devices are open and we are not going to close them, this
is a valid operation. This results in a graph where all lines are feedable and no
devices are dangerous, so we can ignore wait or open actions in the following.
Second, we introduce a new (closed) main circuit breaker, connect it to a new
main line, and connect that line to all original circuit breakers in the network,
which change status to switches (note that their degree is now 2 due to the
edge from the main line). Again, this does not change the semantics of the
fed predicate. It does change the semantics of affectedness for our network,
but this is not a problem because our network contains no faulty lines. Third,
we remove all switches with degree 1 (they are no use for solving the task)
and replace all other switches with coloured (i. e., labelled) edges connecting
their two neighbouring lines, using red edges for open switches and green
edges for closed switches. Closing a switch thus corresponds to changing the
colour of an edge to green. A line is fed iff it is reached by a path from the
main circuit breaker that does not pass through any red lines, and hence all
lines are fed iff the subgraph obtained by removing all red lines is connected.
To achieve this with a minimal number of close actions, we can compute a
spanning tree with a minimal number of red edges, or equivalently a minimal
spanning tree in the weighted graph obtained by assigning weight 1 to all red
edges and weight 0 to all other edges. Computing a minimal spanning tree is
a polynomial time operation. ⊓⊔

Some comments are appropriate at this point. First, if we use Prim’s
algorithm [23] for computing minimum spanning trees, it is easy to verify
that the complete PSR planning algorithm amounts to the following quite
simple greedy strategy:

1. If the initial state is a solution state, return the empty plan; otherwise
continue.

2. Wait.
3. Open all dangerous switches.
4. Until a goal is reached, close some non-dangerous device such that closing

this device leads to at least one additional line being fed.

Second, the proof critically relies on the fact that switches are connected
to at most two lines, and circuit breakers only to one line. Eliminating the
degree restriction for devices indeed leads to a more difficult domain variant,
for which bounded plan existence is NP-complete. However, we do not prove
this result here.

Finally, the problem remains easy in a parallel planning framework. In
fact, according to the PDDL definition of the domain, no two PSR actions are
concurrently executable, due to the conservative definition of mutexes in the
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presence of derived predicates [63]. Under a less strict notion of concurrency,
it makes sense to allow opening several devices in parallel and closing several
devices in parallel if that does not lead to any circuit breakers being affected.
Using this notion, it is obvious that the optimal parallel solution length for
any PSR task is 3, where the first step consists of a wait action, the second
of a number of open actions, and the third of a number of close actions. This
concludes our discussion of PSR.

7.8 Satellite

The objective of the Satellite domain is to plan and schedule the operation
of a number of satellites gathering information about different observation
targets such as stars, planets and space phenomena. Satellites are equipped
with different kinds of instruments with varying capabilities.

Definition 7.8.1. Satellite tasks
A Satellite task is defined by a 10-tuple 〈S, I,M,D, l, C, cal, p0, p⋆, O⋆〉
with the following components:

– S is a finite set of satellites.
– I is a finite set of instruments.
– M is a finite set of image modes or modes.
– D is a finite set of pointing directions or directions.
– l : I → S maps each instrument to the satellite it is located on.
– C ⊆ I ×M is the instrument capabilities relation. If 〈i,m〉 ∈ C for an
instrument i ∈ I and mode m ∈M , we say that i supports m.

– cal : I → D is the calibration target function.
– p0 : S → D is the initial pointing direction function.
– p⋆ : S′ → D with S′ ⊆ S is the goal pointing direction function. A pair
〈s, d〉 with p⋆(s) = d is called a pointing goal.

– O⋆ ⊆ D ×M is the set of image objectives.

Satellite tasks resemble Rovers tasks (Section 6.7) in many ways, but
they are much less complicated. In particular, every satellite can immediately
turn to every direction in a single action (unlike the Rovers domain, where
rovers travel between waypoints on complex maps, which differ from rover to
rover), and there is no need to communicate the gathered science data.

Definition 7.8.2. Satellite domain
The Satellite domain maps Satellite tasks with satellites S, instru-
ments I, modes M and pointing directions D to state spaces as follows:

States: 4-tuples 〈p, IP, IC, O〉, where p : S → D is the pointing
direction function, IP ⊆ I is the set of powered-on in-
struments, IC ⊆ I is the set of calibrated instruments,
and O ⊆ D×M is the set of remaining objectives. We say
that satellite s ∈ S points at direction d ∈ D iff p(s) = d.
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Initial state: 〈p0, ∅, ∅, O⋆〉, where p0 is the initial pointing direction func-
tion and O⋆ is the set of image objectives of the task.

Goal states: Any state 〈p, IP, IC, O〉 with p(s) = d for all pointing goals
〈s, d〉 and O = ∅.

Operators: A satellite s ∈ S can turn to a direction d ∈ D. In the
resulting state, it points at d.
An instrument i ∈ I can be powered on iff no other in-
strument located on the same satellite is powered on. In the
resulting state, i is added to the set of powered-on instru-
ments.
An instrument i ∈ I can be powered off iff it is currently
powered on. In the resulting state, i is removed from the
set of powered-on instruments and from the set of calibrated
instruments (if present).
An instrument i ∈ I can be calibrated iff it is currently
powered on and the satellite it is located on points at the
calibration target of i. In the resulting state, i is added to
the set of calibrated instruments.
An instrument i ∈ I can take an image of a pointing di-
rection d ∈ D in mode m ∈M iff it is powered on, calibrated
and supports mode m and the satellite it is located on points
at d. In the resulting state, 〈d,m〉 is removed from the set of
remaining objectives (if present).

It is easy to prove that optimal Satellite plans can be approximated by
a constant factor.

Theorem 7.8.1. Plan-Satellite ∈ APX

Plan-Satellite is 6-approximable.

Proof. A greedy planning algorithm first achieves all image objectives with
a sequence of 6 actions each: After selecting an instrument supporting the
required image mode (if none exists, the task has no solution), power on the
instrument, point its satellite at the calibration target, calibrate the instru-
ment, point its satellite at the image direction, take the image, and power off
the instrument. After taking all images, each satellite with a pointing goal
is turned to the required direction if it differs from the current direction. As
a post-processing step, for each satellite that has been used for taking an
image, the final powering-off action is removed.

The length of the plan is at most 6I + P , where I is the number of
image goals and P is the number of pointing goals where the goal direction
is different from the initial direction. (Note that it may be the case that a
satellite originally pointed at the goal direction and has been pointed away to
take an image. However, in this case, the action required for pointing it back
at the original direction is “paid for” in the step where extraneous power-off
actions are removed.)
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An optimal plan clearly contains at least I + P actions, since it must
contain a separate image-taking action for each image goal and a pointing
action for each pointing goal where the goal direction differs from the initial
direction. Because 6I + P ≤ 6(I + P ), this concludes the proof. ⊓⊔

This approximation algorithm is fairly simple, and it can certainly be
improved to yield a lower approximation ratio. However, this ratio cannot be
made arbitrarily small.

Theorem 7.8.2. Plan-Satellite /∈ PTAS

There is no polynomial-time approximation scheme for Satellite planning
unless P = NP.

Proof. We OP-reduce from Minimum Vertex Cover. We are given a Min-

imum Vertex Cover instance (i. e., graph) G = 〈V,E〉 where all vertices
have degree 2 or 3 (cf. Theorem 5.4.2) and a parameter r > 1 irrelevant to
the reduction.

The corresponding Satellite task T ′ is defined as follows:

– There is one satellite sv for each vertex v ∈ V .
– There is one instrument iv for each vertex v ∈ V , located on sv.
– There is one mode me for each edge e = {u, v} ∈ E, supported by iu and
iv (and by no other instrument).

– There are two pointing directions d0 and d⋆.
– Pointing direction d0 is the initial pointing direction of all satellites and
the calibration target of all instruments.

– For each edge e ∈ E, there is an image objective 〈d⋆,me〉. There are no
further image objectives, and no pointing goals.

Clearly, the task can be generated in polynomial time.
To map back a plan π′ for T ′ to a vertex cover U for G, include a vertex

v ∈ V in U iff the corresponding instrument iv is used for taking an image
in π′. This can also easily be done in polynomial time, and U is indeed a
vertex cover: If it were not, then there were an edge e = {u, v} ∈ V such that
neither iu nor iv is used for taking an image in π′. But then π′ cannot satisfy
the image objective 〈d⋆,me〉, a contradiction.

The plan π′ must contain at least |E| image-taking actions and thus at
most m(π′) − |E| other actions. For each instrument used for taking an
image, at least three separate actions are needed to power on the instru-
ment, calibrate it, and turn the satellite it is located on to d⋆. We thus have
m(U) ≤ 1

3 (m(π′)− |E|).
On the other hand, we have m∗(T ′) ≤ 3m∗(G) + |E|: If U∗ is an optimal

vertex cover, then we can solve the Satellite task by powering on and
calibrating all instruments iv with v ∈ U∗ (2m∗(G) actions), turning the
corresponding satellites to d⋆ (m∗(G) actions) and taking images of d⋆ in all
modes using the calibrated instruments (|E| actions). Solving the inequality
for m∗(G), we get m∗(G) ≥ 1

3 (m
∗(T ′)− |E|).
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This allows us to bound the performance ratio of the vertex cover U
constructed from a plan π′ for the Satellite task T ′ as follows:

m(U)

m∗(G)
≤

1
3 (m(π′)− |E|)
1
3 (m

∗(T ′)− |E|)
=

m(π′)− |E|

m∗(T ′)− |E|
≤
rm∗(T ′)− |E|

m∗(T ′)− |E|

= 1 +
(r − 1)m∗(T ′)

m∗(T ′)− |E|
= 1 + (r − 1)

m∗(T ′)

m∗(T ′)− |E|
(∗)
≤ 1 + (r − 1)

m∗(T ′)

m∗(T ′)− 1
2m

∗(T ′)
= 1 + (r − 1) · 2,

where inequality (∗) holds because m∗(T ′) ≥ 2|E|: Any plan must contain
at least |E| image-taking actions and 3|U∗| ≥ |E| other actions, where U∗ is
an optimal vertex cover. (The latter inequality holds because of the degree
bounds for the vertices of G, cf. Theorem 5.4.2).

The reduction is clearly optimization-preserving because m∗(G) ≤ K iff
m∗(T ′) ≤ 3K + |E| for all K ∈ N0. ⊓⊔

We observe that the hardness result already holds for a fairly restricted
class of Satellite tasks, namely those with only two pointing directions
and one instrument per satellite. In fact, we could easily have used only a
single pointing direction, but the existing Satellite benchmarks obey the
restriction that no images are ever required of directions that serve as cali-
bration targets (presumably because calibration targets are “known” objects,
of which we do not require images). Our proof follows this restriction in case
it is considered integral to the Satellite domain rather than incidental to
the benchmark set.

Instead of many satellites with a single instrument each, we could also
prove hardness for the case of a single satellite with many instruments. Simi-
larly, instead of requiring many images of one direction, we could also require
one image each of many directions.

7.9 Schedule

For our final result, we turn our attention to the Schedule domain. This
domain models the processing of physical objects by a number of different
machines capable of changing the appearance of objects by polishing them,
painting them, punching holes into them, and similar transformations.

Definition 7.9.1. Schedule tasks
The set of Schedule temperatures OT, surface conditions OSC, shapes
OS, colours OC and holes OH and the set of Schedule object states O
are defined as follows:
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OT = {cold, hot}

OSC = {rough, smooth, polished, none}

OS = {cylindrical, circular, oblong}

OC = {blue, yellow, red, black, none}

OH = {front1, front2, front3, back1, back2, back3}

O = OT ×OSC ×OS ×OC × 2OH

A Schedule task is a finite sequence of pairs in O×2O. For Schedule

tasks (〈oi0, O
i
⋆〉)

n
i=1, we say that oi0 is the initial state of the i-th object,

and that Oi
⋆ is the goal specification for the i-th object.

According to this definition, an object in a Schedule task is characterized
by its temperature, surface condition, shape, colour and set of holes, for each
of which there is a finite range of possible values. A Schedule task specifies
a sequence of pairs 〈o0, O⋆〉, where o0 ∈ O defines the initial state of a given
object, and O⋆ ⊆ O defines its possible goal states. In the Schedule domain
as used at IPC2, there are further restrictions on such goal sets. For example,
specifications like “This object must become smooth and oblong” are possible
goals, but specifications like “This object must become red and hot or green
and smooth” are not. Specifically, goals are always defined as conjunctions
over assignments to individual object properties (like surface condition and
shape), and there are no goals involving temperatures or holes and no goals
requiring the surface condition or colour of an object to be none. By allowing
more complex goal specifications, it seems that we make the planning problem
harder, but we will shortly see that this does not affect our results. We can
now define the Schedule domain.

Definition 7.9.2. Schedule domain
The set of Schedule machinery is defined as M = {drill-press, grinder,
immersion-painter, lathe, polisher, punch, roller, spray-painter}.

Each machine m ∈M has an associated set of transformations, which
are partial functions on object states. Similar to operator descriptions, we
describe transformations in terms of preconditions and effects on object states:

– The drill-press, polisher, punch and spray-painter may transform any object
whose temperature is cold. The other machinery may transform any object.

– The drill-press and punch have one transformation for each hole h ∈ OH.
This transformation adds the hole h to the set of holes of the transformed
object. In addition to this effect, the punch causes the surface condition of
the transformed object to be rough.

– The immersion-painter and spray-painter have one transformation for each
colour c ∈ OC\{none}. This transformation causes the colour of the trans-
formed object to be c. In addition to this effect, the spray painter causes
the surface condition of the transformed object to be none.
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– The polisher has a single transformation, which causes the surface condi-
tion of the transformed object to be polished.

– The roll has a single transformation, which causes the surface condition
and colour of the transformed object to be none, removes all holes (i. e.,
causes the set of holes to be the empty set), causes the temperature to be
hot and the shape to be cylindrical.

– The lathe has a single transformation, which causes the colour of the trans-
formed object to be none, the surface condition to be rough and the shape
to be cylindrical.

– The grinder has a single transformation, which causes the colour of the
transformed object to be none and the surface condition to be smooth.

The Schedule planning domain maps Schedule tasks (〈oi0, O
i
⋆〉)

n
i=1 to

state spaces as follows:

States: 3-tuples 〈(oi)ni=1,MB, OB〉, where (oi)ni=1 ∈ On is an n-tuple
of object states whose i-th component is called the state of
the i-th object, MB ⊆ M is called the set of busy ma-
chines and OB ⊆ {1, . . . , n} is called the set of busy ob-
jects. We say that m ∈M is busy iff m ∈MB and that the
i-th object is busy iff i ∈ OB.

Initial state: 〈(oi0)
n
i=1, ∅, ∅〉.

Goal states: Any state where the i-th object state is in Oi
⋆ for all i ∈

{1, . . . , n}.
Operators: For each transformation t of a machine m ∈ M and each

i ∈ {1, . . . , n}, machine m may process the i-th object using
transformation t iff t is defined for the state of the i-th object,
oi, and neither m nor the i-th object are busy. In the resulting
state, the state of the i-th object is t(oi) and machine m and
the i-th object are busy.
The time-step action is applicable iff at least one machine
is busy. In the resulting state, the sets of busy machines and
objects are empty.

The exact definitions of the transformations are immaterial to our com-
plexity results and are only presented for completeness of description. All
that is relevant for our result is that the sets of object states, machines and
transformations are of fixed size.

Plans in the Schedule domain naturally fall into episodes, separated by
time-step actions. During each episode, each machine can process at most
one object, and hence each episode consists of at most |M | = 8 actions (not
counting the time-step actions themselves). From the point of view of appli-
cations, it is more natural to optimize the number of episodes than the total
number of actions of a plan, because it is assumed that different machines
may work in parallel and we are interested in minimizing the total time spent
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(often called the makespan of the plan), rather than using a minimal num-
ber of processing step. Makespan is equivalent (plus/minus 1) to the number
of time-step actions in a plan, so we can model makespan minimization by
assigning a cost of 1 to time-step actions and a cost of 0 to all other ac-
tions. The following analysis applies to both minimization of makespan and
minimization of plan length.

Theorem 7.9.1. Plan-Schedule ∈ PO

In the Schedule domain, optimal plans can be generated in polynomial time.
This remains true in the generalized domain where non-negative weights

are assigned to all actions, as long as weights for process actions only depend
on the machine, transformation and state of the object being transformed (but
not on the index of the object).

Proof. We say that the kind of an object in a given state of a Schedule task
is given by its current state and its goal specification.

Observe that if the i-th and j-th object have the same kind in state
s, then there is a symmetry in the state space: In any sequence of actions
that leads to a goal state from s, we can exchange all transformations of
the i-th object with transformations of the j-th object to obtain another
solution. Abstracting from this symmetry, we can specify actions in terms
of the kind of objects they transform, rather than their index. This leads
to an alternative representation of Schedule states: If n is the number of
objects in a given Schedule task and K is the number of object kinds, then
an abstract state of the task is given by K numbers in the range {0, . . . , n}
specifying how many objects of each kind are present, K numbers in the
range {0, . . . , |M |} specifying how many objects of each kind are busy, and
a subset of M specifying which machines are busy. By translating the initial
state, goal specification and operators to refer to abstract states, we obtain
the abstract state space of a Schedule task.

The size of the abstract state space is clearly bounded by (n+1)K ·(|M |+
1)K · 2|M|, which is polynomial in n and hence in the size of the Schedule

task. (Recall that K and |M | are constants.) Thus, an optimal abstract plan
can be generated in polynomial time by explicitly constructing the abstract
state space and finding a shortest path from the abstract initial state to some
abstract goal state. Abstract plans can easily be translated back to concrete
plans.

This approach generalizes to the weighted action-cost model as long as
the cost of a transformation does not differ for different objects of the same
kind. ⊓⊔

The polynomial time property of the algorithm critically relies on the fact
that the number of machines and object states is constant. If the object states,
machines and transformations are given as part of the individual planning
tasks, then the bounded plan existence becomes NP-complete, at least in the
more realistic case where only time-step actions are counted. This is already
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true if there are only three machines [41, Problem SS18]. Of course, generating
bad-quality plans stays easy because objects can still be dealt with one at a
time, by searching the transition graph that is defined by the set of object
transformations. (We assume that these transition graphs are given explicitly,
rather than in a factored representation.)

Note that the execution time of the optimal planning algorithm we pre-
sented, depending on the graph search algorithm used, grows about as quickly
as nK , where n is the input size and K = |O×2O| = 7680·27680, which means
that this is not a practical algorithm.

As was mentioned earlier, the real competition domain does not allow
for arbitrary goal descriptions, which reduces the 27680 factor to 80. Still,
an O(n7680·80) = O(n614400) algorithm is not tractable in practice. Further
optimizations decrease the complexity significantly, but it is not obvious what
a really tractable algorithm would look like.

7.10 Summary

This concludes our discussion of the IPC benchmark suite, and thus the
technical results of the first part of the thesis. The main results from this
chapter are briefly summarized in Fig. 7.7.

Domain Complexity
Assembly EXPO \ NPS
Blocksworld APX \ PTAS
FreeCell NPO \ PS
Movie PO
Pipesworld /∈ PS (membership in NPO open)
Promela EXPO \ NPS
Promela-OpticalTelegraph PO
Promela-Philosophers PO
PSR PO
Satellite APX \ PTAS
Schedule PO

Fig. 7.7. Complexity results for the non-transportation IPC domains (if P 6= NP)



8. Conclusions

In the preceding chapters, we analysed the computational complexity of plan-
ning in the benchmark domains of the first four International Planning Com-
petitions (IPC1–4) and two related families of transportation and route plan-
ning domains. In the following Section 8.1, we draw a number of conclusions
from this analysis, and in Section 8.2 we close this part by pointing out what
else needs to be done until we can claim to understand the problem we set
out to investigate.

8.1 Ten Conclusions

We observed that a large number of IPC benchmarks encode various variants
of transportation planning and route planning. Although this might sound
superficial, we believe this to be the first important result of our analysis,
because this prevalence of one particular kind of planning problem has – in
our opinion – largely influenced the development of planning systems since
the advent of the International Planning Competitions. In particular, it has
strongly influenced the planning system we describe in the second part of
this thesis.

Conclusion 1. Many IPC domains model transportation and route planning
problems.

Based on this observation, we introduced and analysed the Transport

and Route domain families. One of our intentions in looking at domain fam-
ilies rather than considering each competition domain in isolation was to find
the boundaries between easy and hard planning problems. For Transport

and Route, one such boundary is clearly defined.

Conclusion 2. If fuel is restricted, planning in the Transport and Route

domains is difficult: None of the restricted-fuel domains has a polynomial-
time solution algorithm unless P = NP.

If fuel is unrestricted, planning in the Transport and Route domains
is easy: All unrestricted-fuel domains have a polynomial-time solution algo-
rithm.
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One possible explanation why fuel restrictions make the planning problem
harder is that, by bounding the number of movements that can be performed,
they effectively limit the length of the generated plans, and hence the problem
of just finding any plan becomes akin to the problem of finding an optimal
plan, which is unconditionally difficult.

Conclusion 3. Optimal planning in the Transport and Route domains
is difficult: None of the domains admits a polynomial optimal planning algo-
rithm unless P = NP.

We noticed that a major source of hardness in finding optimal plans for
these domains is a difficulty in ordering: While it is usually evident how indi-
vidual portables should be transported to their destinations, the interactions
between different goals make optimally solving the overall task a hard prob-
lem. Therefore, even deceivingly simple planning tasks (such as Logistics

tasks with a single vehicle) turn out to be NP-hard to optimize.
Due to this hardness of optimization, we considered the problem of gener-

ating high-quality plans. One of the outcomes of this analysis was that in none
of the domains in the Transport and Route families, optimal solutions can
be approximated arbitrarily well within polynomial time.

Conclusion 4. Optimal plans in the Transport and Route domains can-
not be approximated arbitrary well: None of the domains admits a polynomial-
time approximation scheme unless P = NP.

So is fuel the only dividing line in the Transport and Route families?
It turns out that it is not.

Conclusion 5. Optimal plans in the Transport and Route domains can
be approximated by some constant factor if all mobiles have the same ca-
pabilities and mobiles capacities (for Transport) are either all 1 or all
unrestricted.

Optimal plans in the Transport and Route domains cannot be ap-
proximated by some constant factor if either of these restrictions is violated,
unless some widely held assumptions about the class NP fail to be true.

A last statement about Transport and Route which we consider worth
emphasizing is that two important aspects appear not to influence the hard-
ness of planning.

Conclusion 6. Whether actions have arbitrary costs or unit cost does not
affect the complexity of planning in the Transport and Route family.

Conclusion 7. Whether there is only a single mobile or multiple mobiles
does not affect the complexity of planning in the Transport and Route

family, provided that all mobiles have the same capabilities.
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Our remaining conclusions are concerned with the IPC benchmark do-
mains, rather than the Transport and Route domain families. We have
fewer general conclusions to draw for the IPC benchmarks because they spec-
ify wildly different problems, and it is difficult to summarize our findings for
them in a few general statements. However, this fact in itself is already an
interesting observation.

Conclusion 8. The IPC benchmark suite is very varied, both in terms of
the application problems it represents and in terms of complexity.

We emphasize this point because, after all, we are interested in general
domain-independent planning. It would be bad news indeed if it turned out
that all IPC domains represented more or less the same problem. However,
this is not the case. In particular, the IPC4 domains significantly helped
increase the scope of the benchmark suite beyond transportation-style prob-
lems, while also widening the complexity spectrum of the benchmark suite
by introducing the first domains with PSPACE-complete plan existence prob-
lems, namely Airport and Promela, and the first non-trivial planning
domain for which we can efficiently generate optimal plans, namely PSR.
(Gripper and Movie are clearly trivial, and for Schedule we cannot re-
ally claim to be able to efficiently generate optimal plans.) We believe that
this is an effect of the competition organizers’ focus on actively seeking for
realistic and structurally interesting domains. Indeed, they mention includ-
ing a PSPACE-equivalent benchmark as one of the desiderata for the IPC4
benchmark suite [35].

Despite this variety, there are a few general observations which hold across
a surprisingly wide range of domains. One of them has been stated before in
the context of transportation and route planning (cf. Section 6.7).

Conclusion 9. When a planning domain admits polynomial-time solution
algorithms but does not allow constant-factor approximations, this is usually
due to positive subgoal interactions.

Indeed, it is interesting to observe that all our hardness proofs for the
poly-APX\APX domains relied on the Minimum Set Cover problem, which
exhibits positive subgoal interactions in their most purely distilled form. We
believe that finding a good way of integrating heuristics for set covering prob-
lems could lead to a significant advance in plan quality of domain-independent
planning systems, and might be one of the keys to developing better admis-
sible heuristics for the general planning problem. However, we consider this
a very challenging avenue of research.

Our final observation concerns domains which do admit constant-factor
approximations.

Conclusion 10. When a planning domain admits constant-factor approxi-
mations, then such an approximation can usually be obtained by simple greedy
algorithms achieving one goal at a time.
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Indeed, from our proofs it is easy to see that for all IPC domains in APX

except for Blocksworld, the Blocksworld-like Depots domain and the
Promela variants, polynomial-time constant-factor approximations can be
obtained by using Hoffmann’s enforced hill-climbing algorithm [65] using the
number of unsatisfied goals as a heuristic estimator. This observation goes
a large way towards explaining why planning systems based on local-search
such as FF or LPG often dramatically outperform more systematic search
algorithm like SATPLAN.

8.2 Going Further

What to do with these results? As a chief motivation for our analysis, we
quoted Pólya’s belief that “First, you have to understand the problem.” Can
we claim to understand the planning benchmarks now?

Certainly, we do not understand them perfectly. To see how much more
can be done, consider Slaney and Thiébaux’s work on the Blocksworld do-
main [105], which was motivated by a similar goal as ours, namely to provide
“the level of understanding required for [. . . ] effective use as a benchmark”:

“Our results include methods for generating random problems for
systematic experimentation, the best domain-specific planning algo-
rithms against which AI planners can be compared, and observations
establishing the average plan quality of near-optimal methods. We
also study the distribution of hard/easy instances, and identify the
structure that AI planners must be able to exploit in order to ap-
proach Blocks World successfully.” [105, p. 119]

Considering these goals, at least two more steps are required until we
can get a similarly good understanding of the other planning benchmarks:
identifying phase transition regions to understand where the really hard tasks
are, and having (domain-dependent) optimal solvers available to be able to
realistically assess the solution quality of non-optimal planners.
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9. Solving Planning Tasks Hierarchically

This chapter introduces the main ideas and concepts underlying the Fast
Downward planner and puts them into the context of earlier research.

In Section 9.1, we present a simple example to illustrate key aspects of
the planner such as the exploitation of causal dependencies and the use of
multi-valued state variables. Section 9.2 puts these ideas into the context of
earlier research. The concluding Section 9.3 presents a birds-eye view of the
overall planner architecture and provides an outlook on the chapters to come.

9.1 Introduction

Consider a typical transportation planning task: The postal service must
deliver a number of parcels to their respective destinations using its vehicle
fleet of cars and trucks. Let us assume that a car serves all the locations of
one city, and that different cities are connected via highways that are served
by trucks. For the sake of simplicity, let us further assume that travelling
on each segment of road or highway incurs the same cost. This is not a
highly realistic assumption, but for the purposes of exposition, it will do.
There can be any number of parcels, posted at arbitrary locations and with
arbitrary destinations. Moreover, cities can be of varying size, there can be
one or several cars within each city, and there can be one or several trucks
connecting the cities. Cars will never leave a city. Fig. 9.1 shows an example
task of this kind with two cities, three cars and a single truck. There are two
parcels to be delivered, one of which (p1) must be moved between the two
cities, while the other (p2) can stay within its initial city.

The observant reader will have noticed by now that we are describing a
Transport∞∗ planning task. (Part of) a propositional STRIPS-like encod-
ing is shown in Fig. 9.2.

How would human planners go about solving tasks of this kind? Very
likely, they would use a hierarchical approach: For p1, it is clear that the
parcel needs to be moved between cities, which is only possible by using the
truck. Since in our example each city can access the highway at only one
location, we see that we must first load the parcel into some car at its initial
location, then drop it off at the first city’s highway access location, load it
into the truck, drop it off at the other city’s highway access location, load
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A

B

C

D E

F

G

c1

c2

c3

t

p1

p2

Fig. 9.1. A transportation planning task. Deliver parcel p1 from C to G and parcel
p2 from F to E, using the cars c1, c2, c3 and truck t. The cars may only use
inner-city roads (thin edges), the truck may only use the highway (thick edge).

it into the only car in that city, and finally drop it off at its destination.
We can commit to this “high-level” plan for delivering p1 without worrying
about “lower-level” aspects such as path planning for the cars. It is obvious
to us that any good solution will have this structure, since the parcel can
only change its location in a few clearly defined ways (Fig. 9.3). The same
figure shows that the only reasonable plans for getting p2 to its destination
require loading it into the car in its initial city and dropping it off at its target
location. There is no point in ever loading it into the truck or into any of the
cars in the left city.

