
On the Complexity of Planning in
Transportation and Manipulation Domains

Diplomarbeit

Malte Helmert

Albert-Ludwigs-Universität Freiburg

Fakultät für Angewandte Wissenschaften
Institut für Informatik

March 2001

Acknowledgments

I want to thank all people who (in some way or other) helped me complete this thesis.
Specifically, I want to mention the members of the Durham planning group, especially
Maria Fox and Derek Long, who spent a lot of time and effort to address my needs while I
was in Durham and helped me feel at home in the town and especially in the department.
Bernhard Nebel deserves special mention for making this thesis possible and for the e-mail
support he provided while I was working in Durham. A number of other people should
be mentioned here, and I hope they know that I have not forgotten them.

Erklärung (Declaration)

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig und nur unter
Verwendung der angegebenen Hilfsmittel angefertigt habe.

(I hereby declare that I wrote this thesis on my own, only making use of the sources
mentioned.)

Durham, im März 2001 (March 2001) Malte Helmert

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 What Makes a Planning Domain Interesting? 7
1.3 Related Work . 8
1.4 Outline . 9

2 Terms and Definitions 10
2.1 Conventions . 10
2.2 State Models . 11
2.3 Plans and Planning Domains . 12
2.4 Variants of the Planning Problem . 13

3 Transportation Domains 17
3.1 Transport . 18
3.2 Special Cases of Transport . 20
3.3 PlanEx for the Transport Family . 22
3.4 PlanLen for the Transport Family . 26
3.5 Parallel Plans in the Transport Family 31
3.6 Summary of the Transport Family . 32
3.7 Gripper, Logistics, Mystery and Mystery’ 32
3.8 Miconic-10 . 34
3.9 Grid . 39
3.10 Summary . 44

4 Manipulation Domains 47
4.1 Manipulate . 50
4.2 Special Cases of Manipulate . 55
4.3 Transform . 59
4.4 Schedule . 62
4.5 Construct and Blocksworld . 65
4.6 FreeCell . 70
4.7 Assembly . 79
4.8 Summary . 83

5 Conclusions 88

Bibliography 91

5

Chapter 1

Introduction

In this thesis, we investigate the computational complexity of some well-known benchmark
problems from Artificial Intelligence planning. Specifically, we will discuss families of
transportation and manipulation domains, as well as some domains that are closely related
to these, but not part of either family.

Although the decision problems we study here have originally surfaced in the AI
literature for the most part, this is not of critical importance to our complexity studies.
Specifically, we will not discuss typical issues like the encoding of domains in a planning
formalism in detail, and readers interested in route planning problems or the FreeCell

solitaire game should be able to understand and benefit from the respective proofs without
any previous knowledge of AI planning.

1.1 Motivation

However, the main motivation for conducting this work comes from AI planning. Many
of the problems discussed in the chapters to come have in the past played an important
role in the empirical evaluation of the performance of planning systems. Running time
on problems from classical planning domains such as Logistics and Blocksworld has
often been and still is often used for comparing the relative merits of planning systems,
or, put a bit more provocatively, to draw the line between good and bad ones. However,
this kind of comparison is always difficult. If no planning system performs well in a given
domain, does that mean that they are all bad, or is that domain intrinsically hard? If
they all perform well, is this because of their strength or because of the simplicity of the
task?

Or, on a related issue, if a planning system takes significantly more time to solve a
given instance of a domain than another one, but the plans it generates are shorter, which
one should be preferred? Of course, this question cannot be answered in general, because
sometimes high quality plans might be of critical importance whereas in other cases being
able to plan (and act) quickly is to be preferred. Still, complexity results can contribute
to this discussion: If in a given domain, finding optimal plans is just as hard as finding
any plan, then there is no reason to be content with long plans, and if on the other hand it
is a far harder problem, then this fact should be taken into account in comparing optimal
and non-optimal planning systems.

As a third point, on a more fine-grained level of investigation, methods from complexity
theory can not only be used to show that a given problem is hard, but also provide some

6

insight as to the source of hardness. For instance, if we discovered that in a hypothetical
Pac-Man domain, plans can be generated in polynomial time if there is one ghost while
the problem of deciding plan existence is NP-complete in the presence of multiple ghosts,
this would allow us to draw the conclusion that one source of hardness in this domain is
the number of ghosts.

1.2 What Makes a Planning Domain Interesting?

It is evident that we cannot hope to analyze the complexity of every single planning
domain imaginable. Even if we could, it is doubtful that this would be interesting. So we
are forced to select a set of domains that we consider particularly important.

There are two criteria we use in this selection process. Firstly, rather than looking at
isolated domains, we prefer analyzing families of related domains. In addition to allowing
us to make use of a more structured approach than would be possible when looking at
each domain in isolation, this makes sense for precisely the reason we have just mentioned:
Boundaries between easy and complex domains in the same hierarchy tell us something
about the sources of hardness for these domains.

Many well-known planning domains can naturally be associated with certain domain
families. To be more specific, we will discuss families of transportation domains and
manipulation domains in some detail, where for the latter family the focus will be on two
subfamilies named construction and transformation domains.

This criterion alone is not sufficient, though. One can easily imagine possible domain
families that are not interesting at all, for example because they are artificial and do not
reflect real-world problems that people want to have solved. So the second criterion is
something like practical relevance, which is hard to measure, or rather popularity, which
is a bit easier to assess. We want to include domains in our analysis that the plan-
ning community is interested in, ones that are considered “standard benchmarks”. More
specifically, we will investigate all the domains from the AIPS planning competitions so
far (from 1998 and 2000), listed in Figure 1.1. While this collection includes domains
which might rightly be called atypical for planning (like FreeCell), in general being
part of a competition can be considered evidence that a domain is actually interesting.

In fact, their being part of the competitions contributes to the interestingness of these
domains, as, in the form of the competition results, the planning community is provided
with much useful empirical evidence on the performance of many important planning
systems on those domains. These results can be used to compare planning systems to one
another or to compare their performance to the theoretical optimal behaviour on these
domains as presented here.

This can help us identify shortcomings of current planning systems: If we can prove
polynomial complexity results for a given domain, but observe poor performance in the
competition results, this might tell us what kind of issues should be addressed in order to
improve the overall performance of a planning system.

The trivial Movie domain will not be discussed. It is evident that Movie tasks can
be solved optimally in polynomial time.

7

Year Domain name Domain family Discussed in
1998 Assembly Construction Section 4.7

Grid Transportation Section 3.9
Gripper Transportation Section 3.7
Logistics Transportation Section 3.7
Movie Other —
Mystery Transportation Section 3.7
Mystery’ Transportation Section 3.7

2000 Blocksworld Construction Section 4.5
FreeCell Construction Section 4.6
Logistics Transportation Section 3.7
Miconic-10 Transportation Section 3.8
Schedule Transformation Section 4.4

Figure 1.1: Domains from the AIPS 1998 and AIPS 2000 planning competitions.

1.3 Related Work

Most of the work in the AI planning literature concerned with computational complexity
results focuses on domain-independent planning, whereas we are interested in the com-
plexity of specific domains. There is some published work on the complexity of domain-
independent planning if the domain is fixed in advance (which is essentially domain-
dependent planning, but for an unspecified domain), e. g. [Erol et al., 1995]. The domain-
dependent results in that article shed light on the computational complexity of the hardest
planning domain imaginable.

Many interesting results have been proved with regard to the complexity of different
variants of the planning problem and special cases thereof, e. g. in the previously cited
article and in [Bylander, 1994]. However, they focus on special cases of planning defined
by purely syntactical features such as the number of operator preconditions or effects,
while we are not concerned about the actual representation of the planning domain. The
special cases of planning in transportation or manipulation domains can be seen as a
restriction of the planning problem more closely related to semantical properties of the
input.

There is very little work we are aware of in the planning literature that is heading
into exactly the same direction as this thesis. The existing work concentrates on the
complexity of Blocksworld, including results for the Blocksworld domain as defined
here and some generalizations thereof, e. g. allowing for blocks of different size. The most
comprehensive reference for this line of research is [Gupta and Nau, 1992].

Another important reference both with regard to Blocksworld and the complexity
of AI planning in general is [Selman, 1994], which also emphasizes the important distinc-
tion between optimal and non-optimal planning, including very interesting results on the
complexity of near-optimal planning in Blocksworld and some other domains that are
not analyzed in this thesis.

Many of the results provided in this thesis focus on the domains from the competi-
tions that formed part of AIPS 1998 and AIPS 2000. The most relevant references for
these competitions, introducing the competition domains and presenting the results, are

8

[McDermott, 2000], [Long et al., 2000], and [Bacchus, 2001].
The usefulness of the idea of partitioning planning domains into families like “trans-

portation” and “manipulation” is pointed out in [Long and Fox, 2000], although in this
paper the focus is on the automatic detection of transportation domains and the exploita-
tion of some of their features by a planning system, not on complexity aspects.

Finally, most concepts from complexity theory that are used in the following chapters
and almost all decision problems used in the reductions are borrowed from the standard
reference [Garey and Johnson, 1979].

1.4 Outline

In Chapter 2, we will briefly introduce some aspects of our notation that deviate from
the standard. After that, we will formally define planning domains and the underlying
concept of search in state spaces and introduce the decision and search problems we are
interested in solving. At the end of that chapter, we will provide some very basic general
results on the relationship between different variants of the planning problem.

In Chapter 3, we will discuss transportation domains, first defining a new transporta-
tion domain called Transport and some of its special cases, then discussing the rela-
tionship between some of the benchmark domains and Transport. The Miconic-10

and Grid domains, which are more remotely related to Transport, are discussed in
their own sections.

In Chapter 4, manipulation domains are discussed. Again, the benchmarks are seen as
special cases of a newly defined manipulation domain called Manipulate. Some of the
benchmarks have their own sections devoted to them because they require and deserve
special treatment.

Finally, we will summarize our results and draw some conclusions in Chapter 5.

9

Chapter 2

Terms and Definitions

2.1 Conventions

Although we try to conform to standard mathematical notation wherever possible, there
are some cases for which there is no agreed upon common notation. Therefore, we will
now introduce some symbols for well-known mathematical concepts which are sometimes
defined or written differently in the literature:

N0 The set of natural numbers (non-negative integers).
sgn The signum function (-1 for negatives, +1 for positives, 0 for zero).
|A| The cardinality of set A.

P(A) The power set of set A.
Sym(A) The symmetric group of a set A (the set of bijections from A to A).

A∗ The set of finite-length sequences (words) over the set A.
[s1, . . . , sn] The n-element sequence with i-th element si.

[] The empty sequence.
s ++ t The concatenation of sequences s and t.
[a : x] [a] ++ x.

order(A) The set of orderings of A, i. e. sequences in A∗ containing each element
of A exactly once.

|l| The length of sequence l.
A → B The set of functions from A to B.

A function f ∈ A → B is a subset of A × B containing exactly one
pair (a, b) for each a ∈ A. We will use functional notation (f(a) = b)
and set notation ((a, b) ∈ f) interchangeably.

A 7→ B The set of all partial functions from A to B:
⋃

A′⊆A(A′ → B).
dom(f) The domain of function f : { a | ∃b : (a, b) ∈ f }.
ran(f) The range of function f : { b | ∃a : (a, b) ∈ f }.
f(A′) For A′ ⊆ dom(f): { f(a) | a ∈ A′ }.

f−1(B′) For B′ ⊆ ran(f): { a ∈ dom(f) | f(a) ∈ B′ }.
f ≡ b f is a constant function with value b: f(a) = b for all a ∈ dom(f).
f ⊕ g Functional overloading: (f \ (dom(g) × ran(f)) ∪ g.

For partial functions f , we use f(a) = b as a synonym for (a, b) ∈ f . In particular,
the truth value of this logical expression is well-defined even if a /∈ dom(f). In this case,
it will be false.

10

From [Garey and Johnson, 1979], we adopt the definition of the symbols P, NP,
PSPACE, and NPSPACE, and of the terms NP-complete, NP-easy, NP-hard, and
NP-equivalent. We also adopt their definition of polynomial and Turing reducibility,
although we use different symbols, ≤p for polynomial reducibility and ≤T for Turing
reducibility.

2.2 State Models

Our notion of a planning instance1 relies on the concept of a state model. The definition
we provide here is a slight variation of the one from [Bonet and Geffner, 2000].

Apart from some renaming and rearranging, the main difference between this definition
and the one described in the reference lies in the omitted action costs, as they would all
equal one for the models we are interested in here.

Definition 2.1 State model
A state model is a five-tuple M = (S, s0, SG, A, δ), where

• S is the finite set of states,

• s0 ∈ S is the initial state,

• SG ⊆ S is the set of goal states,

• A is the finite set of actions and finally

• δ : S × A 7→ S is the (partial) transition function.

The set of applicable actions of a state s ∈ S is defined as { a ∈ A | (s, a) ∈ dom(δ) }.
We will use the symbol M to denote the set of all state models.

The intuition behind this definition should be fairly obvious to anyone acquainted with
the concept of state spaces. It is very similar to the common definition of deterministic
finite automata (DFAs) except for the fact that for these, the transition function is usually
defined to be total.

Definition 2.2 Augmented transition function
Let M = (S, s0, SG, A, δ) be a state model.

The augmented transition function δ̂ : S × A∗ 7→ S is defined as the partial
function with minimal domain satisfying:

δ̂(s, []) = s

δ̂(s, [a : x]) = δ̂(δ(s, a), x) if (s, a) ∈ dom(δ) ∧ (δ(s, a), x) ∈ dom(δ̂)

This definition captures the important notion of applying a sequence of actions to
some state.

1We speak of planning instances rather than planning problems to avoid confusion with the concepts
of decision problems and search problems from complexity theory.

11

2.3 Plans and Planning Domains

Definition 2.3 Plan
Let M = (S, s0, SG, A, δ) be a state model.

l ∈ A∗ is called a plan for M if and only if (s0, l) ∈ dom(δ̂) ∧ δ̂(s0, l) ∈ SG.
It is called optimal if its length is minimal amongst all plans.
M is called solvable if there exists a plan for it.

In our terminology, a plan (or sequential plan) is what is often called a solution in the
literature. A sequence of actions that can be applied to the initial state but does not lead
to a goal state will simply be called an applicable action sequence.

From a mathematical point of view, we have now defined all there is to planning
instances: their properties are defined by their state models, and the solutions we are
interested in are (possibly optimal) plans.

However, from a complexity theory point of view, one important aspect has not been
mentioned yet, and that is the description length of a planning instance. In general,
this length does not correspond in any obvious way to the state model of the instance
as presented before. Thus, our definition of a planning domain will include an explicit
notion of instance encodings, and indeed it is this encoding rather than the mathematical
model that we will call a planning instance.

Definition 2.4 Planning domain
A planning domain is a function D : L → M, where L ⊆ Σ∗ for some alphabet Σ.

L is called the encoding language of the domain.2

w ∈ L is called a planning instance and |w| is called its encoding length.

In practice, planning instances are usually encoded in PDDL ([McDermott, 2000]),
often restricted to the subset of that language identified as “basic STRIPS3” or the more
general “ADL” subset.

Since we are interested in proving complexity results with respect to this encoding,
we will assume that instances are given in PDDL when talking about their encoding
length. However, we see no point in actually using PDDL ourselves when defining planning
domains, as this does not facilitate understanding the definitions. The state models we will
use for the specific planning instances will not be based on the usual logical representations
either, as this would lead to an increased complexity of proofs for purely technical reasons.

Instead, we will describe planning instances using more “natural” parameters, not
explicitly defining L, and assume a sensible encoding length without providing the actual
encoding. Because we want our proofs to apply to PDDL encodings, the assumed encoding
lengths will always be polynomially equivalent to the length of the corresponding PDDL
encoding (in characters). An example of a suitable assumed encoding length is the number
of PDDL objects in the instance.

2In the chapters to come, it is understood that deciding whether a given word is a valid encoding or
not can always be done in polynomial time, which is important for complexity theory proofs. It should
be evident that the encoding languages we are going to use satisfy this requirement and therefore it will
not be explicitly mentioned.

3This should not be confused with the closely related, but more expressive language used by the plan-
ning system of the same name, cf. [Fikes and Nilsson, 1971] and [Lifschitz, 1987], or [Allen et al., 1990]
for a reprint of both references.

12

The reader should have no trouble in verifying that our definitions of the planning
domains in the following sections are indeed semantically equivalent to their corresponding
PDDL descriptions (again, we refer to [McDermott, 2000] and [Bacchus, 2001]). That
said, in a few cases we will indeed use models that are semantically different. We will
only do this where we think that there are errors in the PDDL descriptions, and explicitly
point out the differences and justify the decisions we made.

One final remark: From a complexity point of view, PDDL encodings do not always
satisfy the requirement of being reasonably concise [Garey and Johnson, 1979]. For exam-
ple, instances of the Gripper domain could be specified by encoding an integer in binary,
denoting the number of balls to be moved. Under this encoding, plan length would be
exponential in the length of the input and thus plan generation would require exponential
time. However, using the PDDL description, plan generation can easily be done in poly-
nomial time in the length of the input. This is due to the fact that the common PDDL
encoding of numbers uses an amount of space linear (rather than logarithmic) in their
magnitude. In cases where it is not evident, we will point out whether or not the PDDL
encoding is reasonably concise.

2.4 Variants of the Planning Problem

What is the complexity of a planning domain? There are several answers to that question.
In some domains, it might be easy to find a plan, but hard to generate an optimal one.
In other domains, it might be easy to prove that a plan exists but hard to generate it, for
example because it is very long. Specifically, we will focus on the following problems:

Definition 2.5 The PlanEx-Domain decision problem
Given a fixed planning domain (which will be mentioned as part of the decision problem,
as in PlanEx-Mystery), PlanEx-Domain is the language of all solvable instances.

Definition 2.6 The PlanGen-Domain search problem
Given a planning instance in a fixed planning domain, output a pair (L, P), where P is a
sequential plan of length L ∈ N0 solving the instance, or return “no” if no plan exists.4

Definition 2.7 The PlanLen-Domain decision problem
Given a fixed planning domain, PlanLen-Domain is the language of all pairs (I, L),
where I is a planning instance in that domain, and L ∈ N0 such that there exists a
sequential plan for I with length at most L.

Definition 2.8 The PlanOpt-Domain search problem
Given a planning instance in a fixed planning domain, output a pair (L, P), where P is
an optimal sequential plan of length L ∈ N0 solving the instance, or return “no” if no
plan exists.

Note that (once a domain has been fixed), the first and third of these problems are
decision problems, while the other two are search problems. Although in practice we
are primarily interested in solving the search problems, we will only prove results for

4The length of the plan is prefixed to the actual plan in this and the other search problem for technical
reasons, cf. Lemma 2.9.

13

the decision problems. The implications of these results for the complexity of the search
problems are investigated in the rest of this section.

Both decision problems are closely related to the respective search problems introduced
after them. This is no coincidence. While it is generally harder to theoretically analyze
search problems, complexity theory allows us to prove results on decision problems and
then draw conclusions with regard to the complexity of the related search problems. We
will often do this in the chapters to come, mainly relying on the following lemmas. All of
these assume a fixed domain named Domain.

Lemma 2.9 Planning problems relationship
Unconditionally, it is true that:

PlanEx-Domain ≤T PlanGen-Domain

PlanLen-Domain ≤T PlanOpt-Domain

PlanGen-Domain ≤T PlanOpt-Domain

If there exists a polynomial p such that for all planning instances of encoding length
n, a state can be encoded in binary using no more than p(n) units of space5, then:

PlanEx-Domain ≤p PlanLen-Domain

PlanEx-Domain ≤T PlanOpt-Domain

Proof: A planning instance I is in PlanEx-Domain if and only if PlanGen-Domain

does not return “no” on I, proving the first result. Note that even though consulting the
PlanGen-Domain oracle can cause an exponentially long string to be written on the
oracle tape, this is all done in one computation step (cf. [Garey and Johnson, 1979]), and
it is only necessary to look at a constant-length prefix of the output to decide whether it
is equal to “no” or not.

Similarly, a pair (I, L) is in PlanLen-Domain if and only if PlanOpt-Domain

returns a plan of length at most L (and not “no”), proving the second claim. Again,
despite the possibly exponentially long solution to PlanOpt-Domain, this can be done
in polynomial time using an oracle, as only the first part of the PlanOpt-Domain

output, denoting the length of the generated plan, needs to be examined.6

Algorithms for generating optimal sequential plans can be seen as a special case of
algorithms producing any plan, giving the third reduction.

If states can be encoded in binary using space bounded by p(n), then there are no more
than 2p(n) states, and whenever a plan exists, there is a plan of length at most 2p(n) − 1,
as it is not necessary to traverse the same state twice, and thus I ∈ PlanEx-Domain if
and only if (I, 2p(n) − 1) ∈ PlanLen-Domain. This is a polynomial reduction, as only
space p(n) is needed for encoding this number.

The last result is a consequence of the fourth and second.

The main message of this lemma is that the search problems are at least as hard
as their corresponding decision problems. The following lemma states that, under some
restricting assumptions, they are in a way “no harder”.

5This will be true for all the domains we will discuss, without us mentioning it explicitly.
6This is the reason for the somewhat artificial definition of the output of PlanOpt-Domain. While

the same problem does not arise for PlanGen-Domain, we chose to define it similarly for symmetry
reasons.

14

Lemma 2.10 Plans of polynomial length
Let p be a polynomial and Domain be a planning domain such that each state can be
represented using space bounded by p(n), there are at most p(n) actions, the result of
applying the transition function to a given state and action can be computed in time
bounded by p(n), and membership of a state in the set of goal states can be tested in time
bounded by p(n), where n is the encoding length of the instance.7

If for each solvable planning instance of this domain with encoding length n, there
exists a plan of length at most p(n), then:

PlanEx-Domain ∈ NP.
PlanLen-Domain ∈ NP.
PlanGen-Domain and PlanOpt-Domain are NP-easy.

Proof: PlanEx-Domain and PlanLen-Domain can be solved by guessing an optimal
sequential plan and verifying that it is indeed a plan. This involves polynomial time for
writing down the initial state, polynomial time for applying each of the (polynomially
many) actions, in sequence, to the initial state, and polynomial time to check that the
resulting state is a goal state. This proves the first two results.

Note that this is still true if the initial state is given as (the third) part of the problem
instance.8 We show that PlanOpt-Domain can be Turing-reduced to that generalized
version of PlanLen-Domain, thus showing NP-easiness for this search problem (and
PlanGen-Domain, applying the previous lemma). The reduction is described as follows:

Let I be a planning instance from Domain with initial state s0.
If (I, p(n), s0) /∈ PlanLen-Domain, return “no”.
Otherwise, let len := min{ n ∈ N0 | (I, n, s0) ∈ PlanLen-Domain }. This can be

calculated using Θ(log2(p(n))) invocations of PlanLen-Domain with a binary search
strategy.

The current state s is initialized as s0, the remaining plan length l as len. As long
as l > 0, a check is made for each action a ∈ A that is applicable in state s to see if
(I, l − 1, δ(s, a)) ∈ PlanLen-Domain. There must be such an action, so any action a
satisfying this can be chosen and added to the (initially empty) action sequence that is to
be returned. Then s is updated to δ(s, a) and l is decreased by one. This is repeated until
l becomes zero, at which stage a goal state has been reached and the calculated action
sequence is returned.

The remaining plan length l will be decreased at most a polynomial number of times.
Each time this is done, a polynomial number of checks for applicability, state transitions,
and invocations of PlanLen-Domain are performed, so this is a polynomial Turing
transformation.

Domains that satisfy the important requirement of the existence of “short” plans in
the previous lemma will be referred to as domains with polynomial length plans in the
following.

7These properties are trivial to verify in all the planning domains in this thesis and we will not discuss
them explicitly when applying this lemma.

8With our definition of a planning domain, the initial state is a function of the planning instance
which will usually not allow for arbitrary initial states. For example, in the Transport domain from
Section 3.1 all mobiles must start out unloaded.

15

We now put the two previous results together:

Lemma 2.11 NP-complete decision problems
If Domain satisfies the requirements stated in the previous lemma (particularly, if it is a
domain with polynomial length plans), the following is true:

If PlanEx-Domain is NP-complete, then so is PlanLen-Domain.
If PlanEx-Domain is NP-complete, then PlanGen-Domain is NP-equivalent.
If PlanEx-Domain is NP-complete, then PlanOpt-Domain is NP-equivalent.
If PlanLen-Domain is NP-complete, then PlanOpt-Domain is NP-equivalent.

Proof: This follows directly from the previous two lemmas.

As a consequence of this lemma, we will not discuss the search problems further in
the chapters to come, although these are the ones we are primarily interested in. As
NP-completeness results carry over, we can focus our attention on decision problems.

An “easiness” result on the other hand, e. g. proving that some decision problem can
be solved in polynomial time, does not necessarily imply that the same is true for the
corresponding search problem. However, whenever showing such a result, we will do so by
giving a constructive proof which can easily be turned into a (polynomial time) algorithm
for generating plans.

For domains where plan lengths are not polynomial, however, it is quite possible that
there is a difference in complexity between the decision and search problems. Although
deciding the existence of a plan might be easy, plans can never be generated in polynomial
time in such domains because of the length of the output. Indeed, if shortest plan lengths
can be exponential in the input size, no planning system can ever generate a plan in less
than exponential time, and thus we will in those cases be content with stating the fact
that plans are exponentially long and not investigate the decision problems in depth, as
further results would be of no consequence to planning algorithms.

16

Chapter 3

Transportation Domains

We start by analyzing transportation domains because this type of domain seems to be
most wide-spread. This shows in the fact that many important benchmark domains fall
within the transportation family, including the benchmark domain that is probably best-
known, Logistics, but domains like Gripper, Mystery, Mystery’, Miconic-10 and
Grid are also easily identified as having a transportation theme.

While the usual PDDL transportation domains do have their shortcomings, e. g. not
being able to take distances between locations into account, they are still close enough to
real-world concepts to be relevant.

By a transportation domain, we understand a planning domain exhibiting the following
features in its instances:

• Locations are connected by roads, building a graph called a roadmap.

• Mobiles are moving around this map.

• Portables are being carried by the mobiles.

• The goal is to move (a subset of) the portables to their desired final destinations.

In our definition, we require the sets of locations, mobiles and portables to be disjoint.
Specifically, mobiles cannot be carried by other mobiles.

There are some other characteristics that a given transportation domain may or may
not exhibit, namely:

• Dynamic roadmap: The roadmap can be changed by the application of actions
establishing or removing links between locations, e. g. doors being opened or closed.

• Capacity constraints: Mobiles are restricted in the number of portables they can
carry at the same time.

• Fuel constraints : Mobiles are restricted in the number of movement actions they
may perform.

• Movement constraints: A given mobile is only allowed to traverse a subgraph of the
overall roadmap, to model ships not being allowed to leave the water, or trains not
being allowed to leave the railway tracks. More precisely, the roadmap that each
mobile may traverse is a subgraph of the general roadmap.

17

We will not analyze dynamic roadmaps in general, as this concept may appear in a
domain in very different ways. However, we will discuss two types of dynamic roadmaps
in the context of the Miconic-10 and Grid domains.

The other three characteristics, however, can be treated in a fairly general way, so we
will consider them in our general analysis.

3.1 Transport

We will first introduce a transportation domain called Transport which exhibits ca-
pacity, fuel and movement constraints and investigate some special cases of this domain.
These results can then be applied to the benchmark domains we are mainly interested in.

While the next two definitions might seem a bit lengthy, we think that in complexity
theory, it is vital to define the problem at hand in a formal and unambiguous way. The
reasoning in the proofs will take place at a somewhat higher level of abstraction, but once
the formal definitions have been presented, they can be used to verify any intuitive claim
that seems doubtful. This would be impossible if the semantics of the planning domain
were not properly defined.

Definition 3.1 Transport instance
A Transport instance is a 10-tuple
I = (V, E, M, P, PG, loc0, locG, cap, fuel, road), where

• (V, E) is a graph with a finite number of vertices called locations; the edges are
called roads,

• M is a finite set of mobiles,

• P is a finite set of portables,

• PG ⊆ P is the set of goal portables,

• loc0 : (M ∪ P) → V is the initial location function,

• locG : PG → V is the goal location function,

• cap : M → N0 is the capacity function,

• fuel : V → N0 is the fuel function and finally

• road : M → P(E) is the movement constraints function.

We require V , M and P to be disjoint sets. The encoding length of the instance is assumed
to be |V | + |M | + |P |.

Fuel is associated with locations rather than mobiles because this is the way it is
handled in the Mystery-like domains. Both definitions would make sense.

The encoding length as specified by us does not need to take into account E, as its
size is polynomial in |V |, similarly for PG with respect to |P |, and for loc0 and locG with
respect to (|M |+ |P |) · |V |, which is polynomial in |V |+ |M |+ |P |. The encoding of road
will be polynomial in |M | · |E| and thus polynomial in |V | + |M |. Although cap could

18

theoretically be unbounded, we can safely assume it to be bounded by |P |, which means
it can be encoded in space polynomial in |M | · |P | or |M | + |P |.

While there are sequences of actions that would require an arbitrary amount of fuel,
any reasonable plan only includes a number of movements that is bounded by a polynomial
in |V | + |M | + |P |, and so we can safely assume the fuel function to be bounded by this
polynomial, too, without loss of generality. The proof of this claim will follow shortly,
with Theorem 3.3.

Thus, |V |+ |M |+ |P | is polynomially equivalent to the length of a “reasonable” PDDL
encoding of the planning instance. Note that we are taking into account that numbers
are represented in PDDL using a unary encoding.

Definition 3.2 Transport domain
Let L be the set of all Transport instances. The Transport domain is the function
D : L → M mapping instances to state models as follows:

(V, E, M, P, PG, loc0, locG, cap, fuel, road) 7→ (S, s0, SG, A, δ), where

S
def
= (M → V) × (P → V ∪ M) × (V → {0, . . . , max{ fuel(m) | m ∈ M } }),

s0
def
= (loc0 ∩ (M × V), loc0 ∩ (P × V), fuel),

SG
def
= { (lM , lP , f) ∈ S | locG ⊆ lP },

A
def
= { movem,v | m ∈ M, v ∈ V }
∪ { pickm,p | m ∈ M, p ∈ P }
∪ { dropm,p | m ∈ M, p ∈ P },

∀m ∈ M, v, v′ ∈ V, s = (lM , lP , f) ∈ S :
lM(m) = v ∧ {v, v′} ∈ road(m) ∧ f(v) > 0

⇒ δ(s, movem,v′)
def
= (lM ⊕ {(m, v′)}, lP , f ⊕ {(v, f(v) − 1)}),

∀m ∈ M, p ∈ P, s = (lM , lP , f) ∈ S :
lM(m) = lP (p) ∧ |{ p ∈ P | lP (p) = m }| < cap(m)

⇒ δ(s, pickm,p)
def
= (lM , lP ⊕ {(p, m)}, f),

∀m ∈ M, p ∈ P, s = (lM , lP , f) ∈ S :
lP (p) = m

⇒ δ(s, dropm,p)
def
= (lM , lP ⊕ {(p, lM(m))}, f) and finally

δ is undefined otherwise.

This definition captures the intuition of a Transport instance. Observe that states
are three-tuples characterizing the current location of the mobiles (which traverse the
locations), the location of the portables (being at locations or within mobiles) and the
amount of fuel available at the various locations.

The move operator is parameterized by the moving mobile and its destination location,
the pick and drop operators by the mobile and portable involved.

As captured by the definition of δ, a mobile may only move to a location if this is
allowed by its roadmap and if there is some fuel available at its current destination.
Movement changes the location of the mobile and deducts fuel. Portables may only be
picked up by mobiles which share their location and have not reached their full carrying
capacity. A mobile may only drop a portable it is currently carrying. Pickup and drop
actions change the location of the portable involved accordingly.

19

Now that we have defined the semantics of the domain and hopefully provided the
reader with an intuition about the operators, we can present the first result.

Theorem 3.3 PlanLen-Transport ∈ NP
PlanEx-Transport and PlanLen-Transport are in NP.
Proof: We will prove that Transport is a domain with polynomial length plans and
apply Lemma 2.10.

Let V be the set of locations, M be the set of mobiles and P be the set of portables
of a given Transport instance.

For each portable, we can safely bound the number of move actions performed by any
mobile while carrying that portable by |V |−1, as in any plan where the portable is moved
to the same location twice, it could have been dropped and left there at the first visit.
Thus, the total number of movements performed by non-empty mobiles is bounded by
|P | · (|V | − 1). The same bound applies to the number of pick and drop actions, because
in between two movements of a portable, it is dropped and picked up at most once in any
reasonable plan. Additionally, it is picked up once before being moved for the first time,
and it is dropped once after being moved for the last time. We call the actions we have
considered so far “portable-related” actions, and as has been shown their number can be
bounded by 3|P | · (|V | − 1).

The only actions which we still need to take into account are movements by empty
mobiles. To bound these, note that between any two portable-related actions and before
the first portable-related action, a given mobile should not commit more than |V | − 1
movements, as it does not make sense for a mobile to visit a given location twice if
no portable-related actions have been applied in between. No further actions are nec-
essary after the last portable-related action (which drops the last portable at its final
destination). Thus, the number of movements by empty mobiles can be bounded by
|M | · (|V | − 1) · (3|P | · (|V | − 1)).

Summing up the two terms, we get an upper bound of 3|P | ·(|V |−1)(1+M ·(|V |−1)),
which is polynomial in the encoding length |V | + |M | + |P |.

In addition to its other implications, the proof of Theorem 3.3 shows that the amount
of fuel at any location can safely be bounded by a polynomial in |V |+ |M |+ |P |, because
this is true for the number of movement actions in any reasonable plan. If there is
“enough” fuel at a given location v, we will in the following write this as f(v) = ∞.

3.2 Special Cases of Transport

Our next objective is to define some special cases of the Transport domain that are of
particular interest. We will introduce a total of 27 variants, with the original domain being
a generalization of all the others. They will be assigned the name Transport-CiFjMk

(capacity/fuel/mobiles), where i, j ∈ {1,∞, ∗} and k ∈ {1, +, ∗}.

Definition 3.4 Special cases of Transport

For i, j ∈ {1,∞, ∗} and k ∈ {1, +, ∗}, the Transport-CiFjMk domain is the restric-
tion of Transport to those instances I = (V, E, M, P, PG, loc0, locG, cap, fuel, road) that
adhere to the following constraints:

20

• For i = 1, cap ≡ 1. Each mobile can only carry one portable at a given time in
these instances.

• For i = ∞, cap ≡ |P |. Each mobile can carry any number of portables in these
instances.

• For i = ∗, there are no restrictions on the carrying capacity function.

• For j = 1, fuel ≡ 1. There is exactly one unit of fuel at each location in these
instances.

• For j = ∞, fuel ≡ ∞. There are no fuel constraints in these instances.

• For j = ∗, there are no restrictions on the fuel function.

• For k = 1, |M | = 1 and road ≡ E. In these instances there is only one mobile,
which can traverse the entire roadmap.

• For k = +, road ≡ E. In these instance all mobiles traverse the whole map, there
is only one type of mobiles.

• For k = ∗, there are no restrictions on the number or type of mobiles.

According to that definition, Transport-C∗F∗M∗ is just another name for Trans-

port.

capacity 1: one portable ∞: unbounded *: varies
fuel 1: one unit per location ∞: unbounded *: varies

mobiles 1: one mobile +: one mobile type *: many mobile types

Figure 3.1: The Transport domain family.

Figure 3.1 summarizes these definitions. Note that C∗ domains generalize the cor-
responding C1 and C∞ domains, F∗ domains generalize the corresponding F1 and F∞

domains, M∗ domains generalize the corresponding M+ and M1 domains and finally M+

domains generalize the corresponding M1 domains.
Apart from these, there are no other subsumption relationships in this framework.

Specifically, there are four most basic domains, ones that do not have any specializa-
tion, namely Transport-C1F1M1, Transport-C∞F1M1, Transport-C1F∞M1 and
Transport-C∞F∞M1.

We will now prove a number of results for some of these domains. Exploiting their
specialization/generalization relationship, we will then be able to say for each of those
domains and both decision problems we are interested in whether they are polynomial or
NP-complete. From Theorem 3.3 we already know that they are all members of NP.

21

3.3 PlanEx for the Transport Family

We will start by investigating the PlanEx problem.

Theorem 3.5 PlanEx-Transport-C∗F∞M∗ ∈ P
PlanEx-Transport-C∗F∞M∗ can be solved in polynomial time.
Proof: For each mobile m with cap(m) > 0, we calculate the set of vertices this mobile
can move to by doing a breadth-first search on (V, road(m)), starting at l0(m). We then
remove all edges from road(m) that can never be reached by m.

These reduced roadmaps of the individual mobiles are then united to form a graph
we call the reachability graph RG. Edges of the reachability graph are labeled with the
mobiles which contribute to them.

Clearly, for any two locations v 6= v′, it is possible to deliver a portable from v to v′ if
and only if there is a path between those two locations in the reachability graph. Thus,
a plan exists if and only if for all portables p ∈ PG with loc0(p) 6= locG(p), these two
locations belong to the same connected component in RG.

We now give an algorithm that generates a plan. The “current location” of a mobile
m is initialized to loc0(m).

We then perform the following steps for each portable p to be moved:

1. Calculate a shortest path from loc0(p) to locG(p) in RG, consisting of vertices
[v0, v1, . . . , vk].

2. For i ∈ {0, . . . , k − 1}, do the following:

(a) Look at the label of the edge {vi, vi+1} to find a mobile m that can traverse it.

(b) Calculate a shortest path in road(m) from the current location of m to vi.

(c) Add the corresponding move actions to the plan.

(d) Add the actions pickm,p, movem,vi+1
and dropm,p.

(e) Update the current location of m to be vi+1.

It is evident that this action sequence constitutes a plan. We conclude the proof by
mentioning that all the calculations mentioned can clearly be done in polynomial time
using standard algorithms.

So we have shown that we can handle two of the three constraints we introduced,
capacity and movement, even in their most general case, as long as fuel is unlimited.
Solving these instances is easy because each portable can be looked at separately.

However, this is not true if fuel is limited, and indeed, limited fuel domains are
much harder to solve. We will prove this by showing that Transport-C∞F1M1 and
Transport-C1F1M1 are both NP-complete. As all domains involving limited fuel are
generalizations of one of these, this completes the picture for PlanEx-Transport.

We will perform this proof in three steps. First, we will use a polynomial transforma-
tion of a known NP-complete problem called Hamiltonian Circuit - Planar - Cubic

to show NP-completeness of a problem called Hamiltonian Path - Fixed Start -

Planar. Then, we will polynomially transform this problem to Transport-C∞F1M1.
Because we will need this property later, and because it is interesting in its own right, we

22

v′

v1

v2

< π

v′

v1

v2
v∗∗

v∗

Figure 3.2: Adding v∗ and v∗∗. The highlighted edges mark corresponding solutions to
the Hamiltonian Circuit/Path problems.

will actually prove that Transport-C∞F1M1 is already NP-complete if the roadmap is
restricted to be a planar graph.

Unfortunately, a similar transformation to Transport-C1F1M1 destroys planarity.
Thus, we will in the third and last step of our proof use the more general Hamiltonian

Path - Fixed Start problem as the basis of our transformation.

Definition 3.6 Hamiltonian Circuit - Planar - Cubic

Given a planar, cubic1 graph G = (V, E), does G contain a Hamiltonian circuit, i. e. a
sequence [v1, . . . , v|V |] ∈ order(V) such that for all i ∈ {1, . . . , |V |−1}, {vi, vi+1} ∈ E and
(v|V |, v1) ∈ E?

This problem is cited as being NP-complete in [Garey and Johnson, 1979].

Definition 3.7 Hamiltonian Path - Fixed Start - Planar

Given a planar graph G = (V, E) and vertex v1 ∈ V , does there exist a Hamiltonian
path in V that starts at v1, i. e. a sequence [v1, . . . , v|V |] ∈ order(V) such that for all
i ∈ {1, . . . , |V | − 1}, {vi, vi+1} ∈ E?

Lemma 3.8 NP-completeness of Hamiltonian Path - Fixed Start - Planar

Hamiltonian Path - Fixed Start - Planar is NP-complete.
Proof: Membership in NP is obvious.