So let us assume that we have committed to the (partially ordered, as
movements of the two parcels can be interleaved) “high-level plan” shown
in Fig. 9.5. All we need to do to complete the plan is choose a linearization
of the high-level steps and fill in movements of the vehicle fleet between
them. We have thus decomposed the planning task into a number of subtasks.
The parcel scheduling task (where, and by which vehicles, a parcel should
be loaded and unloaded) is separated from the path planning task for each
vehicle in the fleet (how to move it from point X to Y). Both of these are
graph search tasks, and the corresponding graphs are shown in Fig. 9.3 and
Fig. 9.4. Graphs of this kind will be formally introduced as domain transition
graphs in Chapter 11.

Of course these graph search tasks interact, but they only do so in limited
ways: State transitions for the parcels have associated conditions regarding
the vehicle fleet, which need to be considered in addition to the actual path
planning in Fig. 9.3. For example, a parcel can only change state from “at
location A” to “inside car c1” if the car c1 is at location A. However, state
transitions for the vehicles have no associated conditions from other parts of
the planning task, and hence moving a vehicle from one location to another is
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Variables:
at-p1-a, at-p1-b, at-p1-c, at-p1-d, at-p1-e, at-p1-f, at-p1-g,
at-p2-a, at-p2-b, at-p2-c, at-p2-d, at-p2-e, at-p2-f, at-p2-g,
at-c1-a, at-c1-b, at-c1-c, at-c1-d,
at-c2-a, at-c2-b, at-c2-c, at-c2-d,
at-c3-e, at-c3-f, at-c3-g,
at-t-d, at-t-e,
in-p1-c1, in-p1-c2, in-p1-c3, in-p1-t,
in-p2-c1, in-p2-c2, in-p2-c3, in-p2-t

Init:
at-p1-c, at-p2-f, at-c1-a, at-c2-b, at-c3-g, at-t-e

Goal:
at-p1-g, at-p2-e

Operator drive-c1-a-d:
PRE: at-c1-a ADD: at-c1-d DEL: at-c1-a

Operator drive-c1-b-d:
PRE: at-c1-b ADD: at-c1-d DEL: at-c1-b

Operator drive-c1-c-d:
PRE: at-c1-c ADD: at-c1-d DEL: at-c1-c

...
Operator load-c1-p1-a:

PRE: at-c1-a, at-p1-a ADD: in-p1-c1 DEL: at-p1-a
Operator load-c1-p1-b:

PRE: at-c1-b, at-p1-b ADD: in-p1-c1 DEL: at-p1-b
Operator load-c1-p1-c:

PRE: at-c1-c, at-p1-c ADD: in-p1-c1 DEL: at-p1-c
...
Operator unload-c1-p1-a:

PRE: at-c1-a, in-p1-c1 ADD: at-p1-a DEL: in-p1-c1
Operator unload-c1-p1-b:

PRE: at-c1-b, in-p1-c1 ADD: at-p1-b DEL: in-p1-c1
Operator unload-c1-p1-c:

PRE: at-c1-c, in-p1-c1 ADD: at-p1-c DEL: in-p1-c1
...

Fig. 9.2. Part of a typical propositional encoding of the transportation planning
task (no actual PDDL syntax).
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at A at B at C at D at E at F at G

in c1

in c2 in c3

in t

Fig. 9.3. Domain transition graph for the parcels p1 and p2. Indicates how a parcel
can change its state. For example, the arcs between “at D” and “in t” correspond
to the actions of loading/unloading the parcel at location D with the truck t.

A

B

C

D D E E

F

G

Fig. 9.4. Domain transition graphs for the cars c1 and c2 (left), truck t (centre),
and car c3 (right). Note how each graph corresponds to the part of the roadmap
that can be traversed by the respective vehicle.

load
c1-p1-c

unload
c1-p1-d

load
t-p1-d

unload
t-p1-e

load
c3-p1-e

unload
c3-p1-g

load
c3-p2-f

unload
c3-p2-e

Fig. 9.5. High-level plan for the transportation planning task.
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c1 c2 c3 t

p1 p2

Fig. 9.6. Causal dependencies in the transportation planning task.

indeed as easy as finding a path in the associated domain transition graph. We
say that the parcels have causal dependencies on the vehicles because there
are operators that change the state of the parcels and have preconditions on
the state of the vehicles. Indeed, these are the only causal dependencies in this
task, since parcels do not depend on other parcels and vehicles do not depend
on anything except themselves (Fig. 9.6). The set of causal dependencies of
a planning task is visualized in its causal graph.

We argue that humans often solve planning tasks in the hierarchical fash-
ion outlined in the preceding paragraphs, and that algorithmic approaches
to action planning can usefully apply similar ideas. Indeed, as we will show
in the following section, we are not the first to introduce domain transition
graphs and causal graphs. However, earlier work has almost exclusively fo-
cused on acyclic causal graphs, and for a good reason: If the causal graph of
a planning task exhibits a cycle, hierarchical decomposition is not possible,
because the subtasks that must be solved to achieve an operator precondition
are not necessarily smaller than the original task. As far as we are aware, we
were the first [56] to present a general planning algorithm that focuses on
exploiting hierarchical information from causal graphs. However, our causal
graph heuristic also requires acyclicity; in the general case, it considers a
relaxed planning task in which some operator preconditions are ignored to
break causal cycles.

Knowing that cycles in causal graphs are undesirable, we take a closer look
at the transportation planning task. Let us recall our informal definition of
causal graphs: The causal graph of a planning task contains a vertex for each
state variable and arcs from variables that occur in preconditions to variables
that occur in effects of the same operator. So far, we may have given the
impression that the causal graph of the example task has the well-behaved
shape shown in Fig. 9.6. Unfortunately, having a closer look at the STRIPS
encoding in Fig. 9.2, we see that this is not the case: The correct causal graph,
shown in Fig. 9.7, looks very messy. This discrepancy between the intuitive
and actual graph is due to the fact that in our informal account of “human-
style” problem solving, we made use of (non-binary) state variables like “the
location of car c1” or “the state of parcel p1”, while STRIPS-level state
variables correspond to (binary) object-location propositions like “parcel p1
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Fig. 9.7. Causal graph for the STRIPS encoding of the transportation planning
task.

is at location A”. It would be much nicer if we were given a multi-valued
encoding of the planning task that explicitly contains a variable for “the
location of car c1” and similar properties. Indeed, the nice looking acyclic
graph in Fig. 9.6 is the causal graph of the multi-valued encoding shown in
Fig. 9.8.

We have now provided enough intuition to state the design goal for the
Fast Downward planning system, which is the topic of this second part of
the thesis: To develop an algorithm that efficiently solves general proposi-
tional planning tasks by exploiting the hierarchical structure inherent in causal
graphs. We need to overcome three major obstacles in this undertaking:

– First, propositionally encoded planning tasks usually have very unstruc-
tured causal graphs. However, the intuitive dependencies often become
visible in encodings with multi-valued state variables. To exploit this fact
in an automated PDDL planning system, we have devised an automatic
algorithm for “translating” (or reformulating) propositional tasks to multi-
valued ones. The translation algorithm can be considered independently
from the rest of the planner; in fact, it is now also used as part of other
planning systems [108].

– Second, no matter how clever the encoding is, most planning tasks are not
completely hierarchical in nature. To deal with causal cycles, we consider
relaxations where some causal dependencies are ignored and use solutions
to the relaxed task within a heuristic search algorithm.

– Third, even for planning tasks that can be solved hierarchically, finding
such a solution is difficult (indeed, still PSPACE-complete). For this reason,
our heuristic function only considers a fragment of a task at a time, namely
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Variables:
p1, p2 ∈ {at-a, at-b, at-c, at-d, at-e, at-f,at-g,

in-c1, in-c2, in-c3, in-t}
c1, c2 ∈ {at-a, at-b, at-c, at-d}
c3 ∈ {at-e, at-f, at-g}
t ∈ {at-d, at-e}

Init:
p1 = at-c, p2 = at-f
c1 = at-a, c2 = at-b, c3 = at-g, t = at-e

Goal:
p1 = at-g, p2 = at-e

Operator drive-c1-a-d:
PRE: c1 = at-a EFF: c1 = at-d

Operator drive-c1-b-d:
PRE: c1 = at-b EFF: c1 = at-d

Operator drive-c1-c-d:
PRE: c1 = at-c EFF: c1 = at-d

...
Operator load-c1-p1-a:

PRE: c1 = at-a, p1 = at-a EFF: p1 = in-c1
Operator load-c1-p1-b:

PRE: c1 = at-b, p1 = at-b EFF: p1 = in-c1
Operator load-c1-p1-c:

PRE: c1 = at-c, p1 = at-c EFF: p1 = in-c1
...
Operator unload-c1-p1-a:

PRE: c1 = at-a, p1 = in-c1 EFF: p1 = at-a
Operator unload-c1-p1-b:

PRE: c1 = at-b, p1 = in-c1 EFF: p1 = at-b
Operator unload-c1-p1-c:

PRE: c1 = at-c, p1 = in-c1 EFF: p1 = at-c
...

Fig. 9.8. Part of an encoding of the transportation planning task with multi-valued
state variables.
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subtasks induced by a single state variable and its predecessors in the causal
graph. Even this planning problem is still NP-complete, so that we are
content with an incomplete solution algorithm within the heuristic solver.
This solution algorithm has theoretical shortcomings but never failed us in
practice.

9.2 Related Work

As a planning system based on heuristic forward search, Fast Downward is
clearly related to other heuristic planners such as HSP [15] or FF [65] on the
architectural level. However, in this section we focus on work that is related
on the conceptual level, i. e., work that uses similar forms of hierarchical
decomposition of causal graphs and work that uses similar forms of search in
domain transition graphs.

9.2.1 Causal Graphs and Abstraction

The term causal graph first appears in the literature in the work by Williams
and Nayak [110], but the general idea is considerably older. The approach of
hierarchically decomposing planning tasks is arguably as old as the field of
AI Planning itself, having first surfaced in Newell and Simon’s work on the
General Problem Solver [91].

Still, it took a long time for these notions to evolve to their modern
form. Sacerdoti’s ABSTRIPS algorithm introduced the concept of abstrac-
tion spaces for STRIPS-like planning tasks [103]. An abstraction space of a
STRIPS task is the state space of an abstracted task, obtained by removing
all preconditions from the operators of the original task that belong to a
given set of propositions, which are abstracted away. (In later work by other
authors, propositions which are abstracted away are also removed from the
operator effects. This only makes a difference in subtle cases that require the
presence of axioms; we do not distinguish between these two forms of ab-
straction here.) To solve a planning task, ABSTRIPS first generates a plan
for an abstracted task, then refines this plan by inserting concrete plans be-
tween the abstract plan steps that “bridge the gap” between abstract states
by satisfying the operator preconditions which were ignored at the abstract
level. The idea is easily generalized to several levels of abstraction forming
an abstraction hierarchy, with a very abstract level at the top where almost
all preconditions are ignored, successively introducing more preconditions at
every layer until the final layer of the hierarchy equals the original planning
task.

One problem with this approach to planning is that in general there is no
guarantee that the abstract plans bear any resemblance to reasonable con-
crete plans. For example, if abstraction spaces are chosen badly, it is quite
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possible that finding a concrete plan that satisfies the precondition of the first
operator in the abstract plan is more difficult than solving the original goal at
the concrete level. Such shortcomings spawned a large amount of research on
the properties of abstraction hierarchies and how they can be generated au-
tomatically. Tenenberg gives one of the first formal accounts of the properties
of different kinds of abstraction [106]. Among other contributions, he defines
the so-called upward solution property, which can be informally stated as: “If
there exists a concrete solution, then there also exists an abstract solution”.
Rather surprisingly, not all abstractions considered at the time satisfied this
very basic property, without which one would be loathe to call a given state
space an “abstraction” of another state space.

A limitation of the upward solution property is that it states no rela-
tionship between the concrete and abstract plan at all. For ABSTRIPS-style
hierarchical planning to be successful, the abstract plan must bear some re-
semblance to a concrete one; otherwise there is little point in trying to refine
it. Indeed, Tenenberg introduces stronger versions of the upward solution
property, but more relevant to Fast Downward is Knoblock’s work on the or-
dered monotonicity property [76]. An abstraction space satisfies the ordered
monotonicity property if, roughly speaking, any concrete solution can be de-
rived from some abstract solution while leaving the actions in the abstract
plan intact and relevant to the concrete plan. Clearly, this is a very important
property for ABSTRIPS-like hierarchical planning.

It is in Knoblock’s article that causal graphs first surface (although
he does not introduce a name for them). Translated to our terminology,
Knoblock proves the following relationship between useful abstractions and
causal graphs: If the causal graph contains no path from a variable that is not
abstracted away to a variable that is abstracted away, then the abstraction has
the ordered monotonicity property. In particular, this means that for acyclic
causal graphs, it is possible to devise an abstraction hierarchy where only one
new variable is introduced at each level.

Besides these theoretical contributions, Knoblock presents a planning sys-
tem called ALPINE which computes an abstraction hierarchy for a planning
task from its causal graph and exploits this within a hierarchical refinement
planner. Although the planning method is very different, the derivation of
the abstraction hierarchy is very similar to Fast Downward’s method for gen-
erating hierarchical decompositions of planning tasks (Section 11.3).

By itself, the ordered monotonicity property is not sufficient to guarantee
good performance of a hierarchical planning approach. It guarantees that
every concrete solution can be obtained in a natural way from an abstract
solution, but it does not guarantee that all abstract solutions can be refined
to concrete ones. Such a guarantee is provided by the downward refinement
property, introduced by Bacchus and Yang [8].

The downward refinement property can rarely be guaranteed in actual
planning domains, so Bacchus and Yang develop an analytical model for the
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performance of hierarchical planning in situations where a given abstract
plan can only be refined with a certain probability p < 1. Based on this
analysis, they present an extension to ALPINE called HIGHPOINT, which
selects an abstraction hierarchy with high refinement probability among those
that satisfy the ordered monotonicity property. In practice, it is not feasible
to compute the refinement probability, so HIGHPOINT approximates this
value based on the notion of k-ary necessary connectivity.

9.2.2 Causal Graphs and Unary STRIPS Operators

Causal graphs are first given a name by Jonsson and Bäckström, who call
them dependency graphs [68, 70]. They study a fragment of propositional
STRIPS with negative conditions which has the interesting property that plan
existence can be decided in polynomial time, but minimal solutions to a task
can be exponentially long, so that no polynomial planning algorithm exists.
They present an incremental planning algorithm with polynomial delay, i. e.,
a planning algorithm that decides within polynomial time whether or not a
given task has a solution, and, if so, generates such a solution step by step,
requiring only polynomial time between any two consecutive steps. (However,
there is no guarantee that the length of the generated solution is polynomially
related to the length of an optimal solution; it might be exponentially larger.
Therefore, the algorithm might spend exponential time on tasks that can
be solved in polynomial time.) The fragment of STRIPS covered by Jonsson
and Bäckström’s algorithm is called 3S and is defined by the requirement
that the causal graph of the task is acyclic and each state variables is static,
symmetrically reversible, or splitting. Static variables are those for which it
is easy to guarantee that they never change their value in any solution plan.
These variables can be detected and compiled away easily. Symmetrically
reversible variables are those where for each operator which makes them
true there is a corresponding operator with identical preconditions which
makes them false, and vice versa. In other words, a variable is symmetrically
reversible iff its domain transition graph is undirected. Finally, a variable v is
splitting iff its removal from the causal graph weakly disconnects its positive
successors (those variables which appear in effects of operators of which v is
a precondition) from its negative successors (those variables which appear in
effects of operators of which ¬v is a precondition).

Williams and Nayak independently prove that incremental (or, in their
setting, reactive) planning is a polynomial problem in a STRIPS-like set-
ting where causal graphs are acyclic and all operators are reversible [110].
If all operators are reversible (according to the definition by Williams and
Nayak), all variables are symmetrically reversible (according to the definition
by Jonsson and Bäckström), so this is actually a special case of the previous
result. However, Williams and Nayak’s work applies to a more general for-
malism than propositional STRIPS, so that the approaches are not directly
comparable.
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More recently, Domshlak and Brafman provide a detailed account of the
complexity of finding plans in the propositional STRIPS (with negation)
formalism with unary operators and acyclic graphs [16, 26]. (According to
our formal definition of causal graphs in Section 11.3, operators with several
effects always induce cycles in the causal graph, so acyclic causal graph im-
plies unary operators. Some researchers define causal graphs differently, so
we name both properties explicitly here.) Among other results, they prove
that the restriction to unary operators and acyclic graphs does not reduce
the complexity of plan existence: the problem is PSPACE-complete, just like
unrestricted propositional STRIPS planning [17]. They also show that for
singly connected causal graphs, shortest plans cannot be exponentially long,
but the plan existence problem is still NP-complete. For an even more re-
stricted class of causal graphs, namely polytrees of bounded indegree, they
present a polynomial planning algorithm. More generally, their analysis re-
lates the complexity of STRIPS planning in unary domains to the number of
paths in their causal graph.

9.2.3 Multi-Valued Planning Tasks

With the exception of Williams and Nayak’s paper, all the work discussed
so far exclusively deals with propositional planning problems, where all state
variables assume values from a binary domain. As we observed in the intro-
duction, the question of propositional vs. multi-valued encodings usually has
a strong impact on the connectivity of the causal graph of a task. In fact,
apart from the trivial Movie domain, none of the common planning bench-
marks exhibits an acyclic causal graph when considering its propositional
representation. By contrast, the multi-valued encoding of our introductory
example does have an acyclic causal graph.

Due to the dominance of the PDDL (and previously, STRIPS) formalism,
non-binary state variables are not studied very often in the classical planning
literature. One of the most important exceptions to this rule is the work on
the SAS+ planning formalism, of which the papers by Bäckström and Nebel
[9] and Jonsson and Bäckström [69] are most relevant to Fast Downward. The
SAS+ planning formalism is basically equivalent to the multi-valued planning
tasks we introduce in Chapter 10 apart from the fact that it does not include
derived variables (axioms) or conditional effects. Bäckström and Nebel anal-
yse the complexity of various subclasses of the SAS+ formalism and discover
three properties (unariness, post-uniqueness and single-valuedness) that to-
gether allow optimal planning in polynomial time. One of these three prop-
erties (unariness) is related to acyclicity of causal graphs, and one (post-
uniqueness) implies a particularly simple shape of domain transition graphs
(namely, in post-unique tasks, all domain transition graphs must be simple
cycles or trees).

Bäckström and Nebel do not analyse domain transition graphs formally.
Indeed, the term is only introduced in the later article by Jonsson and
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Bäckström, which refines the earlier results by introducing five additional
restrictions for SAS+ tasks, all of which are related to properties of domain
transition graphs [69].

Neither of these two articles discusses the notion of causal graphs. Indeed,
the only earlier work we are aware of which includes both causal graphs and
domain transition graphs as central concepts is the article by Domshlak and
Dinitz on the state-transition support (STS) problem, which is essentially
equivalent to SAS+ planning with unary operators [27]. In the context of
STS, domain transition graphs are called strategy graphs and causal graphs
are called dependence graphs, but apart from minor details, the semantics of
the two formalisms are identical. Domshlak and Dinitz provide a map of the
complexity of the STS problem in terms of the shape of its causal graph,
showing that the problem is NP-complete or worse for almost all non-trivial
cases. One interesting result is that if the causal graph is a simple chain of
n nodes and all variables are three-valued, the length of minimal plans can
already grow as Ω(2n). By contrast, propositional tasks with the same causal
graph shape admit polynomial planning algorithms according to the result by
Brafman and Domshlak [16], because such causal graphs are polytrees with
a constant indegree bound (namely, a bound of 1).

To summarize and conclude our discussion of related work, we observe
that the central concepts of Fast Downward and the causal graph heuristic,
such as causal graphs and domain transition graphs, are firmly rooted in
previous work. However, Fast Downward is the first attempt to marry hier-
archical task decomposition to the use of multi-valued state variables within
a general planning framework. It is also the first attempt to apply techniques
similar to those of Knoblock [76] and Bacchus and Yang [8] within a heuristic
search planner.

The significance of this latter point should not be underestimated: For
classical approaches to hierarchical task decomposition, it is imperative that
an abstraction satisfies the ordered monotonicity property, and it is impor-
tant that the probability of being able to refine an abstract plan to a concrete
plan is high, as the analysis by Bacchus and Yang shows. Unfortunately, non-
trivial abstraction hierarchies are rarely ordered monotonic, and even more
rarely guarantee high refinement probabilities. Within a heuristic approach,
however, these “must-haves” turn into “nice-to-haves”: If an abstraction hi-
erarchy is not ordered monotonic or if an abstract plan considered by the
heuristic evaluator is not refinable, this merely reduces the quality of the
heuristic estimate, rather than causing the search to fail (in the worst case)
or spend a long time trying to salvage non-refinable abstract plans (in the
not much better case).
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best-first search
– Focused iterative-

broadening search

Fig. 9.9. The three phases of Fast Downward’s execution.

9.3 Architecture and Overview

We now describe the overall architecture of the planner and provide an
overview of the remaining chapters of this second part of the thesis.

Fast Downward is a classical planning system based on the ideas of heuris-
tic forward search and hierarchical task decomposition. It can deal with the
full range of propositional PDDL2.2 [36, 40], i. e., in addition to STRIPS
planning, it supports arbitrary formulae in operator preconditions and goal
conditions, and it can deal with conditional and universally quantified effects
and derived predicates (axioms).

The name of the planner derives from two sources: Of course, one of these
sources is Hoffmann’s very successful FF (“Fast Forward”) planner [65]. Like
FF, Fast Downward is a heuristic progression planner, i. e., it computes plans
by heuristic search in the space of world states reachable from the initial
situation. However, compared to FF, Fast Downward uses a very different
heuristic evaluation function called the causal graph heuristic. The heuristic
evaluator proceeds “downward” in so far as it tries to solve planning tasks in
the hierarchical fashion outlined in the introduction. Starting from top-level
goals, the algorithm recurses further and further down the causal graph until
all remaining subtasks are basic graph search tasks.

Similar to FF, the planner has shown excellent performance: The original
implementation of the causal graph heuristic, plugged into a standard best-
first search algorithm, outperformed the previous champions in that area,
FF and LPG [42], on the set of STRIPS benchmarks from the first three
international planning competitions [56]. Fast Downward itself followed in
the footsteps of FF and LPG by winning the propositional, non-optimizing
track of IPC4.

Fast Downward solves a planning task in three phases (Fig. 9.9), to each
of which we dedicate one chapter in the following:

– The translation component is responsible for transforming the PDDL2.2
input into a non-binary form which is more amenable to hierarchical plan-
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ning approaches. It applies a number of normalizations to compile away
syntactic constructs like disjunctions which are not directly supported by
the causal graph heuristic and performs grounding of axioms and opera-
tors. Most importantly, it uses invariant synthesis methods to find groups
of related propositions which can be encoded as a single multi-valued vari-
able. The output of the translation component is a multi-valued planning
task. The translation component is described in the following Chapter 10.

– The knowledge compilation component generates four kinds of data struc-
tures that play a central role during search: Domain transition graphs en-
code how, and under what conditions, state variables can change their
values. The causal graph represents the hierarchical dependencies between
the different state variables. The successor generator is an efficient data
structure for determining the set of applicable operators in a given state.
Finally, the axiom evaluator is an efficient data structure for computing
the values of derived variables. The knowledge compilation component is
described in Chapter 11.

– The search component implements three different search algorithms to do
the actual planning. Two of these algorithms make use of heuristic evalua-
tion functions: One is the well-known greedy best-first search algorithm, us-
ing the causal graph heuristic. The other is called multi-heuristic best-first
search, a variant of greedy best-first search that tries to combine several
heuristic evaluators in an orthogonal way; in the case of Fast Downward,
it uses the causal graph and FF heuristics. The third search algorithm is
called focused iterative-broadening search; it is closely related to Ginsberg
and Harvey’s iterative broadening [47]. It is not a heuristic search algorithm
in the sense that it does not use an explicit heuristic evaluation function.
Instead, it uses the information encoded in the causal graph to estimate
the “usefulness” of operators towards satisfying the goals of the task. The
search component is described in Chapter 12.

After describing the planning system, we evaluate its performance in
Chapter 13 and provide a final discussion in Chapter 14.

With the exception of the new Chapter 10 discussing the translation com-
ponent, this part of the thesis largely follows a publication in the Journal of
Artificial Intelligence Research (JAIR) [57].
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The purpose of the translation component is to transform the input planning
task, specified in the (first-order) PDDL formalism [36], into a fully instanti-
ated multi-valued representation based on the SAS+ formalism [9, 69].

PDDL and multi-valued planning tasks are introduced in Section 10.1,
followed by an overview of the translation algorithm in Section 10.2. Trans-
lation is performed in four stages: normalization (Section 10.3), invariant
synthesis (Section 10.4), grounding (Section 10.5), and multi-valued planning
task generation (Section 10.6). The chapter ends with some notes on the
performance of the translation component (Section 10.7).

10.1 PDDL and Multi-Valued Planning Tasks

PDDL is the language in which the standard benchmarks discussed in the first
part of this thesis are usually expressed. In particular, the planning tasks of
the international planning competitions are expressed in PDDL, so a planning
system must be able to deal with this language in order to participate.

Like most current planning systems, Fast Downward is limited in scope
to the non-numerical fragment of PDDL2.2, or what is called “level 1” of
the PDDL language [40]. In other words, it does not accept PDDL tasks
involving numerical state variables (introduced in PDDL level 2) or “durative
actions”, which allow specifying tasks that can only be solved by concurrent
plans (introduced in PDDL level 3 and refined in PDDL level 4).

On the other hand, Fast Downward can deal with all “purely logical”
aspects of the language, including arbitrary first-order formulae in action
conditions and goals, universal and conditional effects, and derived predicates
(axioms) introduced in PDDL2.2 [36]. To make these notions somewhat more
precise, we now formally introduce the class of PDDL tasks which the planner
can handle.

Definition 10.1.1. PDDL tasks
A (non-numeric, non-temporal) PDDL task is given by a 5-tuple Π =
〈L, χ0, χ⋆,A,O〉 with the following components:

– L is a finite first-order language, consisting of constant symbols (objects),
relation symbols (predicates) and variable symbols. Predicates are parti-
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tioned into fluent predicates (affected by operators) and derived pred-
icates (computed by evaluating axioms).

– χ0 is a conjunction of ground atoms over objects and fluent predicates called
the initial state.

– χ⋆ is a closed first-order formula over L called the goal formula.
– A is a set of schematic axioms, which are pairs 〈ϕ, ψ〉 such that ϕ is
an atom over L whose predicate symbol is a derived predicate and ψ is a
formula over L with free(ψ) ⊆ free(ϕ). We write the axiom 〈ϕ, ψ〉 as ϕ:-ψ
and call ϕ the head and ψ the body of the axiom.
We require that A is stratifiable, i. e., there exists a total preorder � on the
set of derived predicates such that for each axiom where Q occurs in the
head, we must have P � Q for all derived predicates P occurring in the
body, and P ≺ Q for all derived predicates P occurring in a negative literal
in the translation of the body to negation normal form. Intuitively, P ≺ Q
means that the truth value of atoms over P must be computed before the
truth value of atoms over Q.

– O is a finite set of schematic operators over L. A schematic operator
〈χ, e〉 consists of a first-order formula χ over L called its precondition
and its effect e. Effects are recursively defined by finite application of the
following rules:
– A literal l over L, excluding derived predicates, is an effect called a sim-
ple effect.

– If e1, . . . , en are effects, then e1∧· · ·∧en is an effect called a conjunctive
effect.

– If χ is a first-order formula over L and e is an effect, then χ ⊲ e is an
effect called a conditional effect.

– If v1, . . . , vk are variable symbols in L and e is an effect, then ∀v1 . . . vk : e
is an effect called a universally quantified effect or universal effect.

Free variables of an effect are defined recursively as in first-order logic,
where the set of free variables of a conditional effect is defined as free(χ⊲

e) = free(χ) ∪ free(e).
The set of free variables of a schematic operator is defined as free(〈χ, e〉) =
free(χ) ∪ free(e). Free variables are also referred to as the parameters of
the schematic operator.

We assume that the reader is already familiar with PDDL semantics and
point to the language definition [36, 40] for more information. Our definition
allows general first-order conditions as well as (possibly nested) conditional
and quantified effects and axioms. The stratifiability condition for axioms
ensures that the interpretation of derived predicates is well-defined. Without
this condition, there could be rules of the form “P (x) is true whenever P (x)
is false.”

Apart from syntactic differences, there are three aspects of non-numerical,
non-temporal PDDL2.2 not captured by our definition:
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– There are no operator names. The translator deals with operator names in
such a way that the translated operators are referred to by the same name
as its PDDL2.2 counterpart, so that the plans generated by the planner
need not undergo any form of post-processing. This is all fairly simple, and
we will not discuss this matter further.

– There is no distinction between domain constants and objects of the prob-
lem instance, or indeed between the domain and problem instance specifi-
cation in general. At the level of individual problem instances at which the
translator works, there is no need for such a distinction.