For NP-hardness, we provide a polynomial transformation to prove Hamiltonian

Circuit - Planar - Cubic ≤p Hamiltonian Path - Fixed Start - Planar.
Let G = (V, E) be the original instance and n = |V |. We omit the trivial case n = 0

and assume that |V | ≥ 4 (a non-empty cubic graph can obviously never have less than
four vertices). First, we calculate a planar embedding of G.

Let v′ be any vertex from V . Because G is cubic, v′ has exactly three neighbours.
Let v1, v2 be two of those neighbours satisfying ∠v1v

′v2 < π. There must be a pair of
neighbouring vertices satisfying this condition since the three angles corresponding to the
three possible choices of v1, v2 add up to 2π.

It is then possible to add vertices v∗, v∗∗ and edges {v1, v
∗}, {v2, v

∗}, {v∗, v∗∗} to the
graph without destroying its planarity (as illustrated in Figure 3.2). The graph that G is
mapped to is then defined as:

1That is, every vertex has degree 3.

23

Figure 3.3: Graph and corresponding Transport-C∞F1M1 instance. Portables are dis-
played as dotted lines pointing from their initial to goal locations. The designated start
vertex and the initial location of the mobile are drawn as bigger shaded circles.

G′ def
= (V ∪ {v∗, v∗∗}, E ∪ {{v1, v

∗}, {v2, v
∗}, {v∗, v∗∗}}).

Clearly all of this can be done in polynomial time.
Assume that G contains a Hamiltonian circuit [u1, . . . , un]. As it must contain two

of the three edges adjacent to v′, it must contain at least one of {v′, v1} or {v′, v2},
say the former. Because sequences denoting Hamiltonian circuits can be inverted and
rotated, we can assume that u1 = v′ and un = v1. Then [v′, u2, u3, . . . , un−1, v1, v

∗, v∗∗] is
a Hamiltonian path in G′ starting at v′.

Now assume that G′ contains a Hamiltonian path starting at v′. As v∗∗ has only
one neighbour, it must be the last node on the path, preceded by v∗ in turn pre-
ceded by either v1 or v2, say the former. Thus, the Hamiltonian path can be written
as [v′, u2, . . . , un−1, v1, v

∗, v∗∗] and [v′, u2, . . . , un−1, v1] is a Hamiltonian circuit in G.
This shows that the mapping described above is indeed a polynomial transformation

and concludes the proof.

Theorem 3.9 NP-completeness of PlanEx-Transport-C∞F1M1

PlanEx-Transport-C∞F1M1 is NP-complete, even if the roadmap is restricted to be
a planar graph and all portables start at the same location as the mobile.
Proof: Membership in NP has already been proved (special case of Transport).

In order to prove NP-hardness, we describe a polynomial transformation that shows
Hamiltonian Path - Fixed Start - Planar ≤p PlanEx-Transport-C∞F1M1.
The mapping is defined as follows:

((V, E), v1) 7→ I = (V ′, E ′, M, P, PG, loc0, locG, cap, fuel, road) where:

V ′ def
= V loc0 ≡ v1

E ′ def
= E locG(pv)

def
= v for v ∈ V

M
def
= {m} cap ≡ |P |

P
def
= { pv | v ∈ V } fuel ≡ 1

PG
def
= P road ≡ E ′

This mapping satisfies all the requirements for a Transport-C∞F1M1 instance and
can clearly be calculated in polynomial time. Figure 3.3 gives an example of this mapping.

Let n = |V |. Assume that (V, E) contains a Hamiltonian path [v1, . . . , vn] (starting
at v1). Then [pickm,pv2

, . . . , pickm,pvn
, movem,v2

, dropm,v2
, . . . , movem,vn

, dropm,vn
] is a plan

for I.

24

Figure 3.4: Graph and corresponding Transport-C1F1M1 instance. Portables are dis-
played as dotted lines pointing from their initial to goal locations. The designated start
vertex and the initial location of the mobile are drawn as bigger shaded circles. Entrances
are solid circles, exits hollow circles.

Now assume that there is a plan for I. Due to the fuel constraints, each location can
be left by the only mobile at most once. This means that the plan must start with a series
of pickup actions — it is not possible to return to the initial location to pick up leftover
packages and deliver them later.

We can assume that the portable to be carried to a given location is dropped when
that location is visited for the first time, and that there are no further actions after all
goals have been satisfied. This means that the location where the last portable is dropped
is never left, and thus there can be no more than n−1 move actions in the plan. As every
location must be visited at least once, there cannot be less than n − 1 move actions.

So there are exactly n − 1 move actions in that plan, visiting every location exactly
once. This means that the movement path of the mobile is a Hamiltonian path for (V, E),
starting at the initial location of the mobile, v1.

Theorem 3.10 NP-completeness of PlanEx-Transport-C1F1M1

PlanEx-Transport-C1F1M1 is NP-complete, even if all portables only need to be
moved to adjacent locations.
Proof: Membership in NP has already been proved (special case of Transport).

We describe an algorithm that maps Hamiltonian Path - Fixed Start instances to
membership-equivalent Transport-C1F1M1 instances in polynomial time, thus proving
Hamiltonian Path - Fixed Start ≤p PlanEx-Transport-C1F1M1. The mapping
is defined as follows:

((V, E), v1) 7→ I = (V ′, E ′, M, P, PG, loc0, locG, cap, fuel, road) where:

V ′ def
=

⋃

v∈V {v, v∗} loc0(pv)
def
= v for v ∈ V

E ′ def
= { {u, v∗} | {u, v} ∈ E } ∪ { {v, v∗} | v ∈ V } locG(pv)

def
= v∗ for v ∈ V

M
def
= {m} cap ≡ 1

P
def
= { pv | v ∈ V } fuel ≡ 1

PG
def
= P road ≡ E ′

Figure 3.4 gives an example of this mapping. It satisfies all the requirements for
a Transport-C1F1M1 instance and can clearly be calculated in polynomial time. To

25

provide some intuition for this transformation, we will call v ∈ V an entrance and v∗ an
exit. Thus, portables need to be delivered from each entrance to the corresponding exit,
which is connected to the entrance by an edge. An edge in the original graph translates
to crosswise connections of exits and entrances of the two adjacent nodes.

Let n = |V |. Assume that (V, E) contains a Hamiltonian path [v1, . . . , vn] (starting at
v1). Then the following action sequence is a plan for I:
[pickm,pv1

, movem,v∗
1
, dropm,pv1

, movem,v2
, . . . , movem,vn

, pickm,pvn
, movem,v∗n , dropm,pvn

].
Now assume that there is a plan for I. Again, each location can be left at most once,

and every location must be visited at least once (either to pick up or drop a portable
there). By the same reasoning as in the last proof, we can assume that every location is
visited exactly once, and at the only visit of each location, either a pick or drop must be
performed. Due to the carrying capacity constraint, there can never be two pick actions
without a drop in between. It follows that after picking up a portable at an entrance, the
mobile must next move to the corresponding exit and drop that portable.

Again, by the same reasoning as in the last proof, tracing the order in which the
entrances are visited gives a Hamiltonian path in the original graph, starting at v1.

We are now done with our analysis of the PlanEx problem for the Transport

family. The results we have proved and the specialization ordering on the domains are
all we need to be able to conclude that all the fuel-constrained variants are NP-complete
with regard to this problem, and all the other ones are polynomial.

3.4 PlanLen for the Transport Family

Because plan lengths in the Transport family can be bounded by a polynomial, we
already know that the respective PlanLen problems are in NP (Theorem 3.3).

Because these problems cannot be easier than their PlanEx counterparts (Lemma
2.9), the results just presented also imply that PlanLen is NP-hard as soon as fuel is
restricted.

We will now investigate domains without fuel restrictions. By showing that PlanLen

is NP-complete for the two most specific of these domains, Transport-C∞F∞M1 and
Transport-C1F∞M1, we will prove NP-completeness of PlanLen in the whole Trans-

port family. Again, we will first consider the case without capacity restrictions, giv-
ing three hardness proofs for this problem, each applying to a different restriction of
Transport-C∞F∞M1. Our first proof will be very similar to the one in Theorem 3.9 on
page 24.

Theorem 3.11 NP-completeness of PlanLen-Transport-C∞F∞M1

PlanLen-Transport-C∞F∞M1 is NP-complete, even if the roadmap is restricted to
be a planar graph and all portables start at the same location as the mobile.
Proof: Membership in NP has already been proved (special case of Transport).

Given a Hamiltonian Path - Fixed Start - Planar instance ((V, E), v1), we
map it to the same instance as in Theorem 3.9 and set L = 3(|V | − 1). Again, Figure
3.3 on page 24 gives an example of this mapping. If a Hamiltonian path exists, then the
corresponding plan from Theorem 3.9 has length 3(|V | − 1).

If on the other hand such a plan exists, it must contain at least |V |−1 move, pick and
drop actions each in order to pick up and drop every portable and visit every location. This

26

implies that exactly |V | − 1 move actions are part of the plan, describing a Hamiltonian
path in (V, E).

The next proof we want to give applies to roadmaps which are complete graphs, a case
that is particularly interesting for analyzing the Logistics domain. We will first define
the problem the transformation is based on.

Definition 3.12 Feedback Vertex Set

Given a directed graph G = (V, A) and natural number K ≤ |V |, is there a subset V ′ ⊆ V
with |V ′| ≤ K such that V ′ contains at least one vertex from every directed cycle in G?

Another way of formulating this is asking for V ′ such that the graph induced by V \V ′

does not contain any directed cycles. That is, V ′ contains all the “feedback vertices” of
the graph, hence the name of the problem. This problem is cited as being NP-complete
in [Garey and Johnson, 1979].

Theorem 3.13 NP-completeness of PlanLen-Transport-C∞F∞M1

PlanLen-Transport-C∞F∞M1 is NP-complete, even if the roadmap is restricted to
be a complete graph.
Proof: Membership in NP has already been proved (special case of Transport).

Hardness is shown by a reduction from Feedback Vertex Set, using the following
mapping (which can easily be calculated in polynomial time):

((V, A), K) 7→ (I, L) = ((V ′, E ′, M, P, PG, loc0, locG, cap, fuel, road), L) where:

V ′ def
= V ∪ {s} loc0(pu,v)

def
= u for pu,v ∈ P

E ′ def
= { {u, v} | u, v ∈ V ′, u 6= v } locG(pu,v)

def
= v for pu,v ∈ P

M
def
= {m} cap ≡ |P |

P
def
= { ps,v | v ∈ V } ∪ { pu,v | (u, v) ∈ A } fuel ≡ ∞

PG
def
= P road ≡ E ′

loc0(m)
def
= s L

def
= 2|A| + 3|V | + K

This mapping satisfies all the requirements for a Transport-C∞F∞M1 instance with
a complete graph as a roadmap. Figure 3.5 gives an example.

We call s the start location (the mobile starts here). For every other vertex in the
graph, the start location contains a portable ps,v to be moved to that location. This is to
ensure that all the locations have to be visited by the mobile. For every arc from u to v
in the graph, there is a portable to be moved from u to v.

Assume that (V, A) contains a feedback vertex set V ′ of size at most K. We then
define V0 = V \ V ′. Let l ∈ ord(V0) be a topological sort of the subgraph induced by
V0. Such a sequence exists because that graph no longer contains any directed cycles by
definition of a feedback vertex set.

This leads to the following action sequence: Pick up all the portables at the start
location, visit all the vertices from V ′, in any order, to pick up all portables lying there,
then move to the vertices from V0 in the order imposed by l, picking up all the portables
to be moved and dropping them when their goal location is reached, then finally visit the
vertices from V ′ again, dropping all the portables that need to be put there.

This constitutes a plan: Every portable to be moved to some vertex from V ′ will be
delivered, as those vertices are visited after every vertex in the graph has been visited at

27

Figure 3.5: Graph and corresponding Transport-C∞F∞M1 instance. Portables are
displayed as dotted lines pointing from their initial to goal locations. The initial location
of the mobile is drawn as a bigger shaded circle. Hollow circles depict vertices that form
a feedback set or locations that should be visited twice, respectively.

least once, hence there was an opportunity to pick up that portable. Every portable to
be moved to some vertex v ∈ V0 either originates from s or V ′ or some vertex u ∈ V0 that
appears before v in the sequence l (as it is topologically sorted). The only other vertex is
s, and no portable needs to be moved there.

This plan contains 2(|A|+ |V |) pickup and drop actions, |V0| move actions for visiting
the nodes in V0 and 2|V ′| move actions for visiting the nodes from V ′ (twice). Hence, its
length is 2(|A|+ |V |) + |V0| + 2|V ′| = 2|A|+ 2|V | + |V0| + |V ′|

︸ ︷︷ ︸

|V |

+ |V ′|
︸︷︷︸

≤K

≤ 2|A|+ 3|V |+ K.

Now assume that there is a plan of length at most L for I. To deliver all portables,
every location needs to be visited at least once, leading to at least |V | movement actions.
Every portable needs to be picked up and dropped at least once, leading to another
2(|V | + |A|) actions. Thus, there are only up to K actions remaining, which means that
no more than K locations can be visited more than once.

The set of locations from V that are visited twice form a feedback vertex set, because
the assumption that there still is a cycle in the graph where those vertices with their
adjacent arcs have been removed leads to a contradiction: There is no possible way in
which the portables corresponding to that cycle could have been delivered without visiting
at least one of the locations involved twice.

This result shows that it is not (only) the route planning aspect of the transportation
problems that makes them hard, as there is no real route-planning involved when the
roadmap is a complete graph. The source of difficulty rather seems to be the interaction
between the individual subgoals, i. e. goal portables. This is an observation that applies
to many of the proofs shown in this chapter.

The last proof of this section addresses the limited capacity problem we have not
discussed yet as well as the unrestricted capacity case. While it would not be difficult
to adapt Theorem 3.10 to get a hardness proof for PlanLen-Transport-C1F∞M1, we
prefer to investigate a more interestingly restricted special case of that problem to get
the hardness result. Specifically, we are considering instances that feature grid graphs, a
term to be defined now.

28

Definition 3.14 Grid graph
For w, h ∈ N0, the standard grid Grid[w, h] with width w + 1 and height h + 1 is
defined as the graph with the vertex set V = {0, . . . , w} × {0, . . . , h} and the edge set
E = { {(a, b), (a′, b′)} ⊆ V | |a − a′| + |b − b′| = 1 }.

A graph is called a grid if it is isomorphic to a standard grid.

Note that grid graphs are always planar.
Our NP-completeness proof is based on a variant of the well-known traveling salesman

problem.

Definition 3.15 Traveling Salesman L1 Metric

Given a finite set S ⊆ N0 × N0 of points (sites) in the plane and a natural number B, is

there an ordering l ∈ order(S) such that
∑|S|−1

i=1 d(li, li+1) + d(l|S|, l1) ≤ B, where the L1

or Manhattan metric d is defined as d((x1, y1), (x2, y2)) = |x2 − x1| + |y2 − y1|?

[Garey and Johnson, 1979] cite this problem as being NP-complete in the strong sense.
We will assume that the encoding size of a number is linear (rather than logarithmic) in
its magnitude; otherwise our transformation would not be polynomial. For problems that
are NP-complete in the strong sense, this assumption is valid.

Theorem 3.16 NP-completeness of PlanLen-Transport-C∞/1F∞M1

The PlanLen problems for Transport-C∞F∞M1 and Transport-C1F∞M1 are NP-
complete, even if the roadmap is restricted to be a grid and all portables only need to be
moved to adjacent locations.
Proof: Membership in NP has already been proved (special case of Transport).

Let (S, B) be a Traveling Salesman L1 Metric instance. We omit the trivial
case of S = ∅ and assume that n = |S| > 0. We first calculate the maximum x and y
coordinates of all sites in S, calling them xmax and ymax, respectively. Let s∗ = (s∗x, ymax)
be any site in S that maximizes the y coordinate. Let S ′ = S \ {s∗}. Furthermore, we set
K = 2n and D = Kn · (xmax + ymax) + 4n − 1.

We then map (S, B) to the following PlanLen-Transport-C∞F∞M1 instance that
can easily be calculated in polynomial time:

(S, B) 7→ (I, L) = ((V, E, M, P, PG, loc0, locG, cap, fuel, road), L) where:

(V, E)
def
= Grid[Kxmax + 1, Kymax + D] loc0(p(x,y))

def
= (Kx, Ky) for (x, y) ∈ S ′

M
def
= {m} locG(p)

def
= loc0(p) + (1, 0) for p ∈ P

P
def
= { ps | s ∈ S } cap ≡ ∞

PG
def
= P fuel ≡ ∞

loc0(m)
def
= (Ks∗x, Kymax) road ≡ E

loc0(ps∗)
def
= (Ks∗x, Kymax + D) L

def
= KB + D + 4n − 1

This mapping satisfies all the requirements for a Transport-C∞F∞M1 instance with
a grid graph as a roadmap and all portables starting out next to their goal location. By
setting cap ≡ 1, the very same reduction can be used for Transport-C1F∞M1 instead –
we will only have to consider plans where the mobile never carries more than one portable
at once, so this will not cause any problems.

We will restate this definition in words to make it more understandable. First, we
scale all coordinates by a factor K. Then, we place a portable at each site from the

29

0 1 2 3 4
0

1

2

3

4

6 7 8 9 10
0

1

2

3

4

5

6

Figure 3.6: Traveling Salesman L1 Metric sites (as points on the N0×N0 grid) and
the corresponding Transport-C∞F∞M1 instance, solid circles indicating initial positions
and adjacent hollow circles indicating goal positions for portables. The bigger shaded
circle indicates the initial position of the mobile. The zigzag line indicates that the
distance between the initial position and the topmost portable is not to the scale — the
portable should be further up.

traveling salesman problem excluding the northmost one, where we place the mobile. We
place an additional portable far up north (D units after scaling), on the same column as
the mobile. We call this the final portable. The goal is to move all the portables one unit
to the right. Figure 3.6 gives an example of this mapping.

Assume that there is a traveling salesman tour of length at most B for the sites S. It
is easy to see that there is a strong connection between distances in the L1 metric and
movements in the planning instance: If d(p, q) = k, then the shortest action sequence to
move from p to q on a standard grid consists of k actions.

Thus, taking the scaling constant K into account, there is a sequence of move actions
of length at most KB that passes through all the portables’ initial locations (except for the
final portable) and then returns to the location of origin. With another D movements, the
mobile can then reach the final portable. All that remains to be done now is to insert four
actions whenever a location containing a portable is encountered: pick up that portable,
move east, drop it, move west again, where the last movement is not needed for the final
portable. This leads to a plan of length at most KB + D + 4n − 1 = L.

Now assume that there is no traveling salesman tour of length B or less, i. e. the
shortest tour has length B + 1 or more. We will show that all plans consist of more than
L steps. First note that the distance between any two sites is always strictly less than
xmax + ymax, because it is xmax + ymax − 2 in the most extreme case of the sites being
located in opposite corners of the grid. Because a tour is the sum of n distances, there is
always a traveling salesman tour that is shorter than n(xmax + ymax), so B must be less
than this value. This implies that D > KB + 4n − 1.

First consider any plan where the final portable is picked up for the first time at some
point before all the other portables have been moved to their goal locations. In this case
the mobile will at some point have to move from row Kymax to row Kymax + D to get
to the initial location of that portable and later get back to row Kymax or below to drop

30

other portables. This will involve at least 2D movements, thus plan length will be at least
2D > KB + D + 4n − 1 = L, exceeding the boundary.

Therefore we only need to consider the case where the final portable is picked up for
the first time after all the other portables have been dropped at their goal location. We
can safely assume that the movement between the last but one portable to be dropped
and the final portable passes through the initial location of the mobile. If it does not,
the movement path can be changed to achieve this without increasing plan length by first
moving eastwards or westwards until the column of the final portable has been reached,
then going northwards.

For each portable, the mobile must at some point move to the initial location of that
portable, and it will return to its own initial location at some point. The number of move
actions to achieve this cannot be less than the length of the shortest traveling salesman
tour for the set of sites that is given by scaling each site in S by a factor of K. Thus, at
least K(B +1) move actions will be needed for this, plus D move actions for getting from
the initial location to the location of the final portable.

In addition, at least 2n pick and drop actions are needed, totalling a lower bound of
K(B + 1) + D + 2n = KB + K + D + 2n = KB + 2n + D + 2n = KB + D + 4n > L
actions. Thus, no plan of length at most L exists.

3.5 Parallel Plans in the Transport Family

In AI planning, sequential length is not the only accepted quality criterion for a plan.
People are also interested in short parallel plans, where several actions can be applied at
the same time, provided they do not interfere, where the precise meaning of interference
needs to be specified.

In the Transport framework, it would make sense to allow different mobiles to act
at the same time, provided they do not operate on the same portables, and perhaps allow
individual mobiles to pick up or drop multiple portables at the same time.2

How would the complexity results we proved change if parallel activity was taken into
account and the number of time steps (with potentially many actions happening at the
same time step) was investigated in place of sequential plan length?

In fact, Theorems 3.11, 3.13 and 3.16 still apply in the parallel case. This is not hard to
see, as all proofs involve only one mobile and the only possible parallelism to be exploited
is the possibility of dropping and picking up multiple portables at the same time.

For Theorem 3.11, L = 3(|V | − 1) would need to be be changed to 2(|V | − 1) + 1 =
2|V | − 1, as all the pick actions can now be performed in one step.

For Theorem 3.13, L = 2|A|+3|V |+K would become 2(|V |+K)+1, counting |V |+K
movements and one step each in between every two movements, before the first movement
and after the last movement to do all the necessary picking up and dropping.

For Theorem 3.16, nothing needs to be changed.
Thus, all the complexity results we have proved for the Transport family still apply

in the parallel case.

2If the popular notion of Graphplan ([Blum and Furst, 1997]) parallelism is used, these two kinds of
parallel activity are allowed in the usual PDDL encodings of the Logistics and Gripper domains. In
Mystery and Mystery’, a mobile may only pick up or drop one portable per time step, and different
mobiles may only move simultaneously if they are at different locations. Parallel movement or pickup
cannot occur in Grid because there is only one mobile, and it can only carry one portable at a time.

31

3.6 Summary of the Transport Family

With these results, we conclude our analysis of the Transport family. The most impor-
tant results are summarized in Figure 3.7.

• PlanEx is polynomial if there is unlimited fuel.

• PlanEx is NP-complete otherwise.

• PlanLen is always NP-complete.

Special cases for which both problems are still NP-complete:

• One mobile of unlimited capacity, one unit of fuel at every location, all
portables start at same location as mobile, roadmap is a planar graph.

• One mobile of capacity one, one unit of fuel at every location, all portables
only need to be moved to adjacent locations.

Other special cases for which PlanLen is still NP-complete:

• One mobile of unlimited capacity, unlimited fuel, all portables start at same
location as mobile, roadmap is a planar graph.

• One mobile of unlimited capacity, unlimited fuel, roadmap is a complete
graph.

• One mobile of capacity one, unlimited fuel, all portables only need to be
moved to adjacent locations, roadmap is a grid.

Figure 3.7: Complexity results for the Transport domain family.

3.7 Gripper, Logistics, Mystery and Mystery’

So far, no results have been presented for the transportation domains used in the AIPS
competitions. However, we will see that these fit nicely into the framework introduced in
the preceding sections.

Definition 3.17 Gripper domain
The Gripper domain is the special case of Transport-C∗F∞M1 where for all instances
I = (V, E, M, P, PG, loc0, locG, cap, fuel, road) the following holds:

V
def
= {room1, room2} l0 ≡ room1

E
def
= {{room1, room2}} lG ≡ room2

PG
def
= P cap ≡ 2

The result from Transport-C∗F∞M∗ implies that PlanEx-Gripper ∈ P. But it
is not hard to see that Gripper instances are easy to solve even if optimal plans are

32

required, as this is a very restricted domain: An instance is characterized by a single
parameter, the number of portables b (for balls).

Theorem 3.18 PlanLen-Gripper ∈ P
PlanLen-Gripper can be solved in polynomial time.
Proof: The following strategy leads to an optimal plan: If there are at least two portables
at location room1, choose any two of them and pick them up. If there is only one portable,
pick that one up. Otherwise nothing needs to be done. Then move to the other room and
drop them. If the goal is not yet satisfied, move back and iterate. It is obvious that this
is an optimal sequential plan.

The plan can be written down in polynomial time in the input size (which we defined
to be |V | + |M | + |P | = |P | + 3).

It is easy to adapt this algorithm to the parallel case where several portables can be
picked up or dropped at the same time.

Note that the PDDL encoding of Gripper instances is not reasonably concise from a
complexity theory point of view. Under a concise encoding of the instances, plan lengths
are exponential in the length of the input.3

We will now move to more interesting domains.

Definition 3.19 Logistics domain
The Logistics domain is the restriction of Transport-C∞F∞M∗ to those instances
I = (V, E, M, P, PG, loc0, locG, cap, fuel, road), where there exists a set of locations A ⊆ V
(called airports) such that for all m ∈ M , the movement graph (

⋃

e∈road(m) e, road(m)) of

that mobile is a complete graph and either has vertex set A (in which case m is called
an airplane), or shares exactly one vertex with A (in which case m is called a truck).
Moreover, for any two trucks m, m′, it must be the case that either road(m) = road(m′)
or the two roadmaps are disjoint.

As a special case of Transport-C∗F∞M∗, PlanEx-Logistics ∈ P.
The PlanLen problem in this domain is NP-complete, even in the case where there

is only one truck and no airplane or equivalently only one airplane and no truck. This
was proved in Theorem 3.13 and also applies to the parallel case.

Definition 3.20 Mystery and Mystery’ domains
The Mystery domain is the restriction of Transport-C∗F∗M+ to instances for which
the roadmap is a planar graph.

The Mystery’ domain is an extended version of Mystery where an additional type
of actions allows transferring one unit of fuel from any location that has at least two units
two any other location.

Theorem 3.21 NP-completeness of PlanEx-Mystery and PlanEx-Mystery’

The PlanEx problem for Mystery and Mystery’ is NP-complete.
Proof: As a special case of Transport, PlanEx-Mystery ∈ NP. As a generalization
of Transport-C1F1M1 with planar roadmaps, it is NP-hard and thus NP-complete.

3However, the decision problems are still solvable in polynomial time, since plans always exist, so
PlanEx is trivial, and the length of a shortest sequential or parallel plan for b balls can easily be
calculated.

33

For Mystery’, we can restrict our attention to plans where no fuel is moved after
the first move, pick or drop action. Thus, the situation after the last fuel movement
corresponds to a Mystery instance and thus if there is any plan, there is one for which
the number of move, pick and drop actions is bounded by a polynomial in the input size.
It does not make sense to both move fuel to and from a given location in the same plan,
as it could have been moved directly to its final destination. No location needs more than
a polynomial amount of fuel and thus each location need only be the target of a move
fuel action for a polynomial number of times. Thus, the total number of fuel movements
necessary can also be bounded by a polynomial. Therefore Lemma 2.10 can be applied,
and PlanEx-Mystery’ ∈ NP.

If there is no more than one unit of fuel at every location, Mystery’ instances and
corresponding Mystery instances are identical. Thus, Mystery’ is also a generalization
of Transport-C1F1M1 with planar roadmaps and thus PlanEx-Mystery’ is NP-hard
and thus NP-complete.

This result of course implies that PlanLen is NP-complete for the Mystery and
Mystery’ domains (membership in NP again following from a polynomial plan length
argument).

3.8 Miconic-10

The two remaining transportation domains to be examined are sufficiently different from
the Transport family to warrant their own sections. The Miconic-10 elevator domain
from the AIPS 2000 competition is actually a family of three domains, one of them encoded
in the STRIPS subset of PDDL, the other ones making use of some ADL extensions.

The Miconic-10 STRIPS domain is very similar to Transport-C∞F∞M1 with a
complete graph, the mobile being called the elevator, the portables going by the name
of passengers. Differently to Transport-C∞F∞M1 however, it is not possible to have
a passenger leave the elevator at any location other than his goal location, and once a
passenger has left the elevator, he can never board it again. Additionally, in all variants
of the Miconic-10 domain, initial and goal locations of a passenger must always be
different and a goal location is specified for each passenger (rather than just a subset of
passengers).

Despite these differences, Theorem 3.13 still applies, so PlanEx is polynomial and
PlanLen is NP-complete in this variant of Miconic-10.

The first, simplified ADL domain is quite similar, with just one difference: Rather than
individual pick and drop operators, there is just one stop action that makes all passengers
who have reached their final destination leave the elevator, while the ones waiting outside
board it. The same results apply, although the definition of L in Theorem 3.13 must be
changed to 2(|V | + K) + 1, just like in the case where portables can be picked up and
dropped in parallel.

The other ADL domain exhibits some additional features that require closer inves-
tigation. As a generalization of its simplified brother, the PlanLen problem is still
NP-hard.

For membership in NP, it suffices to observe that plan lengths can safely be bounded
by a polynomial. This is indeed the case: Passengers can only ever board and leave the
elevator once, it does not make sense to perform a stop action which does not cause at

34

least one passenger to board or leave the elevator, and there should always be exactly one
move action in between to stops (and no more than one before the first stop). Therefore,
plan lengths in solvable instances can always be bounded by four times the number of
passengers.

But how about PlanEx? Although no fuel constraints are present in this transporta-
tion domain, we will see that PlanEx is actually NP-hard (and thus NP-complete) due
to the various restrictions imposed on elevator movement for special passengers. To prove
this, we will have to introduce the domain in a more formal way than the previous ones.
Because this is the “real” Miconic-10 elevator domain, we will just call it Miconic-10.

Definition 3.22 Miconic-10 instance
A Miconic-10 instance is a 13-tuple
I = (F, f0, P, loc0, locG, PV , PN , PD, PA, PS, P1, P2, Acc), where

• F ⊆ N0 is the finite set of floors,

• f0 ∈ F is the initial floor,

• P is the finite set of passengers,

• loc0 : P → F is the initial location function,

• locG : P → F is the goal location function, satisfying locG(p) 6= loc0(p) for p ∈ P ,

• PV ⊆ P is the set of VIP passengers,

• PN ⊆ P is the set of non-stop passengers,

• PD ⊆ P is the set of direct travel passengers,

• PA ⊆ P is the set of attendants,

• PS ⊆ P is the set of attended passengers (S for supervised),

• P1 ⊆ P is the set of group one passengers,

• P2 ⊆ P is the set of group two passengers and finally

• Acc ⊆ P × F is the access relation.

The encoding length of the instance is assumed to be |F | + |P |.

Miconic-10 instances are very similar to Transport instances as defined in Defini-
tion 3.1. Apart from the various passenger subsets that will be explained together with
the operators of the domain, two things should be commented on.

Firstly, the requirement for the floors to be natural numbers is just an easy way to get
a total (vertical) order on floors, which is needed for modelling direct travel passengers.

Secondly, the access relation models restricted access to certain floors in the building:
An elevator may only open its doors at a given floor if all passengers inside have access
to that floor as specified by this relation. This is an example of a dynamic roadmap as
mentioned in the introduction to this chapter.

35

Definition 3.23 Miconic-10 domain
Let L be the set of all Miconic-10 instances. The Miconic-10 domain is the function
D : L → M mapping instances to state models as follows:

(F, f0, P, loc0, locG, PV , PN , PD, PA, PS, P1, P2, Acc) 7→ (S, s0, SG, A, δ), where

S
def
= F × P(P) × P(P),

s0
def
= (f0, ∅, ∅),

SG
def
= F × {∅} × {P},

A
def
= { movef | f ∈ F } ∪ {stop},

∀f ′ ∈ F, s = (f, PE, PG) ∈ S :
f 6= f ′

∧ ∀p ∈ PD ∩ PE : (sgn(locG(p) − f) = sgn(f ′ − f) ∨ locG(p) = f ′)

⇒ δ(s, movef ′)
def
= (f ′, PE, PG),

∀s = (f, PE , PG) ∈ S, P ′
E ⊆ P, FV ⊆ F :

P ′
E = (PE \ loc−1

G ({f})) ∪ (loc−1
0 ({f}) \ PG)

∧ FV = loc0(PV \ (PE ∪ PG)) ∪ locG(PV ∩ PE)
∧ (f ∈ FV ∨ FV = ∅)
∧ (PN ∩ PE = ∅ ∨ f ∈ locG(PN ∩ PE))
∧ (PS ∩ P ′

E 6= ∅ ⇒ PA ∩ P ′
E 6= ∅)

∧ (P1 ∩ P ′
E = ∅ ∨ P2 ∩ P ′

E = ∅)
∧ ∀p ∈ PE : (p, f) ∈ Acc

⇒ δ(s, stop)
def
= (f, P ′

E, PG ∪ (loc−1
G ({f}) ∩ PE)) and finally

δ is undefined otherwise.

In this state model, a state consists of the current floor f , the set of passengers PE in
the elevator and the set of passengers PG that have been served already. In goal states,
there are no passengers in the elevator and all passengers have been served. The current
floor does not matter. PE and PG are disjoint in any reachable state.

The move operator is parameterized by the destination floor and has the obvious
effect. If there is a direct travel passenger in the cabin, then the elevator is required to
move upwards if the goal location of that passenger is above the current floor, and it must
not move past it; the converse is true for passengers going down. A case distinction is
avoided in the formalization by making use of the sgn function.

A single stop action models the elevator opening its doors, allowing passengers to
board or leave. As a result of this action, all passengers inside the elevator that have
reached their goal destination leave the cabin, and all passengers waiting outside enter.
The new set of passengers inside the elevator is referred to as P ′

E in the definition of the
semantics of stop.

The elevator may only stop if the following requirements are met:

• The destination floor currently is a VIP floor, i. e. a VIP passenger is waiting there,
or a VIP passenger inside the elevator wants to get there, or there are no VIP floors,
implying that all VIPs have been served already.4 Note that the set of VIP floors

4This definition follows the textual description in [Koehler and Schuster, 2000], although the actual
PDDL domain always allows for movement to the initial or goal location of a VIP, even if this VIP has
been served already, which seems to be a bug.

36

is referred to as FV in the definition.

• There are no non-stop passengers in the elevator or the elevator is traveling to the
goal location of one of the non-stop passengers currently in it.5

• If the stop would result in an attended passenger being in the elevator, then it must
also result in an attendant being in it.

• After the stop there must not be passengers from both group one and group two in
the cabin.

• All the passengers in the elevator must have access to the destination floor.

For a motivation of the various features of the Miconic-10 domain, we refer to
[Koehler and Schuster, 2000], where it was first introduced.

A proof of NP-completeness for PlanEx-Miconic-10 concludes this section.

Theorem 3.24 NP-completeness of PlanEx-Miconic-10

PlanEx-Miconic-10 is NP-complete, even without direct travel or non-stop passengers.
Proof: Membership in NP has already been shown. We will prove NP-hardness by
a reduction from Directed Hamiltonian Path - Fixed Start, the directed graph
variant of Hamiltonian Path - Fixed Start. This problem is NP-hard because with
regard to Hamiltonian paths, directed graphs are a generalization of undirected graphs.

Given a Directed Hamiltonian Path - Fixed Start instance ((V, A), v1), we
describe a polynomial algorithm for constructing a membership-equivalent Miconic-

10 instance (F, f0, P, loc0, locG, PV , PN , PD, PA, PS, P1, P2, Acc), thus proving Directed

Hamiltonian Path - Fixed Start ≤p PlanEx-Miconic-10.
Because the actual natural numbers for floors are only important for direct travel

passengers who will not be used in the reduction, we will refer to floors with symbols like
fv rather than numbers. Different symbols mean different floors.

The set of floors consists of the following:

• Init and final floors f0 and f∞.

• For all v ∈ V , a vertex start floor fv and vertex end floor f ∗
v .

• For all arcs (u, v) ∈ A an arc floor fu,v.

Thus, |F | = 2 + 2|V | + |A|.
The other features of the instance are defined as follows:

• p0, the init passenger, satisfies loc0(p0) = f0 and locG(p0) = fv1
. He only has

access to the init floor and the vertex start floor of v1. He is a VIP and an attendant
(member of PV and PA).

• For all v ∈ V , pv is called a vertex start passenger, with loc0(pv) = f0 and
locG(pv) = fv. He has access to all floors, is an attended passenger and belongs to
group one (member of PS and P1).

5Again, this follows the textual description in [Koehler and Schuster, 2000], although there seems to
be another bug in the PDDL domain which leads to the elevator never re-opening its doors if several
non-stop passengers with different goal locations enter it.

37

• For all v ∈ V , p∗v is called a vertex end passenger, with loc0(p
∗
v) = fv and

locG(p∗v) = f ∗
v . He only has access to the vertex start and end floors of v, the arc

floors for outgoing arcs of v and the final floor. He is an attendant (member of PA).

• For all (u, v) ∈ A, pu,v is called an arc passenger, with loc0(pu,v) = fu,v and
locG(pu,v) = fv. He only has access to the vertex end floor of u and the vertex start
floor of v. He is an attendant (member of PA).

• For all v ∈ V , p∞v is called a no vertex return passenger, with loc0(p
∞
v) = f ∗

v

and locG(p∞v) = f∞. He has access to all floors except the vertex start floor of v.

• p∞, the final passenger, satisfies loc0(p∞) = f∞ and locG(p∞) = f0. He belongs
to group two (member of P2).

Apart from these, there are no other passengers or members of PV , PN , PD, PA, PS, P1

or P2 and no further elements of Acc.
The main difficulty in finding a plan for this instance lies in always having attendants

in the elevator for the vertex start passengers. Most of the other passengers serve the
purpose of restricting the possible next floors to stop at.

The first floor to stop at must be the init floor, because it is the initial location of the
init passenger, who is the only VIP passenger. There, in addition to the init passenger, all
vertex start passengers will board, which means that an attendant will have to be present
in the elevator from now on until all vertex start passengers have left, i. e. until all vertex
start floors have been visited. The next floor to stop at must be the vertex start floor of
v1 because of the init passenger’s access restrictions.

As long as not all vertex start floors have been visited, the following is true:

1. Whenever a vertex start floor is stopped at for the first time, a vertex end passenger
will board, restricting the journey to continue either to an outgoing arc floor, the
vertex end floor or the final floor. As long as not all vertex start floors have been
visited, the only option is to go to an arc floor, since going to the vertex end floor
would result in a lack of an attendant, and going to the final floor would result in
group one and group two passengers both being inside the elevator.

2. When an arc floor for (u, v) is visited for the first time, the arc passenger will board.
The journey can then only continue to the vertex end floor of u.

3. If a vertex end floor of u is visited for the first time, the no vertex return passenger
will board, keeping the elevator from visiting the vertex start floor of u again. The
journey will then continue to the vertex start floor of a vertex which has an ingoing
arc from u, because there must be an arc passenger in the elevator (otherwise there
would be no attendant in there). As long as there are still vertex start passengers
on board, 1. applies again.

This means that as long as there are still vertex start passengers in the elevator, the
movement of the elevator must be consistent with the arcs of the graph. During this
time, no vertex can be visited twice because of the access restriction for no vertex return
passengers. Thus, if a plan exists, there must be a Hamiltonian path in G, because if
this were not the case, there would be no possibility of visiting every vertex start floor
without visiting any of them twice.

38

On the other hand, if a Hamiltonian path exists, there is a sequence of actions that
will lead to all vertex start passengers having arrived at their final destination and the
elevator being at one of the vertex start floors. It can then immediately proceed to the
vertex end floor, pick up the last no vertex return passenger and drop off the last vertex
end passenger, move to the final floor as there are no more group one passengers in the
elevator, drop off all the no vertex return passengers and move to the init floor to drop
off the final passenger.

All that remains to be done now is serving the arc passengers of the arcs which are not
part of the Hamiltonian path. This can easily be achieved by moving one arc passenger
at a time, going to his initial floor and then to his goal floor.

Thus, if a Hamiltonian path exists, there is a plan for the Miconic-10 instance, which
concludes the proof.

3.9 Grid

The Grid domain is basically Transport-C1F∞M1 for grid graphs with one added
feature: Rather than just being carried around, portables (called keys in this context)
can also be employed to open up initially unaccessible (locked) locations. Thus, this is
another example of a domain featuring dynamic roadmaps. If there are no initially locked
locations, the domains are identical.6

Thus, applying Theorem 3.16, we already know that PlanLen-Grid is NP-hard,
even if all locations are initially accessible.