– There are no types. The translator compiles away types into unary pred-
icates straight away, so a PDDL specification stating that a is an ob-
ject of type vehicle is treated equivalently to an untyped specification
stating that (vehicle a) is true in the initial state. Types occurring
in quantified conditions or effects are translated accordingly; e. g. a pre-
condition (exists (?v - vehicle) (empty ?v)) is translated to ∃v :
vehicle(v) ∧ empty(v), and an effect (forall (?v - vehicle) (empty

?v)) is translated to ∀v : (vehicle(v)⊲ empty(v)).

With PDDL as a starting point, let us now introduce the kinds of planning
tasks we want the translator to generate. These are based on the SAS+ plan-
ning model [9, 69], extended to allow for derived predicates and conditional
effects.

The definition will exhibit a number of similarities, but also a few differ-
ences between PDDL tasks and our planning model. Most notably, PDDL
tasks use first-order concepts such as schematic operators whose variables
can be instantiated in many different ways, while our formalism is grounded.
Moreover, our formalism only allows simple conjunctions in goals, axioms and
operators, and conditional effects cannot be nested. The former difference ne-
cessitates operator instantiation as part of the translation process, while the
others require normalization of conditions.

Definition 10.1.2. Multi-valued planning tasks (MPTs)
A multi-valued planning task (MPT) is given by a 5-tuple Π = 〈V , s0, s⋆,
A,O〉 with the following components:

– V is a finite set of state variables, each with an associated finite domain
Dv. State variables are partitioned into fluents (affected by operators) and
derived variables (computed by evaluating axioms). The domains of de-
rived variables must contain the default value ⊥.
A partial variable assignment or partial state over V is a function s
on some subset of V such that s(v) ∈ Dv wherever s(v) is defined. A partial
state is called an extended state if it is defined for all variables in V and a
reduced state or state if it is defined for all fluents in V. In the context of
partial variable assignments, we write v = d for the variable-value pairing
〈v, d〉 or v 7→ d.

– s0 is a state over V called the initial state.
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– s⋆ is a partial variable assignment over V called the goal.
– A is a finite set of (MPT) axioms over V. Axioms are triples of the
form 〈cond, v, d〉, where cond is a partial variable assignment called the
condition or body of the axiom, v is a derived variable called the affected
variable, and d ∈ Dv is called the derived value for v. The pair 〈v, d〉 is
called the head of the axiom and can be written as v := d.
The axiom set A is partitioned into a totally ordered set of axiom layers
A1 ≺ · · · ≺ Ak such that within the same layer, each affected variable may
only be associated with a single value in axiom heads and bodies. In other
words, within the same layer, axioms with the same affected variable but
different derived values are forbidden, and if a variable appears in an axiom
head, then it may not appear with a different value in a body. This is called
the layering property.

– O is a finite set of (MPT) operators over V. An operator 〈pre, eff〉 consists
of a partial variable assignment pre over V called its precondition, and
a finite set of effects eff. Effects are triples 〈cond, v, d〉, where cond is a
(possibly empty) partial variable assignment called the effect condition,
v is a fluent called the affected variable, and d ∈ Dv is called the new
value for v.

For axioms and effects, we also use the notation cond → v := d in place
of 〈cond, v, d〉.

To provide a formal semantics for MPT planning, we first need to formal-
ize the semantics of axioms.

Definition 10.1.3. Extended states defined by a state
Let s be a state of an MPT Π with axioms A, layered as A1 ≺ · · · ≺ Ak.
The extended state defined by s, written as A(s), is the result s′ of the
following algorithm:

algorithm evaluate-axioms(A1, . . . , Ak, s):
for each variable v:

s′(v) :=

{
s(v) if v is a fluent variable

⊥ if v is a derived variable

for i ∈ {1, . . . , k}:
while there exists an axiom (cond → v := d) ∈ Ai

with cond ⊆ s′ and s′(v) 6= d:
Choose such an axiom cond → v := d.
s′(v) := d

In other words, axioms are evaluated in a layer-by-layer fashion using
fixed point computations, which is very similar to the semantics of stratified
logic programs. It is easy to see that the layering property from Definition
10.1.2 guarantees that the algorithm terminates and produces a deterministic
result. Having defined the semantics of axioms, we can now define the state
space of an MPT.
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Definition 10.1.4. MPT state transition graph
The state transition graph of an MPT Π = 〈V , s0, s⋆,A,O〉, denoted as
S(Π), is a directed graph. Its vertex set is the set of states of V, and it
contains an arc 〈s, s′〉 iff there exists some operator 〈pre, eff〉 ∈ O such that:

– pre ⊆ A(s),
– s′(v) = d for all effects cond → v := d ∈ eff such that cond ⊆ A(s), and
– s′(v) = s(v) for all other fluents.

Having defined state transition graphs for MPT tasks, we can intro-
duce MPT plans, the MPT planning problem Plan-MPT, the MPT plan
existence PlanEx-MPT and the MPT bounded plan existence problem
PlanLen-MPT in a similar way to the definitions in Chapter 3. Indeed,
we can consider the set of all MPTs a (very general) planning domain in the
sense of Definition 3.2.2, and thus no further definitions of these minimization
and decision problems are required.

The plan existence and bounded plan existence problems for MPTs are
easily shown to be PSPACE-hard because they generalize the corresponding
problems for propositional STRIPS, which are known to be PSPACE-complete
[17]. Moreover, from Theorems 3.3.2 and 3.3.4, we know that they belong
to PSPACE, so they are PSPACE-complete. Similarly, it is easy to see from
Theorem 3.3.1 that Plan-MPT belongs to EXPO\NPS because plans may be
exponentially long (but not longer), and explicit search in the state transition
graph can be implemented to run in exponential time.

This concludes our formal introduction of MPT planning. In the following
section, we turn to the issue of generating multi-valued planning tasks from
PDDL planning tasks.

10.2 Translation Overview

Translation is performed in a sequence of transformation steps. Starting from
a PDDL specification, we apply some well-known logical equivalences to com-
pile away types and simplify conditions and effects in the normalization step.
Next, the invariant synthesis step computes mutual exclusion relations be-
tween atoms, which are later used for synthesizing the MPT variables. The
grounding step performs a relaxed reachability analysis to compute the set
of ground atoms, axioms and operators that are considered relevant for the
planning task and computes a grounded PDDL representation. Invariant syn-
thesis and grounding are not related to one another and could just as well be
performed in the opposite order. Finally, the MPT generation step chooses
the final set of state variables by using the information from invariants and
grounding and produces the MPT output.

The translation process in outlined in Fig. 10.1. In the following sections,
we will discuss the various transformation steps in sequence.
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PDDL2.2 task

Normalized PDDL2.2 task

Normalized PDDL2.2 task
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Grounded PDDL2.2 task
+ invariants

Multi-valued planning task

Normalization

Invariant synthesis

Grounding

MPT generation

Fig. 10.1. Overview of the translation algorithm.
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However, before we do so, we should point out that of these four steps,
only three are necessary to convert a PDDL task to an MPT: the invariant
synthesis step can be omitted. However, without the use of invariants, there
would be a 1:1 correspondence between (relevant) ground atoms of the PDDL
task and state variables of the MPT; in particular, all state variables in the
generated MPT would be binary. Recalling the motivating example from the
previous chapter, this would imply that the causal graph of the resulting
MPT would have the undesirable form shown in Fig. 9.7, rather than the
much more structured form shown in Fig. 9.6.

10.3 Normalization

The normalization step has three responsibilities: Compiling away types, sim-
plifying conditions, and simplifying effects. The current implementation of the
translator cannot handle PDDL types in their full generality: Type inheri-
tance and the either construct are not supported. It would not be difficult to
add these to the mix, but these seem to be unused language features, and we
did not want to waste implementation effort on them. So we only deal with
primitive types and the built-in standard type object, to which all objects
belong.

10.3.1 Compiling Away Types

As indicated earlier, types are compiled away as soon as the planning task
is read in. For each type occurring in the input, and for the type object,
we introduce a new unary predicate with the same name. Typed constructs
occur in PDDL2.2 specifications in a semantically meaningful way in three
places:

1. Definition of domain constants and objects of the task (typed objects).
2. Definition of formal parameters of schematic operators (typed operators).
3. Definition of quantified variables in existential and universal conditions

and universal effects (typed quantifiers).

Typed objects are translated into new atoms for the initial state. For
example, the specification someobj - sometype leads to a new initial atom
(sometype someobj). Moreover, for each object someobj, we introduce an
initial atom (object someobj).

Typed operators are transformed by introducing new preconditions. For
example, for an operator with parameter specification :parameters (?par1

- type1 ?par2 - type2) and precondition ϕ, the parameter specification is
replaced by :parameters (?par1 ?par2) and the precondition is replaced
by (and (type1 ?par1) (type2 ?par2) ϕ).

Typed quantifiers in conditions are compiled away with the usual first-
order logic idioms, so that condition (exists (?v - type) ϕ) translates to
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(exists (?v) (and (type ?v) ϕ)) and condition (forall (?v - type)

ϕ) translates to (forall (?v) (imply (type ?v) ϕ)).
Similarly, typed quantifiers in effects are compiled into conditional effects,

so that the effect (forall (?v - type) e) becomes (forall (?v) (when

(type ?v) e)).
After types have been eliminated, we are left with a PDDL task in the

sense of Definition 10.1.1. We will thus use the more concise logical notation
from that definition in the following, rather than the more lengthy PDDL
syntax. For example, we will write ϕ ∨ ψ instead of (or ϕ ψ) and ϕ ⊲ e
instead of (when ϕ e).

10.3.2 Simplifying Conditions

In PDDL tasks, general first-order formulae may occur in many places: goal
formula, axiom bodies, operator preconditions and conditions of conditional
effects. Our aim is to replace all these with simple conjunctions of literals.

Towards this goal, we first eliminate implications with the equivalence
ϕ → ψ ≡ ¬ϕ ∨ ψ and translate the resulting conditions into first-order
negation normal form using de Morgan’s laws for first-order logic.

The next step is slightly tricky. If there are any universally quantified
conditions, we rewrite the outermost universal quantification in all con-
ditions with the equivalence ∀xϕ ≡ ¬∃x¬ϕ. This might seem somewhat
silly because this transformation destroys negation normal form, so after
the rewrite, we introduce a new axiom for the subformula that violates
the normal form property, ∃x¬ϕ. Formally, if free(∃x¬ϕ) = {v1, . . . , vk},
we introduce a new derived predicate new-pred of arity k, defined by the
axiom new-pred(v1, . . . , vk):-ψ, where ψ is the translation of ∃x¬ϕ to
negation normal form. We can then replace the original condition ∀xϕ by
¬new-pred(v1, . . . , vk). If several variables are universally quantified together
within the same expression, we transform them together, introducing only
one new derived predicate for the quantifier group. We repeat this step until
there are no more universally quantified conditions. Note that only univer-
sally quantified conditions are translated, not universal effects, which also
use the ∀ notation. Universal effects cannot simply be compiled away, so we
deal with them separately in a later stage.

If after elimination of universal quantifiers the goal condition is not a
simple conjunction, we replace it by a new axiom, since the following trans-
formations sometimes require splitting several conditions into two, which is
easy to do for axiom bodies, operator preconditions and effect conditions, but
not possible in our formalism for goal conditions, of which there can be only
one. So for example, if the goal is ϕ∨ψ, we introduce a new parameter-less de-
rived predicate goal-pred and a new axiom goal-pred :- ϕ∨ψ, replacing
the original goal with the atom goal-pred.

The next step is the elimination of disjunctions. We move disjunctions to
the roots of conditions by applying the equivalences ∃x(ϕ ∨ ψ) ≡ ∃xϕ ∨ ∃xψ
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and ϕ ∧ (ψ ∨ ψ′) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ ψ′) and the laws of associativity and
commutativity. In theory, moving disjunctions over conjunctions can lead to
an exponential increase in formula size, which we could avoid by introducing
new axioms for component formulae. In practice, the conditions encountered
in actual planning domains are not problematic in this regard, and we decided
that the potential savings in the size of the representation were not worth the
overhead of maintaining the state of another derived variable during search.

After disjunctions have been moved to the root of all formulae, we can
eliminate them by splitting the surrounding structures: If the disjunction
ϕ ∨ψ is part of an axiom body, we generate two axioms with identical head,
one with body ϕ and one with body ψ. If the disjunction is part of an operator
precondition, we replace the operator by two copies of the original, one with
precondition ϕ and one with precondition ψ. Finally, if the disjunction is
part of an effect condition, we replace the conditional effect (ϕ ∨ ψ) ⊲ e by
(ϕ⊲ e) ∧ (ψ ⊲ e).

Next, we move existential quantifiers out of conjunctions by applying
the equivalence (∃xϕ) ∧ ψ ≡ ∃x(ϕ ∧ ψ). The equivalence only holds when
x /∈ free(ψ), so to avoid trouble here and later, we first rename all variables
bound by quantifiers to some unique name.

Having moved existential quantifiers to the root of conditions, we elimi-
nate them as follows: For axioms, we simply drop them, following the PRO-
LOG convention that all free variables in the body that are not part of the
head are implicitly existentially quantified. For operator preconditions, we
also drop them, adding the existentially quantified variables to the parame-
ter list of the schematic operator. For effect conditions, we replace (∃xϕ)⊲ e
by ∀x : (ϕ⊲ e).

10.3.3 Simplifying Effects

After the somewhat laborious simplification of conditions, effect simplification
is conceptually very simple. First, universal and conditional effects are moved
into conjunctive effects by the equivalences ∀x : (e ∧ e′) ≡ (∀x : e) ∧ (∀x : e′)
and ϕ⊲(e∧e′) ≡ (ϕ⊲e)∧(ϕ⊲e′). Second, conditional effects are moved into
universal effects by the equivalence ϕ⊲(∀x : e) ≡ ∀x : (ϕ⊲e). Finally, nested
effects of the same type are flattened, i. e., conjunctive effects containing
conjunctive effects are collapsed into a single conjunctive effects with more
conjuncts, universal effects containing universal effects are collapsed into a
single universal effect quantifying over more variables, and nested conditional
effects of the type ϕ⊲ (ψ⊲ e) are transformed to (ϕ∧ ψ)⊲ e. Note that this
latter modification preserves the previously generated normal form for effect
conditions.

After these transformations, the possible nesting of effects is thus re-
stricted to the simple chain conjunctive effect ≻ universal effect ≻ condi-
tional effect ≻ simple effect. However, not all effect types must necessarily be
present, e. g. conditional effects need not occur within universal effects, etc. To



184 10. Translation

enforce a regular effect structure, we replace simple effects e not surrounded
by conditional effects by ⊤ ⊲ e (⊤ is seen as the empty conjunction, so this
condition is in normal form), conditional effects e not surrounded by univer-
sal effects by ∀ : e (quantifying over zero variables), and universal effects e
not surrounded by conjunctive effects by a conjunctive effect containing the
singleton e.

As a result, after normalization each operator has a list (conjunction) of
effects, each a simple effect with an associated set of universal quantifiers
and an associated condition, both of which can be trivial. Thus it is not
necessary to store normalized operator effects in a tree structure; a flat vector
is sufficient.

10.3.4 Normalization Result

This concludes the normalization step. In Fig. 10.1, we referred to the output
of the normalization phase as a normalized PDDL2.2 task. Let us formalize
this notion here for the benefit of further discussion:

Definition 10.3.1. Normalized PDDL tasks
A normalized PDDL task is a PDDL task that satisfies the following struc-
tural restrictions:

– The goal formula is a conjunction of literals.
– All axiom bodies are conjunctions of literals (except for the possible implicit
existential quantification of free variables not occurring in the axiom head).

– All operator preconditions are conjunctions of literals.
– All effect conditions are conjunctions of literals.
– All operator effects are conjunctions of universally quantified conditional
simple effects.

In the following, we will refer to the individual simple effects of an operator
in a normalized PDDL task as being arranged in an effect list. For the simple
effect e occurring within the universal conditional effect ∀vars : ϕ⊲e, we will
refer to vars as the set of bound variables of e and to ϕ as the condition of e.
If e is a positive literal, we will call it an add effect, otherwise a delete effect.

10.4 Invariant Synthesis

An invariant is a property of a world state in a planning task which is satisfied
by all world states that are reachable from the initial state. Many invariants
are uninteresting; for example, the property “At least five state variables are
true” is an invariant in most propositional STRIPS planning tasks, but does
not seem to entail a useful piece of information for a planner. Other invariants
would be useful to know but are too difficult to verify. For example, “This
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state is not a goal state” is an invariant iff the planning task is not solvable,
so confirming the invariance of that state property is PSPACE-hard.

Nevertheless, invariants are a useful tool for many planning systems,
which is why they have been studied by many researchers in a variety of con-
texts [39, 43, 97, 98], often involving SAT-based planning. For the purposes of
translating propositional planning tasks to a multi-valued formalism, mutual
exclusion (mutex ) invariants are especially interesting. A mutex invariant
states that certain propositions can never be true at the same time. This
affects translation because a set of propositions which are pairwise mutually
exclusive can be easily encoded as a single state variable whose value spec-
ifies which of the propositions is true (if any is true at all), rather than as
a number of state variables encoding the truth value for each proposition
individually.

Invariance is usually proven inductively: First, one shows that a hypothe-
sized property is true in the initial state. Then, one shows that if the property
is true in some state, it must also be true in all successor states. Together,
this implies that the property is true in all reachable states, and thus an
invariant.

As mentioned before, the automatic discovery of invariants is a hard prob-
lem in general, but for many relevant types of state properties, sufficient
conditions exist that can be checked quickly. Still, synthesizing invariants is
costly, and for this reason, we are interested in algorithms working directly
with the first-order PDDL description of a planning task, not on a grounded
representation. Indeed, our algorithm goes beyond this requirement by not
relying on the information in the task file of the PDDL input at all, solely
exploiting information present in the domain file. This is a valuable feature,
but it rules out the possibility of proving mutex conditions, because a mutex
cannot be established without checking the initial state. Instead, we use a
slight generalization of mutexes.

Definition 10.4.1. Monotonicity invariant candidates
A monotonicity invariant candidate for a PDDL task Π is given by a
pair P = 〈V, Φ〉, where V is a set of first-order variables called the parame-
ters of the candidate, and Φ is a set of atoms. Variables occurring freely in
Φ which are not parameters are called counted variables of the candidate.

For V = {v1, . . . , vm} and Φ = {ϕ1, . . . , ϕk}, we write P symbolically as
∀v1 . . . vm ϕ1+· · ·+ϕk ↓. In the special case V = ∅, we write ∀· ϕ1+· · ·+ϕk ↓.

In the following, we will mostly refer to monotonicity invariant candidates
as invariant candidates or simply candidates ; we do not consider other kinds
of invariant candidates.

The preceding definition defines the syntax for invariant candidates; we
now have to provide the semantics. Since this is somewhat involved, we first
provide an example from a transportation domain first. Consider the invariant
candidate 〈{p}, {at(p, l), in(p, v)}〉, where p, l and v are variable symbols.
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We write this as ∀p at(p, l) + in(p, v) ↓ and read it as “For all packages
p, the number of locations l such that at(p, l) is true plus the number of
vehicles v such that in(p, v) is true, is non-increasing.” In our terminology,
p is the parameter of the candidate, while l and v are the counted variables.
This invariant candidate is an actual invariant – it does hold in all reachable
states – and it is one of the invariants found by our algorithm in a Logistics-
like domain. Let us now formalize what it means for a candidate to be an
invariant.

Definition 10.4.2. Monotonicity invariants
Let Π be a PDDL task and let P = 〈V, Φ〉 be a monotonicity invariant can-
didate for Π.

An instance of P is a function α mapping the variables in V to objects
of the planning task Π.

The set of covered facts of an instance α is the set of all ground atoms
of the planning task Π which unify with some ϕ ∈ Φ under α, i. e., the set of
all ground atoms ϕ0 of Π for which there exists a variable map β ⊇ α such
that β(ϕ) = ϕ0 for some ϕ ∈ Φ.

The weight of an instance α in a state s is the number of covered facts
of α which are true in s.

The monotonicity invariant candidate P is called a monotonicity in-
variant iff for all instances α of P, all states s reachable from the initial
state of Π and all successor states s′ of s, the weight of α in s′ is no greater
than the weight of α in s.

The definition is probably best understood by considering the previously
discussed example invariant. Similar to our convention for invariant candi-
dates, we usually refer to monotonicity invariants simply as invariants.

As hinted before, monotonicity invariants are useful for grouping a number
of related propositions into a single multi-valued variable: If we have found an
invariant for a planning task and a given instance of that invariant has weight
1 in the initial state, then the facts covered by that instance are pairwise
mutually exclusive. This is how the synthesized invariants are utilized during
the later stages of translation.

So how do we generate invariants? Since the number of feasible candidates
is too high for a guess-and-check algorithm, we follow a guess, check and repair
approach: Starting from a set of a few simple initial elements, we try to prove
that the candidates are indeed invariants. Whenever this is the case, we keep
the invariant and do not consider it further. However, when the proof fails,
we try to detect why this is the case and refine the candidate to generate
more candidates that do not fail for the same reason (although they might
fail for other reasons). From a high-level perspective, this is basically a search
problem, and indeed we solve it using standard breadth-first search with a
closed list. What remains to be said is how the search space of the algorithm
is defined:
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– Initial states: What are the initial candidates?
– Termination test: How do we prove that a candidate is an invariant?
– Successor set: How do we refine a candidate for which this proof fails?

We will deal with these questions in the following.

10.4.1 Initial Candidates

Before starting the actual invariant synthesis algorithm, we check which pred-
icates are affected by operators at all: Some predicates, including but not
limited to those representing types, are constant in the sense that atoms over
these predicates have the same truth values in all states. Such predicates are
no longer needed after grounding, so we need not consider them for invariant
candidates. Of course, a constant predicate trivially satisfies a monotonicity
invariant, but these are not very useful.

Therefore, we limit the set of interesting predicates to all modifiable fluent
predicates, i. e., predicates which occur within operator effects (as part of a
simple effect, not merely as part of an effect condition). Note that this also
excludes derived predicates. In theory, there is no reason why there should
be no monotonicity invariants involving derived predicates, but in practice
we have not seen examples of this, and detecting them would require a more
global view of the task definition and hence more effort than we would like to
spend. We will come back to the issue of derived predicates when discussing
our method for proving invariance.

The set of initial invariant candidates consists of all those candidates
(up to isomorphism, i. e., renaming of variables) which contain at most one
counted variable and exactly one atom, over a modifiable fluent predicate,
whose parameters are distinct variables. In our experience, invariants with
several counted variables per atom are exceedingly rare; in fact, we have not
seen an example in practice.

To illustrate the initialization of invariant candidates, we show the three
candidates generated for the binary at predicate in the Logistics domain:

∀x at(x, l) ↓ (10.1)

∀l at(x, l) ↓ (10.2)

∀x, l at(x, l) ↓ (10.3)

Similar candidates are introduced for the in predicate. Intuitively, the first
candidate states that no object can be at more locations in the successor state
than in the current state, the second candidate states that no location can be
occupied by more objects in the successor state than in the current state, and
the third candidate states that a given object cannot occupy a given location
in the successor state if this is not the case in the current state.

Candidates (10.2) and (10.3) are obviously not invariants. Candidate
(10.1) is not an invariant either because an object which is currently in-
side a vehicle can be at some location in the successor state while being at no
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location in the current state. However, we will see that we can refine (10.1)
into an invariant.

10.4.2 Proving Invariance

When is an invariant candidate an invariant? We stated that invariants are
usually proved by establishing their truth in the initial state and using in-
ductive arguments for the effects of operator application. For monotonicity
invariants, only the inductive step is necessary; there is nothing special to
prove about the initial state. So in order to prove that a given invariant can-
didate is an invariant, we must show that no operator can increase the weight
of any of its instances. An operator increases the weight of some instance of
an invariant candidate iff the number of covered facts that it makes true is
greater than the number of covered facts that it makes false. If an operator
does not increase the weight of any instance, then we say that it is balanced
with regard to the invariant.

Ultimately, we are interested in instances of monotonicity invariants that
give rise to mutexes, so that only instances of weight 1 are relevant for us.
For this reason, we use the following condition which is slightly stronger than
balance.

Definition 10.4.3. Threatened invariant candidates
An invariant candidate P is threatened by a schematic operator iff one of
the following two conditions holds:

– The operator has an add effect that can increase the weight of an instance
of P in some state, but no delete effect that is guaranteed to decrease the
weight of the same instance in the same state. In this case, we say that the
operator is unbalanced with regard to P.

– When ignoring delete effects, the operator can increase the weight of some
instance of P in some state by at least 2. In this case, we say that the
operator is too heavy for P.

Clearly, not being threatened by any schematic operator is a sufficient
condition for being a monotonicity invariant. The definition gives rise to the
algorithm shown in Fig. 10.2. Most of the actual work is in unifying operator
parameters and quantified variables of universal conditions; the algorithm
simplifies significantly in STRIPS domains. We do not want to discuss the
algorithm in all detail, instead focusing on two points that require some expla-
nation, namely the satisfiability and entailment tests that occur towards the
end of algorithms check-operator-too-heavy and check-operator-unbalanced.

For the heaviness test, two add effects can only lead to an operator being
too heavy if the operator is actually applicable (o′.precondition is true), both
add effects apply (e.condition and e′.condition are true) and the add effects
actually add propositions that were not true previously (e.atom and e′.atom
are false). For the imbalance test, an add effect is unbalanced by default.
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However, it becomes balanced if whenever the operator is actually applica-
ble (o′.precondition is true), the add effect triggers (e.condition is true) and
actually adds something (e.atom is false), then something is deleted at the
same time, which means that the delete effect triggers (e′.condition is true)
and deletes something that was previously true (e′.atom is true).

Coming back to the earlier Logistics example, all three initial candi-
dates are threatened by the same operator unload-truck, whose add effect
at(x, l) is not balanced. Thus, as indicated before, none of (10.1)-(10.3) is an
invariant.

There are a few subtleties about the algorithm which we want to point
out briefly:

– We duplicate universal effects at the beginning of check-operator-too-heavy
so that we can detect if two different instantiations of the same univer-
sal effect can simultaneously increase the weight of some instance of the
invariant candidate.

– Where Fig. 10.2 contains statements like “Let o′ be a copy of o where vari-
ables are renamed so that. . . ”, the question arises whether such a renam-
ing is uniquely determined, and what to do if it is not. Indeed, renamings
are unique (and easy to compute) as long as all atoms of the candidate
refer to different predicates, which is usually the case. However, the algo-
rithm generalizes to invariant candidates with several occurrences of the
same predicate, like ∀x at(x, y)+ at(y, x) ↓. This requires that all possible
(non-isomorphic) renamings must be considered for o′ in algorithm check-
operator-unbalanced. In our experience, invariants of this type are not very
useful, although Fast Downward implements them correctly.

– We have noted before that we do not consider invariants involving derived
predicates. This is because axioms correspond to operators that have a
single add effect, but no delete effect. Invariant candidates including de-
rived predicates can thus never be balanced, except if the axiom body is
unsatisfiable, which is not a very interesting case. Since we do not consider
derived predicates within invariants, we can ignore axioms completely dur-
ing invariant synthesis.

– Instead of using full-blown satisfiability and entailment tests, more lim-
ited tests are possible if they only err in the “conservative” direction. In
practice, Fast Downward only employs simple structural entailment tests.
However, this is due to scarcity of development time, not to conserve run-
time, and we intend to extend the test to more complete logical reasoning.

One final subtlety concerns the semantics of PDDL operators with con-
flicting effects. Note that our balance test does not special-case the possi-
bility that e.atom equals e′.atom, i. e., that the same atom is added and
deleted. For the PDDL semantics that we adhere to, an operator which would
add and delete the same atom would be invalid and thus inapplicable, not
threatening any invariant candidates. We call this the consistent effect se-
mantics. However, under another commonly accepted semantics, the add ef-
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algorithm prove-invariant(V , Φ):
for each schematic operator o with add effect for some predicate in Φ:

call check-operator-too-heavy(o, V , Φ).
call check-operator-unbalanced(o, V , Φ).

accept candidate as an invariant.

{ In the following, the variables of an operator include both its operator
parameters and quantified variables of its effects. We assume that all variable
names are unique, and that whenever a variable is renamed, the change is
immediately reflected in program variables referring to effects of the operator.
For example, if e = at(p, l) is an effect of operator o and p is renamed to v
within o, then e becomes at(v, l). }

algorithm check-operator-too-heavy(o, V , Φ):
Let o′ be a copy of o.
Duplicate all (non-trivially) quantified effects of o′.
Assign unique names to all quantified variables in effects of o and o′.
for each pair (e, e′) of add effects of o′ that affect a predicate in Φ:

if the variables of operator o′ can be renamed so that
(e.atom 6= e′.atom and
covers(V , Φ, e.atom) and covers(V , Φ, e′.atom) and
o′.precondition∧e.condition∧e′.condition∧¬e.atom∧¬e′.atom
is satisfiable):

reject candidate. { The operator is too heavy. }

algorithm check-operator-unbalanced(o, V , Φ):
for each add effect e of o that affects a predicate in Φ:

Let o′ be a copy of o where the variables are renamed so that
covers(V , Φ, e.atom) is true. Do not rename two variables
to the same variable except when forced.

for each delete effect e′ of o′ that affects a predicate in Φ:
if the quantified variables of e′ can be renamed in o′

so that (covers(V , Φ, e′.atom) and
o′.precondition ∧ e.condition ∧ ¬e.atom |=
o′.precondition ∧ e′.condition ∧ e′.atom):

continue with next add effect e.
{ This add effect is balanced. }

reject candidate. { The operator is unbalanced. }

function covers(V , Φ, ψ):
for each ϕ ∈ Φ:

if the counted variables in ϕ (those not in V )
can be renamed so that ϕ = ψ:

return true.
return false.

Fig. 10.2. Algorithm for proving that an invariant candidate 〈V, Φ〉 is an invariant.
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algorithm refine-candidate(V , Φ):
Select some schematic operator o such that

check-operator-unbalanced(o, V , Φ) fails.
for each atom ϕ′ over variables from V and at most one other variable

for which covers(V , Φ, ϕ′) is not true:
Φ′ := Φ ∪ {ϕ′}
Simplify Φ′ by removing atoms from Φ that are covered by ϕ′.
(These cannot contribute to the weight of an instance of 〈V, Φ′〉.)
Simplify Φ′ by removing unused parameters.
if check-operator-too-heavy(o, V , Φ′) does not fail:

Add 〈V, Φ′〉 to the set of invariant candidates.

Fig. 10.3. Algorithm for refining an unbalanced invariant candidate 〈V, Φ〉.

fect would “win” in such a case. We call this the add-after-delete semantics.
Using the add-after-delete semantics, we would need to add the condition
e.atom 6= e′.atom before the entailment test in check-operator-unbalanced. We
believe that there is no commonly agreed “correct” semantics for PDDL with
regard to this issue: For some standard benchmarks, such asMysteryPrime,
only the consistent effect semantics are reasonable, while for others, such as
Rovers, only the add-after-delete semantics make sense. Without going into
further details, we note that it is not too difficult to adjust the algorithm to
use the add-after-delete semantics.

10.4.3 Refining Failed Candidates

As indicated in the overview of the invariant synthesis algorithm, we do not
give up immediately if we cannot prove a given candidate to be an invariant.
Instead, we try to refine it by adding atoms that can restore balance. In
algorithmic terms, whenever we reject an invariant candidate 〈V, Φ〉, we try
to generate a set of new candidates of the form 〈V, Φ ∪ {ϕ′}〉.

Whether or not this is promising depends on the reason why the candidate
was rejected. If it was rejected because an operator is too heavy, then no
possible refinement that adds an atom to the candidate can change this fact,
and we give up on the candidate completely. If, however, it was rejected
because of unbalanced operators, there is hope that we can deal with the
flaw by adding an atom that can match some delete effect of the threatening
operator, balancing the unbalanced add effect.

The refinement algorithm is shown in Fig. 10.3. The actual implemen-
tation in Fast Downward does not generate all possible refining atoms ϕ′

näıvely, but rather uses information from the set of delete effects of the
threatening operator o and the failed call to check-operator-unbalanced to
only create candidates for ϕ′ for which there is a chance that the new bal-
ance check will succeed. Since this is conceptually straight-forward, we do
not go into more detail about this technique.
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Logistics ∀x at(x, l) + in(x, t) ↓

Blocksworld ∀ · handempty() + holding(b) ↓
∀b holding(b) + clear(b) + on(b′, b) ↓
∀b holding(b) + ontable(b) + on(b, b′) ↓

Grid ∀ · armempty() + holding(k) ↓
∀ · at-robot(l) ↓
∀ · open(d) + locked(d) ↓
∀ · locked(d) ↓
∀d open(d) + locked(d) ↓
∀d locked(d) ↓
∀k holding(k) + at(k,l) ↓

Fig. 10.4. Invariants found in some standard benchmark domains.

Instead, let us return to the Logistics example. Recall that candidate
(10.1), ∀x at(x, l) ↓, is threatened by the operator unload-truck, whose add
effect at(x, l) is unbalanced. The operator has only one delete effect, namely
¬in(x, t). Indeed, in(x, t) is a suitable refinement atom for ϕ′ without further
variable renaming, since the unload-truck operator is balanced with regard
to the refined candidate ∀x at(x, l) + in(x, t) ↓. So we add this candidate
to the set of currently considered candidates. At a later stage, it will be
considered by prove-invariant, which will show that it is indeed an invariant.

By contrast, the other two candidates cannot be suitably refined. In or-
der to refine (10.3), ∀x, l at(x, l) ↓ to balance the drive-truck operator, we
would need to add the atom at(x, l′), which is the only delete effect of that
operator. However, this atom covers the original atom at(x, l) (note that the
converse is not true, because only l′ is a counted variable), leading to the can-
didate ∀x, l at(x, l′) where parameter l is unnecessary, so that it simplifies to
∀x at(x, l′). This candidate is isomorphic to (10.2) and hence not considered
again.

Considering candidate (10.2) and the drive-truck operator, the only
possible refinement is ∀ · at(x, l′) ↓ (“The total number of at propositions
is non-increasing”), which turns out to be violated by the unload-truck

operator, but can be further refined to ∀ · at(x, l′) + in(x, l′) ↓ (“The total
number of at and in propositions is non-increasing”). This latter candidate is
actually an invariant. However, its only instance clearly has a weight greater
than 1 in the initial state of any non-trivial Logistics task and thus turns
out not to provide any mutex information.

10.4.4 Examples

This concludes our description of the invariant synthesis algorithm. To give
an impression of the kind of invariants it generates, Fig. 10.4 shows some
of the results obtained on IPC domains. The invariants found in the Grid

domain are most interesting, as they include some monotonicity information
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that is not a mutex: The third Grid invariant states that the total number
of open and locked doors never increases, the fourth invariant states that the
number of locked doors never increases, and the sixth invariant states that a
door which is not locked can never become locked.

10.4.5 Related Work

Before moving on to the next translation step, we should point out that
the algorithm described in this section is not the only approach to invariant
synthesis proposed in the literature. Therefore, we now provide a brief com-
parison to four other approaches, sorted in decreasing order of relatedness:

– Edelkamp and Helmert’s algorithm [32] proposed for the MIPS planner
[33, 34],

– Gerevini and Schubert’s DISCOPLAN [43, 44],
– Rintanen’s invariant synthesis algorithm [98], and
– Fox and Long’s TIM [25, 39].

We point out that apart from the first algorithm in the list, all of these
were developed independently from ours, although all but the last one follow
very similar ideas.

Edelkamp and Helmert’s algorithm is the most closely related approach.
In fact, Fast Downward’s algorithm can be considered as the extension of the
MIPS algorithm to non-STRIPS domains. Compared to the original algo-
rithm, Fast Downward’s invariant synthesis incorporates some cosmetic and
performance improvements, but the main difference is the coverage of univer-
sal and conditional effects. On STRIPS domains, both algorithms generate
the same set of invariants.

DISCOPLAN uses a very similar guess, check and repair approach. How-
ever, the method for refining invariant candidates appears to be quite dif-
ferent, although this is somewhat difficult to assess because the algorithm is
not completely described in the literature and source code of an implementa-
tion is not available. One major difference is that Fast Downward’s algorithm
immediately refines an invariant as soon as an operator is discovered which
threatens it. DISCOPLAN, on the other hand, first collects all threats to
an invariant for all operators, and only then generates refinements, which
attempt to address all these threats at the same time. On the one hand,
collecting threats across operators allows making more informed choices in
invariant refinement. On the other hand, it appears that this approach incurs
a performance penalty. For example, while Fast Downward’s invariant syn-
thesis algorithm always terminates in very short time for all IPC benchmark
tasks, DISCOPLAN fails on 46 of the 50 IPC4 Airport tasks by running out
of time. Another drawback of DISCOPLAN is that, although it is not limited
to STRIPS, it can only deal with a subset of ADL features, which is not suf-
ficient for the IPC benchmarks. Finally, also for STRIPS domains, there are
some invariants important for an efficient MPT encoding which our algorithm
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discovers but DISCOPLAN misses. For example, in the Driverlog domain,
our approach can prove that a given driver can only be at one place or inside
one truck at the same time, which allows encoding driver location in a single
variable. An encoding based on the invariants found by DISCOPLAN would
need to introduce a separate state variable for each driver-location and driver-
truck pair. On the positive side, DISCOPLAN can generate many classes of
invariants beside mutexes; however, these are not relevant to PDDL-to-MPT
translation.

Rintanen’s algorithm follows the same guess-check-repair structure as our
algorithm and DISCOPLAN. One main difference (and advantage) of Rinta-
nen’s algorithm is that its “check” step uses the information from all current
invariant candidates, rather than just the one currently being considered, to
strengthen the induction hypothesis. An interesting difference is that, un-
like our algorithm, it always proceeds from stronger invariant candidates to
weaker ones. Note that adding for inductive proofs, both strengthening and
weakening an invariant candidate can be a promising refinement strategy. In
particular, weaker statements are not necessarily easier to prove than stronger
ones because the induction hypothesis is also weaker. A problem of Rinta-
nen’s algorithm is that it is limited to STRIPS and that it is not sufficiently
efficient for many of the IPC benchmarks. For this reason, we have not made
a detailed comparison regarding the kinds of invariants it can or cannot find;
from our limited experience, we believe the approaches to be comparable in
this respect, at least for the mutexes we are interested in. Like DISCOPLAN,
Rintanen’s approach can find more general classes of invariants.

Finally, Fox and Long’s TIM (for type inference module) is (or can be
interpreted as) an invariant synthesis algorithm which follows a conceptually
very different approach to the other algorithms described here, focusing on
the notion of property spaces which are generated from the type structure of
the task, which is in turn based on a type inference technique which gives the
system its name. TIM was originally [39] limited to STRIPS and thus not
directly usable for us. It has since been extended to handle ADL constructs
[25] in parallel to the development to our invariant synthesis algorithm.

10.5 Grounding

Having computed monotonicity invariants, the next translation step is to
obtain a grounded representation of the normalized PDDL task.

Definition 10.5.1. Grounded PDDL tasks
A grounded PDDL task is a PDDL task such that all literals occurring in
the goal formula, axioms and operators are ground literals.

Before performing the actual axiom and operator instantiation that
yields the grounded representation, we try to determine which ground atoms
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of the PDDL task can actually become true. In a typical planning task,
most ground atoms can never be true, either because they are not type-
correct (such as at(vehicle1, vehicle2)), or for more subtle reasons (such
as at(vehicle1, loc1) when there is no path from the initial location of
vehicle1 to loc1). Instantiating operators or axioms in such a way that
their preconditions or bodies are necessarily false in every reachable state
would be wasteful.

Determining whether or not a given atom can ever be true is as difficult
as planning itself, but an over-approximation of the set of reachable atoms
can be computed efficiently based on the idea of relaxed planning tasks in
the sense of HSP and FF [15, 65]. Instead of computing the set of reachable
atoms of a PDDL task Π itself, we thus compute the reachable atoms of a
relaxed planning task R(Π), which differs from Π as follows:

– Negative literals in axiom bodies, operator preconditions, effect conditions
and goal condition are assumed to be always true.

– Delete effects of operators are ignored.

It is easy to see that the set of reachable atoms of R(Π) is a superset of
the set of reachable atoms of Π , so any ground atoms not reachable in R(Π)
need not be represented in the grounded version of Π .

The nice property of relaxed planning tasks is that computing their reach-
able atoms is conceptually simple. Nevertheless, this step is the most time-
critical part of the whole translation component, because the set of reachable
atoms can be huge in some of the benchmark domains, especially those with a
comparatively simple logical structure like Logistics or Satellite. There-
fore, it is important to compute reachable atoms efficiently. This is what the
Horn exploration algorithm is designed for.

10.5.1 Overview of Horn Exploration

The idea of Horn Exploration is to encode the atom reachability problem
for relaxed planning tasks as a set of logical facts and rules, i. e., as a logic
program. This allows us to efficiently compute the set of reachable atoms
by computing the canonical model of that logic program, which is the set
of ground atoms implied by the program. The algorithm consists of three
steps: Generating the logic program, translating it into a normal form, and
computing its canonical model. Before going into detail for each of these
steps, let us formally define what we mean by a logic program:

Definition 10.5.2. Positive logic programs
Let L be a first-order language.

A positive Horn clause over L is a formula of the form ϕ1∧· · ·∧ϕk → ψ
(k ≥ 0), where ϕi and ψ are (usually not ground) atoms over L. It can
be written as ϕ:-ϕ1, . . . , ϕk. Using this notation, ϕ is called the head and
ϕ1, . . . , ϕk is called the body of the clause.



196 10. Translation

A positive logic program is a pair 〈F ,R〉, where F is a set of ground
atoms over L called the set of facts and R is a set of positive Horn clauses
over L called rules.

The canonical model of a positive logic program 〈F ,R〉 is the set of all
ground atoms ϕ with F ∪R |= ϕ.

Next, we show how to translate the reachability problem into a positive
logic program. Afterwards, we demonstrate how to translate this logic pro-
gram into a particularly simple form and how to compute the canonical model
of the simplified logic program efficiently.

10.5.2 Generating the Logic Program

Due to the fact that the PDDL task has been normalized, generating the logic
program is conceptually easy. A ground atom is reachable in the relaxed task
iff it is true in the initial state or there exists some axiom or operator of
the relaxed task that can make it true. Therefore, the set of facts of the
logic program is formed by the atoms in the initial state of the planning
task, and the set of rules is derived from the axiom and operator definitions.
Additionally, we introduce a rule for the goal of the planning task to detect
solvability of the relaxed task; if it is unsolvable, the original task is unsolvable
too, which we can report immediately and stop planner execution.

Recall from Section 10.3 that at this stage, all conditions occurring in the
PDDL task are conjunctions of literals. For such conjunctions ϕ, we denote
the conjunction of all positive literals of ϕ by ϕ+. In the context of logic
programs, we follow the PROLOG convention of using uppercase letters for
first-order variables and lower-case letters for constants. The exploration rules
for a normalized PDDL tasks are generated as follows:

– Axioms: For schematic axioms a = ϕ:-ψ with ψ+ = ψ+
1 ∧ · · · ∧ ψ+

m and
free(ϕ)∪ free(ψ) = {X1, . . . , Xk}, we generate the axiom applicability rule

a-applicable(X1, . . . , Xk) :- ψ
+
1 , . . . , ψ

+
m.

and the axiom effect rule
ϕ :- a-applicable(X1, . . . , Xk).

– Operators: For schematic operators o with parameters {X1, . . . , Xk} and
precondition ϕ with ϕ+ = ϕ+

1 ∧ · · · ∧ ϕ+
m, we generate the operator appli-

cability rule
o-applicable(X1, . . . , Xk) :- ϕ

+
1 , . . . , ϕ

+
m.

and for each add effect e of o adding the atom ψ with quantified variables
{Y1, . . . , Yl} and effect condition ϕ with ϕ+ = ϕ+

1 ∧ · · · ∧ ϕ+
m, we generate

the effect trigger rule
e-triggered(X1, . . . , Xk, Y1, . . . , Yl)

:- o-applicable(X1, . . . , Xk), ϕ
+
1 , . . . , ϕ

+
m.

and effect rule
ψ :- e-triggered(X1, . . . , Xk, Y1, . . . , Yl).



10.5 Grounding 197

– Goal rule: For the goal ϕ with ϕ+ = ϕ+
1 ∧ · · · ∧ ϕ+

m, we generate the goal
rule

goal-reachable() :- ϕ+
1 , . . . , ϕ

+
m.

The correctness of these rules should be evident. The reader might won-
der why we sometimes introduce new predicates that do not seem nec-
essary. For example, axiom applicability rule and axiom effect rule could
be combined into a single rule without introducing the auxiliary predicate
a-applicable. The purpose of these predicates is to track which axioms
and operators must be instantiated when grounding the PDDL task. For
example, in the Logistics domain, we will not generate a ground operator
(fly-airplane plane1 loc1 loc3) if loc3 is not an airport location, since
in this case the canonical model of the logic program does not include the
atom fly-airplane-applicable(plane1, loc1, loc3). The operator appli-
cability predicates serve the additional purpose of “factoring out” common
subexpressions. Without them, all operator preconditions would need to be
repeated in each effect trigger rule (or effect rule, if effect trigger rules were
similarly eliminated).

10.5.3 Translating the Logic Program to Normal Form

After the logic program has been generated, it is translated into the following
normal form:

Definition 10.5.3. Normal form for positive logic programs
An atom in first-order logic is called variable-unique if it does not contain
two occurrences of the same variable. (For example, an atoms like P (X,Y,X)
is not variable-unique because variable X occurs twice. Repetitions of con-
stants are allowed.)

A rule of a positive logic program is called variable-unique if the head
and all atoms of the body are variable-unique.

A rule of a positive logic program is called a projection rule if it is
variable-unique and it is of the form ϕ:-ϕ1 with vars(ϕ) ⊆ vars(ϕ1). In
other words, projection rules are unary rules where all variables in the head
occur in the body.

A rule of a positive logic program is called a join rule if it is variable-
unique and it is of the form ϕ:-ϕ1, ϕ2 with vars(ϕ1) ∪ vars(ϕ2) = vars(ϕ) ∪
(vars(ϕ1) ∩ vars(ϕ2)). In other words, join rules are binary rules where all
variables occurring in the head occur in the body, and all variables occurring
in the body but not in the head occur in both atoms of the body.

A positive logic program is in normal form if all rules are either pro-
jection rules or join rules.

The names of the rule types in Definition 10.5.3 are reminiscent of the re-
lated database-theoretic operations from relational algebra: Projection rules
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correspond to the projection operator π and join rules correspond to the nat-
ural join operator ⋊⋉ (or strictly speaking, a combination of natural join and
projection). We will now describe how to convert the positive logic program
from the previous section into normal form.

First, we eliminate duplicate variable occurrences as follows: If any rule
contains atoms with duplicate occurrences of the same variable X , we change
one occurrence of X in any such atom into a new variable X ′ and add the
atom equals(X,X ′) to the body of the rule. We repeat until no further such
transformations are possible. If we needed to introduce any equals atoms, we
add the fact equals(o, o) to the initial state for each object o of the planning
task.

Second, for any variable X that occurs in the head but not in the body
of a rule, we add the atom object(X) to the rule body. (Remember from
Section 10.3.1 that object(o) is true for any object o of the planning task.)

Third, all rules with an empty body are converted into facts. Their heads
must be ground atoms because all variables occurring in the head must occur
in the (in this case, empty) body after the previous transformation.

After these transformations, all remaining unary rules are projection rules;
we still need to normalize rules with two or more atoms in the body. As a first
step towards this goal, we determine if the body of such a rule contains any
variables that occur in no other atom of the rule, neither in the body nor in
the head. If this is the case, such variables are projected away as follows: We
are given the rule ϕ:-ϕ1, . . . , ϕk, where vars(ϕi) = {X1, . . . , Xk} contains
variables not present in any of the other atoms, say {Xj+1, . . . , Xk}. Then
we introduce a new predicate p and replace the original rule by the two rules
ϕ:-ϕ1, . . . , ϕi−1, p(X1, . . . , Xj), ϕi+1, . . . , ϕk and p(X1, . . . , Xj):-ϕi.

After this transformation, all binary rules are valid join rules. In the last
normalization step, we split rules with m > 2 atoms in the body into m− 1
join rules by applying the greedy join algorithm, illustrated in Fig. 10.5. The
algorithm iteratively picks two atoms from the rule body and joins them,
introducing a new predicate for the result of the join and replacing the two
atoms in the rule body by an instance of that new predicate. This process is
repeated until the body of the rule no longer contains more than two atoms.

The order in which atoms are joined is critical for the speed of evaluating
the join rules. To see this, consider the rule p(X):-q(X), s(X,Y ), t(Y ). One
possible decomposition into join rules yields the rules u(X):-s(X,Y ), t(Y )
and p(X):-q(X), u(X). Another possible decomposition yields the rules
v(X,Y ):-q(X), t(Y ) and p(X):-s(X,Y ), v(X,Y ). We can expect that the
canonical model of the first decomposition contains relatively few instances
of the intermediate predicate u, maybe about as many as it contains instances
of t. On the other hand, the canonical model of the second decomposition
contains as many instances of the intermediate predicate v as the product of
the number of instances of q and t, which can be much higher.
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algorithm greedy-join(rule):
while |rule.body| > 2:

Choose ϕ, ϕ′ ∈ rule.body such that ϕ 6= ϕ′ and
join-cost(rule, ϕ, ϕ′) is minimal.

X1, . . . , Xk := join-vars(rule, ϕ, ϕ′).
Generate a new predicate symbol p with arity k.
Generate a new join rule p(X1, . . . , Xk):-ϕ, ϕ

′.
rule.body := rule.body \ {ϕ,ϕ′} ∪ {p(X1, . . . , Xk)}

function join-vars(rule, ϕ, ϕ′):
{ Compute the relevant variables for the predicate generated
by joining ϕ and ϕ′. }

return vars({ϕ, ϕ′}) ∩ vars({rule.head} ∪ rule.body \ {ϕ, ϕ′}).

function join-cost(rule, ϕ, ϕ′):
new-arity := |join-vars(rule, ϕ, ϕ′)|
max-old-arity := max(|vars(ϕ)|, |vars(ϕ′)|)
min-old-arity := min(|vars(ϕ)|, |vars(ϕ′)|)
return (new-arity−max-old-arity,new-arity−min-old-arity,new-arity).
{ Cost estimates are triples which are compared lexicographically.
We prefer joins where “new arity” − “max old arity” (the increase
in arity) is small and consider the other criteria only in case of ties. }

Fig. 10.5. The greedy join algorithm for decomposing a rule into join rules.

Since the performance of our algorithm for computing the canonical model
of a logic program is closely related to the model size, we prefer to generate
smaller intermediate results. The greedy join algorithm tries to achieve this
goal by preferring to join atoms that contain many common variables and
lead to intermediate predicates of low arity.

10.5.4 Computing the Canonical Model

Having translated the logic program into normal form, we are ready to com-
pute the canonical model. We use a queue-based approach, distinguishing
between reachable atoms that have already been processed, which means
that the consequences of their being reachable have already been evaluated
(closed atoms), and reachable atoms that still need to be processed (open
atoms). Open atoms are those that are currently stored in the queue, while
closed atoms are those that were enqueued once, but no longer are.

Our algorithm, shown in Fig. 10.6, stores open atoms in the queue vari-
able, while both open and closed atoms are stored in the result variable
canonical-model. Additionally, it uses the following data structures:

– Rule matcher : A rule matcher is an indexing structure that supports ef-
ficient unification queries on the bodies of logic programs. When given a
ground atom a, the rule matcher determines all projection rules ϕ:-ϕ1 and
join rules ϕ:-ϕ1, ϕ2 such that ϕ1 or ϕ2 unifies with a, i. e., such that it is
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algorithm calculate-canonical-model(F , R):
for each join rule r ∈ R:

r.index1 := make-empty-hashtable()
r.index2 := make-empty-hashtable()

rule-matcher := build-rule-matcher(R)
queue := make-queue(F)
canonical-model := F
{ In the following, enqueuing a fact means adding it to queue and
canonical-model if it is not yet an element of canonical-model. }

while queue is not empty:
current-fact := queue.pop()
for each match m ∈ rule-matcher.match(current-fact):

if m refers to ϕ1 in a projection rule r = ϕ:-ϕ1:
Let α be the variable assignment

for which α(ϕ1) = current-fact.
Enqueue α(ϕ).

else if m refers to ϕ1 in a join rule r = ϕ:-ϕ1, ϕ2:
Let α be the variable assignment

for which α(ϕ1) = current-fact.
key := α restricted to vars(ϕ1) ∩ vars(ϕ2)
Add α to r.index1[key].
Enqueue (α ∪ β)(ϕ) for each β ∈ r.index2[key].

else if m refers to ϕ2 in a join rule r = ϕ:-ϕ1, ϕ2:
{ Handled analogously to the previous case. }

Fig. 10.6. Computing the canonical model of a positive logic program 〈F ,R〉 in
normal form.



10.5 Grounding 201

possible to substitute objects for variables in ϕ1 or ϕ2 in such a way that
a is obtained. The rule matcher reports the matched rules and whether ϕ1

or ϕ2 was matched (if both unify with a, two matches are generated).
Note that matching ground atoms to the rules they can trigger is simple
if the rules do not contain constants in the body. Unfortunately, some of
the IPC4 benchmarks contain a huge number of operator schemas involv-
ing constants (most importantly, the STRIPS formulation of the Airport

domain), and an efficient indexing structure is important for those. Rule
matchers are implemented as decision-tree like data structures very similar
to successor generators, which are discussed in Chapter 11. Because of that
similarity and because they are not central to the instantiation algorithm,
we do not discuss rule matchers further.

– Join rule indices: Each join rule r = ϕ:-ϕ1, ϕ2 maintains two hash tables
r.index1 and r.index2 that map instantiations of the common variables of
ϕ1 and ϕ2 to instantiations of the variables of ϕ1 and ϕ2, respectively.
At any time (except during updates) and for any assignment key to the
common variables of ϕ1 and ϕ2, r.index1[key] contains those variable map-
pings α ⊇ key for the variables of ϕ1 for which α(ϕ1) belongs to the closed
set. Similarly, r.index2[key] contains those variable mappings β ⊇ key for
the variables of ϕ2 for which β(ϕ2) belongs to the closed set.
This information can be exploited for quickly determining all possible in-
stantiations of ϕ2 that match a given instantiation of ϕ1, or vice versa, as is
done in the algorithm. Note that the variable assignment α∪ β considered
in the algorithm is indeed a function, since α and β agree on all variables
for which they are both defined.

To motivate the soundness of compute-canonical-model, we state an im-
portant invariant which holds before and after each iteration of the while
loop: All non-closed atoms which can be derived in one step from the closed
atoms using the rules of the logic program 〈F ,R〉 are open atoms. This im-
plies that upon termination of the algorithm, when there are no more open
atoms and hence canonical-model holds exactly the set of closed atoms, the
model is closed under application of R. Because it also contains all facts from
F and only contains facts that can be derived from F , it thus contains exactly
the canonical model of 〈F ,R〉.

The invariant is obviously true initially, since there are no closed atoms at
the beginning of the algorithm. With our descriptions of the data structures
of compute-canonical-model, the reader should have no trouble verifying that
it remains true after each iteration of the while loop.

This concludes our discussion of the Horn exploration algorithm. One
final word on performance: If we assume that the arity of predicates in the
logic program is bounded by a constant, then all basic operations of calculate-
canonical-model can be performed in constant time. The runtime of the algo-
rithm then typically scales roughly linearly in the combined size of its input
and output (the computed canonical model). However, runtime can be worse
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if there are many situations where the algorithm tries to enqueue an atom
that is already part of the canonical model.

10.5.5 Axiom and Operator Instantiation

With the help of the canonical model, instantiating axioms and operators
is very straight-forward. To compute the grounded representation, we scan
through the set of ground atoms in the canonical model in the order in which
they were generated, creating axiom and operator instances as follows:

– When encountering atoms of the form a-applicable(x1, . . . , xk) where a is
a schematic axiom, we generate a ground instance of a with the parameters
substituted with x1, . . . , xk.

– When encountering atoms of the form o-applicable(x1, . . . , xk) where o
is a schematic operator, we generate a ground instance of o without effects.
Like in the case of axioms, the parameters of the operator are substituted
with x1, . . . , xk, and the precondition is instantiated accordingly.

– When encountering atoms of the form e-triggered(x1, . . . , xk, y1, . . . , yl)
where e is an effect of some operator o, we look up the set of already gen-
erated ground operators to find the operator o(x1, . . . , xk). This operator
must have been generated previously because an e-triggered atom can
only be derived after the corresponding o-applicable atom. Having found
the ground operator, we attach to it the effect obtained by instantiating
the variables in e with y1, . . . , yl.

After a single pass through the canonical model, we have thus generated
a grounded PDDL task which is equivalent to the normalized PDDL task we
started with.

10.6 Multi-valued Planning Task Generation

Together with the invariants synthesized earlier, the grounded PDDL task
generated in the previous stage provides all the information we need for
transforming the STRIPS task into a multi-valued planning representation,
which constitutes the final translation step.

Recall from Definition 10.1.2 that a multi-valued planning task (MPT) is
given by a 5-tupleΠ = 〈V , s0, s⋆,A,O〉 of variables V , each with an associated
finite domain, initial state s0 and goal s⋆, axioms A and operators O. We
start by defining suitable variables and variable domains; everything else then
more or less falls into place.

10.6.1 Variable Selection

Each variable of the generated MPT corresponds to one or more (reachable)
ground atoms of the STRIPS task. We start by enumerating the set P of
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algorithm compute-mutex-groups(invariants, Pf , s0):
for each invariant I ∈ invariants:

for each instance α of I:
if weight(α, s0) = 1:

Create a mutex group containing all atoms in Pf

covered by α.

Fig. 10.7. Computing mutex groups from the set of monotonicity invariants in-
variants, the set of reachable atoms Pf and the initial state s0.

all such atoms, partitioned into atoms Pf which are instances of modifiable
fluent predicates or derived predicates and atoms Pc which are instances of
constant predicates (cf. Section 10.4.1).