However, as the Grid domain is not a special case of Transport because of its
dynamic roadmap, we do not have any results for PlanEx and cannot claim membership
in NP for PlanLen. In order to do so, we must first introduce the domain formally.

Definition 3.25 Grid instance
A Grid instance is a 10-tuple
I = (V, E, l0, P, PG, loc0, locG, S, door, type), where

• (V, E) is a grid graph called the grid,

• l0 ∈ V is the initial robot location,

• P is the finite set of keys,

• PG ⊆ P is the set of goal keys,

• loc0 : P → V is the initial location function,

• locG : PG → V is the goal location function,

• S is the set of lock shapes,

• door : V \ {l0} 7→ S is the door type function and finally

6This is not entirely true because of one slight difference between corresponding Transport-C1F∞M1

and Grid instances: In Grid, it is possible to drop a key and pick up another one using only one action.
This does not affect the applicability of Theorem 3.16, however.

39

• type : P → S is the key type function.

The encoding length of the instance is assumed to be |V | + |P |.

Comparing this to Definition 3.1, most parts of a Grid instance can go without
explanation. In the Grid domain, each location can feature at most one door, where
doors can be distinguished by the shape of their lock. If there is a door at a given
location, the door function specifies the shape of its lock. Otherwise, that location will
not be in the domain of door. Likewise, type specifies the shape of a key. A key can be
used to open a lock if and only if their shapes match.

It is required that the robot does not start out at a locked location (which would be
strange). The number of distinct shapes can be bounded by |V | without loss of generality,
because there is no need to have more shapes than locked locations (of which there cannot
be more than |V | − 1) plus one for keys that cannot open any door. This justifies the
definition of encoding length.

Definition 3.26 Grid domain
Let L be the set of all Grid instances. The Grid domain is the function D : L → M
mapping instances to state models as follows:

(V, E, l0, P, PG, loc0, locG, S, door, type) 7→ (S, s0, SG, A, δ), where

S
def
= V × (P ∪ {⊥}) × (P → V ∪ {⊥}) × P(V),

s0
def
= (l0,⊥, loc0, dom(door)),

SG
def
= { (v, k, loc, lock) ∈ S | locG ⊆ loc },

A
def
= { movev | v ∈ V } ∪ { pickp | p ∈ P } ∪ {drop}
∪ { swapp | p ∈ P } ∪ { unlockv | v ∈ V },

∀v′ ∈ V, s = (v, k, loc, lock) ∈ S :
{v, v′} ∈ E ∧ v′ /∈ lock

⇒ δ(s, movev′) = (v′, k, loc, lock),

∀p ∈ P, s = (v, k, loc, lock) ∈ S :
loc(p) = v ∧ k = ⊥

⇒ δ(s, pickp) = (v, p, loc ⊕ {(p,⊥)}, lock),

∀s = (v, k, loc, lock) ∈ S :
k 6= ⊥

⇒ δ(s, drop) = (v,⊥, loc ⊕ {(k, v)}, lock),

∀p ∈ P, s = (v, k, loc, lock) ∈ S :
loc(p) = v ∧ k 6= ⊥

⇒ δ(s, swapp) = (v, p, loc ⊕ {(k, v), (p,⊥)}, lock),

∀v′ ∈ V, s = (v, k, loc, lock) ∈ S :
{v, v′} ∈ E ∧ v′ ∈ lock ∧ k 6= ⊥ ∧ door(v′) = type(k)

⇒ δ(s, unlockv′) = (v, k, loc, lock \ {v′}) and finally

δ is undefined otherwise.

In this model, states consist of the current robot location, the key currently being
carried (which may be none, represented as ⊥), the current key locations (where ⊥ is the
location of a key currently being carried by the robot) and the set of locked doors. There

40

is some redundancy in this state space, but being explicit about the key being carried
facilitates the definition of δ.

The move operator is parameterized by the destination vertex, which must be an
adjacent unlocked location.

The pick and drop actions do the obvious things. It should be noted that their
definition formalizes the carrying capacity constraint of one. swap is a combination of
drop and then pick.

The unlock operator is parameterized by the location of the door to be opened. This
location must contain a locked door with a lock shape that fits to the key currently being
carried.7

We will now show that PlanEx-Grid ∈ P (and indeed, plans can be generated in
polynomial time).

Theorem 3.27 PlanEx-Grid ∈ P
PlanEx-Grid can be solved in polynomial time.
Proof: We devise a polynomial algorithm that generates a plan if one exists or reports
that none exists. Start by calculating the set of vertices that can be accessed from the
initial robot location without opening doors (the reachable vertices) and the set of keys
located at these nodes (the reachable keys). This can be done in polynomial time using
a breadth-first search.

Then, as long as there are still doors neighbouring a reachable vertex which have a
lock that can be opened with a reachable key, move to that key, pick it up, move next
to the door, unlock it and drop the key. The vertex of that door must then be added to
the reachable vertex set, and all keys lying there must be added to the reachable key set.
Clearly, this can be done in polynomial time, and it cannot be done more than |V | − 1
times, because there cannot be more than |V | − 1 locked doors.

A plan exists if and only if, once as many doors as possible have been opened, for all
goal keys that are not at their goal position, their goal position and the keys themselves are
reachable. Moving to one goal key, picking it up, moving to its goal location, dropping it
and continuing in this fashion with the next key, a valid plan is constructed in polynomial
time.

This could conclude our discussion of Grid, having already shown NP-completeness
of PlanLen-Grid. However, we will give another proof of NP-completeness for this
problem that focuses on the dynamic roadmap aspect of that domain rather than the
difficulty of goal ordering.

We will prove that Grid is NP-complete even if there is only one goal key. The
hardness of the generated instances lies in deciding which doors to open in order to get
access to other parts of the map, and the decision problem used in the transformation is
not related to “route planning” in any obvious way. In fact, the route planning problems
that form part of the generated planning instances are trivial.

7Note that Graphplan parallelism would allow for different doors next to the current robot location
to be opened at the same time (as the only exploitable parallelism in this domain). This does not seem
realistic, and it is only a minor issue to us, because whether or not this parallel activity is allowed does
not affect the complexity of the domain — all proofs still apply in this “parallel” case, which is not hard
to verify.

41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1

2

3

A

B

D

A

¬A

C

B

¬C

¬D

A

¬A

¬A

B

¬B

¬B

C

¬C

¬C

D

¬D

¬D

Figure 3.8: Grid instance corresponding to (A∨B∨D)∧ (A∨¬A∨C)∧ (B∨¬C ∨¬D).
Locations with doors are marked with squares, the initial and goal locations are shown as
shaded circles. The zigzag indicates that the void is not to the scale (it should be wider).

Definition 3.28 3SAT

Given a set U of variables and a collection C of clauses over U such that each clause
c ∈ C has |c| = 3, is there a satisfying truth assignment for C?

This is perhaps the best-known NP-complete problem. Proofs of NP-completeness
can be found in [Garey and Johnson, 1979] and almost any introductory text on complex-
ity theory.

Theorem 3.29 NP-completeness of PlanLen-Grid

PlanLen-Grid is NP-complete, even in the special case where there is only one goal
key, all keys and the robot start at the same location, and the height of the grid graph is
restricted to three.
Proof: Membership in NP follows from the existence of polynomial length plans.

Given the 3SAT instance F = ({v1, . . . , vn}, {{l1,1, l1,2, l1,3}, . . . , {lm,1, lm,2, lm,3}}), we
first calculate W = 3(n + m) + 2 + (2n + 1)(2m + 2n) + 4(n + m)2 + 8(n + m) + 4 and
w = W + 2m + 2n.

The 3SAT instance is then mapped to the following PlanLen-Grid instance:

F 7→ (I, L) = ((V, E, l0, P, PG, loc0, locG, S, door, type), L) where:

(V, E)
def
= Grid[w, 2]

l0
def
= (0, 0)

P
def
= {goal, v1, . . . , vn,¬v1, . . . ,¬vn}

PG
def
= {goal}

loc0 ≡ (0, 0)
locG ≡ (w, 0)

S
def
= P

door((W + 2i − 1, j − 1))
def
= li,j for i ∈ {1, . . . , m}, j ∈ {1, 2, 3}

door((W + 2(m + i) − 1, 0))
def
= vi for i ∈ {1, . . . , n}

door((W + 2(m + i) − 1, j))
def
= ¬vi for i ∈ {1, . . . , n}, j ∈ {1, 2}

v /∈ dom(door) otherwise

type(p)
def
= p for p ∈ P

L
def
= (2n + 2)W

This mapping satisfies all requirements including polynomial time computability. For
an example, see Figure 3.8.

42

The mapping defines a Grid instance which features a very long corridor. On its far
left, there is the initial location of the robot and all keys, with a wide open space of width
W extending to the right, called the void. At the right end of that space, there is an area
with many doors organized into groups of three that block off access to the parts of the
corridor further to the right.

For each clause, there is one such group of doors, called a clausal barrier, their locks
corresponding to the literals of the clause. To the right of these, there are similar structures
for each variable, called variable barriers. The goal location is to their right, on the
rightmost column.

We first show that if a plan of length at most (2n + 2)W exists, there is a satisfying
truth assignment for the 3SAT instance.

In order to gain access to the goal location, at least one of each doors of the clausal
and variable barriers must be opened. For the variable barriers, this implies that for each
variable v, at least one of the keys v and ¬v must have been picked up and moved past
the void. Additionally, the goal key must have been moved past the void (even further,
but we do not care about that). As only one key can be moved at once, the W steps
between the initial location and the clausal barrier must have been passed at least 2k− 1
times if k keys were carried past the void, going from left to right k times and back k − 1
times.

As plan length is bounded by (2n+2)W and the movements considered so far take at
least (2k − 1)W actions, k cannot be greater than n + 1. As one of the keys must be the
goal key, at most n other keys were used to open doors. We said that at least one key for
each variable must be among them, which means that there is exactly one key for each
variable.

We choose the truth assignment according to the keys selected, i. e. we set v = ⊤
if v was selected and v = ⊥ if ¬v was selected. We now check that each clause has
at least one literal that is true under this assignment. To see this, consider a literal
corresponding to an opened door on the barrier of that clause. Since the door was opened,
the corresponding key was picked up, which by definition of the truth assignment implies
that the corresponding literal is true. Thus, the instance is satisfiable.

Now assume there is a satisfying truth assignment for that clause. Let PS ⊆ P be the
set of keys that correspond to the literals being true under this truth assignment. This
means that |PS| = n, and PS contains at least one key for each clausal or variable barrier.
We now have to check that, using no more than (2n+2)W actions, we can move the goal
key to its goal location.

We will adopt the following strategy:

1. As long as there are barriers to be broken, do the following:

(a) Randomly choose a key p ∈ PS that will open one of the doors of the leftmost
barrier that has not been broken yet.

(b) Move to the current location of p on a shortest path.

(c) Pick up p.

(d) Move to the location left to the door to be opened.

(e) Unlock the door and drop the key.

2. Move to location (0, 0).

43

3. Pick up the goal key.

4. Move to location (w, 0).

5. Drop the goal key.

This will lead to exactly n + m + 1 pick actions, n + m + 1 drop actions and n + m
unlock actions, totaling 3(n + m) + 2 non-movement actions.

To bound the number of move actions, we observe that the robot never moves to
the right without carrying a key and never moves to the left while carrying a key, which
means that it cannot move to the right more than (n + 1)w times, as only n + 1 keys
are being carried and none of them can be moved further to the right than w steps. As
the robots final location is w units right of its initial location, it cannot move to the left
more than (n + 1)w − w = nw times, totalling (2n + 1)w = (2n + 1)(W + 2m + 2n) =
(2n + 1)W + (2n + 1)(2m + 2n) moves to the left or right.

Vertical moves are only necessary before passing barriers, for accessing the correct
door to be opened and immediately before picking up a key or dropping the goal key. In
each of these cases, no more than two moves upwards or downwards are needed.

There are n+m barriers, and each of them must be passed no more than 2(n+m)+2
times (at most twice on every iteration of the first step of the strategy above and at most
once during each the second and fourth step). Doors are opened n + m times, there are
n + m + 1 occasions on which a key is picked up and one occasion on which the goal key
is dropped.

This leads to an upper bound on the total number of vertical movements equal to
2((n + m)(2(n + m) + 2) + (n + m) + (n + m + 1) + 1) = 4(n + m)2 + 8(n + m) + 4

The total number of actions is thus no bigger than the sum of these three values,
which is 3(n + m) + 2 + (2n + 1)W + (2n + 1)(2m + 2n) + 4(n + m)2 + 8(n + m) + 4 =
W + (2n + 1)W = (2n + 2)W , as required.

3.10 Summary

We have discussed a variety of transportation domains, including the ones from the AIPS
competitions. Figure 3.9 summarizes their generalization/specialization relationship and
the most important results from this chapter.

We have seen that just finding some plan is not hard for most transportation domains.
We think that this is mainly due to the fact that the “obvious” things to do, like moving
portables nearer to their goal location or opening doors when this is possible, will always
facilitate achieving the goal for most transportation domains. This means that forward
planning and local search strategies can easily cope with those domains, as can also be
seen from the good results a number of participating planning systems achieved in the
AIPS 2000 competition on the Logistics domain, employing such techniques.

The appropriateness of this greedy strategy of “moving portables towards the goal”
changes, however, if additional constraints can lead to dead ends in the search space. In
this case, finding a plan seems to be harder, and the theoretical results we have proved
show that it really is. We have faced this problem when dealing with fuel constraints
and in the full Miconic-10 domain, where it may be unwise to have people board the
elevator that restrict its movement too much. These domains, where goals can no longer

44

Transport

C∗F∗M∗

Theorem 3.3
Page 20

Transport

C∗F∗M+

Transport

C∗F∗M+

planar graph
=Mystery

Mystery’

Theorem 3.21
Page 33

Transport

C∗F1M+

Transport

C1F1M1

Theorem 3.10
Page 25

Transport

C∗F∞M∗

Theorem 3.5
Page 22

Transport

C∗F∞M1

Gripper

Theorem 3.18
Page 33

Transport

C1F∞M1

Grid

Theorem 3.27
Theorem 3.29
Pages 41, 42

Transport

C1F∞M1

grid graph
Theorem 3.16

Page 29

Grid

no doors

Transport

C∞F∞M∗

Transport

C∞F∞M+
Logistics

Transport

C∞F∞M+

complete graph

Miconic-10

Theorem 3.24
Page 37

Transport

C∞F∞M1

complete graph
Theorem 3.13

Page 27

Miconic-10

simple ADL
Miconic-10

STRIPS

Figure 3.9: The transportation domains hierarchy. Domains further up in the graph are
more general than their descendants. Additionally, Transport-C∗F∞M1 is more general
than Transport-C∞F∞M1. A white box is used for domains for which the decision (and
search) problems are polynomial. A light grey box indicates that plans can be generated
in polynomial time, but the PlanLen problem is NP-complete. For domains in dark
grey boxes, both decision problems are NP-complete. Domains linked with light grey
lines are almost identical (cf. Sections 3.8 and 3.9).

45

be achieved in a piecemeal fashion, are the only transportation domains we have analyzed
for which plan existence is NP-complete.

Another important observation is that for all but the most trivial domains (i. e. all but
Gripper), finding optimal plans is hard, the corresponding decision problems all being
NP-complete. In most cases, our proofs exploited sub-goal interactions. It is difficult
to decide in which order the portables need to be moved to come up with a short plan.
This is still true under some very restrictive assumptions, like only having one mobile and
moving on a complete graph.

Dynamic roadmaps as seen in the Grid domain seem to be another source of com-
plexity, as outlined in the last proof. There is no subgoal interaction here since there is
only one goal to be satisfied, and while one might argue that there are indeed interacting
“intermediary goals”, the difficulty lies in deciding which intermediary goals to pursue
rather than choosing between different ways of scheduling them.

For convenience, Figure 3.10 repeats the complexity results for the transportation
domains from the planning competitions.

Domain name PlanEx PlanLen

Grid polynomial NP-complete
Gripper polynomial polynomial
Logistics polynomial NP-complete

Miconic-10 (simple) polynomial NP-complete
Miconic-10 (full) NP-complete NP-complete

Mystery NP-complete NP-complete
Mystery’ NP-complete NP-complete

Figure 3.10: Complexity results for the transportation domains from the AIPS 1998 and
AIPS 2000 planning competitions.

46

Chapter 4

Manipulation Domains

In this chapter, we analyze planning domains that focus on the manipulation of physical
objects1, namely Assembly, Blocksworld, FreeCell and Schedule. What do
these have in common? In all of them except Schedule, atomic parts (atomic assemblies,
individual blocks, individual cards) are combined to form bigger things (assemblies, towers
of blocks, piles of cards), which can then in turn be used as parts for further composite
objects. The goal in these domains is to build up or construct one or several complex
composite objects, using operators which attach parts to or detach parts from composites
built already.

Schedule, on the other hand, does not feature construction, but is mainly concerned
with the transformation of physical objects by operations such as painting them or punch-
ing holes into them. A natural combination of these two different aspects of manipulation
domains would be a variant of the Blocksworld domain where blocks or towers could
be painted as well as moved around.

In addition to the actual composition, decomposition and transformation, different
kinds of resource allocation problems typically arise in manipulation domains, one of
them being restricted space (as in FreeCell), meaning that only so many objects may
coexist at the same time, the other one being allocation of tools or machines (such as a
screwdriver or spray painter) to objects, as in Assembly and Schedule.

So there are three key features to a manipulation domain:

• First, construction and destruction can take place, combining smaller objects to
build bigger objects or decomposing composite structures into smaller parts. The
space available for doing the composition and decomposition might be limited.

• Secondly, transformations such as painting change physical properties of individual
objects without affecting their subpart structure.

• Third, the allocation of equipment to perform the various construction, destruction
and transformation tasks is an important aspect.

The difficulty of solving a manipulation-type problem can consist of finding the right
order in which different goal composites should be built up (as in Blocksworld), in
constraints for the build-up operators which might require intermediary objects to be

1We admit that this is a fairly general description, but then the domains to be presented cover fairly
general problems, as the results will show.

47

built up and demolished again (as in Assembly and FreeCell), in restricted space (as
in FreeCell) or in the scheduling of available equipment (as in Schedule).

Despite some obvious and some less obvious similarities in these domains, it is not
apparent how they might be incorporated into a structured domain hierarchy like it has
been done for the Transport family. The group of domains discussed in this chapter is
far less homogeneous than the transportation family, and it is not easy to come up with
“the” general manipulation domain.

Manipulation domains can differ in at least the following features:

• They can involve actions for attaching parts to other parts, actions for detaching
parts from other parts, both or neither. On a more fine-grained level, this distinction
can be drawn for individual composites. As an example, consider the foundation
(home) piles in FreeCell, which can only be composed, but not decomposed.

• If both attaching and detaching are possible, they can be separate actions or part of
a composite action. Especially in the first case, where detaching things and “putting
them in the hand” is an action in its own right, it makes a difference whether there
are one or several hands, and if the latter, if all of them can hold all types of objects
or if there are certain restrictions.

• The composite objects in the domain can be made up from an arbitrary number
of immediate subparts (as in Assembly) or a restricted number of them. An
interesting special case are stack objects, consisting of two immediate subparts, a
substack and a topmost object, which must be atomic (does not have any subparts),
as in Blocksworld and FreeCell. In the most restricted case, all objects are
atomic.

• Many possibilities exist for specifying the way things are constructed. It might be
necessary to attach subparts in a given linear order, the sequence of attach operators
can be required to adhere to some partial order (as in Assembly), or all sequences
can be allowed. In some domains, composites can be built up or destroyed while they
are part of other composites, in other domains this is disallowed. There might be one
or multiple ways of building the same composite, possibly involving very different
subparts, as in a chemistry domain where the same molecule can be created by
various chemical reactions.

• The domain may or may not include transformation or mutation actions which do
not rearrange the parts of an object but change some of its properties. As has been
pointed out, these are the predominant actions in the Schedule domain.