We want to represent as many ground atoms by a single state variable as
possible. To achieve this, we first determine the set of mutex groups induced
by the computed invariants. Mutex groups are computed in a straight-forward
manner by instantiating the monotonicity invariants in all possible ways,
checking for each if it has weight 1 in the initial state, and if so, which
atoms from Pf it covers. The algorithm is shown in Fig. 10.7; the actual
implementation in Fast Downward uses an indexing structure for efficiently
determining the set of reachable atoms covered by a given invariant instance.

Normally, not every mutex group will correspond to an MPT state vari-
able, since the same atom can be part of several mutex groups, but of course
only needs to be encoded once. As an example of this phenomenon, consider
Fig. 10.8, which shows the mutex groups of a Blocksworld task with four
blocks. If, for example, we decide to encode mutex groups (1)–(4) with four
multi-valued state variables, then we only need to encode one atom from each
of the other groups, since all instance of the on and holding predicates are
already represented. Therefore, the translator would first generate four state
variables with domains consisting of seven values each, namely holding(x),
clear(x), on(a, x), on(b, x), on(c, x), on(d, x) and the seventh option “none
of the other six is true”. (Of these seven values, two – block x being on top of
itself and none of the six atoms being true – are actually impossible.) After-
wards, it would encode the truth values of the remaining atoms ontable(x)
and armempty() with binary state variables.

In this case, there was at least one atom in each mutex group that was
unique to this particular group, so that the resulting encoding is not much
better than an encoding which simply takes all mutex groups and introduces
a state variable for each. However, in other cases, one group can be completely
covered by others; examples of this can be found in the Airport domain. In
this case we would like to cover the set of reachable atoms with as few state
variables as possible.

Unfortunately, as we have seen in Part I, set cover problems of this kind
are NP-complete [41, problem SP5] and indeed not even c-approximable [6], so
we limit our covering efforts to the greedy algorithm shown in Fig. 10.9, which
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(1) {holding(a), clear(a), on(a, a), on(b, a), on(c, a), on(d, a)}
(2) {holding(b), clear(b), on(a, b), on(b, b), on(c, b), on(d, b)}
(3) {holding(c), clear(c), on(a, c), on(b, c), on(c, c), on(d, c)}
(4) {holding(d), clear(d), on(a, d), on(b, d), on(c, d), on(d, d)}
(5) {holding(a), ontable(a), on(a, a), on(a, b), on(a, c), on(a, d)}
(6) {holding(b), ontable(b), on(b, a), on(b, b), on(b, c), on(b, d)}
(7) {holding(c), ontable(c), on(c, a), on(c, b), on(c, c), on(c, d)}
(8) {holding(d), ontable(d), on(d, a), on(d, b), on(d, c), on(d, d)}
(9) {holding(a), holding(b), holding(c), holding(d), handempty()}

Fig. 10.8. Mutex groups for a Blocksworld task with four blocks. Some atoms,
e. g. on(a, a), are reachable in the relaxed task although they are never true in the
“real” task.

algorithm choose-variables(Pf , mutex-groups):
uncovered := Pf

while mutex-groups 6= ∅:
Pick a mutex group P of maximal cardinality.
Create an MPT variable v with domain Dv = P ∪ {⊥}.
uncovered := uncovered \ P .
mutex-groups := { P ′ \ P | P ′ ∈ mutex-groups }
mutex-groups := { P ′ | P ′ ∈ mutex-groups ∧ |P ′| ≥ 2 }

Create an MPT variable v with domain {p,⊥} for all remaining
elements of uncovered.

Fig. 10.9. Greedy algorithm for computing the MPT variables and variable do-
mains.

is the best approximation algorithm known for this problem, achieving an
O(log n)-approximation [6]. Iteratively, we pick a mutex group P of maximal
cardinality and introduce a new MPT state variable with domain P ∪ {⊥},
where ⊥ stands for “none of the elements of P is true”. We then remove
all covered elements from all other mutex groups, removing groups that no
longer contain more than one element. This process is repeated until all mutex
groups have been removed. At this stage, the remaining uncovered atoms p
are represented by binary variables with domain {p,⊥}.

After execution of the algorithm, for each reachable atom p ∈ Pf there
is exactly one MPT variable whose domain includes p. The translation will
ensure that this variable, which we denote as var(p) in the following, assumes
the value p in an MPT state iff p is true in the corresponding state of the
PDDL task. With this information, we can now go about converting the rest
of the PDDL task to the MPT representation.

10.6.2 Converting the Initial State

We start by converting the initial state, which is the easiest step. For each
atom p ∈ Pf that is in the initial state, we set the initial value of var(p) to
p. MPT variables for which there is no initial state atom p with var(p) = p
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are initialized to ⊥. Note that different initial state atoms p, p′ must satisfy
var(p) 6= var(p′), because p and p′ could only be represented by the same
MPT variable if they were mutually exclusive, which implies their not being
in the initial state together. Therefore, the converted initial state is indeed
well-defined.

10.6.3 Converting Operator Effects

Translating the state changes incurred by operator effects requires some care.
For add effects setting an atom p to true, conversion is easy: Such an effect
is always translated to an MPT effect setting var(p) to p, because we know
p to be true after operator application if the effect fires.

However, for delete effects setting an atom p to false, the correct transla-
tion is not as clear. We cannot simply set var(p) to ⊥ (“none of the variables
represented by var(p) is true”) unconditionally, because this is not always
correct: It could be the case that another effect of the same operator triggers
simultaneously and adds another atom represented by the same variable, or
that p was not true when the operator was applied, but some other atom
represented by var(p) was.

Therefore, the correct translation is to set var(p) to ⊥ only if we know
that p was previously true and that no effect adding an atom represented by
var(p) triggers simultaneously, and not to do anything if this is not the case.
If the other effects of the operator that add atoms represented by var(p) have
effect conditions χ1, . . . , χk, then this is achieved by adding p∧¬χ1∧· · ·∧¬χk

to the effect condition of the delete effect.
If some of the formulas χi are proper conjunctions (i. e., neither constant

true nor singleton literals), this results in an effect condition which is not a
conjunction of literals. In this case, we introduce a new derived variable vi
that evaluates to true whenever ¬χi is true, and use vi in the effect condition
instead.

All things considered, this conversion of delete effects looks very com-
plicated, and indeed in most cases easier translations are possible. For this
purpose, we detect two common special cases, with which we deal differently:

– If we see that whenever the delete effect triggers, some add effect affecting
the same variable must trigger as well, because it has the same or a more
general effect condition, then we do not need to represent the delete effect
in the MPT at all. The add effect will take care of the value change of its
affected variable.

– On the other hand, if we see that no add effect affecting the same variable
can trigger at the same time, because no such effect exists or each of their
effect conditions is inconsistent with the condition of the delete effect, then
we can convert the delete effect to an effect setting var(p) to ⊥. If p is not
already part of the operator precondition or effect condition, we must add
it to the effect condition to make sure that var(p) is only cleared if it was
previously set to p.
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In most cases, translating delete effects is straight-forward because the two
simpler cases are by far more common than the general case. In particular, for
operators without conditional effects, one of the special cases always applies.

10.6.4 Converting Conditions

The third major translation step is the conversion of grounded conditions of
the PDDL task, which occur in the goal, in operator preconditions and effect
conditions and in axiom bodies.

To translate a grounded condition, we first check if it contains any atoms
not in Pf . These have constant truth values, so that the condition can be
simplified accordingly. If this leads to a constant false condition, we react
accordingly (for the goal, we report that the task is unsolvable; for axiom
bodies, operator preconditions or effect conditions, we remove the axiom,
operator or effect).

Having considered trivially false conditions, we translate each positive lit-
eral p in the condition to the pairing var(p) = p. Translating negative literals
¬p is slightly more tricky. Recall the Blocksworld example discussed ear-
lier, where we generated the MPT state variable v with Dv = {holding(a),
clear(a), on(a, a), on(b, a), on(c, a), on(d, a), ⊥}, and consider a condition
including the atom ¬on(c, a). If the condition also contains some positive
literal concerning variable v, for example the atom clear(a), then we do not
need to encode ¬on(c, a) at all, because it is implied by the other literal.
However, otherwise there is no simple way to represent ¬on(c, a) as an MPT
condition. We would need to write something like v 6= on(c, a), but conditions
of this form are not supported by the representation.

Therefore, in situations like this, similar to what we did when translating
difficult effect conditions that arise for complicated delete effects, we intro-
duce a new derived variable not-p with domain {⊤,⊥} and generate an
axiom (v = d) → (not-p := ⊤) for each value d ∈ Dv \ {p}. The pairing
not-p = ⊤ can then serve as a translation of the literal ¬p.

If we wanted to avoid introducing new axioms, we could further normal-
ize the PDDL task so that no negative literals occur in conditions. There
are well-known translation methods to achieve such a normal form, but for
our purposes, our method has the advantage that no new non-derived state
variables are introduced, keeping the memory requirements of search states
small.

10.6.5 Computing Axiom Layers

As a final translation step, we must compute the axiom layers for the MPT
representation so that the semantics match with those of stratified logic pro-
grams (cf. Definitions 10.1.1 and 10.1.2).

This is done as follows: Whenever the body of an axiom a includes the
condition v = ⊥ for some derived variable v, then all axioms a′ with affected
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variable v must be evaluated before a, i. e. we introduce an ordering constraint
a′ ≺ a. If the axiom definitions of the original PDDL task corresponded
to a stratifiable logic program, then the graph containing all such ordering
constraints will be acyclic. Thus, we can use a topological search algorithm to
assign the individual axioms to axiom layers: The first axiom layer contains
all axioms without predecessors in the graph, the second axiom layer contains
all axioms whose predecessors belong to the first layer, and so on, until layers
are assigned to all axioms.

10.6.6 Generating the Output

Having partitioned the axioms into layers, we have finished translating the
PDDL task. Before generating output, the translator applies a few post-
processing techniques to simplify the generated task where possible.

Most importantly, if there are two axioms with the same head, a =
(cond → v := d) and a′ = (cond′ → v := d) with cond ⊂ cond′, then a
is triggered whenever a′ is triggered, so a′ is unnecessary. In such a case,
which occurs frequently in domains where axioms encode transitive closures,
we say that a dominates a′ and only keep a. Similarly, we do not keep sev-
eral copies of the same axiom which only differ in the order in which the
conditions are listed.

Once post-processing is completed, the generated MPT is written to disk
in a simple text format suitable for easy parsing by the other components of
the planner.

10.7 Performance Notes

Before moving on to the other components of Fast Downward, let us briefly
discuss the performance of the translation component and compare it to the
related MIPS system.

10.7.1 Relative Performance Compared to MIPS Translator

As discussed in detail in Section 9.2, there are a number of other approaches
to planning that use multi-valued planning tasks or similar formalisms as
their base input. However, there exists only one earlier approach exploiting
multi-valued planning tasks within a PDDL planner and thus requiring the
sort of translation described in this chapter, namely the MIPS planning sys-
tem [33]. In many ways, the Fast Downward translator can be considered a
further development of the MIPS translator, which is described in an article
by Edelkamp and Helmert [32].

The main difference between the MIPS translator as described in that
article and the Fast Downward translator described in this chapter is that
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the latter is more general. The original MIPS algorithm cannot deal with
ADL-style conditions or effects, with derived predicates, or with schematic
operators involving constants. Moreover, its runtime typically scales exponen-
tially in the number of schematic operators. This is not very problematic for
constant-free STRIPS domains which typically exhibit a small number of op-
erators, constant across the tasks of the domain. However, some of the IPC4
domains contain partially pre-instantiated operators leading to very large do-
main specifications. For example, 15 of the 50 Airport tasks (STRIPS for-
mulation) of IPC4 contain more than 1300 schematic operators each. Dealing
better with such high numbers of schematic operators was one of the key mo-
tivations for our new developments in invariant synthesis (Section 10.4) and
grounding (Section 10.5). We point out that Edelkamp has independently
extended the translation algorithm of MIPS since IPC2. However, there is no
published work on these efforts, so we do not provide a comparison.

To compare the relative performance of the original MIPS translator and
Fast Downward’s translator, we applied both to those 566 IPC1–4 bench-
mark tasks that the MIPS translator can handle, i. e., pure STRIPS tasks
without domain constants. This is a somewhat unfair problem suite for the
Fast Downward translator because its key performance improvements are
in efficiently dealing with complex domain descriptions during grounding –
a complication which does not arise for these benchmarks. We should also
point out that the MIPS translator is implemented in C++, whereas Fast
Downward’s translator is implemented in the higher-level Python language.
It is reasonable to expect that a C++ reimplementation of the translator
could lead to a speedup of at least one order of magnitude on large tasks.

The overall result of our comparison is that in general, the MIPS trans-
lator is clearly the faster of the two systems. To discount the impact of very
easy tasks, we further limited the benchmark set to those tasks for which
either translator required at least one second of runtime, obtaining a total of
254 data points. For all of these, the MIPS translator was the faster of the
two algorithms (or implementations). Fig. 10.10 shows the ratio between the
runtimes of the two translators on these 254 benchmark tasks. In 243 out
of 254 cases, this ratio is between 6 and 13, with five outliers below and six
outliers above this region. Note that on the horizontal axis, task are sorted
by the observed runtime ratio, not by task size or any other scaling measure,
so the upward slope of the curve cannot be interpreted as any kind of asymp-
totical scaling behaviour. This mode of display was chosen because there was
no visible correlation between the observed speedup and task size (or some
other apparent measure of task complexity). In other words, the algorithms
appear to scale equally well, which is no surprise given that our translation
algorithm is very similar to the MIPS translator on this fragment of PDDL.

Regarding the kinds of translations they generate, the two translators are
interchangeable. For this reason, as a speed optimization, Fast Downward
can be configured to use the C++-based MIPS translator on those domains
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Fig. 10.10. Runtime comparison between the MIPS translator (faster) and Fast
Downward translator (slower). Each data point corresponds to one planning task.
Data points are sorted by runtime ratio.
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measure mean±dev. 25% median 75% max.
translation time 12.35± 82.52 s 0.39 s 1.19 s 4.28 s 1960.0 s
size of output 672± 3253KB 23KB 93KB 326KB 81748KB
state variables 565± 3176 25 55 240 61842

operators/axioms 7046± 38308 289 1009 3469 989250

Fig. 10.11. Some statistics on the performance and output characteristics of the
translation component. The first column shows the aspect of the task being mea-
sured, the second column shows the mean and standard deviation for the respective
measure, and the remaining columns show the 25%, 50% (median), 75% and 100%
(maximum) percentiles. Statistics are based on the 1442 propositional benchmarks
from the fully automated tracks of IPC1–4.

for which it is applicable. (The performance results in the following section
are all with respect to the Python-based Fast Downward translator, in order
to allow comparisons across domains.)

10.7.2 Absolute Performance

In addition to comparisons to other similar techniques, it is of course also of
importance how fast the translator computes its result in absolute terms. On
a state-of-the-art computer, it is sufficiently efficient to generate MPT encod-
ings for all 1442 IPC1–4 benchmark tasks. Moreover, compared to the time
required in the search component, translation time is essentially negligible in
the vast majority of cases. (Some exceptions to this exist in “structurally sim-
ple” domains like Satellite and Logistics.) A short summary of “average”
performance for the translator (for different notions of average) is provided in
Fig. 10.11. All experiments were conducted on a machine with a 3.066 GHz
Intel Xeon CPU, setting a memory limit of 2 GB.

To get an impression of the size and translation cost of a “typical” task,
the mean values, which are heavily influenced by some very large PSR tasks,
are misleading. The comparatively high standard deviations show that the
distributions are highly irregular, so the percentile information is probably
more meaningful than the mean values. To get an impression of what very
large planning tasks look like, Fig. 10.12 provides information about the
“largest” five input tasks according to each of the four measures translation
time, encoding size of translated task, no. of state variables in translated tasks
and no. of operators and axioms in translated tasks. As an extreme example,
the largest PSR instance from IPC4, task PSR-Large #50, could only just
be translated within the memory bound, consuming more than 1.9 GB of
RAM before completing translation after 32:40 minutes. However, with 61842
relevant state variables, almost all of them derived variables, this task is far
from being solvable with current domain-independent planning technology
anyway. For comparison, at IPC4, Fast Downward could only solve the PSR-

Large instances up to #31. The largest solved PSR instance comprises
5807 relevant MPT state variables and needed 39 seconds for translation.
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translation time task time
PSR-Large #50 1 960.00 s
Satellite #33 1 355.50 s
PSR-Large #48 1 145.80 s
PSR-Large #46 920.45 s
Satellite #32 634.80 s

size of output task size
Satellite #33 81 748KB
Satellite #32 52 032KB
Satellite #36 34 758KB
Satellite #31 29 997KB
Satellite #35 27 672KB

state variables task amount
PSR-Large #50 61 842
PSR-Large #48 48 210
PSR-Large #46 40 357
PSR-Large #49 36 790
PSR-Large #44 32 174

operators/axioms task amount
Satellite #33 989 250
Satellite #32 638 665
Satellite #36 428 109
Satellite #31 368 990
Satellite #35 342 193

Fig. 10.12. Statistics for the five largest planning tasks in each of the four cate-
gories.

Of the other competitors, the best system could solve 11 tasks of the PSR-

Large benchmark set, of which the largest comprises 527 state variables.
MPT translation took 4 seconds for this instance.
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11. Knowledge Compilation

The purpose of the knowledge compilation component, described in this chap-
ter, is to build a number of data structures that capture the central concepts
of Fast Downward’s causal graph heuristic and that facilitate efficient state
expansion in its various search algorithms.

The following Section 11.1 provides a short overview of this planner phase,
followed by the in-depth treatment of domain transition graphs (Section
11.2), causal graphs (Section 11.3), and finally successor generators and ax-
iom evaluators (Section 11.4).

11.1 Overview

The knowledge compilation component sets the stage for the search algo-
rithms by compiling the critical information about the planning task into a
number of data structures for efficient access. In other contexts, computa-
tions of this kind are often called preprocessing. However, “preprocessing”
is such a nondescript word that it can mean basically anything. For this
reason, we prefer a term that puts a stronger emphasis on the role of this
module: To rephrase the critical information about the planning task in such
a way that it is directly useful to the search algorithms. Of the three building
blocks of Fast Downward (translation, knowledge compilation, search), it is
the least time-critical part, always requiring less time than translation and
being dominated by search for all but the most trivial tasks.

Knowledge compilation comprises three items. First and foremost, we
compute the domain transition graph of each state variable. The domain
transition graph for a state variable encodes under what circumstances that
variable can change its value, i. e., from which values in the domain there are
transitions to which other values, which operators or axioms are responsible
for the transition, and which conditions on other state variables are associated
with the transition. Domain transition graphs are described in Chapter 12.
They are a central concept for the computation of the causal graph heuristic,
described in Section 12.2.

Second, we compute the causal graph of the planning task. Where do-
main transition graphs encode dependencies between values for a given state



214 11. Knowledge Compilation

variable, the causal graph encodes dependencies between different state vari-
ables. For example, if a given location in a planning task can be unlocked by
means of a key that can be carried by the agent, then the variable represent-
ing the lock state of the location is dependent on the variable that represents
whether or not the key is being carried. This dependency is encoded as an
arc in the causal graph. Like domain transition graphs, causal graphs are a
central concept for the computation of the causal graph heuristic, giving it
its name. The causal graph heuristic requires causal graphs to be acyclic, a
requirement which is rarely satisfied in practice. For this reason, the knowl-
edge compilation component also generates an acyclic subgraph of the real
causal graph when cycles occur. This amounts to a relaxation of the planning
task where some operator preconditions are ignored. In addition to their use-
fulness for the causal graph heuristic, causal graphs are also a key concept of
the focused iterative-broadening search algorithm introduced in the following
chapter. We discuss causal graphs in Section 11.3.

Third, we compute two data structures that are useful for any forward-
searching algorithm for MPTs, called successor generators and axiom evalu-
ators. Successor generators compute the set of applicable operators in a given
world state, and axiom evaluators compute the values of derived variables for
a given reduced state. Both are designed to do their job as quickly as possi-
ble, which is especially important for the focused iterative-broadening search
algorithm, which does not compute heuristic estimates and thus requires the
basic operations for expanding a search node to be implemented efficiently.
These data structures are discussed in Section 11.4.

11.2 Domain Transition Graphs

The domain transition graph of a state variable is a representation of the
ways in which the variable can change its value, and of the conditions that
must be satisfied for such value changes to be allowed. Domain transition
graphs were introduced by Jonsson and Bäckström in the context of SAS+

planning [69]. Our formalization of domain transition graphs generalizes the
original definition to planning tasks involving axioms and conditional effects.

Definition 11.2.1. domain transition graphs
Let Π = 〈V , s0, s⋆,A,O〉 be a multi-valued planning task, and let v ∈ V be a
state variable of Π.

The domain transition graph of v, in symbols DTG(v), is a labelled
directed graph with vertex set Dv. If v is a fluent, DTG(v) contains the fol-
lowing arcs:

– For each effect cond → v := d′ of an operator o with precondition pre such
that pre∪ cond contains some condition v = d, an arc from d to d′ labelled
with pre ∪ cond \ {v = d}.
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– For each effect cond → v := d′ of an operator o with precondition pre such
that pre ∪ cond does not contain the condition v = d for any d ∈ Dv, an
arc from each d ∈ Dv \ {d′} to d′ labelled with pre ∪ cond.

If v is a derived variable, DTG(v) contains the following arcs:

– For each axiom cond → v := d′ ∈ A such that cond contains some condition
v = d, an arc from d to d′ labelled with cond \ {v = d}.

– For each axiom cond → v := d′ ∈ A such that cond does not contain the
condition v = d for any d ∈ Dv, an arc from each d ∈ Dv \ {d′} to d′

labelled with cond.

Arcs of domain transition graphs are called transitions. Their labels are
referred to as the conditions of the transition.

Domain transition graphs can be weighted, in which case each transition
has an associated non-negative integer weight. Unless stated otherwise, we
assume that all transitions derived from operators have weight 1 and all tran-
sitions derived from axioms have weight 0.

The definition is somewhat lengthy, but its informal content is easy to
grasp: The domain transition graph for v contains a transition from d to d′ if
there exists some operator or axiom that can change the value of v from d to
d′. Such a transition is labelled with the conditions on other state variables
that must be true if the transition shall be applied. Multiple transitions
between the same values using different conditions are allowed and occur
frequently.

We have already seen domain transition graphs in the introduction in
Chapter 1 (Figs. 9.3 and 9.4), although they were only introduced informally
and did not show the arc labels usually associated with transitions. Fig. 11.1
shows some examples from a simple task in the Grid domain, featuring a
3 × 2 grid with a single initially locked location in the centre of the upper
row, unlockable by a single key. In the MPT encoding of the task, there are
three state variables: variable r with Dr = { 〈x, y〉 | x ∈ {1, 2, 3}, y ∈ {1, 2} }
encodes the location of the robot, variable k with Dk = Dr∪{carried} encodes
the state of the key, and variable d with Dd = {closed, open} encodes the state
of the initially locked grid location.

If all operators of an MPT are unary (i. e., only have a single effect) and
we leave aside axioms for a moment, then there is a strong correspondence
between the state space of an MPT and its domain transition graphs. Since
vertices in domain transition graphs correspond to values of state variables,
a given state is represented by selecting one vertex in each domain transition
graph, called the active vertex of this state variable. Applying an operator
means changing the active vertex of some state variable by performing a
transition in the corresponding domain transition graph. Whether or not such
a transition is allowed depends on its condition, which is checked against
the active vertices of the other domain transition graphs. We will use the
Grid example to motivate the importance of this correspondence. Consider
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Fig. 11.1. Domain transition graphs of a Grid task. Top: DTG(r) (robot); middle:
DTG(d) (door), bottom: DTG(k) (key).
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an initial state where the robot is at location 〈1, 1〉, the key is at location
〈3, 2〉, and the door is locked. We represent this by placing pebbles on the
appropriate vertices of the three domain transition graphs. We want to move
the pebble in the domain transition graph of the key to location 〈2, 1〉. This
can be done by moving the robot pebble to vertex 〈1, 2〉, then 〈2, 2〉, then
〈3, 2〉, moving the key pebble to the vertex carried, moving the robot pebble
back to vertex 〈2, 2〉, moving the door pebble to open, moving the robot
pebble to vertex 〈2, 1〉 and finally moving the key pebble to vertex 〈2, 1〉.

The example shows how plan execution can be viewed as simultaneous
traversal of domain transition graphs [27]. This is an important notion for
Fast Downward because the causal graph heuristic computes its heuristic
estimates by solving subtasks of the planning task by looking for paths in
domain transition graphs in basically the way we have described.

As mentioned before, this view of MPT planning is only completely accu-
rate for unary tasks without axioms, for which the domain transition graphs
are indeed a complete representation of the state space. For non-unary oper-
ators, we would need to “link” certain transitions in different domain tran-
sition graphs which belong to the same operator. These could then only be
executed together. For axioms, we would need to mark certain transitions as
“mandatory”, requiring that they be taken whenever possible. (This is only
intended as a rough analogy and leaves out details like layered axioms.)

In earlier work [56], we have successfully applied this view of planning to
STRIPS tasks. Extending the notion to plans with conditional effects provides
no challenges because domain transition graphs always consider planning op-
erators one effect at a time, in which case the effect condition can simply be
seen as part of the operator precondition. However, axioms provide a chal-
lenge that is easily overlooked. If we want to change the value of a fluent from
d to d′, the domain transition graph contains all the important information;
just find a path from d to d′ and try to find out how the associated condi-
tions can be achieved. Consider the same problem for a derived state variable.
Let us assume that unlocking the location in the Grid example leads to a
drought, causing the robot to freeze if it enters a horizontally adjacent loca-
tion. We could encode this with a new derived variable f (for freezing) with
domain Df = {⊤,⊥}, defined by the axioms d = open, r = 〈1, 1〉 → f := ⊤
and d = open, r = 〈3, 1〉 → f := ⊤. The domain transition graph DTG(f) is
depicted in Fig. 11.2 (left).

The problem with that domain transition graph is that it does not tell us
how we can change the state of variable f from ⊤ to ⊥. In general, in MPTs
derived from STRIPS tasks where derived predicates occur negatively in any
condition, the domain transition graph does not contain sufficient information
for changing the value of a derived variable from “true” to “false”. Derived
variables never assume the value ⊥ due to a derivation of this value; because
of negation as failure semantics, they only assume the value by default if
no other value can be derived. If we want to reason about ways of setting
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Fig. 11.2. Domain transition graphs for the freezing variable in the Grid task,
normal (left) and extended (right). Note that only the extended graph shows how
to change state from “freezing” (⊤) to “not freezing” (⊥).

the value of a derived variable to ⊥, we will need to make this information
explicit.

In logical notation, whether or not a derived variable assumes a given
value by triggering an axiom at a given layer is determined by a formula in
disjunctive normal form, with one disjunct for each axiom setting the value.
For example, our axioms d = open, r = 〈1, 1〉 → f := ⊤ and d = open, r =
〈3, 1〉 → f := ⊤ correspond to the DNF formula (d = open ∧r = 〈1, 1〉)∨(d =
open ∧ r = 〈3, 1〉). If we want to know when these rules do not trigger, we
must negate this formula, leading to the CNF formula (d 6= open ∨ r 6=
〈1, 1〉) ∧ (d 6= open ∨ r 6= 〈3, 1〉). To be able to encode this information
in the domain transition graph, we need to replace the inequalities with
equalities and translate the formula back to DNF. Since such transformations
can increase the formula size dramatically, we apply simplifications along the
way, removing duplicated and dominated disjuncts. The result in this case is
the DNF formula d = closed ∨ r = 〈2, 1〉 ∨ r = 〈1, 2〉 ∨ r = 〈2, 2〉 ∨ r = 〈3, 2〉.

A domain transition graph for a derived variable which has been enriched
to contain the possible ways of causing the variable to assume the value ⊥
is called an extended domain transition graph, shown for the example of the
freezing variable in Fig. 11.2 (right). Since computing the extended domain
transition graph can be costly and is not always necessary, the knowledge
compilation component scans the conditions of the planning task (axioms,
operator preconditions and effect conditions, goal) for occurrences of pairings
of the type v = ⊥ for derived variables v. Extended domain transition graphs
are only computed for those derived variables for which they are required.

Note that negative occurrences of derived variables can cascade: If u, v
and w are derived variables with domain {⊤,⊥} and the condition v = ⊥
is present in some operator precondition, and moreover v is defined by the
axiom u = ⊤, w = ⊤ → v := ⊤, then v assumes the value ⊥ whenever u or
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w do, so we would require extended domain transition graphs for u and w as
well.

On the other hand, multiple layers of negation as failure can cancel each
other out: If derived variable v only occurs in conditions of the form v = ⊥ but
never in positive form and is defined by the axiom u = ⊥, w = ⊥ → v := ⊤,
then we do not necessarily require extended domain transition graphs for u
and w.

In general, whether or not we need extended domain transition graphs for
a derived variable is determined by the following rules:

– If v is a derived variable for which the condition v = d for d 6= ⊥ appears
in an operator precondition, effect condition or in the goal, then v is used
positively.

– If v is a derived variable for which the condition v = ⊥ appears in an oper-
ator precondition, effect condition or in the goal, then v is used negatively.

– If v is a derived variable for which the condition v = d for d 6= ⊥ appears
in the body of an axiom whose head is used positively (negatively), then
v is used positively (negatively).

– If v is a derived variable for which the condition v = ⊥ appears in the
body of an axiom whose head is used positively (negatively), then v is
used negatively (positively).

The knowledge compilation component computes extended domain transi-
tion graphs for all derived variables which are used negatively and (standard)
domain transition graphs for all other state variables. Normal domain tran-
sition graphs are computed by going through the set of axioms and the set
of operator effects following Definition 11.2.1, which is reasonably straight-
forward; the computation of extended domain transition graphs has been
outlined above. Therefore, the algorithmic aspects of this topic should not
require further discussion.

11.3 Causal Graphs

Causal graphs have been introduced informally in the introduction. Here is
our formal definition.

Definition 11.3.1. causal graphs
Let Π be a multi-valued planning task with variable set V. The causal graph
of Π, in symbols CG(Π), is the directed graph with vertex set V containing
an arc 〈v, v′〉 iff v 6= v′ and one of the following conditions is true:

– The domain transition graph of v′ has a transition with some condition on
v.

– The set of affected variables in the effect list of some operator includes both
v and v′.
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In the first case, we say that an arc is induced by a transition condition.
In the second case, we say that it is induced by co-occurring effects.

Of course, the set of arcs induced by transition conditions and the set
of arcs induced by co-occurring effects are not mutually exclusive. The same
causal graph arc can be generated for both reasons.

Informally, the causal graph contains an arc from a source variable to a
target variable if changes in the value of the target variable can depend on the
value of the source variable. Such arcs are included also if this dependency is
of the form of an effect on the source variable. This agrees with the definition
of dependency graphs by Jonsson and Bäckström [70], although these authors
distinguish between the two different ways in which an arc in the graph can
be introduced by using labelled arcs.

Whether or not co-occurring effects should induce arcs in the causal graph
depends on the intended semantics: If such arcs are not included, the set of
causal graph ancestors anc(v) of a variable v are precisely those variables
which are relevant if our goal is to change the value of v. Plans for this goal
can be computed without considering any variables outside anc(v), by elim-
inating all variables outside anc(v) from the planning task and simplifying
axioms and operators accordingly. We call this the achievability definition of
causal graphs, because causal graphs encode what variables are important
for achieving a given assignment to a state variable.

However, with the achievability definition, a planner that only considers
anc(v) while generating an action sequence that achieves a given valuation
for v may modify variables outside of anc(v), i. e., the generated plans have
side effects which could destroy previously achieved goals or otherwise have
a negative impact on overall planning. Therefore, we prefer our definition,
which we call the separability definition of causal graphs.

11.3.1 Acyclic Causal Graphs

Following the separability definition of causal graphs, solving a subtask over
variables anc(v) is always possible without changing any values outside of
anc(v). This leads us to the following observation.

Observation 11.3.1. acyclic causal graphs and strongly connected
domain transition graphs
Let Π be an MPT such that CG(Π) is acyclic, all domain transition graphs
are strongly connected, there are no derived variables, and no trivially false
conditions occur in operators or goals. Then Π has a solution.

By trivially false conditions, we mean conditions of the kind {v = d, v =
d′} for d 6= d′. Note the similarity of Observation 11.3.1 to the results of
Williams and Nayak [110] on planning in domains with unary operators,
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acyclic causal graphs and reversible transitions. Under the separability defi-
nition of causal graphs, acyclic causal graphs imply unariness of operators be-
cause operators with several effects introduce causal cycles. Moreover, strong
connectedness of domain transition graphs is closely related to Williams’ and
Nayak’s reversibility property, although it is a weaker requirement.

The truth of the observation can easily be seen inductively: If the planning
task has only one state variable and the domain transition graph is strongly
connected, then any state (of the one variable) can be transformed into any
other state by applying graph search techniques. If the planning task has
several state variables and the causal graph is acyclic, we pick a sink of
the causal graph, i. e., a variable v without outgoing arcs, and check if a
goal is defined for this variable. If not, we remove the variable from the
task, thus reducing the problem instance to one with fewer state variables,
solved recursively. If yes, we search for a path from s0(v) to s⋆(v) in the
domain transition graph of v, which is guaranteed to exist because the graph
is strongly connected. This yields a “high-level plan” for setting v to s⋆(v)
which can be fleshed out by recursively inserting the plans for setting the
variables of the predecessors of v in the causal graph to the values required
for the transitions that form the high-level plan. Once the desired value of v
has been set, v can be eliminated from the planning task and the remaining
task can be solved recursively.

The algorithm is shown in Fig. 11.3. Although it is backtrack-free, it
can require exponential time to execute because the generated plans can
be exponentially long. This is unavoidable; even for MPTs that satisfy the
conditions of Observation 11.3.1, shortest plans can be exponentially long.
An example of such planning tasks is given in the proof of Theorem 4.4 in
the article by Bäckström and Nebel [9].

This method for solving multi-valued planning tasks is essentially plan-
ning by refinement : We begin by constructing a very abstract skeleton plan,
which is merely a path in some domain transition graph, then lower the level
of abstraction by adding operators to satisfy the preconditions required for
the transitions taken by the path. Strong connectedness of domain transi-
tion graphs guarantees that every abstract plan can actually be refined to a
concrete plan. This is precisely Bacchus and Yang’s [8] downward refinement
property (cf. Section 9.2.1).

11.3.2 Generating and Pruning Causal Graphs

The usefulness of causal graphs for planning by refinement is not limited to
the acyclic case. Consider a subset V ′ of the task variables which contains
all its causal graph descendants. In general, if we restrict the task to V ′

by removing all occurrences of other variables from the initial state, goal,
operators and axioms, we obtain an abstraction of the original task which
satisfies Knoblock’s [76] ordered monotonicity property (Section 9.2.1).
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algorithm solve-easy-MPT(V, s0, s⋆, O):
if s⋆ = ∅:

{ The goal is empty: the empty plan is a solution. }
return 〈〉.

else:
Let v ∈ V be a variable not occurring in preconditions

or effect conditions in O.
{ Such a variable exists if the causal graph is acyclic. }
V ′ := V \ {v}.
O′ := { o ∈ O | o does not affect v }.
plan := 〈〉
if s⋆(v) is defined:

Let t1, . . . , tk be a path of transitions in DTG(v)
from s0(v) to s⋆(v).

{ t1, . . . , tk is a “high-level plan” that reaches the goal
for v, but ignores preconditions on other variables. }

for each t ∈ {t1, . . . , tk}:
{ Recursively find a plan that achieves
the conditions of t. }

Let cond and o be the condition
and operator associated with t.

Let s′0 be the state reached after executing plan,
restricted to V ′.

Extend plan by solve-easy-MPT(V ′, s′0, cond,O
′).

Extend plan by o.
{ After dealing with v, recursively plan for goals on
the remaining variables. }

Let s′0 be the state reached after executing plan, restricted to V ′.
s′⋆ := s⋆ restricted to V ′.
Extend plan by solve-easy-MPT(V ′, s′0, s

′

⋆,O
′).

return plan

Fig. 11.3. Planning algorithm for MPTs with acyclic causal graph and strongly
connected domain transition graphs.



11.3 Causal Graphs 223

Unfortunately, one major problem with this approach is that the require-
ment to include all causal graph descendants is quite limiting. It is not un-
common for the causal graph of a planning task to be strongly connected,
in which case this technique will not allow us to abstract away any variables
at all. However, in a heuristic approach, we are free to simplify the planning
task. In particular, by ignoring some operator preconditions for the pur-
poses of heuristic evaluation, we can make an arbitrary causal graph acyclic.
Clearly, the more aspects of the real task we ignore, the worse we can expect
our heuristic to approximate the actual goal distance. Considering this, our
aim is to ignore as little information as possible. We will now explain how
this is done.

The knowledge compilation component begins its causal graph processing
by generating the “full” causal graph (Definition 11.3.1). One consequence of
the separability definition of causal graphs is that all state variables which
are not ancestors of variables mentioned in the goal are completely irrelevant.
Therefore, having computed the graph, we then compute the causal graph
ancestors of all variables in the goal. Any state variables which are not found
to be goal ancestors are eliminated from the planning task and causal graph.
Associated operators and axioms are removed. (This simplification is closely
related to Knoblock’s criterion for the problem-specific ordered monotonicity
property [76].) Afterwards, we compute a pruned causal graph, an acyclic
subgraph of the causal graph with the same vertex set. We try do this in
such a fashion that “important” causal dependencies are retained whenever
possible. More specifically, we apply the following algorithm.

First, we compute the strongly connected components of the causal graph.
Cycles only occur within strongly connected components, so each component
can be dealt with separately. Second, for each connected component, we com-
pute a total order ≺ on the vertices, retaining only those arcs 〈v, v′〉 for which
v ≺ v′. If v ≺ v′, we say that v′ has a higher level than v. The total order is
computed in the following way:

1. We assign a weight to each arc in the causal graph. The weight of an arc
is n if it is induced by n axioms or operators. The lower the cumulated
weight of the incoming arcs of a vertex, the fewer conditions are ignored
by assigning a low level to this vertex.

2. We then pick a vertex v with minimal cumulated weight of incoming arcs
and select it for the lowest level, i. e., we set v ≺ v′ for all other vertices
v′ in the strongly connected component.

3. Since v has been dealt with, we remove the vertex and its incident arcs
from consideration for the rest of the ordering algorithm.

4. The remaining task is solved by iteratively applying the same technique
to order the other vertices until only a single vertex remains.

The reader will notice that the pruning choices within a strongly con-
nected component are performed by a greedy algorithm. We could also try
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t1 t2 a1 a2

p1 p2

Fig. 11.4. Causal graph of a Logistics task. State variables ti and ai encode the
locations of trucks and airplanes, state variables pi the locations of packages.

to find sets of arcs of minimal total weight such that eliminating these arcs
results in an acyclic graph. However, this is an NP-equivalent problem, even
in the case of unweighted graphs [41, problem GT8].

After generating the pruned causal graph, we also prune the domain tran-
sition graphs by removing from the transition labels of DTG(v) all conditions
on variables v′ with v ≺ v′. These are the conditions that are ignored by the
heuristic computation. Finally, we simplify the domain transition graphs by
removing dominated transitions : If t and t′ are transitions between the same
two values of a variable, and the condition of t is a proper subset of the con-
dition of t′, then transition t is easier to apply than t′, so that we remove t′.
Similarly, if there are several transitions with identical conditions, we only
keep one of them.

11.3.3 Causal Graph Examples

To give some impression of the types of causal graphs typically found in the
standard benchmarks and the effects of pruning, we show some examples of
increasing graph complexity. Fig. 11.4 depicts an example task from the Lo-

gistics domain, featuring two trucks, two airplanes and two packages. As
can be seen, the graph is acyclic, so it requires no pruning for the causal
graph heuristic. Since Logistics tasks also feature strongly connected do-
main transition graphs, they can even be solved by solve-easy-MPT.

The next figure, Fig. 11.5, shows an example from the Mystery domain
with three locations, two trucks and two packages. The causal graph contains
a number of cycles, but these are mostly local. By pruning arcs from vertices
li to fj , we ignore the fact that we must move trucks to certain locations if we
want to use up fuel at that location. As using up fuel is not a very useful thing
to do, this is not a big loss in information. By pruning arcs from vertices pi to
cj , we ignore the fact that vehicles can only increase or decrease their current
capacity by unloading or loading packages. Compared to heuristics based on
ignoring delete effects, this is not a great loss in information, since ignoring
delete effects in the Mystery domain almost amounts to ignoring capacity
and fuel constraints altogether. By pruning just these arcs, we can eliminate
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f1 f2 f3
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c1 c2

p1 p2

f1 f2 f3
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c1 c2

p1 p2

Fig. 11.5. Causal graph of a Mystery task (left) and of a relaxed version of the
task (right). State variables fi encode the fuel at a location, state variables li and
ci encode the locations and remaining capacities of trucks, and state variables pi
encode the locations of packages.

all cycles in the causal graph, so the Mystery domain can be considered
fairly well-behaved.

A worse case is shown in Fig. 11.6, which shows an example from the
Grid domain with an arbitrary number of locations, of which a single one
is locked. There are two keys, one of which can unlock the locked location.
Eliminating cycles here requires a few minor relaxations regarding the status
of the robot arm (empty or non-empty), but also one major simplification,
namely the elimination of the arc from l to r representing the fact that the
robot can only enter the locked location if it has been unlocked.

As a (nearly) worst-case example, consider a task in the Blocksworld

domain (no figure). A typical MPT encoding uses one state variable h for
encoding whether or not the hand is empty and two state variables per block
in the task: For the i-th block, ti encodes whether or not the block is lying
on the table, and bi encodes which block is lying on top of it, or if it is
clear or being held by the arm. In the causal graph of such a task, variable
h has ingoing arcs from and outgoing arcs to all other state variables, and
all state variables bi are connected to each other in both directions. Only
the state variables ti have a slightly simpler connection structure, being only
connected to h and to bi for the same value of i. Any relaxation of the
task that eliminates cycles from the causal graph loses a large amount of
information, and it is not surprising that the Depots domain, which includes
a Blocksworld subproblem, is the one for which the precursor of Fast
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Fig. 11.6. Causal graph of a Grid task (left) and of a relaxed version of the task
(right). State variable r encodes the location of the robot, a encodes the status of
the robot arm (empty or carrying a key), l encodes the status of the locked location
(locked or open), and k1 and k2 encode the locations of the two keys.

Downward fared worst [56]. Still, it should be pointed out that planners that
ignore delete effects have similar problems with Blocksworld-like domains,
as the comparison between the FF and causal graph heuristics in the same
article shows.

11.4 Successor Generators and Axiom Evaluators

In addition to good heuristic guidance, a forward searching planning system
needs efficient methods for generating successor states if it is to be applied
to the benchmark suite from the international planning competitions. For
some domains, our causal graph heuristic or other popular methods like the
FF heuristic provide excellent goal estimates, yet still planning can be too
time-consuming because of very long plans and vast branching factors.

The variant of best-first search implemented in Fast Downward does not
compute the heuristic estimate for each state that is generated. Essentially,
heuristic estimates are only computed for closed nodes, while computation
is deferred for nodes on the search frontier. (Our best-first search variant is
discussed in detail in the following chapter.) For domains with strong heuristic
guidance and large branching factors, the number of nodes on the frontier
can by far dominate the number of nodes in the closed set. As a case in
point, consider the problem instance Satellite #29. For solving this task,
the default configuration of Fast Downward only computes heuristic estimates
for 67 597 world states while adding 107 233 381 states to the frontier. Clearly,
determining the set of applicable operators quickly is of critical importance
in such a scenario.
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In some Satellite tasks, there are almost 1 000 000 ground operators,
so we should try to avoid individually checking each operator for applica-
bility. Similarly, in the biggest PSR tasks, more than 100000 axioms must
be evaluated in each state to compute the values of the derived variables, so
this computation must be made efficient. For these purposes, Fast Downward
uses two data structures called successor generators and axiom evaluators.

11.4.1 Successor Generators

Successor generators are recursive data structures very similar to decision
trees. The internal nodes have associated conditions, which can be likened
to the decisions in a decision tree, and the leaves have associated operator
lists which can be likened to a set of classified samples in a decision tree leaf.
They are formally defined as follows.

Definition 11.4.1. successor generators
A successor generator for an MPT Π = 〈V , s0, s⋆,A,O〉 is a tree consist-
ing of selector nodes and generator nodes.

A selector node is an internal node of the tree. It has an associated variable
v ∈ V called the selection variable. Moreover, it has |Dv| + 1 children
accessed via labelled edges, one edge labelled v = d for each value d ∈ Dv,
and one edge labelled ⊤. The latter edge is called the don’t care edge of the
selector.

A generator node is a leaf node of the tree. It has an associated set of
operators from O called the set of generated operators.

Each operator o ∈ O must occur in exactly one generator node, and the set
of edge labels leading from the root to this node (excluding don’t care edges)
must equal the precondition of o.

Given a successor generator for an MPT Π and a state s of Π , we can
compute the set of applicable operators in s by traversing the successor gen-
erator as follows, starting from the root:

– At a selector node with selection variable v, follow the edge v = s(v) and
the don’t care edge.

– At a generator node, report the generated operators as applicable.

To build a successor generator for Π , we apply a top-down algorithm
which considers the task variables in an arbitrary order v1 ≺ v2 ≺ · · · ≺ vn.
At the root node, we choose v1 as selection variable and classify the set of
operators according to their preconditions with respect to v1. Operators with
a precondition v1 = d will be represented in the child of the root accessed by
the edge with the corresponding label, while operators without preconditions
on v1 will be represented in the child of the root accessed by the don’t care
edge. In the children of the root, we choose v2 as selection variable, in the
grandchildren v3, and so on. There is one exception to this rule to avoid
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algorithm evaluate-axiom-layer(s, Ai):
for each axiom a ∈ Ai:

a.counter := |a.cond|
for each variable v:

for each axiom a ∈ Ai with a condition v = s(v) in the body:
a.counter := a.counter− 1

while there is a not yet considered axiom a ∈ Ai with a.counter = 0:
Let a be such an axiom.
〈v, d〉 := a.head
if s(v) 6= d:

s(v) := d
for each axiom a ∈ Ai with condition v = d in the body:

a.counter := a.counter− 1

Fig. 11.7. Computing the values of the derived variables in a given planning state.

creating unnecessary selection nodes: If no operator in a certain branch of
the tree has a condition on vi, then vi is not considered as a selection variable
in this branch. The construction of a branch ends when all variables have
been considered, at which stage a generator node is created for the operators
associated with that branch.

11.4.2 Axiom Evaluators

Axiom evaluators are a simple data structure used for efficiently implementing
the well-known marking algorithm for propositional Horn logic [28], extended
and modified for the layered logic programs that correspond to the axioms
of an MPT.

They consist of two parts. Firstly, an indexing data structure maps a
given variable/value pairing and a given axiom layer to the set of axioms in
this layer in whose body the pairing appears. Secondly, a set of counters, one
for each axiom, counts the number of conditions in the body of the axiom
which have not yet been derived.

Within Fast Downward, axioms are evaluated in two steps. First, all de-
rived variables are set to their default value ⊥. Second, algorithm evaluate-
axiom-layer (shown in Fig. 11.7) is executed for each axiom layer in sequence
to determine the final values of the derived variables. We assume that the
reader is familiar enough with the marking algorithm not to require much
explanation, so we only point out that the test whether or not an axiom is
ready to trigger is implemented by means of a queue in which axioms are put
as soon as their counter reaches 0.

The actual implementation of evaluate-axiom-layer in Fast Downward is
slightly more efficient than indicated by the pseudo-code, since it avoids look-
ing at each variable for each layer in the initialization step of the algorithm.
However, this is a minor technical detail, so we turn to the remaining piece
of Fast Downward’s architecture, the search component.
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After the preparational steps of translation and knowledge compilation, the
search component described in this chapter performs the actual work in find-
ing a plan.

The following Section 12.1 presents a high-level overview of the search
component. After this, we introduce the two heuristics used by Fast Down-
ward, namely the causal graph heuristic (Section 12.2) and FF heuristic (Sec-
tion 12.3). The rest of the chapter is dedicated to the search algorithms used,
emphasizing how (and why) they differ from more traditional techniques. We
discuss our modification of greedy best-first search in Section 12.4, multi-
heuristic best-first search in Section 12.5 and focused iterative-broadening
search in Section 12.6.

12.1 Overview

Unlike the translation and knowledge compilation components, for which
there is only a single mode of execution, the search component of Fast Down-
ward can perform its work in various alternative ways. There are three basic
search algorithms to choose from:

1. Greedy best-first search: This is the standard textbook algorithm [102],
modified with a technique called deferred heuristic evaluation to mitigate
the negative influence of wide branching. We have also extended the
algorithm to deal with preferred operators, similar to FF’s helpful actions
[65]. We discuss greedy best-first search in Section 12.4. Fast Downward
uses this algorithm together with the causal graph heuristic, discussed in
Section 12.2.

2. Multi-heuristic best-first search: This is a variation of greedy best-first
search which evaluates search states using multiple heuristic estimators,
maintaining separate open lists for each. Like our variant of greedy best-
first search, it supports the use of preferred operators. Multi-heuristic
best-first search is discussed in Section 12.5. Fast Downward uses this
algorithm together with the causal graph and FF heuristics, discussed in
Sections 12.2 and 12.3.
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3. Focused iterative-broadening search: This is a simple search algorithm
that does not use heuristic estimators, and instead reduces the vast set
of search possibilities by focusing on a limited operator set derived from
the causal graph. It is an experimental algorithm; in the future, we hope
to further develop the basic idea of this algorithm into a more robust
method. Focused iterative-broadening search is discussed in Section 12.6.

For the two heuristic search algorithms, a second choice must be made
regarding the use of preferred operators. There are five options supported by
the planner:

1. Do not use preferred operators.
2. Use the helpful transitions of the causal graph heuristic as preferred op-

erators.
3. Use the helpful actions of the FF heuristic as preferred operators.
4. Use helpful transitions as preferred operators, falling back to helpful ac-

tions if there are no helpful transitions in the current search state.
5. Use both helpful transitions and helpful actions as preferred operators.

Each of these five options can be combined with any of the two heuristic
search algorithms, so that there is a total of eleven possible settings for the
search component, ten using one of the heuristic algorithms and one using
focused iterative-broadening search.

In addition to these basic settings, the search component can be configured
to execute several alternative configurations in parallel by making use of an
internal scheduler. Both configurations of Fast Downward that participated in
IPC4 made use of this feature by running one configuration of the heuristic
search algorithms in parallel with focused iterative-broadening search. As
its heuristic search algorithm, the configuration Fast Downward employed
greedy best-first search with helpful transitions, falling back to helpful actions
when necessary (option 4.). The configuration Fast Diagonally Downward
employed multi-heuristic best-first search using helpful transitions and helpful
actions as preferred operators (option 5.). To avoid confusion between the
complete Fast Downward planning system and the particular configuration
called “Fast Downward”, we will refer to the IPC4 planner configurations as
FD and FDD in the following. The name of the planning system as a whole
is never abbreviated.

12.2 The Causal Graph Heuristic

The causal graph heuristic is the centrepiece of Fast Downward’s heuristic
search engine. It estimates the cost of reaching the goal from a given search
state by solving a number of subtasks of the planning task which are de-
rived by looking at small “windows” of the (pruned) causal graph. For some
additional intuitions about the design of the heuristic and a discussion of
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theoretical aspects, we refer to the article in which we first introduced the
heuristic [56].

12.2.1 Conceptual View of the Causal Graph Heuristic

For each state variable v and each pair of values d, d′ ∈ Dv, the causal graph
heuristic computes a heuristic estimate costv(d, d

′) for the cost of changing
the value of v from d to d′, assuming that all other state variables carry the
same values as in the current state. (This is a simplification. Cost estimates
are not computed for state variables v or values d for which they are never
required. We ignore this fact when discussing the heuristic on the conceptual
level.) The heuristic estimate of a given state s is the sum over the costs
costv(s(v), s⋆(v)) for all variables v for which a goal condition s⋆(v) is defined.

Conceptually, cost estimates are computed one variable after the other,
traversing the (pruned) causal graph in a bottom-up fashion. By bottom-up,
we mean that we start with the variables that have no predecessors in the
causal graphs; we call this order of computation “bottom-up” because we
consider variables that can change their state of their own accord low-level,
while variables whose state transitions require the help of other variables have
more complex transition semantics and are thus considered high-level. Note
that in our figures depicting causal graphs, high-level variables are typically
displayed near the bottom.

For variables without predecessors in the causal graph, costv(d, d
′) simply

equals the cost of a shortest path from d to d′ in the (pruned) domain tran-
sition graph DTG(v). For other variables, cost estimates are also computed
by graph search in the domain transition graph. However, the conditions of
transitions must be taken into account during path planning, so that in addi-
tion to counting the number of transitions required to reach the destination
value, we also consider the costs for achieving the value changes of the other
variables necessary to set up the transition conditions.

The important point here is that in computing the values costv(d, d
′), we

completely consider all interactions of the state variable v with its predeces-
sors in the causal graph. If changing the value from d to d′ requires several
steps and each of these steps has an associated condition on a variable v′,
then we realize that v′ must assume the values required by those conditions
in sequence. For example, if v represents a package in a transportation task
that must be moved from A to B by means of a vehicle located at C, then we
recognize that the vehicle must first move from C to A and then from A to
B in order to drop the package at B. This is very different to the way HSP-
or FF-based heuristics work on such examples. However, we only consider
interactions with the immediate predecessors of v in the causal graph. Inter-
actions that occur via several graph layers are not captured by the heuristic
estimator.

In essence, we compute costv(d, d
′) by solving a particular subtask of the

MPT, induced by the variable v and its predecessors in the pruned causal
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algorithm compute-costs-bottom-up(Π , s):
for each variable v in a bottom-up traversal of the pruned causal graph:

Let V ′ be the set of immediate predecessors of v
in the pruned causal graph.

for each pair of values 〈d, d′〉 ∈ Dv ×Dv :
Generate the following planning task Πv,d,d′ :

— Variables: V ′ ∪ {v}.
— Initial state: v = d and v′ = s(v′) for all v′ ∈ V ′.
— Goal: v = d′.
— Axioms and operators:

1. Those corresponding to transitions
in the pruned DTG of v.

2. For all variables v′ ∈ V ′ and values e, e′ ∈ Dv′ ,
an operator with precondition v′ = e,
effect v′ = e′, and cost cost′v(e, e

′).
{ All variables v′ ∈ V ′ have been considered
previously, so their cost values are known. }

Set costv(d, d
′) to the cost of a plan π that solves Πv,d,d′ .

Fig. 12.1. The compute-costs-bottom-up algorithm, a high-level description of the
causal graph heuristic.

graph. For this subtask, we assume that v is initially set to d, we want v to
assume the value d′, and all other state variables carry the same value as in
the current state. We call this planning task the local subtask for v, d and d′,
or the local subtask for v and d if we leave the target value d′ open.

For a formalization of these intuitive notions of how the cost estimates
are generated, consider the pseudo-code in Fig. 12.1. It does not reflect the
way the heuristic values are actually computed within Fast Downward; the
algorithm in the figure would be far too expensive to evaluate for each search
state. However, it computes the same cost values as Fast Downward does,
provided that the algorithm generating the plans π in the last line of the
algorithm is the same one as the one used for the “real” cost estimator.

12.2.2 Computation of the Causal Graph Heuristic

The actual computation of the causal graph heuristic traverses the causal
graph in a top-down direction starting from the goal variables, rather than
bottom-up starting from variables without causal predecessors. In fact, this
top-down traversal of the causal graph is the reason for Fast Downward’s
name.

Computing cost estimates in a top-down traversal implies that while the
algorithm is computing plans for local subtasks of a given variable, it typically
does not yet know the costs for changing the state of its causal predecessors.
The algorithm compute-costs addresses this by evaluating the cost values of
dependent variables through recursive invocations of itself.
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For a given variable-value pairing v = d, we always compute the costs
costv(d, d

′) for all values of d′ ∈ Dv at the same time, similar to the way
Dijkstra’s algorithm computes the shortest path not from a single source to a
single destination vertex, but from a single source to all possible destination
vertices. Computing the costs for all values of d′ is not (much) more expensive
than computing only one of these values, and once all cost values have been
determined, we can cache them and re-use them if they are needed again later
during other parts of the computation of the heuristic value for the current
state.

In fact, the similarity to shortest path problems is not superficial but runs
quite deeply. If we ignore the recursive calls for computing cost values of de-
pendent variables, compute-costs is basically an implementation of Dijkstra’s
algorithm for the single-source shortest path problem on domain transition
graphs. The only difference to the “regular” algorithm lies in the fact that
we do not know the cost for using an arc in advance. Transitions of derived
variables have a base cost of 0 and transitions of fluents have a base cost
of 1, but in addition to the base cost, we must pay the cost for achieving
the conditions associated with a transition. However, the cost for achieving a
given condition v′ = e′ depends on the current value e of that state variable
at the time the transition is taken. Thus, we can only compute the real cost
for a transition once we know the values of the dependent state variables in
the relevant situation.

Of course, there are many different ways of taking transitions through
domain transition graphs, all potentially leading to different values for the
dependent state variables. When we first introduced the causal graph heuris-
tic, we showed that deciding plan existence for the local subtasks is NP-
complete [56], so we are content with an approach that does not lead to a
complete planning algorithm, as long as it works well for the subtasks we face
in practice.

The approach we have chosen is to achieve each value of state variable
v in the local subtask for v and d as quickly as possible, following a greedy
policy. In the context of the Dijkstra algorithm, this means that we start by
finding the cheapest possible plan to make a transition from d to some other
value d′. Once we have found the cheapest possible plan πd′ , we commit to
it, annotating the vertex d′ of the domain transition graph with the local
state obtained by applying plan πd′ to the current state. In the next step,
we look for the cheapest possible plan to achieve another value d′′, by either
considering transitions that start from the initial value d, or by considering
transitions that continue the plan πd′ by moving to a neighbour of d′. This
process is iterated until all vertices of the domain transition graph have been
reached or no further progress is possible.