• The domain may or may not make use of equipment, resource objects which need
to be allocated to an object before parts can be attached to it or detached from it.
If equipment is present, it can be be a separate class of objects (like the resources
in Assembly and the machines in Schedule), or arbitrary objects can be used
as equipment, which implies that the equipment itself might need to be built from
other parts first.

• Last not least, the type of goals specified makes a difference. In the easiest case,
there is just one goal state, completely specifying the object(s) to be built (as in

48

Assembly or FreeCell). In other domains, the goal objects might not comprise
all atomic parts, so that there are leftover parts that are not cared about (as is the
case for Blocksworld with “irrelevant” blocks). In the most general case, even
the objects that need to be created are not completely specified, with goals of the
type “build some tower of height eight”. This kind of goal occurs with Schedule.

Rather than investigating all these possibilities in their full variety, we focus on a sub-
hierarchy of manipulation domains that is reasonably general and covers all the benchmark
domains. We want to emphasize that what is to come is not to be seen as “the” manipu-
lation domain – variants of the general theme that are not closely related to the domain
presented in the following section are easily imaginable.

Some of the more important restricting assumptions we make are summarized here:

• Attaching and detaching things are separate actions. It is not possible to move parts
from one composite to another one using only one action, this kind of movement
always passes through a hand. There is only one hand, although domains involving
multiple hands can easily be reformulated in this way. An example of this is the
FreeCell domain, featuring multiple hand-like free cells. The reformulation can
(and will) lead to changes to plan length for domains that allow for direct movement
between composites, and this would need to be taken into account when discussing
PlanLen.

• Composites can only be decomposed into the same parts they were constructed
from. It is still possible to allow for chemistry-like domains by making use of trans-
formation operations, however. The subparts of a composite must be attached and
can only be detached obeying a strict linear order, which is a bit restrictive, but
sufficient for all domains that we want to cover. Given that subparts need to be
attached in a linear fashion, no additional generality is lost by restricting composites
to consist of two immediate subparts (the base part and the added part)2, and we
will do this.

• Transformations must always maintain the subpart hierarchy of an object, i. e. they
cannot add or remove subparts or reorder them. However, they can recursively
transform their subparts (not only immediate ones) to perform an operation like
“paint a whole stack of blocks”. This is not too restrictive, as even this restricted
kind of transformation has a strong impact on the complexity of the domain, as we
shall see.

• Equipment is only needed for two purposes: Attaching and detaching operations
might require some specific piece of equipment (like a hammer) for incorporating or
removing given parts, and transformations might require equipment to be applicable.
Attaching and detaching will always be inverse to each other and require the same
equipment for the same subpart. There is no way of specifying that equipment needs
to be allocated to an object throughout the whole construction process of a complex
structure. It will always be possible to deallocate and reallocate it in between.

2A linearly ordered composite consisting of n immediate subparts can easily be remodelled as a subcom-
posite with n− 1 immediate subparts and an added part. This transformation can be applied recursively
until no composites consist of more than two immediate subparts, introducing only polynomially many
intermediary structures.

49

• The goal objects will always be completely specified objects. This is a severe re-
striction and requires a little work for integrating domains like Schedule, where
this is not the case, into the family. If this restriction were dropped, one could easily
imagine problems for which checking if a given state is a goal state is an NP-hard
problem in itself, involving Subforest Isomorphism-type decision problems.

4.1 Manipulate

Like we did for the transportation domains, we will first introduce a fairly general manip-
ulation domain and then talk about special cases of it. Because of the greater differences
between domains, this will involve more work than for Transport. To start with, we
introduce the notion of an instance signature. The signature describes the physics of
the instance, e. g. what types of objects can be attached to what types of objects, with-
out specifying the actual initial state and goal. For many manipulation domains (like
Blocksworld), this part does not vary or varies only slightly between instances.

Definition 4.1 Manipulate instance signature
A Manipulate instance signature is a seven-tuple Σ = (B, BC , BD, BI , T, TA, T I),
where

• B is the finite set of blueprints,

• BC ⊆ B is the set of composable blueprints,

• BD ⊆ B is the set of decomposable blueprints,

• BI : B 7→ P(B)×P(B)×P(B) is the blueprint interpretation function, satisfying
BC ∪ BD ⊆ dom(BI). The domain of this function is referred to as the set of
composite blueprints BComp, B \BComp as the set of atomic blueprints BAtom.

We write bI as a shorthand for BI(b). For bI = (B1, B2, BE), the blueprints from
B1 are called allowed base parts of b, the ones from B2 are called allowed added
parts of b and the ones from BE form the required equipment of b.

• T is the finite set of transformations,

• TA ⊆ T is the set of applicable transformations and finally

• T I : T → B × B × P(B) × (B 7→ T) × (B 7→ T) is the transformation interpre-
tation function. We write tI as a shorthand for T I(t). For tI = (b, b′, BE , t1, t2),
b is called the previous blueprint, b′ is called the effect blueprint, BE is called
the transformation equipment and t1 and t2 are called the implicit subtrans-
formation specifications of t. It must be true that b is an atomic blueprint if and
only if b′ is an atomic blueprint. In this case, t1 and t2 must be empty sets.

Otherwise, let bI = (B1, B2, BE) and b′I = (B′
1, B

′
2, B

′
E).

Then for all i ∈ {1, 2}, it must be true that dom(ti) = Bi, and for all bi ∈ Bi,
T I(ti(bi)) ∈ {bi} × B′

i × { B∗
E | B∗

E ⊆ BE } × (B 7→ T) × (B 7→ T).

The encoding length of the signature is assumed to be |B| + |T |.

50

It is not hard to verify that the specified encoding length is indeed polynomially
equivalent to the length of any reasonable encoding of the information conveyed by a
Manipulate instance signature.

A blueprint should be seen as a recipe for building things: In the FreeCell domain,
a typical composite blueprint would be a black 7 tableau pile, with a red 8 tableau pile
as its only allowed base part and two allowed added parts, atomic blueprints of type ♠7
card or ♣7 card. Decomposition is inverse to composition.

No equipment is required for that blueprint, but the required equipment set can be
used in general for specifying that objects of certain types (such as a hammer) must be
allocated to the base part as equipment before the added part can be attached to it. For
each blueprint in the equipment set, one corresponding object must be committed to the
task. The equipment requirements apply to composition as well as decomposition.

Transformations transform an object of one type specified by the previous blueprint,
to an object of another type, specified by the effect blueprint, requiring that objects of
certain types are committed to the transformed object, specified by the transformation
equipment set.

What happens to the subparts of the object when a given transformation is applied is
defined by its implicit subtransformation specifications t1 and t2: If the base part of the
target object is of type b1, then that object is recursively transformed by the transforma-
tion t1(b1). The constraints on t1 ensure that this subtransformation is defined to work
on that blueprint and creates something of an appropriate type. Subtransformations may
only have equipment requirements that are already part of the original transformation,
so they do not add equipment requirements. Similarly, t2 describes what happens to the
added part.

Some transformations might only be used as subtransformations and cannot be ex-
plicitly invoked as an action in a plan. These transformations will then not be included
in the set of applicable transformations.

We have informally mentioned the term objects a number of times already. Having
defined instance signatures, we can now formally define what we understand by it. Because
objects can contain other objects as subparts, this is a recursive definition.

Definition 4.2 Object
Given a Manipulate instance signature Σ = (B, BC , BD, BI , T, TA, T I),
the set of objects OΣ,
the set of atomic objects or atoms AtomΣ,
the set of composite objects CompΣ,
the object type function τΣ : OΣ → B and
the object size function sizeΣ : OΣ → N0 are defined as follows:

1. For atomic blueprints b ∈ BAtom, we define:
b ∈ OΣ

b ∈ AtomΣ

τΣ(b)
def
= b

sizeΣ(b)
def
= 1

2. For composite blueprints b ∈ BComp with bI = (B1, B2, BE) and p1, p2 ∈ OΣ satisfy-
ing τΣ(p1) ∈ B1 and τΣ(p2) ∈ B2, we define:

51

o
def
= (b, p1, p2) ∈ OΣ

o ∈ CompΣ

τΣ(o)
def
= b

sizeΣ(o)
def
= sizeΣ(p1) + sizeΣ(p2)

3. OΣ, AtomΣ and CompΣ do not contain any other elements except those whose mem-
bership follows from the above rules.

Objects can be manipulated in three basic ways: Parts can be attached, parts can be
detached, and the whole object can be transformed.

Definition 4.3 Operations on Objects
Given a Manipulate instance signature Σ = (B, BC , BD, BI , T, TA, T I),

attachΣ : BC × OΣ × OΣ × P(B) 7→ OΣ,
detachΣ : OΣ × P(B) 7→ OΣ × OΣ and

transformΣ : OΣ × T × P(B) 7→ OΣ

are defined as follows:
∀b ∈ BC , p1, p2 ∈ OΣ, Equip, B1, B2, BE ⊆ B :

bI = (B1, B2, BE)
∧ τΣ(p1) ∈ B1

∧ τΣ(p2) ∈ B2

∧ BE ⊆ Equip
⇒ attachΣ(b, p1, p2, Equip) = (b, p1, p2)

∀o = (b, p1, p2) ∈ CompΣ, Equip, B1, B2, BE ⊆ B
b ∈ BD

∧ bI = (B1, B2, BE)
∧ BE ⊆ Equip
⇒ detachΣ(o, Equip) = (p1, p2)

∀o, o′ ∈ AtomΣ, t ∈ T, Equip, BE ⊆ B :
tI = (o, o′, BE , ∅, ∅)

∧ BE ⊆ Equip
⇒ transformΣ(o, t, Equip) = o′

∀o = (b, p1, p2), o
′ = (b′, p′1, p

′
2) ∈ CompΣ, t ∈ T, Equip, BE ⊆ B, t1, t2 ∈ B 7→ T :

tI = (b, b′, BE , t1, t2)
∧ BE ⊆ Equip
∧ p′1 = transformΣ(p1, t1(τΣ(p1)), Equip)
∧ p′2 = transformΣ(p2, t2(τΣ(p2)), Equip)
⇒ transformΣ(o, t, Equip) = o′

attachΣ, detachΣ and transformΣ are undefined otherwise

This definition formalizes the operations and constraints that have been mentioned
informally before. The arguments to attachΣ are, in sequence: the blueprint to be created,
the object that is being worked on, the object that is being attached to it and the types of
all equipment that has been committed to the task. For detachΣ, they are the target object
and the types of available equipment. For transΣ, they are the object to be transformed,
the transformation and the types of available equipment.

52

Now that objects have been defined, we can define instances of the Manipulate

domain.

Definition 4.4 Manipulate instance
A Manipulate instance is a four-tuple I = (Σ, P os, init, goal), where

• Σ is a Manipulate instance signature of encoding length M ,

• Pos is a finite set of table positions,

• init : Pos 7→ OΣ is the initial state specification and finally

• goal : Pos 7→ OΣ is the goal specification, satisfying
N =

∑

o∈ran(init) sizeΣ(o) =
∑

o∈ran(goal) sizeΣ(o).

The encoding length of the instance is assumed to be M + N .

It is assumed that the initial state specification maps table positions to the objects
that are initially located there. It is a partial function to take empty table positions
into account. Although the goal state specification is also defined as a function of table
positions rather than just a set of objects, this is only to allow for multiple identical
objects in the goal state. For reaching a goal state, it does not matter on which table
position an object is located as long as it is present. The number of table positions does
not need to be taken into account for the encoding length because it can be bounded by
N without loss of generality.

We can now define the Manipulate domain.

Definition 4.5 Manipulate domain
Let L be the set of all Manipulate instances. The Manipulate domain is the function
D : L → M mapping instances to state models as follows:

For Σ = (B, BC , BD, BI , T, TA, T I),
(Σ, P os, init, goal) 7→ (S, s0, SG, A, δ), where

S
def
= (OΣ ∪ {⊥}) × (Pos 7→ OΣ) × (Pos 7→ Pos),

s0
def
= (⊥, init, ∅),

SG
def
= {(⊥, table, alloc) ∈ S | ∃σ ∈ Sym(Pos) : table = goal ◦ σ },

A
def
= { pickpos | pos ∈ Pos } ∪ { droppos | pos ∈ Pos }
∪ { decomposepos | pos ∈ Pos } ∪ { composepos,b | pos ∈ Pos, b ∈ BC }
∪ { commitpos,pos′ | pos, pos′ ∈ Pos } ∪ { releasepos | pos ∈ Pos }
∪ { transformpos,t | pos ∈ Pos, t ∈ T },

∀pos ∈ Pos, s = (hand, table, alloc) ∈ S :
hand = ⊥

∧ pos ∈ dom(table) \ (dom(alloc) ∪ ran(alloc))

⇒ δ(s, pickpos)
def
= (table(pos), table \ {(pos, table(pos))}, alloc),

∀pos ∈ Pos, s = (hand, table, alloc) ∈ S :
hand 6= ⊥

∧ pos /∈ dom(table)

⇒ δ(s, droppos)
def
= (⊥, table ∪ {(pos, hand)}, alloc),

53

∀pos ∈ Pos, s = (hand, table, alloc) ∈ S, Equip ⊆ B, o′, hand′ ∈ OΣ :
hand = ⊥

∧ pos ∈ dom(table) \ dom(alloc)
∧ Equip = { τΣ(table(p)) | p ∈ alloc−1({pos}) }
∧ detachΣ(table(pos), Equip) = (o′, hand′)

⇒ δ(s, decomposepos)
def
= (hand′, table ⊕ {(pos, o′)}, alloc),

∀pos ∈ Pos, b ∈ BC , s = (hand, table, alloc) ∈ S, Equip ⊆ B, o′ ∈ OΣ :
hand 6= ⊥

∧ pos ∈ dom(table) \ dom(alloc)
∧ Equip = { τΣ(table(p)) | p ∈ alloc−1({pos}) }
∧ attachΣ(b, table(pos), hand, Equip) = o′

⇒ δ(s, composepos,b)
def
= (⊥, table ⊕ {(pos, o′)}, alloc),

∀pos, pos′ ∈ Pos, s = (hand, table, alloc) ∈ S :
pos 6= pos′

∧ pos ∈ dom(table) \ dom(alloc)
∧ pos′ ∈ dom(table)

⇒ δ(s, commitpos,pos′)
def
= (hand, table, alloc ∪ {(pos, pos′)}),

∀pos ∈ Pos, s = (hand, table, alloc) ∈ S :
pos ∈ dom(alloc)

⇒ δ(s, releasepos)
def
= (hand, table, alloc \ {(pos, alloc(pos))}),

∀pos ∈ Pos, t ∈ TA, s = (hand, table, alloc) ∈ S, Equip ⊆ B, o′ ∈ OΣ :
pos ∈ dom(table) \ dom(alloc)

∧ Equip = { τΣ(table(p)) | p ∈ alloc−1({pos}) }
∧ transformΣ(table(pos), t, Equip) = o′

⇒ δ(s, transformpos,t)
def
= (hand, table ⊕ {(pos, o′)}, alloc) and finally

δ is undefined otherwise.

A state in the Manipulate domain consists of three parts. The first part specifies
the object in hand (or ⊥, if no object is in hand). The second part, usually called table,
maps table positions to the objects located there. This is a partial function to allow for
empty table positions. The third part, usually called alloc for equipment allocation, maps
table positions to other table positions, where alloc(pos1) = pos2 means that the object
at the first position can be used as equipment at the second table position.

In the initial state, the hand is empty, the state of the table follows the initial state
specification, and there are no equipment allocations.

In a goal state, the only requirement is that there is some permutation of the objects
on the table that matches the goal specification. This can only be possible if the hand
is empty, since init and goal contain the same number of atomic objects as subparts by
definition.

The pick and drop operators move objects between the table and the hand. An object
cannot be picked up if it is currently being used as equipment or has equipment allocated
to it.

The decompose and compose operators detach a subpart from an object at a given
table position and put in in hand or incorporate the object in hand into the object at a
given table position. Objects that are currently used as equipment cannot be worked on,

54

and in order to be able to work on an object, type and equipment constraints must be
met that are checked by detachΣ and attachΣ.

To allocate or deallocate equipment, the commit and release operators can be used.
Objects can only be committed to one table position at the same time.

Finally, transform transforms an object at a given table position using a given trans-
formation, provided the necessary equipment has been made available and the target
object is not currently being used as equipment.

4.2 Special Cases of Manipulate

We will now define special cases of Manipulate that we consider particularly interesting.
We will distinguish four orthogonal features, totalling 36 variants of the original domain.
They are named Manipulate-SiTjEkPl, where i, k ∈ {0, 1, 2} and j, l ∈ {0, 1} are the
parameters for the different features of the domain. For all four parameters it is true that
higher values define more general domains. Manipulate-S2T1E2P1 is just another name
for Manipulate.

Definition 4.6 Special cases of Manipulate

For i, k ∈ {0, 1, 2} and j, l ∈ {0, 1}, the Manipulate-SiTjEkPl domain (subparts –
transformations – equipment – (table) positions) is defined as the restriction of the Ma-

nipulate domain to those instances I = (Σ, P os, init, goal), using an instance signature
Σ = (B, BC , BD, BI , T, TA, T I), that adhere to the following constraints:

• For i = 0, all blueprints are atomic, i. e. B = BAtom. There is no construction or
destruction going on in these domains.

• For i = 1, additionally composite blueprints that have sets of atomic blueprints
as their allowed added parts are possible. This allows building “stacks” of atomic
objects.

• For i = 2, there is no restriction on the subparts of a blueprint.

• For j = 0, T = ∅. There are no transformations in these domains.

• For j = 1, there are no restrictions on T .

• The set of equipment blueprints of Σ is defined as:

BEquip
def
=

⋃

(B1,B2,BE)∈ran(BI) BE ∪
⋃

(b,b′,BE ,t1,t2)∈ran(TI) BE.

For k = 0, BEquip = ∅. No equipment is required in these domains.

• For k = 1, BEquip only consists of atomic blueprints, and no blueprint in BEquip

appears as an allowed subpart in BI or as the previous or effect blueprint of any
transformation. Objects used as equipment in these domains are “separate” from
other kinds of objects: they are always atomic, can never be incorporated into com-
posites, and cannot be created or changed by a transformation.

• For k = 2, there is no restriction on BEquip.

55

• For l = 0, |Pos| =
∑

o∈ran(init) sizeΣ(o). There are enough table positions for holding
all atomic objects in these domains, and hence the number of table positions can be
regarded as unlimited.

• For l = 1, |Pos| can be any natural number.

As is easy to check from these definitions, the generalization-specialization relationship
between these domains is straight-forward: Manipulate-SiTjEkPl is a specialization of
Manipulate-Si′Tj′Ek′Pl′ if and only if i ≤ i′, j ≤ j′, k ≤ k′, and l ≤ l′.

Figure 4.1 summarizes these definitions.

subparts 0: no subparts
1: one composite, one atom
2: no restrictions

transformations 0: no
1: yes

equipment 0: none
1: separate blueprints
2: no restrictions

table positions 0: unlimited
1: any number

Figure 4.1: The Manipulate domain family.

There are two subfamilies in this hierarchy that are sufficiently important to warrant
their own name, namely the ones without transformations and the ones without composite
blueprints.

Domains without transformations are called construction domains, and for i ∈ {1, 2}3,
k ∈ {0, 1, 2} and l ∈ {0, 1}, Construct-SiEkPl is defined to be another name for
Manipulate-SiT0EkPl. Domains without composite blueprints but with transformations
are called transformation domains, and for k ∈ {0, 1, 2}, Transform-Ek is defined to be
another name for Manipulate-S0T1EkP0.

4

The Construct and Transform domains contain disjoint sets of domains, and all
non-trivial domains that fall into neither family must feature composite blueprints and
transformations and thus be generalizations of Manipulate-S1T1E0P0. We will first
show that PlanEx (and thus also PlanLen) for this domain is PSPACE-hard, even if
all composites consist of two atomic parts only.

After that, we will prove PSPACE-completeness for all domains outside the construc-
tion and transformation subfamilies.

For the first proof, we must first introduce deterministic Turing Machines.

Definition 4.7 Deterministic Turing Machine
A deterministic Turing Machine (DTM) is an eight-tuple
M = (Q, q0, qY , qN , Σ, Γ, #, δ), where

3There is no point in allowing i = 0, because no interesting activity can take place in a domain without
transformations if there are no composite blueprints.

4There is no point in allowing to limit the number of table position as in these domains there is no
reason to use the hand at all. There is no difference between P0 and P1 here.

56

• Q is the finite set of states, containing (along with other states) a start state q0,
an accepting halt state qY and a rejecting halt state qN ,

• Σ is the finite input alphabet,

• Γ ⊇ Σ is the finite tape alphabet, containing a blank symbol # and finally

• δ : (Q \ {qY , qN}) × Γ → Q × Γ × {−1, +1} is the transition function.

Our definition is the same as in [Garey and Johnson, 1979], except that we write the
blank symbol differently to avoid confusion with blueprints. Also see this reference for a
definition of the Linear Space Acceptance problem used in the following proof and
pointers to the well-known proof of PSPACE-completeness for this problem.

Theorem 4.8 PSPACE-hardness of PlanEx-Manipulate-S1T1E0P0

PlanEx-Manipulate-S1T1E0P0 is PSPACE-hard, even if composite blueprints solely
consist of atomic parts.
Proof: We reduce the Linear Space Acceptance problem to the problem at hand.

Let M = (Q, q0, qY , qN , ΣT , Γ, #, δ) be a DTM and w = w1 . . . wn for n ∈ N0 be the
input to M . Without loss of generality, we can assume that the machine will only halt
when all tape cells contain the blank symbol and the current tape position is the first
position. It is not hard to modify M so that these requirements are met.

We define δ−1 = δ∩((Q×Γ)×(Q×Γ×{−1})) and δ+1 = δ∩((Q×Γ)×(Q×Γ×{+1})).
The corresponding PlanEx-Manipulate-S1T1E0P0 instance I is defined as

Σ = (B, BC , BD, BI , T, TA, T I), I = (Σ, P os, init, goal), where

BCell
def
= {1, . . . , n + 1} × Γ

BState
def
= {1, . . . , n + 1} × Γ × Q

BComp
def
= BState × BCell

B
def
= BCell ∪ BState ∪ BComp

BC
def
= BD

def
= BComp

(A, B)I
def
= ({A}, {B}, ∅) for (A, B) ∈ BComp

TA
def
= ({2, . . . , n + 1} × δ−1 × Γ) ∪ ({1, . . . , n} × δ+1 × Γ)

T
def
= TA ∪ ({P1, P2} × TA)

∀trans = ((q, a), (q′, a′, d)) ∈ δ, t = (i, trans, b) ∈ TA :

tI
def
= ((old1, old2), (new1, new2), ∅, {(old1, (P1, t))}, {(old2, (P2, t))})

(P1, t)
I def

= (old1, new1, ∅, ∅, ∅)

(P2, t)
I def

= (old2, new2, ∅, ∅, ∅)

where old1
def
= (i, a, q), old2

def
= (i + d, b), new1

def
= (i + d, b, q′), new2

def
= (i, a′)

Pos
def
= {1, . . . , n + 1}

init
def
= {(1, (1, w1, q0))} ∪ { (i, (i, wi)) | i ∈ {2, . . . , n} } ∪ {(n + 1, (n + 1, #))}

goal
def
= {(1, (1, #, qY))} ∪ { (i, (i, #)) | i ∈ {2, . . . , n + 1} }

First note that the size of the resulting instance is polynomial in |Q| + |Γ| + n and
thus polynomial in the size of the input, and that it can be written down in polynomial
time. It remains to prove that the resulting Manipulate-S1T1E0P0 instance is solvable

57

if and only if there is an accepting computation for the original Turing Machine that
only visits tape cells between 1 and n + 1. We will show this by pointing out a close
relationship between transformations in the planning instance and state transitions in the
Turing Machine that do not leave these tape cells.

There are n + 1 table positions in the generated instance. Initially, table position i
corresponds to tape cell i. Although this strict correspondence may change after some
actions are performed, it helps to identify table positions with tape cells.

There are two sets of atomic blueprints, BCell, called cell blueprints, containing ele-
ments like (3, x) to signify that tape cell 3 contains character x, and BState, called state
blueprints, containing elements like (3, x, q7) to signify that tape cell 3 contains character
x, is the current position of the read/write head, and the machine is in state q7.

Any state blueprint can be combined with any cell blueprint to form a composite
blueprint from BComp. These are composable and decomposable, and no equipment is
required. The definitions of Pos, init and goal are straight-forward.

The definition of T and its interpretation function is most interesting. We will only
explain transformations that correspond to transitions that move the read/write head to
the left. The other transformations are modelled correspondingly.

Such an element t ∈ TA is characterized by three parts: A number reflecting the
current tape cell, the transition from δ−1 it corresponds to and a character from the tape
alphabet, which reflects the current contents of the tape cell that the read/write head
moves to as an effect of the transition. For each such t, there are transformations (P1, t)
and (P2, t) that cannot be invoked explicitly and are used as implicit subtransfomations
of t (for the base and added part, respectively).

In order to apply a transformation relating to tape cell i, a Turing Machine transition
trans and a neighbouring character b, a composite must be formed out of a state blueprint
for tape cell i, matching state and tape character of the transition, and a cell blueprint
for tape cell i − 1, holding character b. After applying the transformation (including the
subtransformations), the state blueprint now relates to tape cell i−1, b and the new state
(because the read/write head has moved and the state has changed), and the cell blueprint
relates to tape cell i, now holding the character written by the transition. The resulting
composite can now be taken apart again, and the next transition can be simulated.

Thus, if there is an accepting computation for the Turing Machine that only visits tape
cells between 1 and n + 1, then there is a plan for the Manipulate-S1T1E0P0 instance.
To see that the converse is also true, note that the only way to make progress towards
the goal is by applying transformations, which always correspond to a transition of the
Turing Machine.

Although the preceding theorem did not discuss plan lengths, it is not hard to come
up with finite tape Turing Machines that have accepting paths, but require exponen-
tially many steps to halt. For these, plans for the corresponding Manipulate-S1T1E0P0

instance must also be exponentially long
In the sections to come, when we will encounter domains that exhibit exponential

length shortest plans, we will pay less attention to the complexity of PlanEx and
PlanLen because of the obvious implications of the exponential length result for Plan-

Gen and PlanOpt.

58

Theorem 4.9 PlanEx-Manipulate and PlanLen-Manipulate ∈ PSPACE
PlanEx-Manipulate and PlanLen-Manipulate can be solved with polynomial space.
Proof: We show membership in NPSPACE, which proves the result because PSPACE
= NPSPACE. States in Manipulate can be encoded using space that is polynomial in
the description length because objects can easily be encoded using space that is polynomial
in their size as can be verified inductively.

Given a state and action, applicability of that action can be checked in polynomial
time, and the resulting state of the application can be computed in polynomial time.
The same is true for membership in the goal set if a non-deterministic algorithm is used
for guessing the correct permutation of table positions to match a state with the goal
specification. So all these operations require no more than polynomial space.

Thus, a guess and check algorithm can solve PlanEx-Manipulate using polynomial
space. For PlanLen-Manipulate, a counter is needed to keep track of the number of
actions in the plan, but this, again, only needs polynomial space in the size of the input
(no more space than the part of the input that specifies the allowed plan length).

Note that the latter result is not implied by the domain-dependent planning result in
[Erol et al., 1995], because it is not obvious how the general Manipulate domain with
its recursive transformations could be encoded in the language used there.

Putting the last two theorems together, we can conclude that any generalization of
Manipulate-S1T1E0P0 in the Manipulate hierarchy, and thus all non-trivial domains
in it that are neither construction nor transformation domains, are PSPACE-complete
regarding PlanEx and PlanLen. So we can limit our further analysis to these two
subhierarchies, starting with transformation domains.

4.3 Transform

To simplify notation and terminology, we first observe that in Transform, as all objects
are atomic, there is no need to distinguish between blueprints and objects. We will use
these terms interchangeably.

For an instance signature Σ = (B, BC , BD, BI , T, TA, T I) in the Transform family,
BC , BD and BI are required to be empty sets, and we can safely assume that TA = T .
Furthermore, all subtransformation specifications must be empty. We will thus omit these
parts when specifying Σ and its components.

Of the three domains in this hierarchy, we will first investigate the easiest one, the
no-equipment domain Transform-E0.

Theorem 4.10 PlanLen-Transform-E0 ∈ P
PlanLen-Transform-E0 can be solved in polynomial time.
Proof: As there is no equipment in this domain, reasonable plans solely consist of trans-
formations.

Given an instance I = ((B, T, T I), P os, init, goal), we describe an algorithm for gen-
erating an optimal plan or detecting that no plan exists.

The transformation digraph of the instance is the digraph with vertex set B and arc set
{(b, b′) | ∃t ∈ T : tI = (b, b′, ∅)}. If there is a directed path between two objects o and o′,
then the former object can be transformed into the latter by applying the transformation

59

operations corresponding to the arcs of that path, in sequence. Shortest paths in this
digraph correspond to shortest action sequences for a given multi-step transformation.

Without loss of generality, we can assume that init and goal are total functions. For
pos, pos′ ∈ Pos, let dist(pos, pos′) be the length of the shortest path between init(pos)
and goal(pos′) in the transformation digraph or ∞ if no such path exists.

Each initial object must ultimately be transformed into one of the goal objects, so for
generating a shortest plan, we have to find a permutation σ ∈ Sym(Pos) that minimizes
∑

pos∈Pos dist(pos, σ(pos)). Assuming that the best σ has been found, a shortest plan
consists of |Pos| independent sequences of transformations, transforming the object at
table position pos into the object goal(σ(pos)).

For calculating the dist values and coming up with the corresponding transformation
sequences, a polynomial time graph search algorithm such as breadth-first search can be
employed. Finding the optimal σ is a minimum weighted matching problem, for which
polynomial algorithms are known (cf. [Mehlhorn and Näher, 1999]). Thus, the problem
can be solved in polynomial time.

In the easier of the two remaining cases, the objects that are going to be used as
equipment are not involved in transformations.

Theorem 4.11 PlanEx-Transform-E1 ∈ P
PlanEx-Transform-E1 can be solved in polynomial time.
Proof: In this domain, transformations might require equipment. To reflect this, we
redefine the transformation digraph as a labeled digraph, where the arc of a transformation
t ∈ T is labeled with the required equipment. Multiple arcs with different labels may
exist between the same two vertices. In constructing the digraph, we check that for each
blueprint in a label, an object of that type is part of the initial state. If this is not the
case, this arc can never be used, and it is not created.

Once this has been done, the same two-dimensional matching algorithm as in Theorem
4.10 can be used to check if a plan exists. The actual plan is again made up of a number of
individual transformation sequences corresponding to shortest paths in the transformation
digraph, and each arc on such a path corresponds to a sequence of commit actions to
allocate the equipment, a transform action and a series of release actions to deallocate
the equipment.

However, the plan generated by that algorithm is no longer a shortest plan, as some
arcs are more costly in terms of the number of actions generated than others, and even if
shortest paths in a weighted graph were used, not all release actions would be necessary.
Indeed, the related optimization problem is harder, as will be proved now. But first we
have to define the problem that is used as a basis for reduction.

Definition 4.12 3DM

Given three disjoint sets W, X, Y of the same cardinality n and M ⊆ W × X × Y , does
M contain a three-dimensional matching, i. e. a subset M ′ of cardinality n such that
⋃

(w,x,y)∈M ′{w, x, y} = W ∪ X ∪ Y ?

This problem is proved NP-complete in [Garey and Johnson, 1979].

60

Theorem 4.13 NP-completeness of PlanLen-Transform-E1

PlanLen-Transform-E1 is NP-complete.
Proof: Membership in NP follows from the preceding theorem.

For NP-hardness, we prove 3DM ≤p PlanLen-Transform-E1 by giving a polyno-
mial transformation. The mapping between instances is defined as follows:

(W = {w1, . . . , wn}, X = {x1, . . . , xn}, Y = {y1, . . . , yn}, M)
7→ (((B, T, T I), P os, init, goal), L), where:

B
def
= W ∪ X ∪ Y init(i)

def
= wi for i ∈ {1, . . . , n}

T
def
= M init(i)

def
= yi−n for i ∈ {n + 1, . . . , 2n}

(w, x, y)I
def
= (w, x, {y}) for (w, x, y) ∈ T goal(i)

def
= xi for i ∈ {1, . . . , n}

Pos
def
= {1, . . . , 2n} goal(i)

def
= yi−n for i ∈ {n + 1, . . . , 2n}

L
def
= 2n

This mapping satisfies all the requirements for a Transform-E1 instance and can
clearly be calculated in polynomial time.

Assume that M contains a three-dimensional matching {m1, . . . , mn}, where mi is
the triple (wji

, xki
, yli). Then it is not hard to verify that the generated Transform-E1

instance is solved by [commitn+l1,j1, transformj1,m1
, . . . , commitn+ln,jn

, transformjn,mn
],

a plan of length 2n.
Now assume that there is a plan of length at most 2n for the Transform-E1 instance.

None of the n objects on the first n table positions are part of the goal, so they all need
to be transformed, requiring at least n transformation actions. As every transformation
needs some equipment to be committed, there are at least n commitment actions, implying
that there are exactly n actions of type transform and commit each and none of type
release.

Let M ′ be the set containing the set of transformations that are used in the plan.
M ′ has cardinality n. Because each of the first n objects from the initial state is trans-
formed, M ′ covers all elements of W . Because each of the first n objects from the goal
specification is created by one of these transformations, M ′ covers all the elements of X.
Finally, because all equipment requirements are satisfied without any object being used
as equipment twice (which would require a release action), and only the objects at initial
table positions n + 1, . . . , 2n can be used as equipment, M ′ covers all the elements of Y .

Thus, M ′ is a three-dimensional matching. This concludes the proof.

For the most general case of Transform, where equipment can be transformed and
be created by a transformation, we will show that the length of shortest plans can grow
exponentially with encoding length.

Theorem 4.14 Exponential plans for Transform-E2

Shortest plan lengths in Transform-E2 can grow exponentially in the encoding length of
the instance.
Proof: We devise a sequence (In)n∈N0

of instances for which encoding lengths grow
polynomially but shortest plan lengths grow exponentially.

For n ∈ N0, In = ((B, T, T I), P os, init, goal) is defined as follows:

B
def
=

⋃

i∈{1,...,n}{Ai, Bi, Ci}

T
def
=

⋃

i∈{1,...,n}{ABi, BCi, CAi}

61

ABI
i

def
= (Ai, Bi, {C1, . . . , Ci−1}) for i ∈ {1, . . . , n}

BCI
i

def
= (Bi, Ci, {A1, . . . , Ai−1}) for i ∈ {1, . . . , n}

CAI
i

def
= (Ci, Ai, ∅) for i ∈ {1, . . . , n}

Pos
def
= {1, . . . , n}

init(i)
def
= Ai for i ∈ {1, . . . , n}

goal(i)
def
= Ci for i ∈ {1, . . . , n}

Clearly, encoding length of In is polynomial in n.
Let (ln)n∈N0

denote the length of the shortest plan for solving In. First notice that the
shortest plan for solving I1 consists of two steps, transform1,AB1

and transform1,BC1
,

thus l1 = 2.
Now let n ≥ 1 be a natural number. For solving In+1, an object of type Cn+1 must be

created at some point, which is only possible using transformation BCn+1, which in turn
requires an object of type Bn+1, only creatable by ABn+1.

For ABn+1 to be applicable, equipment of types C1, . . . , Cn must be allocated to the
object to be transformed. Towards this end, objects of this type must be created in the
first place. Achieving this subgoal requires solving a subproblem identical to In, thus
requiring at least ln steps. Thus, more that ln steps are needed before an object of type
Bn+1 can be created for the first time.

Now consider the state after an object of type Cn+1 has been created for the first time.
Because of the equipment requirements for BCn+1, the other table positions must contain
objects A1, . . . , An at this point, and transforming these to C1, . . . , Cn requires at least
another l(n) actions, thus l(n + 1) ≥ 2l(n), and, since l(1) = 2, l(n) ≥ 2n as required.

This does not conclude the proof, however. We have yet to show that for all n ∈ N0,
In is actually solvable and thus the definition of (ln)n∈N0

makes sense. This is obvious for
n = 0, as a zero-step plan solves this instance.

Now let n be a natural number and Pn be a plan that solves In. Then it can easily be
verified that the following action sequence solves In+1 :

Pn ++ [commit1,n+1, . . . , commitn,n+1, transformn+1,ABn+1
, release1, . . . , releasen]

++ [transform1,CA1
, . . . , transformn,CAn

]
++ [commit1,n+1, . . . , commitn,n+1, transformn+1,BCn+1

, release1, . . . , releasen]
++ Pn

4.4 Schedule

The Schedule domain from the AIPS 2000 competition can be seen as a special case
of Transform-E1: In this domain, the goal is to change certain properties of a set of
objects, such as colour, shape, or surface condition, to match the goal requirements. This
is achieved by processing (transforming) them with certain equipment, namely a polisher,
a roller, a lathe, a grinder, a punch, a drill press, a spray painter and an immersion painter.

There are two aspects however, which make it hard to fit the Schedule domain into
the framework we introduced: Firstly, different to Transform-E1, the goal specification
does not completely define the state of objects. Rather than requiring object A1 to be
cold, red, oblong and of a smooth surface, it may just be required that A1 is red, no
matter what its other properties are. It is not hard to achieve a similar effect in the

62

Transform framework, however, by adding extra transformations that can turn cold,
red, oblong, smooth objects into red objects. This would affect plan length of course, but
not in a way such that PlanLen-Schedule and its Transform equivalent could fall
into different complexity classes.

Unfortunately, the second aspect cannot be accounted for that easily. The mechanisms
for committing and releasing equipment in Schedule are different to the ones used
in Transform: The transformation actions (such as do-lathe) implicitly commit the
required equipment (and cannot be invoked if it is already being used), and all equipment
is released simultaneously, with just one do-time-step action. No more than one piece
of equipment can be committed to an object at the same time. This is a difference in
modelling that can cause different complexity results for PlanLen-Schedule and its
counterpart in the Transform framework, so we can not avoid discussing the “real”
Schedule domain to come up with meaningful results.

Note, however, that the domains are sufficiently similar to allow for the conclusion
that PlanEx-Schedule ∈ P, and indeed plans can be generated by an algorithm that
is almost identical to the one from Theorem 4.11.

Definition 4.15 Schedule object states and machines
The sets of Schedule temperatures, surface conditions, shapes, colours and holes
are defined as follows:

Temp
def
= {cold, hot}

Surface
def
= {rough, smooth, polished, none}

Shape
def
= {cylindrical, circular, oblong}

Colour
def
= {blue, yellow, red, black, none}

Hole
def
= {Front1, F ront2, F ront3, Back1, Back2, Back3}

The set of Schedule object states is defined as

States
def
= Temp × Surface × Shape × Colour × P(Hole).

The set of Schedule goal state descriptions is defined as

GoalDesc
def
= P(States).

The set of Schedule equipment is defined as

Equip
def
= {roller, lathe, grinder, polisher, punch, drill-press, spray-painter, i.-painter}.

For each e ∈ Equip, applye is a fixed partial function between object states, the exact
definition of which is not important to our analysis.

Definition 4.16 Schedule instance
The set of Schedule instances is defined to be (States × GoalDesc)∗. The encoding
length of an instance is assumed to be its (sequence) length.

Schedule instances specify a sequence of initial states for objects along with their
goal description. Note that in the real PDDL domain, not all sets of states are candidates
for a goal description, so that instances as defined here are in fact harder to solve than
the “real” AIPS 2000 instances. However, as we will see by the results, this will not make
a difference. It is of critical importance that States and GoalDesc are not part of the
instance but fixed for all instances.

While it is in fact possible to define Schedule instances with a richer state space
based on the given PDDL domain file (by adding additional holes), this possibility is not

63

made use of in the AIPS 2000 problem suite, and it is our goal to state results on the
domain as it is used in the benchmarks.