Our implementation follows Dijkstra’s algorithm (Fig. 12.2). We have
implemented the priority queue as a vector of buckets for maximal speed and
use a cache to avoid generating the same costv(d, d

′) value twice for the same
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algorithm compute-costs(Π , s, v, d):
Let V ′ be the set of immediate predecessors of v

in the pruned causal graph of Π .
Let DTG be the pruned domain transition graph of v.
costv(d, d) := 0
costv(d, d

′) := ∞ for all d′ ∈ Dv \ {d}
local-stated := s restricted to V ′

unreached := Dv

while unreached contains a value d′ ∈ Dv with costv(d, d
′) <∞:

Choose such a value d′ ∈ unreached minimizing costv(d, d
′).

unreached := unreached \ {d′}
for each transition t in DTG from d′ to some d′′ ∈ unreached:

transition-cost := 0 if v is derived; 1 if v is a fluent
for each pair v′ = e′ in the condition of t:

e := local-stated′(v
′)

call compute-costs(Π,s, v′, e).
transition-cost := transition-cost + costv′(e, e′)

if costv(d, d
′) + transition-cost < costv(d, d

′′):
costv(d, d

′′) := costv(d, d
′) + transition-cost

local-stated′′ := local-stated′
for each pair v′ = e′ in the condition of t:

local-stated′′(v
′) := e′

Fig. 12.2. Fast Downward’s implementation of the causal graph heuristic: the
compute-costs algorithm for computing the estimates costv(d, d

′) for all values d′ ∈
Dv in a state s of an MPT Π .

state. In addition to this, we use a global cache that is shared throughout the
whole planning process so that we need to compute the values costv(d, d

′) for
variables v with few ancestors in the pruned causal graph only once. (Note
that costv(d, d

′) only depends on the current values of the ancestors of v.)
Apart from these and some other technical considerations, Fig. 12.2 gives

an accurate account of Fast Downward’s implementation of the causal graph
heuristic. For more details, including complexity considerations and a worked-
out example, we refer to the original description of the algorithm [56].

12.2.3 States with Infinite Heuristic Value

We noted that Fast Downward uses an incomplete planning algorithm for
determining solutions to local planning tasks. Therefore, there can be states
s with costv(s(v), s⋆(v)) = ∞ even though the goal condition v = s⋆(v) can
still be reached. This means that we cannot trust infinite values returned by
the causal graph heuristic. In our experience, states with infinite heuristic
evaluation from which it is still possible to reach the goal are rare, so we
indeed treat such states as dead ends.

If it turns out that all states at the search frontier are dead ends, we
cannot make further progress with the causal graph heuristic. In this case, we
use a sound dead-end detection routine to verify the heuristic assessment. If it
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turns out that all frontier states are indeed dead ends, then we report the task
as unsolvable. Otherwise, search is restarted with the FF heuristic (cf. Section
12.3), which is sound for purposes of dead-end detection. (In practice, we
have never observed the causal graph heuristic to fail on a solvable task.
Therefore, the fallback mechanism is only used for some unsolvable tasks in
the Miconic-10-FullADL domain which are not recognized by our dead-
end detection technique.)

The dead-end detection routine has been originally developed for STRIPS-
like tasks. However, extending it to full MPTs is easy; in fact, no changes to
the core algorithm are required, as it works at the level of domain transition
graphs and is still sound when applied to tasks with conditional effects and
axioms. Since it is not a central aspect of Fast Downward, we do not discuss
it here, referring to our earlier work instead [56].

12.2.4 Helpful Transitions

Inspired by Hoffmann’s very successful use of helpful actions within the FF
planner [65], we have extended our algorithm for computing the causal graph
heuristic so that in addition to the heuristic estimate, it also generates a set
of applicable operators considered useful for steering search towards the goal.

To compute helpful actions in FF, Hoffmann’s algorithm generates a plan
for the relaxed planning task defined by the current search state and considers
those operators helpful which belong to the relaxed plan and are applicable
in the current state.

Our approach follows a similar idea. After computing the heuristic esti-
mate costv(s(v), s⋆(v)) for a variable v for which a goal condition is defined,
we look into the domain transition graph of v to trace the path of transitions
leading from s(v) to s⋆(v) that gave rise to the cost estimate. In particular, we
consider the first transition on this path, starting at s(v). If this transition
corresponds to an applicable operator, we consider that operator a helpful
transition and continue to check the next goal. If the transition does not
correspond to an applicable operator because it has associated conditions
of the form v′ = e′ which are not currently satisfied, then we recursively
look for helpful transitions in the domain transition graph of each such vari-
able v′, checking the path that was generated during the computation of
costv′(s(v′), e′).

The recursive process continues until we have found all helpful transitions.
Unlike the case for FF, where helpful actions can be found for all non-goal
states, we might not find any helpful transition at all. It may be the case that
a transition does not correspond to an applicable operator even though it has
no associated conditions; this can happen when some operator preconditions
are not represented in the pruned domain transition graph due to cycles in
the causal graph. Even so, we have found helpful transitions to be a useful
tool in guiding our best-first search algorithms.
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12.3 The FF Heuristic

The FF heuristic is named after Hoffmann’s planning algorithm of the same
name, in the context of which it was originally introduced [65]. It is based on
the notion of relaxed planning tasks that ignore negative interactions. In the
context of MPTs, ignoring negative interactions means that we assume that
each state variable can hold several values simultaneously. An operator effect
or axiom that sets a variable v to a value d in the original task corresponds
to an effect or axiom that adds the value d to the range of values assumed by
v in the relaxed task. A condition v = d in the original task corresponds to a
condition requiring d to be an element of the set of values currently assumed
by v in the relaxed task.

It is easy to see that applying some operator in a solvable relaxed planning
task can never render it unsolvable. It can only lead to more operators being
applicable and more goals being true, if it has any significant effect at all.
For this reason, relaxed planning tasks can be solved efficiently, even though
optimal solutions are still NP-hard to compute [17]. A plan for the relaxation
of a planning task is called a relaxed plan for that task.

The FF heuristic estimates the goal distance of a world state by generat-
ing a relaxed plan for the task of reaching the goal from this world state. The
number of operators in the generated plan is then used as the heuristic esti-
mate. Our implementation of the FF heuristic does not necessarily generate
the same, or even an equally long, relaxed plan as FF. In our experiments,
this did not turn out to be problematic, as both implementations appear to
be equally informative.

While the FF heuristic was originally introduced for ADL domains, ex-
tending it to tasks involving derived predicates is straight-forward. One pos-
sible extension is to simply assume that each derived predicate is initially
set to its default value ⊥ and treat axioms as relaxed operators of cost 0.
In a slightly more complicated, but also more accurate approach, derived
variables are initialized to their actual value in a given world state, allowing
the relaxed planner to achieve the value ⊥ (or other values) by applying the
transitions of the extended domain transition graph of the derived variable.
We have followed the second approach.

In addition to heuristic estimates, the FF heuristic can also be exploited
for restricting or biasing the choice of operators to apply in a given world
state s. The set of helpful actions of s consists of all those operators of the
relaxed plan computed for s that are applicable in that state. As mentioned
in Section 12.1, Fast Downward can be configured to treat helpful actions as
preferred operators.

There is a wealth of work on the FF heuristic in the literature, so we
do not discuss it further. For a more thorough treatment, we point to the
references [60–62,65].
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12.4 Greedy Best-First Search in Fast Downward

Fast Downward uses greedy best-first search with a closed list as its default
search algorithm. We assume that the reader is familiar with the algorithm
and refer to the literature for details [102].

Greedy best-first search in Fast Downward differs from the textbook al-
gorithm in two ways. First, it can treat helpful transitions computed by the
causal graph heuristic or helpful actions computed by the FF heuristic as pre-
ferred operators. Second, it performs deferred heuristic evaluation to reduce
the influence of large branching factors. We now turn to describing these two
search enhancements.

12.4.1 Preferred Operators

To make use of helpful transitions computed by the causal graph heuristic or
helpful actions computed by the FF heuristic, our variant of greedy best-first
search supports the use of so-called preferred operators. The set of preferred
operators of a given state is a subset of the set of applicable operators for
this state. Which operators are considered preferred depends on the settings
for the search component, as discussed earlier. The intuition behind preferred
operators is that a randomly picked successor state is more likely to be closer
to the goal if it is generated by a preferred operator, in which case we call it
a preferred successor. Preferred successors should be considered before non-
preferred ones on average.

Our search algorithm implements this preference by maintaining two sep-
arate open lists, one containing all successors of expanded states and one
containing preferred successors exclusively. The search algorithm alternates
between expanding a regular successor and a preferred successor. On even
iterations it will consider the one open list, on odd iterations the other. No
matter which open list a state is taken from, all its successors are placed in
the first open list, and the preferred successors are additionally placed in the
second open list. (Of course we could limit the first open list to only contain
non-preferred successors; however, typically the total number of successors is
vast and the number of preferred successors is tiny. Therefore, it is cheaper to
add all successors to the first open list and detect duplicates upon expansion
than scan through the list of successors determining for each element whether
or not it is preferred.)

Since the number of preferred successors is smaller than the total number
of successors, this means that preferred successors are typically expanded
much earlier than others. This is especially important in domains where
heuristic guidance is weak and a lot of time is spent exploring plateaus. When
faced with plateaus, Fast Downward’s open lists operate in a first-in-first-out
fashion. (In other words: For a constant heuristic function, our search algo-
rithm behaves like breadth-first search.) Preferred operators typically offer



238 12. Search

much better chances of escaping from plateaus since they lead to significantly
lower effective branching factors.

12.4.2 Deferred Heuristic Evaluation

Upon expanding a state s, the textbook version of greedy best-first search
computes the heuristic evaluation of all successor states of s and sorts them
into the open list accordingly. This can be wasteful if s has many successors
and heuristic evaluations are costly, two conditions that are often true for
heuristic search approaches to planning. This is where our second modifica-
tion comes into play.

If a successor with a better heuristic estimate than s is generated early and
leads to a promising path towards the goal, we would like to avoid generating
the other successors. Let us assume that s has 1000 successors, and that
s′, the 10th successor of s being generated, has a better heuristic estimate
than s. Furthermore, let us assume that the goal can be reached from s′

on a path with non-increasing heuristic estimates. Then we would like to
avoid computing heuristic values for the 990 later successors of s altogether,
focusing on s′ instead.

Deferred heuristic evaluation achieves this by not computing heuristic
estimates for the successors of an expanded state s immediately. Instead, the
successors of s are placed in the open list together with the heuristic estimate
of state s, and their own heuristic estimates are only computed when and if
they are expanded, at which time it is used for sorting their successors into
the open list, and so on. In general, each state is sorted into the open list
according to the heuristic evaluation of its parent, with the initial state being
an exception. In fact, we do not need to put the successor state itself into
the open list, since we do not require its representation before we want to
evaluate its heuristic estimate. Instead, we save memory by storing only a
reference to the parent state and the operator transforming the parent state
into the successor state in the open list.

It might not be clear how this approach can lead to significant savings
in time, since deferred evaluation also means that information is only avail-
able later. The potential savings become most apparent when considering
deferred heuristic evaluation together with the use of preferred operators: If
an improving successor s′ of a state s is reached by a preferred operator, it
is likely that it will be expanded (via the second open list) long before most
other successors – or even most siblings – of s. In the situation described
above, where there exists a non-increasing path from s′ to the goal, heuristic
evaluations will never be computed for most successors of s. In fact, deferred
heuristic evaluation can significantly improve search performance even when
preferred operators are not used, especially in tasks where branching factors
are large and the heuristic estimates are informative.

At first glance, deferred heuristic evaluation might appear related to an-
other technique for reducing the effort of expanding a node within a best-first
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search algorithm, namely A∗ with Partial Expansion [111]. However, this al-
gorithm is designed for reducing the space requirements of best-first search
at the expense of additional heuristic evaluations: When expanding a node,
A∗ with Partial Expansion computes the heuristic value of all successors, but
only stores those in the open queue whose heuristic values fall below a certain
relevance threshold. In later iterations, it might turn out that the threshold
was chosen too low, in which case the node needs to be re-expanded and
the heuristic values of its successors re-evaluated. In general, A∗ with Partial
Expansion will never compute fewer heuristic estimates than standard A∗,
but it will usually require less memory.

However, for heuristic search approaches to planning (and certainly for
Fast Downward), it is usually the case that heuristic evaluations are so costly
in time that memory for storing open and closed lists is not a limiting fac-
tor. We are thus willing to trade off memory with time in the opposite way:
Deferred heuristic evaluation normally leads to more node expansions and
higher space requirements than standard best-first search because the heuris-
tic values used for guiding the search are less informative (they evaluate the
predecessor of a search node rather than the node itself). However, heuristic
computations are only required for nodes that are actually removed from the
open queue rather than for all nodes on the fringe, and the latter are usually
significantly more numerous.

12.5 Multi-Heuristic Best-First Search

As an alternative to greedy best-first search, Fast Downward supports an
extended algorithm called multi-heuristic best-first search. This algorithm
differs from greedy best-first search in its use of multiple heuristic estimators,
based on our observation that different heuristic estimators have different
weaknesses. It may be the case that a given heuristic is sufficient for directing
the search towards the goal except for one part of the plan, where it gets stuck
on a plateau. Another heuristic might have similar characteristics, but get
stuck in another part of the search space.

Various ways of combining heuristics have been proposed in the literature,
typically adding together or taking the maximum of the individual heuristic
estimates. We believe that it is often beneficial not to combine the different
heuristic estimates into a single numerical value. Instead, we maintain a sep-
arate open list for each heuristic estimator, which is sorted according to the
respective heuristic. The search algorithm alternates between expanding a
state from each open list. Whenever a state is expanded, estimates are calcu-
lated according to each heuristic, and the successors are put into each open
list.

When Fast Downward is configured to use multi-heuristic best-first search,
it computes estimates both for the causal graph heuristic and FF heuristic,
maintaining two open lists. Of course, the approach can be combined with
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the use of preferred operators; in this case, the search algorithm maintains
four open lists, as each heuristic distinguishes between normal and preferred
successors.

12.6 Focused Iterative-Broadening Search

The focused iterative-broadening search algorithm is the most experimental
piece of Fast Downward’s search arsenal. In its present form, the algorithm is
unsuitable for many planning domains, especially those containing compara-
tively few different goals. Yet we think that it might contain the nucleus for a
successful approach to domain-independent planning which is very different
to most current methods, so we include it for completeness and as a source
of inspiration.

The algorithm is intended as a first step towards developing search tech-
niques that emphasize the idea of using heuristic criteria locally, for limiting
the set of operators to apply, rather than globally, for choosing which states
to expand from a global set of open states. We made first experiments in
this direction after observing the large boost in performance that can be
obtained by using preferred operators in heuristic search. The algorithm per-
formed surprisingly well in some of the standard benchmark domains, while
performing badly in most others.

As the name suggests, the algorithm focuses the search by concentrating
on one goal at a time, and by restricting its attention to operators which are
supposedly important for reaching that goal:

Definition 12.6.1. Modification distances
Let Π be an MPT, let o be an operator of Π, and let v be a variable of Π.

The modification distance of o with respect to v is defined as the min-
imum, over all variables v′ that occur as affected variables in the effect list
of o, of the distance from v′ to v in CG(Π).

For example, operators that modify v directly have a modification dis-
tance of 0 with respect to v, operators that modify variables which occur in
preconditions of operators modifying v have a modification distance of 1, and
so on. We assume that in order to change the value of a variable, operators
with a low modification distance with respect to this variable are most useful.

Fig. 12.3 shows the reach-one-goal procedure for achieving a single goal
of an MPT. For the time being, assume that the cond parameter is always ∅.
The procedure makes use of the assumption that high modification distance
implies low usefulness in two ways. First, operators with high modification
distance with respect to the goal variable are considered to have a higher as-
sociated cost, and are hence applied less frequently. Second, operators whose
modification distance is beyond a certain threshold are forbidden completely.
Instead of choosing a threshold a priori, the algorithm first tries to find a
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algorithm reach-one-goal(Π , v, d, cond):
for each ϑ ∈ {0, 1, . . . ,max-threshold}:

Let Oϑ be the set of operators of Π whose modification distance
with respect to v is at most ϑ.

Assign the cost c to each operator o ∈ Oϑ with modification
distance c with respect to v.

Call the uniform-cost-search algorithm with a closed list, using
operator set Oϑ, to find a state satisfying {v = d} ∪ cond.

return the plan if uniform-cost-search succeeded.

Fig. 12.3. The reach-one-goal procedure for reaching a state with v = d. The value
max-threshold is equal to the maximal modification distance of any operator with
respect to v.

solution with the lowest possible threshold of 0, increasing the threshold by 1
whenever the previous search has failed. The uniform-cost-search algorithm
mentioned in Fig. 12.3 is the standard textbook method [102].

Although we were ignorant of this fact at the time our algorithm was
conceived, the core idea of reach-one-goal is not new: Ginsberg and Harvey
[47] present a search technique called iterative broadening, which is also based
on the idea of repeatedly doing a sequence of uninformed searches with an
ever-growing set of operators. Their work demonstrates the superiority of
iterative broadening over standard depth-bounded search both empirically
and analytically under the reasonable assumption that the choices made at
each branching point are equally important. (See the original analysis for a
precise definition of “equally important” [47]. While Ginsberg and Harvey’s
assumption is certainly not valid in practice, we find it much more convincing
than the competing model where goal states are uniformly distributed across
the search fringe.) The original iterative broadening algorithm applies to
scenarios without any knowledge of the problem domain, so it chooses the set
of operators which may be applied at every search node randomly, rather than
using heuristic information from the causal graph as in our case. However,
Ginsberg and Harvey already discuss the potential incorporation of heuristics
into the operator selection. The introduction of operator costs (in the form
of modification distances) is new, but it is a fairly straightforward extension
where heuristic information is available.

The focused iterative-broadening search algorithm is based on the reach-
one-goal method; the idea is to achieve the goals of the planning task one
after the other, by using the reach-one-goal algorithm as the core subroutine
for satisfying individual goals. Since it is not obvious what a good order of
achieving the goals would be, one invocation of reach-one-goal is started for
each goal in parallel. With each one-goal solver focusing on the (supposedly)
relevant operators for reaching its particular goal, there is hope that the
number of states considered before a goal is reached is small. Once one of the
one-goal solvers reaches its goal, the resulting plan is reported and all sub-
searches are stopped. The overall search algorithm commits to this part of
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the plan; the situation in which the first goal has been reached is considered
a new initial state.

From this situation, we try to satisfy the second goal, by once more start-
ing parallel invocations of reach-one-goal for each possible second goal. Of
course, this can lead to a situation where the search algorithm oscillates be-
tween goals, first achieving goal a, then abandoning it in favour of goal b,
without any sign of making real progress. Therefore, we demand that reach-
one-goal achieves the second goal in addition to the one we reached first, by
setting the cond argument accordingly. Once two goals have been reached, the
sub-searches are again stopped, sub-searches for the third goal are started,
and so on, until all goals have been reached.

In some sense, our focusing technique is similar to the beam search al-
gorithm [85], which also performs a fixed number of concurrent searches to
avoid committing to a particular path in the search space too early. Beam
search uses a heuristic function to evaluate which branches of search should
be abandoned and where new branches should be spawned. While focused
iterative-broadening search does not appear to use heuristic evaluations at
first glance, the number of satisfied goals of a state is used as an evaluation
criterion in essentially the same way. One important difference to beam search
is our use of modification distances relative to a particular goal, which means
that the different “beams” explore the state space in qualitatively different
ways.

There is one final twist: To motivate reach-one-goal not to needlessly wan-
der away from satisfied goals, we forbid applying operators that undo any of
the previously achieved goals in cond. This is an old idea called goal protec-
tion [71]. It is well-known that protecting goals renders a search algorithm
incomplete, even in state spaces where all operators are reversible and local
search approaches like focused iterative-broadening search would be other-
wise complete. In particular, search must fail in planning tasks which are
not serializable [80]. Therefore, if the first solution attempt fails, the algo-
rithm restarts without goal protection. The complete procedure is shown in
Fig. 12.4, which concludes our discussion of Fast Downward’s search compo-
nent.
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algorithm reach-one-goal(Π , v, d, cond):
for each ϑ ∈ {0, 1, . . . ,max-threshold}:

Let Oϑ be the set of operators of Π whose modification distance
with respect to v is at most ϑ and which do not affect
any state variable occurring in cond.

Assign the cost c to each operator o ∈ Oϑ with modification
distance c with respect to v.

Call the uniform-cost-search algorithm with a closed list, using
operator set Oϑ, to find a state satisfying {v = d} ∪ cond.

return the plan if uniform-cost-search succeeded.
for each ϑ ∈ {0, 1, . . . ,max-threshold}:

Let Oϑ be the set of operators of Π whose modification distance
with respect to v is at most ϑ.

Assign the cost c to each operator o ∈ Oϑ with modification
distance c with respect to v.

Call the uniform-cost-search algorithm with a closed list, using
operator set Oϑ, to find a state satisfying {v = d} ∪ cond.

return the plan if uniform-cost-search succeeded.

Fig. 12.4. The reach-one-goal procedure for reaching a state with v = d (corrected).
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13. Experiments

This chapter evaluates the performance of Fast Downward on the IPC bench-
mark suite. The following Section 13.1 describes and motivates the design of
the experiment. The results of the experiments are reported in Section 13.2
STRIPS domains from IPC1–3), Section 13.3 (ADL domains from IPC1–3)
and Section 13.4 (domains from IPC4). Conclusions are drawn in Section
13.5.

13.1 Experiment Design

To evaluate the performance of Fast Downward, and specifically the differ-
ences between the various configurations of the search component, we have
performed a number of experiments on the IPC benchmarks. The purpose
of these experiments is to compare Fast Downward to the state of the art
in PDDL planning, and to contrast the performance of the different search
algorithms of Fast Downward (greedy best-first search with and without pre-
ferred operators, multi-heuristic best-first search with and without preferred
operators, and focused iterative-broadening search).

To clearly state the purpose of our experiments, let us also point out two
areas worthy of study that we do not choose to investigate here:

– We do not compare the causal graph heuristic to other heuristics, such as
the FF or HSP heuristics. Such a comparison would require evaluating the
different heuristics within otherwise identical planning systems. We have
performed such an experiment in a separate publication [56] and do not
restate its outcome here. The experiments presented in this chapter are
concerned with the complete Fast Downward planning system, rather than
just its heuristic function.

– We do not give a final answer to the question why Fast Downward per-
forms well or badly in the domains we analyse. Where we do observe bad
performance, we try to give a plausible explanation for this, but we do not
conduct a full-blown study of heuristic quality in the spirit of Hoffmann’s
work on the FF and h+ heuristics [62]. We do believe that much could
be learned from such an investigation, and we consider this an interesting
avenue of research for future work.
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Given that our aim in this chapter is to evaluate the Fast Downward
planner as a whole, there are a number of algorithmic questions which we do
not address. For example, one might wonder what (if any) speedup can be
obtained by using successor generators over simpler methods which test each
operator for applicability whenever a node is expanded. Another question
concerns the extent to which deferred heuristic evaluation affects search per-
formance. To keep this chapter at a reasonable length, we do not discuss either
of these questions here. However, we have conducted experiments addressing
them. The short summary is that successor generators speed up search by up
to two orders of magnitude in extreme cases like the largest Satellite tasks,
but have little impact on performance most of the time. Deferred heuristic
evaluation is very beneficial in some domains, with speedups of more than
one order of magnitude being common, is somewhat beneficial in the majority
of domains, with speedups between 2 and 4, and is very rarely detrimental
to performance. Details on these experiments are reported in an electronic
appendix to the article in which we first reported these experiments [57].

13.1.1 Benchmark Set

The benchmark set we use consists of all propositional planning tasks from the
fully automated tracks of the first four international planning competitions
hosted at AIPS 1998, AIPS 2000, AIPS 2002 and ICAPS 2004 – i. e., the set
of planning domains discussed in Part I. The set of benchmark domains is
shown in Fig. 13.1. Altogether, the benchmark suite comprises 1442 tasks.
(The numbers in Fig. 13.1 add up to 1462, but the 20 Satellite instances
that were introduced for IPC3 were also part of the benchmark set of IPC4,
so we only count them once.)

We distinguish between three classes of domains:

– STRIPS domains: These domains do not feature derived predicates or
conditional effects, and all conditions appearing in goal and operators are
conjunctions of positive literals.

– ADL domains: These domains make use of conditional effects in their op-
erators and/or contain more general conditions than simple conjunctions
in their goals and operators. However, they do not require axioms.

– PDDL2.2 domains: These domains use the full range of propositional
PDDL2.2, including those features present in ADL domains and axioms.

At IPC4, some domains were presented in different formulations, meaning
that the same real-world task was encoded in several different ways. Partic-
ipants were asked to only work on one formulation per domain, being able
to choose their preferred formulation for a given domain freely. For example,
the Airport domain was available in a STRIPS formulation and an ADL
formulation.

However, the organizers did not strictly follow the rule of considering
different encodings of the same real-world task different formulations, rather
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Competition Domain Class # Tasks

IPC1 (AIPS 1998) Assembly ADL 30
Grid STRIPS 5
Gripper STRIPS 20
Logistics STRIPS 35
Movie STRIPS 30
Mystery STRIPS 30
MysteryPrime STRIPS 35

IPC2 (AIPS 2000) Blocksworld STRIPS 35
FreeCell STRIPS 60
Logistics STRIPS 28
Miconic-10-STRIPS STRIPS 150
Miconic-10-SimpleADL ADL 150
Miconic-10-FullADL ADL 150
Schedule ADL 150

IPC3 (AIPS 2002) Depots STRIPS 22
Driverlog STRIPS 20
FreeCell STRIPS 20
Rovers STRIPS 20
Satellite STRIPS 20
Zenotravel STRIPS 20

IPC4 (ICAPS 2004) Airport STRIPS 50
Promela-OpticalTelegraph PDDL2.2 48
Promela-Philosophers PDDL2.2 48
Pipesworld-NoTankage STRIPS 50
Pipesworld-Tankage STRIPS 50
PSR-Small STRIPS 50
PSR-Middle PDDL2.2 50
PSR-Large PDDL2.2 50
Satellite STRIPS 36

Fig. 13.1. The benchmark set.
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than different domains proper. Namely, for the PSR-Middle and Promela

domains, encodings with and without axioms were available, and these were
considered as different domains on the grounds that the encodings without
axioms were much larger and hence likely more difficult to solve. We apply
the formulation vs. encoding view more strictly and thus only consider one
PSR-Middle domain and one domain for each of the two Promela variants,
Promela-Philosophers and Promela-OpticalTelegraph.

Of the IPC1 benchmark set, all tasks are solvable except for 11 Mys-

tery instances. Of the IPC2 benchmark set, all tasks are solvable except
for 11 Miconic-10-FullADL instances. All IPC3 benchmarks are solvable.
For IPC4, we have not checked all instances of the Pipesworld-Tankage

domain, but we assume that all are tasks are solvable.
If run in any of the heuristic search modes, Fast Downward proves the

unsolvability of the unsolvable Mystery and Miconic-10-FullADL tasks
by using the dead-end detection routine described in our earlier article on the
causal graph heuristic [56], or in some cases in the Miconic-10-FullADL

domain by exhaustively searching all states with a finite FF heuristic. Of
course, if an unsolvable task is proved unsolvable by the planner, we report
this as a “successfully solved” instance in the experimental results.

13.1.2 Experiment Setup

As discussed in Chapter 12, there are eleven possible configurations of Fast
Downward’s search component. However, not all of them are equally rea-
sonable. For example, if we use FF’s helpful actions, it would seem wasteful
not to use the FF heuristic estimate, since these two are calculated together.
Therefore, for the greedy best-first search setup, we exclude configurations
where FF helpful actions are always computed. For the multi-heuristic best-
first search setup, we exclude configurations where only one type of preferred
operators is considered, but not the other, since this would seem to be a
very arbitrary choice. This leaves us with six different configurations of the
planner:

1. G: Use greedy best-first search without preferred operators.
2. GP: Use greedy best-first search with helpful transitions as preferred

operators.
3. GP+

: Use greedy best-first search with helpful transitions as preferred
operators. Use helpful actions as preferred operators in states with no
helpful transitions.

4. M: Use multi-heuristic best-first search without preferred operators.
5. MP: Use multi-heuristic best-first search with helpful transitions and

helpful actions as preferred operators.
6. F: Use focused iterative-broadening search.

We apply each of these planner configurations to each of the 1442 bench-
mark tasks, using a computer with a 3.066 GHz Intel Xeon CPU – the same



13.2 STRIPS Domains from IPC1–3 249

Domain Task Config. Preparation Search

FreeCell (IPC2) probfreecell-10-1 M + P 9.30 s 298.64 s
Grid prob05 M 10.04 s 291.01 s
MysteryPrime prob14 M 22.38 s 291.67 s
PSR-Large p30-s179-n30-l3-f30 G + P 43.43 s 265.29 s
Satellite (IPC4) p33-HC-pfile13 M + P 180.74 s 169.09 s

Fig. 13.2. Tasks which could be solved by some configuration of Fast Downward
with a search timeout of 300 seconds, but not with a total processing timeout of
300 seconds. The column “preparation” shows the combined time for translation
and knowledge compilation.

machine that was used at IPC4 – and set a memory limit of 1 GB and a
timeout of 300 seconds.

To compare Fast Downward to the state of the art, we try to solve each
benchmark with the best-performing planners from the literature. Unfortu-
nately, this involves some intricacies: some planners are not publicly available,
and others only cover a restricted subset of PDDL2.2. For this reasons, we
partition the benchmark domains into three sets depending on which planners
are available for comparison.

13.1.3 Translation and Knowledge Compilation vs. Search

Of course, the results we report for Fast Downward include the time spent in
all three components of the planner: translation, knowledge compilation, and
search. Therefore, in the following presentation of results, we only consider
a task solved if the total processing time is below 300 seconds. However,
we have also investigated which tasks can be solved with a timeout of 300
seconds for the search component alone, allowing the other components to
use an arbitrary amount of resources. It turns out that this only makes a
difference in five cases, most of which could have been solved in a total time
below 310 seconds (Fig. 13.2). Only in one of these five cases, a Satellite

instance of exorbitant size, did search take less time than the other two
phases combined. These results show that the search component is the only
time-critical part of Fast Downward in practice. Therefore, we do not report
separate performance results for the individual components.

13.2 STRIPS Domains from IPC1–3

We now start presenting the experimental results. We abstain from listing
runtimes for individual planning tasks due to the prohibitively large amount
of data. (Again, the detailed data is provided in the electronic appendix to
the article in which these experiments were first presented [57].) Instead, we
report the following summarizing information:
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– Tables showing the number of tasks not solved by each planner within the
300 second timeout. Here, we present individual results for each domain.

– Graphs showing the number of tasks solved in a given time by each planner.
Here, we do not present separate results for each domain, as this would
require too many graphs.

We do not discuss plan lengths; our observations in this regard are similar
to those made for the original implementation of the causal graph heuristic
[56].

Domain G GP GP
+

M MP F Any CG FF LPG

Blocksworld (35) 0 0 0 0 0 17 0 0 4 0
Depots (22) 12 13 13 12 8 11 7 14 3 0
Driverlog (20) 2 0 0 1 0 1 0 3 5 0
FreeCell IPC2 (60) 4 4 12 11 12 40 3 2 3 55
FreeCell IPC3 (20) 0 0 5 1 2 14 0 0 2 19
Grid (5) 1 2 1 1 0 4 0 1 0 1
Gripper (20) 0 0 0 0 0 0 0 0 0 0
Logistics IPC1 (35) 1 0 0 4 0 26 0 0 0 4
Logistics IPC2 (28) 0 0 0 0 0 0 0 0 0 0
Miconic-10-STRIPS (150) 0 0 0 0 0 0 0 0 0 0
Movie (30) 0 0 0 0 0 0 0 0 0 0
Mystery (30) 1 2 1 0 0 13 0 1 12 15
MysteryPrime (35) 0 0 0 2 0 14 0 1 3 7
Rovers (20) 2 0 0 0 0 2 0 3 0 0
Satellite IPC3 (20) 1 0 0 0 0 6 0 0 0 0
Zenotravel (20) 0 0 0 0 0 0 0 0 0 0

Total (550) 24 21 32 32 22 148 10 25 32 101

Fig. 13.3. Number of unsolved tasks for the STRIPS domains from IPC1, IPC2,
and IPC3.

Fig. 13.3 shows the number of unsolved tasks for each of the STRIPS
domains from IPC1–3. Figs. 13.4 and 13.5 show the number of tasks solved
by each planner within a given time bound between 0 and 300 seconds. In
addition to the six configurations of Fast Downward under consideration, the
table includes four other columns.

Under the heading “Any”, we include results for a hypothetical meta-
planner that guesses the best of the six configuration of Fast Downward for
each input task and then executes Fast Downward with this setting. Under
the heading “CG”, we report the results for our first implementation of the
causal graph heuristic [56]. (Apart from missing support for ADL and axioms,
CG is very similar to Fast Downward using greedy best-first search and no
preferred operators (configuration G). The translation and knowledge com-
pilation components are essentially identical. The older search component
mainly differs from Fast Downward in that it does not use deferred heuris-
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tic evaluation.) Finally, “FF” and “LPG” refer to the well-known planners
[42, 65] which won the fully-automated tracks of IPC2 and IPC3. They were
chosen for comparison on this benchmark set because they showed the best
performance by far of all publicly available planners we experimented with.
For LPG, which uses a randomized search strategy, we attempted each task
five times and report the median result.

The results show excellent performance of Fast Downward on this set of
benchmarks. Compared to CG, which was already shown to solve more tasks
than FF and LPG on this benchmark set [56], we get another slight improve-
ment for half of the planner configurations. One of the configurations, multi-
heuristic best-first search using preferred operators, solves all benchmarks
in all domains except Depots and FreeCell. Even more importantly, the
number of tasks not solved by any of the Fast Downward configurations is as
small as 10. Note that the planning competitions typically allowed a planner
to spend 30 minutes on each task; under these time constraints, we could allo-
cate five minutes to each of the six configurations of Fast Downward, getting
results which are at least as good as those reported for the “Any” planner.
Results might even be better under a cleverer allocation scheme.

Even the configuration using focused iterative-broadening search performs
comparatively well on these benchmarks, although it cannot compete with the
other planners. Not surprisingly, this version of the planner faces difficulties
in domains with many dead ends (FreeCell, Mystery, MysteryPrime)
or where goal ordering is very important (Blocksworld, Depots). It also
fares comparatively badly in domains with very large instances, namely Lo-

gistics (IPC1) and Satellite. The reader should keep in mind that FF
and LPG are excellent planning systems; of all the other planners we exper-
imented with, including all those that were awarded prizes at the first three
planning competitions, none solved more benchmarks from this group than
focused iterative-broadening search.

The one domain that proves quite resistant to Fast Downward’s solution
attempts in any configuration is Depots. As we already observed in the
initial experiments with the causal graph heuristic [56], we believe that one
key problem here is that Fast Downward, unlike FF, does not use any goal
ordering techniques, which are very important in this domain. The fact that
the domain includes a Blocksworld-like subproblem is also an issue, as it
gives rise to very dense causal graphs as we demonstrated in Section 11.3.3.

13.3 ADL Domains from IPC1–3

Second, we present results for the ADL domains of the first three planning
competitions. This is a much smaller group than the previous, including only
four domains. This time, we cannot consider CG or LPG, since neither CG
nor the publicly available version of LPG supports ADL domains. Therefore,
we compare to FF exclusively. Again, we report the number of unsolved tasks
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in each domain (Fig. 13.6) and present graphs showing how quickly the tasks
are solved (Figs. 13.7 and 13.8).

These results do not look as good as for the first group of domains. Results
in both Miconic-10 domains are good, even improving on those of FF. How-
ever, greedy best-first search performs very badly in the Assembly domain,
and all configurations perform badly in the Schedule domain. Currently,
we have no good explanation for the Assembly behaviour. For the Sched-

ule domain, the weak performance again seems to be related to missing goal
ordering techniques: In many Schedule tasks, several goals are defined for
the same object which can only be satisfied in a certain order. For instance,
for objects that should be cylindrical, polished and painted, these three goals
must be satisfied in precisely that order: making an object cylindrical reverts
the effects of polishing and painting, and polishing reverts the effect of paint-
ing. Not recognising these constraints, the heuristic search algorithm assumes
to be close to the goal when an object is already polished and painted but
not cylindrical, and is loathe to transform the object into cylindrical shape
because this would undo the already achieved goals. With some rudimentary
manual goal ordering, ignoring painting goals until all other goals have been
satisfied, the number of tasks not solved by multi-heuristic best-first search
with preferred operators drops from 28 to 3. These three failures appear to
be due to the remaining ordering problems with regard to cylindrical and
polished objects.

13.4 Domains from IPC4

Third and finally, we present results for the IPC4 domains. Here, we do not
compare to FF: for these benchmarks, FF does not perform as well as the
best planners from the competition. Besides, several of the IPC4 competitors
are extensions of FF or hybrids using FF as part of a bigger system, so FF-
based planning is well-represented even if we limit our attention to the IPC4
planners. For this comparison, we chose the four most successful competition
participants besides Fast Downward, namely LPG-TD, SGPlan, Macro-FF
and YAHSP [63].

Similar to the previous two experiments, we report the number of unsolved
tasks in each domain (Fig. 13.9) and present graphs showing how quickly the
tasks are solved (Figs. 13.10 and 13.11).

Fast Downward is competitive with the other planners across domains,
and better than all others in some. The Pipesworld domains are the only
ones in which any of the other planners is noticeably better than the two
competition versions of Fast Downward. This is the case for YAHSP in both
Pipesworld domains and for SGPlan in Pipesworld-NoTankage. The
Pipesworld domain is not very hierarchical in nature; this might be a do-
main where the decomposition approach of the causal graph heuristic is not
very appropriate. The results of the heuristic search configurations in the
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Promela-OpticalTelegraph domain are extremely bad and require fur-
ther investigation.

Interestingly, focused iterative-broadening search performs very well on
some of the benchmarks from this suite. One of the reasons for this is that in
many of the tasks of the IPC4 suite, there are many individual goals which
are easy to serialize and can be solved mostly independently. (Indeed, we
have devised an additional experiment which shows that if this property is
artificially violated by a simple goal reformulation, the performance of the
algorithm degrades quickly; again, consult see the electronic appendix of the
original publication for details [57].) Comparing the configuration G to GP+

and especially M to MP, we also observe that using preferred operators is
very useful for these benchmarks, even more so than in the two previous
experiments.

As a final remark, we observe that if we implemented the “Any” meta-
planner by calling the six Fast Downward configurations in a round-robin
fashion, we would obtain a planning system that could solve all but 54 of the
IPC4 benchmarks within a 6 · 5 = 30 minute timeout. This is almost on par
with the top performer of IPC4, Fast Diagonally Downward, which solved
all but 52 of the IPC4 benchmarks under the same timeout. Thus, this is a
benchmark set for which exploring different planner configurations definitely
pays off.

13.5 Conclusions from the Experiment

What do we learn from the experimental results? Our first conclusion is
that Fast Downward is clearly competitive with the state of the art. This
is especially true for the configuration using multi-heuristic best-first search
with preferred operators (MP), which outperforms all competing planning
systems both on the set of STRIPS domains from IPC1–3 and on the domains
from IPC4. If it were not for the issues with the Schedule domain, the same
would be true for the remaining group of benchmarks, the ADL domains from
IPC1–3.

With regard to the second objective of the investigation, evaluating the
relative strengths of the different planner configurations, the MP configu-
ration emerges as a clear-cut winner. In 23 out of 29 domains, no other
configuration solves more tasks, and unlike the other configurations, there
is only one domain (Promela-OpticalTelegraph) in which it performs
very badly. We conclude that both multi-heuristic best-first search and the
use of preferred operators are promising extensions to heuristic planners.

This is particularly true for preferred operators. Indeed, after the MP

configuration, the two variants of greedy best-first search with preferred op-
erators show the next best overall performance, both in terms of the number
of domains where they are among the top performers and in terms of the
total number of tasks solved. Comparing G to GP, there are ten domains in
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which the variant using preferred operators solves more tasks than the one
not using them; the opposite is true in five domains. Comparing M to MP,
the difference is even more striking, with the preferred operator variant out-
performing the other in fifteen domains, while being worse in two (in both of
which it only solves one task less). These are convincing arguments for the
use of preferred operators.
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Fig. 13.4. Number of tasks solved vs. runtime for the STRIPS domains from IPC1,
IPC2 and IPC3. This graph shows the results for the various configurations of Fast
Downward.
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Fig. 13.5. Number of tasks solved vs. runtime for the STRIPS domains from
IPC1, IPC2 and IPC3. This graph shows the results for CG, FF and LPG and
the hypothetical “Any” planner which always chooses the best configuration of
Fast Downward. The result for greedy best-first search with helpful transitions is
repeated for ease of comparison with Fig. 13.4.

Domain G GP GP
+

M MP F Any FF

Assembly (30) 28 27 25 3 0 30 0 0
Miconic-10-SimpleADL (150) 0 0 0 0 0 0 0 0
Miconic-10-FullADL (150) 9 8 9 9 8 90 6 12
Schedule (150) 134 93 93 132 28 113 25 0
Total (480) 171 128 127 144 36 233 31 12

Fig. 13.6. Number of unsolved tasks for the ADL domains from IPC1, IPC2 and
IPC3.



13.5 Conclusions from the Experiment 257

480 (100%)

432 (90%)

384 (80%)

336 (70%)

288 (60%)

240 (50%)

192 (40%)

144 (30%)
0s 50s 100s 150s 200s 250s 300s

S
ol

ve
d 

T
as

ks

Search Time

G
P

+
(Fast Downward)

G
P (Fast Downward)

G (Fast Downward)

M
P (Fast Downward)

M (Fast Downward)

F (Fast Downward)

Fig. 13.7. Number of tasks solved vs. runtime for the ADL domains from IPC1,
IPC2 and IPC3. This graph shows the results for the various configurations of Fast
Downward.
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Fig. 13.8. Number of tasks solved vs. runtime for the ADL domains from IPC1,
IPC2 and IPC3. This graph shows the results for FF and the hypothetical “Any”
planner which always chooses the best configuration of Fast Downward. The result
for multi-heuristic best-first search with preferred operators is repeated for ease of
comparison with Fig. 13.7.
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Domain G GP GP
+

M MP F Any

Airport (50) 28 30 17 18 14 0 0
Pipesworld-NoTankage (50) 24 25 23 14 7 10 7
Pipesworld-Tankage (50) 36 36 36 34 17 34 14
Promela-OpticalTelegraph (48) 48 47 48 47 46 13 13
Promela-Philosophers (48) 0 0 0 16 0 21 0
PSR-Small (50) 0 0 0 0 0 1 0
PSR-Middle (50) 0 0 0 0 0 22 0
PSR-Large (50) 22 20 22 23 22 39 20
Satellite IPC4 (36) 8 0 0 8 3 22 0
Total (432) 166 158 146 160 109 162 54

Domain FD FDD LPG- Macro- SG- YA-
TD FF Plan HSP

Airport (50) 0 0 7 30 6 17
Pipesworld-NoTankage (50) 11 7 10 12 0 0
Pipesworld-Tankage (50) 34 19 29 29 20 13
Promela-OpticalTelegraph (48) 22 22 37 31 29 36
Promela-Philosophers (48) 0 0 1 36 0 19
PSR-Small (50) 0 0 2 50 6 3
PSR-Middle (50) 0 0 0 19 4 50
PSR-Large (50) 22 22 50 50 39 50
Satellite IPC4 (36) 0 3 1 0 6 0
Total (432) 89 73 137 257 110 188

Fig. 13.9. Number of unsolved tasks for the IPC4 domains. Results for the var-
ious configurations of Fast Downward are listed in the upper part, results for the
competition participants in the lower part. “FD” and “FDD” denote the versions
of Fast Downward that participated in IPC4 under the names “Fast Downward”
and “Fast Diagonally Downward” (cf. Section 12.1).
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Fig. 13.10. Number of tasks solved vs. runtime for the IPC4 domains. This graph
shows the results for the various configurations of Fast Downward.
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14. Discussion

In this final chapter, we provide a summary of the second part of the the-
sis (Section 14.1), identify and discuss the major and minor contributions
(Sections 14.2 and 14.3) highlighting opportunities for further research, and
conclude (Section 14.4).

14.1 Summary

As a motivating starting point for this second part of the thesis, we explained
that planning tasks often exhibit a simpler structure if expressed with multi-
valued state variables, rather than the traditional propositional representa-
tions. We then introduced Fast Downward, a planning system based on the
idea of converting tasks into a multi-valued formalism and exploiting the
causal information underlying such encodings.

Fast Downward processes PDDL planning tasks in three stages. The first
of these stages, translation, automatically transforms a PDDL task into an
equivalent multi-valued planning task with a nicer causal structure, using
invariant synthesis techniques for grouping related propositions and efficient
grounding algorithms for instantiating operators and axioms. We then dis-
cussed the second stage, knowledge compilation, demonstrating in depth what
kind of knowledge the planner extracts from the task representation, dis-
cussing causal graphs, domain transition graphs, successor generators and
axiom evaluators. During our discussion of Fast Downward’s search compo-
nent, we introduced its heuristic search algorithms, which use the technique
of deferred heuristic evaluation to reduce the number of states for which a
heuristic goal distance estimate must be computed. In addition to greedy
best-first search, Fast Downward employs the multi-heuristic best-first search
algorithm to usefully integrate the information of two heuristic estimators,
namely the causal graph heuristic and FF heuristic. Both heuristic search
algorithms can utilize preference information about operators. We also in-
troduced Fast Downward’s experimental focused iterative-broadening search
algorithm, which is based on the idea of pruning the set of operators to only
consider those successor states which are likely to lead towards a specific goal.

We thus tried to give a complete account of the Fast Downward planning
system’s approach to solving multi-valued planning tasks, including its moti-
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vation, architecture, and algorithmic foundations. In the previous chapter, we
studied its empirical behaviour, showing good performance across the whole
range of propositional benchmarks from the previous planning competitions.

14.2 Major Contributions

Among the novel techniques we introduced, there are two contributions which
we consider to be of central importance and which we would like to emphasize.

14.2.1 Multi-Valued Representations

The first of these major contributions is the use of multi-valued state vari-
ables for PDDL-style planning. We believe that multi-valued representations
are much more structured and hence much more amenable to automated rea-
soning – be it for the purposes of heuristic evaluation, task decomposition, or
other aspects of planning, such as goal ordering or extraction of landmarks.

One issue that would be worth studying further is the suitability of multi-
valued representations for other planning algorithms. There exists a host of
planning algorithms for which such representations appear to be more natu-
ral (or more efficient) than binary ones. One example is symbolic state-space
exploration with binary decision diagrams (BDDs), the original MIPS plan-
ning algorithm [33]. It might seem somewhat unintuitive that multi-valued
state variables are a natural representation for binary decision diagrams, but
it is typically much more efficient to use an encoding that encodes a set of 15
mutually exclusive propositions with four binary variables encoding an inte-
ger from the set {0, . . . , 15} than using 15 separate BDD variables. Indeed,
such an encoding is critical to the performance of BDD exploration in the
case of MIPS.

An approach closely related to symbolic exploration with BDDs is plan-
ning based on Boolean satisfiability (SAT). Indeed, similar encodings can be
used for either problem. For SAT-based planning, however, there are reasons
to believe that it is more promising to introduce individual variables for each
proposition of the planning task and encode mutual exclusion constraints ex-
plicitly [100]. Still, arriving at such mutual exclusion constraints, which are
critical to performance, requires invariant synthesis techniques similar to the
ones we have presented, an algorithmic chore that would be largely unneces-
sary if multi-valued representations were given as a base input. Given a multi-
valued representation, the mutual exclusivity of different value assignments
to the same variable would be immediately apparent, and we hypothesize
that these mutual exclusions alone already account for a large percentage of
all mutual exclusion constraints in a typical planning task.

Closely related to SAT planning, multi-valued representations are very
beneficial for planning approaches that compile planning tasks into integer
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programs (IPs). Compared to an IP representation based on a binary task
encoding, one can dramatically reduce the number of integer variables by
representing a group of mutually exclusive propositions as a single number.
The planning algorithm by van den Briel et al. uses Fast Downward’s trans-
lator to obtain such a succinct encoding, and the authors report that this
results in a significant speedup of the integer program solver [108].

Multi-valued representations are also a natural fit for planning approaches
based on constraint satisfaction, although we are not aware of relevant work
in this area.

So clearly, multi-valued representations are of potentially great benefit to
many approaches to planning, not limited to the particular heuristic search
technique presented here. However, much experience about the usefulness
of such representations remains anecdotal, and a more formal study of this
topic is needed. One interesting issue in this context is the question when
one should prefer a given representation over another one. We illustrate this
issue with an example from the Blocksworld domain. In addition to the
standard binary encoding, there are at least three “obvious” multi-valued
representations:

– For each block, encode what is below it (another block, the table, or thin
air if it is being held). Moreover, encode for each block whether or not it
is clear.

– For each block, encode what is above it (another block, the robot arm if
it is being held, or thin air if it is a clear block not being held). Moreover,
encode for each block whether or not it is on the table.

– For each block, encode what is below it and what is above it.

Our translation algorithm always generates either the first or second en-
coding. The actual choice is made arbitrarily, because both encodings are
considered equally succinct by our greedy mutex group selection algorithm
(Fig. 10.9). What is important here is that the translation algorithm never
generates the third, redundant representation due to the intuition that re-
dundant representations are often detrimental to performance. However, this
is not universally true; for example in constraint satisfaction, redundant rep-
resentations are often found to be beneficial because they allow additional
constraint propagation. Using a modified version of the Fast Downward trans-
lator within the above-mentioned IP-based planning system, van den Briel
reports that redundant representations are sometimes, but not always bene-
ficial (personal communications).

We believe that a detailed comparison of such representations, using dif-
ferent planning approaches, would be of considerable worth. In addition to
comparing redundant and non-redundant multi-valued representations, such
a study should also analyse trivial translations from PDDL using binary
domains for each state variable as well as hand-tailored representations, to
provide a clear picture whether or not multi-valued representations are useful
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at all for a given combination of planning approach and planning domain,
and to see where the limits of automatic translations lie. For the planning
approach we presented here, it is fairly obvious that a binary representation
will not fare very well due to the much less hierarchical causal graphs, as
we illustrated in Chapter 9. Anecdotal empirical evidence strongly suggests
that non-binary representations greatly contribute to the informedness of the
causal graph heuristic, and that they are of great importance to BDD- and
IP-based approaches. However, as of now, many issues here remain poorly
understood.

14.2.2 Task Decomposition Heuristics

The second key contribution in Fast Downward is the use of hierarchical task
decompositions within a heuristic planning framework. Applying such task
decompositions to domain-independent planning has a considerable potential,
but since the research of Knoblock [76] and Bacchus and Yang [8], little work
has been published on this topic. With Fast Downward, we hope to renew
interest in this approach, which we believe to be a very promising ground for
further advances in automated planning.

The purely hierarchical decompositions we have pursued in this work
are not the only kinds of task decompositions one could envisage. While
the hierarchical approach does have the benefit of admitting very efficient
heuristic computations, it does show its weaknesses for tasks with very highly
connected causal graphs, as in theDepots domain. In principle, it would thus
be very appealing to consider local subtasks, defined by small subgraphs of the
causal graph, without previously eliminating causal cycles. Initial experiments
in this direction have shown that it is difficult to achieve this goal without
losing the performance of Fast Downward’s heuristic estimator, but perhaps
better heuristic accuracy can outweigh worse per-state performance in many
cases. This is a very interesting area for further investigation.

Another question of interest is whether it is possible to improve per-
formance significantly by considering other subtasks than those induced by
star-shaped subgraphs of the causal graph. For example, one might consider
larger subtasks, maybe spanning three levels of the causal graph rather than
just two, or subtasks that group state variables that co-occur as effects of
many operators. Another option would be merging pairs of tightly interre-
lated state variables into single state variables prior to search by building
the cross product of their domain transition graphs. Such an approach could
be very beneficial in the Schedule domain, where merging all state vari-
ables that pertain to the same physical object could easily circumvent the
goal ordering problems we discussed in the previous chapter. We should point
out that merging state variables in such a fashion is very closely related to
Edelkamp’s work on using pattern databases for heuristic planning [30].

Returning to the causal graph heuristic itself, we believe that an inves-
tigation of search space topology under that heuristic, following Hoffmann’s
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work on the FF heuristic [60–62], would be of considerable interest. Intu-
ition suggests that the quality of the heuristic should be closely related to
the causal structure of the tasks in a given domain. The more connected the
causal graph of a task is, the more conditions will be ignored by the causal
graph heuristic, and one would expect that this would have a detrimental
effect on heuristic accuracy. In future work, we hope to design an experiment
that can clearly show such ties between connectedness measures for causal
graphs and topological properties of the corresponding heuristic search space.

14.3 Minor Contributions

Before we conclude, let us also briefly discuss some of the minor contributions
of this second part of the thesis, and discuss some potential follow-up research
pertaining to them.

One such contribution is the development of the invariant synthesis al-
gorithm presented in Section 10.4. We observed that there are a number
of related algorithms suggested by other researchers and explained why we
nevertheless devised a new technique rather than reusing one of the estab-
lished ones. The chief reasons for a new algorithm were the need to sup-
port PDDL2.2 and the need to efficiently deal with very large numbers of
schematic operators. Given the considerable amount of parallel developments
in this area, we believe that it is time for a comparison study of invariant syn-
thesis algorithms, providing some details about their relative efficiency and
power (for example measured by the fraction of unreachable search states
pruned by the invariants generated by a given algorithm).

A second minor contribution is the efficient grounding algorithm presented
in Section 10.5. Our Horn exploration algorithm was motivated by observed
performance shortcomings of more simple approaches, like systematically in-
stantiating all parameters of schematic operators and axioms in all possible
ways. In this case, it is doubtful whether a detailed performance study for
grounding algorithms would be all that useful, given that there are only
few domains where the grounding phase is the bottleneck of the planner.
On the other hand, some evidence that there is need for efficient ground-
ing algorithms is obscured by the fact that planning domains are commonly
reformulated by the human domain designer to cater for the shortcomings
of existing grounding algorithms. For example, in the PDDL formulation of
the Pipesworld domain, the conceptually atomic operation of pushing a
batch into a pipeline segment is split into two separate schematic actions
push-start and push-end by the domain designer to facilitate grounding.
In a similar vein, an application study by Boddy et al. suggests that current
planners have limitations in grounding operators with many parameters [14],
which prompted the authors of the study to perform similar splits of concep-
tually atomic operations into different operators, to be applied sequentially.
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Third, we believe that the search enhancements presented in Chapter 12
are applicable beyond the scope of Fast Downward. The potential useful-
ness of preferred operators within best-first search should not require further
discussion; the results presented in the previous chapter clearly show their
benefit across a wide number of planning domains.

Our results also clearly show that multi-heuristic best-first search is a
viable approach, although more experiments are needed here to analyse its
suitability in other application domains, for other heuristic evaluation func-
tions, and in particular to compare it to other approaches for combining
heuristic estimates, such as taking the sum or maximum of different esti-
mates, or simply running searches with different estimators in parallel. One
theoretical consideration in favour of multi-heuristic best-first search is that
its choices are invariant under strictly monotonic transformations of individ-
ual heuristic estimators. For example, if we are given two heuristic estimators,
one of which has a systematic error causing it to overestimate all heuristic
distances by a factor of 5, then this estimator would have a dominating influ-
ence under search schemes that base their decision on the maximum or sum
of the two heuristic estimates. Multi-heuristic best-first search, on the other
hand, is robust against such systematic errors because estimates by different
heuristic estimators are never compared to each other.

Finally, deferred heuristic evaluation is another search enhancement that
should be studied in some more detail, for example in artificially constructed
search spaces with varying branching factors and varying heuristic accuracy.
We expect that the technique should lead to significant speedups in tasks
with wide branching factors and heuristic estimators of good quality, and that
this effect should be reinforced when using preferred operators (provided that
the preferred operators generated by the heuristic are actually, on average,
superior choices to non-preferred ones).

14.4 Going Further

This concludes the discussion in this chapter, and thus also in this thesis. As
a final remark, we believe that similar techniques to the ones we presented
for the case of multi-valued planning tasks – identifying local subtasks based
on causal graph structure, and solving them by traversing domain transi-
tion graphs – may also be of some use for solving numerical planning tasks,
expressed in “level 2” of the PDDL language [40].

Clearly, going beyond finite domains to state variables which can assume
any value from the infinite set of natural numbers (or integers, or rational
numbers) poses significant challenges – not least the fact that the planning
problem for such tasks is undecidable [54]. On the other hand, we already
observed in Chapter 2 that even propositional PDDL planning algorithms
are practically incomplete, and still the last decade has seen truly remarkable
progress in this area.
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9. Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ plan-
ning. Computational Intelligence, 11(4):625–655, 1995.

10. Michael Ball, Tom Magnanti, Clyde Monma, and George Nemhauser, editors.
Network Models, volume 8 of Handbooks in Operations Research and Manage-
ment Science. Elsevier, Amsterdam, 1995.

11. Susanne Biundo and Maria Fox, editors. Recent Advances in AI Planning. 5th
European Conference on Planning (ECP 1999), volume 1809 of Lecture Notes
in Artificial Intelligence, Heidelberg, 1999. Springer-Verlag.

12. Susanne Biundo, Karen Myers, and Kanna Rajan, editors. Proceedings of the
Fifteenth International Conference on Automated Planning and Scheduling
(ICAPS 2005). AAAI Press, 2005.

13. Avrim Blum and Merrick L. Furst. Fast planning through planning graph
analysis. Artificial Intelligence, 90(1–2):281–300, 1997.

14. Mark Boddy, Johnathan Gohde, Tom Haigh, and Steven Harp. Course of
action generation for cyber security using classical planning. In Biundo et al.
[12], pages 12–21.
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