Definition 4.17 Schedule domain
Let L be the set of all Schedule instances. The Schedule domain is the function
D : L → M mapping instances to state models as follows:

((s1, g1), . . . , (sn, gn)) 7→ (S, s0, SG, A, δ), where

S
def
= Statesn × (Equip 7→ {1, . . . , n}),

s0
def
= ((s1, . . . , sn), ∅),

SG
def
= (g1 × · · · × gn) × (Equip 7→ {1, . . . , n}),

A
def
= { usepos,e | pos ∈ {1, . . . , n}, e ∈ Equip } ∪ {time-step},

∀pos ∈ {1, . . . , n}, e ∈ Equip, s = ((s1, . . . , sn), equip) ∈ S :
spos ∈ dom(applye) ∧ e /∈ dom(equip) ∧ pos /∈ ran(equip)

⇒ δ(s, usepos,e) = ((s1, . . . , spos−1, applye(spos), spos+1, . . . , sn), equip ∪ {(e, pos)}),

∀s = (objs, equip) ∈ S : δ(s, time-step)
def
= (objs, ∅) and finally

δ is undefined otherwise.

States in this state model consist of a description of the object states of the various
objects and the current equipment allocation function. Equipment allocation is reset by
the time-step action. In the original Schedule domain, this action can only be applied
if some use action was applied previously, but we do not have to model this explicitly
because if this were not the case, there would be no point in applying time-step anyway.

We will now prove that PlanLen for this definition of the Schedule domain, which
is a generalization of the Schedule domain as used in the AIPS 2000 competition, is
already polynomial.

Theorem 4.18 PlanLen-Schedule ∈ P
PlanLen-Schedule can be solved in polynomial time.
Proof: First, observe that objects with the same current state and goal specification
need not be distinguished. As there is only a fixed number M of possible combinations of
current state and goal specification of an object, a state of a Schedule instance (apart
from the current allocation of equipment) can be described in an abstract way by an
M-tuple of natural numbers, specifying how many objects of each kind are present. This
will be called an abstract state of the instance. Abstract states where each entry greater
than zero relates to a state/goal pair where the state matches the goal description are
called abstract goal states.

The same applies to transformations: Rather than specifying that object k is being
transformed using e ∈ Equip, it suffices to say that some object which matches the current
state and goal description of k is being transformed using e. Thus, the apply operators
can be reformulated to work on abstract states. Converting an abstract plan of that kind
into an actual plan is sufficiently easy to not require further discussion.

To avoid having to worry about allocated equipment, the abstract actions can be
replaced by abstract macro actions, sequences of abstract actions containing exactly one
time-step action, which is the last one in the sequence. Each plan can be partitioned into
macro actions of that kind, assuming that it ends in a time-step action (which does not

64

make sense for shortest plans, but we can require this property and then remove the last
action after the plan has been generated). The advantage of this view is that before and
after each abstract macro action, no equipment is allocated to any object.

Because there are only eight items of equipment, each abstract macro action can
consist of no more than nine actions, one for each item plus the concluding time-step.
Thus, the number of possible macro moves is constant.

What is gained by recasting the problem in that way? As was said before, abstract
states can be represented by an M-tuple of natural numbers, where M = |States| ·
|GoalDesc| is fixed and each natural number in this tuple can be bounded by the total
number of objects in the instance, which is its encoding length. Thus, the number of
abstract states is polynomial in the encoding length.

This means that explicit graph-search techniques can be used to find a shortest plan
consisting of abstract macro moves. Because different macro moves can comprise a differ-
ent number of actions (between 1 and 9), they should be weighted by that number. Still,
the one-to-all shortest path problem in a weighted digraph can be solved in polynomial
time, and it is then easy to pick the abstract goal state with shortest weighted distance
from the abstract initial state (if any such state exists), extract the abstract plan, expand
the macro actions and assign actual objects to the abstract actions to compute an optimal
sequential plan in polynomial time.

Note that in reality, people are usually not really interested in finding shortest plans
in the Schedule domain, but finding plans that involve a minimal number of time-step
actions. This can be achieved with the algorithm described in the last proof by using an
unweighted graph, i. e. weighting all macro moves with the same value of 1.

Also note that the execution time of this algorithm in its basic form grows at least as
quickly as NM , where N is the input size and M = |States| · |GoalDesc| = 7680 · 27680.
Although the “real” GoalDesc is far smaller, as the kind of disjunctive goal conditions
used in the AIPS competition reduces its cardinality from 27680 to 80, an N7680·80 algorithm
still is not tractable in practice.

Although further optimization techniques can be used to decrease the complexity
significantly, it is not obvious what a really tractable algorithm could look like.

This concludes our discussion of transformation domains and we move on to the last
family of domains to be discussed, ones focusing on construction.

4.5 Construct and Blocksworld

In this subfamily of Manipulate, no transformations take place, which again allows to
simplify notation.

For a Construct instance signature Σ = (B, BC , BD, BI , T, TA, T I), the last three
components will always be empty sets, and we will omit them.

We have already seen that shortest plans can get exponentially long in the Manipu-

late domain when transformations and composites are allowed (Theorem 4.8) or when
transformations and arbitrary equipment requirements are allowed (Theorem 4.14). We
will now investigate two cases of Construct that exhibit this behaviour, starting with
construction of stacks with limited table positions.

65

Theorem 4.19 Exponential plans for Construct-S1E0P1

Shortest plan lengths in Construct-S1E0P1 can grow exponentially in the encoding
length of the instance.
Proof: We devise a sequence (In)n≥2 of instances for which encoding lengths grow poly-
nomially but shortest plan lengths grow exponentially.

For n ≥ 2, , In = ((B, BC , BD, BI), P os, init, goal) is defined as follows:

B
def
= { Ai | i ∈ {1, . . . , n} } ∪ { Ti | i ∈ {1, . . . , n − 1} }

BC
def
= BD

def
= { Ti | i ∈ {1, . . . , n − 1} }

T I
i

def
= ({Ti+1, . . . , Tn, Ai+1, . . . , An}, {Ai}, ∅) for i ∈ {1, . . . , n − 1}

Pos
def
= {1, 2, 3}

init
def
= {(1, (T1, (T2, . . . , (Tn−1, An, An−1), . . . , A2), A1))}

goal
def
= {(1, (T1, (T2, . . . , (Tn−2, An−1, An−2), . . . , A2), A1)), (2, An)}

Clearly, encoding length of In is polynomial in n.
If Ai is interpreted as “a block of width i”, and Ti is read as “a tower with a block

of width i on top”, then this formalizes the semantics of the Towers of Hanoi problem
set, apart from the goal specification. An object of type Ti consists of a tower or block of
greater width than i and a block of width i on top of it, capturing the constraints for a
Towers of Hanoi problem.

In the initial state, all blocks are piled up in one big tower at the first table position,
just like in a usual Towers of Hanoi problem. Note that making use of the normal Towers
of Hanoi goal of moving the whole tower to the third table position would not make sense,
because table positions of goal objects are not distinguished in the Construct domain.
So the modified goal is to separate the top n − 1 blocks of the initial tower from the
bottom-most block, which is in a way “half” the Towers of Hanoi problem.5

Thus, the length of the shortest solution to that instance is half the length of the
solution to the corresponding Towers of Hanoi problem minus one, which is exponential
in n. More precisely, it is 2n−1 − 1. Because the Towers of Hanoi problems and their
solutions are well-known, we will not go into more detail here.

The previous proof shows that one source of long plans is restricted space on the
table: Intermediary objects that are not immediately useful towards satisfying the goal
need to be built in order to make room for other movements. Another source of long
plans are complex equipment requirements, as seen in Theorem 4.14. The same is true if
transformations are not allowed, but composites are, even if only composites consisting
of two atomic parts are used. This is the message of the following theorem.

Theorem 4.20 Exponential plans for Construct-S1E2P0

Shortest plan lengths in Construct-S1E2P0 can grow exponentially in the encoding
length of the instance, even if composite blueprints solely consist of atomic parts.
Proof: We devise a sequence (In)n∈N0

of instances for which encoding lengths grow
polynomially but shortest plan lengths grow exponentially.

5Remember that in Towers of Hanoi, the optimal plan first moves the top n − 1 blocks to the second
position, then moves the bottommost block to the third position, then moves the top n− 1 blocks to the
third position.

66

For n ∈ N0, In = ((B, BC , BD, BI), P os, init, goal) is defined as follows:

B
def
=

⋃

i∈{1,...,n}{Ai, Bi, ABi, Ci, Di, CDi}

BC
def
= BD

def
=

⋃

i∈{1,...,n}{ABi, CDi}

ABI
i

def
= ({Ai}, {Bi}, {AB1, . . . , ABi−1, CD1, . . . , CDi−1}) for i ∈ {1, . . . , n}

CDI
i

def
= ({Ci}, {Di}, {ABi, A1, . . . , Ai−1, C1, . . . , Ci−1}) for i ∈ {1, . . . , n}

Pos
def
= {1, . . . , 4n}

init
def
= {(1, A1), (2, B1), (3, C1), (4, D1), . . . ,

(4n − 3, An), (4n − 2, Bn), (4n − 1, Cn), (4n, Dn)}

goal
def
= {(1, (AB1, A1, B1)), (3, (CD1, C1, D1)), . . .

(4n − 3, (ABn, An, Bn)), (4n − 1, (CDn, Cn, Dn))}

Clearly, encoding length of In is polynomial in n.
We first show that all these instances are solvable. For n = 0, the empty plan is a

solution. Let Pn be a plan for In and Qn be a plan for the inverse problem (with goal and
init specification swapped). Then Pn+1 and Qn+1 are defined as follows:

Pn+1
def
= Pn ++ [commit1,4n+1, commit3,4n+1, . . . , commit4n−1,4n+1]

++ [pick4n+2, compose4n+1,ABn+1
, release1, release3, . . . , release4n−1] ++ Qn

++ [commit1,4n+3, commit3,4n+3, . . . , commit4n+1,4n+3]
++ [pick4n+4, compose4n+3,CDn+1

, release1, release3, . . . , release4n+1] ++ Pn

Qn+1
def
= Qn ++ [commit1,4n+3, commit3,4n+3, . . . , commit4n+1,4n+3]

++ [decompose4n+3, drop4n+4, release1, release3, . . . , release4n+1] ++ Pn

++ [commit1,4n+1, commit3,4n+1, . . . , commit4n−1,4n+1]
++ [decompose4n+1, drop4n+2, release1, release3, . . . , release4n−1] ++ Qn

It should not be hard to verify that this solves these instances. What about minimal
plan length? Solving I1 requires more than zero steps, because init and goal specification
do not match.

For solving In+1 for n ≥ 1, an object of type ABn+1 must be created at some point.
This requires solving In to get the necessary equipment. Before an object of type CDn+1 is
created for the first time, an object of type ABn+1 must be present and apart from that,
the initial state must have been restored, so after creating the object of type CDn+1,
objects of type AB1, . . . , ABn must be recreated from scratch, which again requires
solving In. So the length of the shortest plan for In+1 is at least twice the length of the
shortest plan for In, proving the exponential length claim.

Summarizing the previous two results, Construct can require exponential length
plans if arbitrary equipment requirements are allowed or space is restricted. The cases
that still need to be discussed are thus all specializations of Construct-S2E1P0, with
separate (or no) equipment blueprints and unlimited space.

We start our discussion of these domains by showing that plans can be generated in
polynomial time (and are of polynomial length).

Theorem 4.21 PlanEx-Construct-S2E1P0 ∈ P
PlanEx-Construct-S2E1P0 can be solved in polynomial time.
Proof: For PlanEx, there is no significant difference between having separate equipment
blueprints or no equipment blueprints. If the length of the plan is not critical, equipment

67

can be allocated “on demand”, i. e. whenever a given compose or decompose action
requires certain equipment, objects of the required types are committed to the target
location and immediately released again after the action. This can only increase plan
length by a polynomial factor (as the number of commit and release actions per compose
or decompose action are each limited by the number of blueprints in the instance).

Equipment requirements can only get in the way where it is not possible to satisfy
them. However, it is easy to check that: Just record the set of equipment blueprints for
which objects are provided in the initial state and then check for each composite blueprint
that it does not require any equipment not in that set. If it does, it can be seen as if it
were not composable or decomposable. Thus, we can and will ignore equipment for the
rest of this proof. The main difficulty in these instances lies in handling blueprints that
can be composed but not decomposed or vice versa, otherwise a simple “take everything
apart, then stick it together in the right way” strategy would suffice, as there is unlimited
table space.

The algorithm we are going to present has two phases, and so has the resulting plan.
In the first phase, objects are being decomposed, so only decompose and drop actions are
applied. Once this has been done, the second phase combines the generated objects with
pick and compose actions. It is not hard to see that if any plan exists, then plans that
can be separated into these two phases exist, given that table space is unlimited.

We will first talk about the second, easier to accomplish phase. To combine a set of
objects to form the goal objects, build one goal object after the other. If the corresponding
object already exists, mark it as used (remove it from further consideration) and proceed
with the next goal object. If not, recursively build the immediate subparts that object is
constructed from and combine them. If this is not possible because that blueprint is not
composable or if recursive calls require an atom which is not available, then fail. Go on
until all goal objects are built or failure is detected. Provided that the goal objects can
be composed from the given set of objects, this will clearly generate a plan that achieves
the goal.

So the critical problem lies in decomposing things properly. This means that we should
not decompose an object further unless that is necessary, because it might not be possible
to compose it again afterwards.

To facilitate understanding the decomposition phase, we observe a correspondence
between objects and (rooted) binary trees where inner nodes are labeled with composite
blueprints and leaves are labeled with atomic blueprints: The atom b corresponds to the
one-node tree with b as its label, and the composite (b, p1, p2) corresponds to the tree with
a root node labeled b and with trees for p1 and p2 as its left and right son, respectively.
We say that a given object is a subpart of o if its tree is a subtree of the tree for o.

The decomposition phase then proceeds as follows:

1. currState is initialized as a sequence of trees corresponding to the initial objects.
goals is initialized as a sequence of trees corresponding to the objects in the goal
specification.

2. While goals 6= ∅, do the following:

(a) If goals contains a tree from currState, then if any plan exists, there is some
plan in which the object represented by that member of currState will be used
to satisfy the goal represented by that element of goal. It thus does not need

68

to be decomposed further. Thus, the tree is removed from both currState and
goals.

(b) Otherwise, if there exists T ∈ currState which is not a subtree of any element
of goal, then the corresponding object needs to be decomposed. If this is not
possible, fail. If it is, add a decompose and drop action to the plan to replace
that object by its immediate subparts and update currState by removing T
and adding the children of the root node.

(c) Otherwise, each element of currState is a proper subtree of some element of
goal. Choose one such tree T ∈ currState with a maximal number of leaves
(implying that the corresponding object is not a proper subpart of any other
object represented in currState) and a goal tree TG which has T as a subtree.

At some point in the composition phase an object with tree T will be needed to
form the goal object represented by TG, as no bigger object that could contain
T as part of its tree representation is available or could be made available by
decomposition. So it is safe to allocate T to that task now, removing it from
currState and cutting the (or rather one, if there is more than one) occurrence
of T as a subtree of TG from TG, because this part of the goal object is being
provided now and need not be considered again during decomposition.

If this leads to the father of the removed subtree becoming a leaf node, it must
also be removed from TG because all of its constituents have been allocated
already. If this happens, its father is checked recursively, possibly propagating
all the way to the root. If the root is cut, TG is removed from goals entirely.

Soundness of the algorithm should be obvious from the descriptions motivating the
various steps. It is polynomial because for case (a), only a linear number of goals can be
matched, for (b), only a linear number of decomposition operators can be applied, and
for (c), only a linear number of tree nodes can be cut.

This concludes the proof.

This result implies that PlanLen-Construct-S2E1P0 ∈ NP, by a polynomial plan
length argument. To prove NP-hardness, we now introduce a special case of the most
specific construction domain in our hierarchy, Construct-S1E0P0.

Definition 4.22 Blocksworld domain
The Blocksworld domain is the special case of Construct-S1E0P0 where for all in-
stances ((B, BC , BD, BI), P os, init, goal) there exists some n ∈ N0 such that the following
holds:

B = {tower, block1, . . . , blockn}
BC = BD = {tower}

towerI = ({tower, block1, . . . , blockn}, {block1, . . . , blockn}, ∅)
Pos = {1, . . . , n}

All atomic objects appear as subparts of init and goal objects exactly once.

In Blocksworld, there are blueprints for individual blocks and one blueprint for a
tower of blocks. By definition of init and goal, all block objects have different blueprints
(i. e., they are distinguishable). Dropping the restriction on init and goal would lead to
the interesting variant of Blocksworld where some blocks cannot be distinguished.

69

A tower can be formed by attaching any block to an existing tower or another block.
The number of table positions is essentially unlimited, since there are as many table
positions as blocks. As is always the case in the Manipulate framework, initial and goal
states are completely specified.

Theorem 4.23 NP-completeness of PlanLen-Blocksworld

PlanLen-Blocksworld is NP-complete.

This was proved in [Gupta and Nau, 1992]. The proof they give is based on a slightly
different formulation of the problem, where moving a block between towers or between a
tower and the table requires but one action, not two of them as is the case for our version,
where these movements are accomplished by a pickup or decompose action followed by
drop or compose. The proof in the reference still applies, however, if the maximal allowable
plan length is doubled to take this difference in definition into account.

The two remaining sections on construction domains are concerned with two other
domains from the AIPS competition, which both require some special treatment.

4.6 FreeCell

The FreeCell domain used in the AIPS 2000 competition is based on a popular solitaire
game, the rules of which are as follows:

The game is played with a standard deck of 52 cards, initially arranged into eight
tableau piles of six or seven cards each. Any such partitioning of the cards is a valid
initial configuration. Cards can then be moved between these eight tableau piles, four
free cells and four foundation piles according to the following rules:

• Cards may only be picked up if they occupy a free cell or if they are the top card
of a tableau pile. No more than one card can be picked up at the same time.

• Cards may only be dropped in a free cell if it does not currently hold any other
card.

• Cards may only be added to a tableau pile (as its new top card) if that pile is empty,
or the value of the card is one less than the value of the top card of the pile and it
is of a different colour (e. g., the four of spades can only be added to tableau piles
with the five of diamonds or hearts as their top card).

• Aces may be added to an empty foundation pile. Other cards may only be added
to a foundation pile if their value is one higher than the value of the top card of the
pile and they are of the same suit.

The objective of the game is to move all cards to foundations. This can be achieved
from most, but not all initial configurations.

Of course, the standard FreeCell game only allows for a constant number of different
configurations because of the limited number of cards, and indeed none of the problems
in the AIPS competition featured more than 52 cards. This is not very interesting from
a complexity theory point of view, because it only makes sense to discuss the complexity
of problems with an infinite number of instances. There are various ways of increasing
the number of instances:

70

1. Adding additional suits, either by adding more suits per colour (red or black) or by
adding colours.

2. Increasing the number of cards per suit.

3. Increasing the number of free cells.

4. Increasing the number of tableau piles.

The third and fourth options alone do not lead to an infinite number of instances,
because as soon as there are as many free cells or tableau piles as cards, it does not make
a difference how many of them there are exactly.

Of the other two options, the second seems to be the more natural one. However,
increasing the number of cards per suit without arranging for extra space to move these
cards around must inevitably lead to an ever decreasing fraction of solvable instances as
the number of cards increases. To come up with more interesting instances, it makes sense
to adjust the number of free cells and tableau piles, too. We will show that solvability
of FreeCell instances is an NP-complete problem even if only the number of cards per
suit and the number of tableau piles changes with instances, for any fixed number of free
cells. This is the generalized FreeCell domain we will define now.

To facilitate understanding, we will use the symbols ♦, ♥, ♠ and ♣, which can be
regarded as synonyms of 1, 2, 3 and 4, respectively.

Definition 4.24 FreeCell domain
The FreeCell domain is the special case of Construct-S1E0P1 where for all instances
((B, BC , BD, BI), P os, init, goal) there exists a four-tuple (val, col, cells, setup) ∈ N0 ×
N0 × N0 × (N0 × N0 7→ N0 × {♦,♥,♠,♣}) such that the following holds:

dom(setup) = { (c, r) ∈ {1, . . . , col} × N0 | r ≥ 1 ∧ (r − 1) · col + c ≤ 4 val }
ran(setup) = {1, . . . , val} × {♦,♥,♠,♣}

BCard = { cv,s | v ∈ {1, . . . , val}, s ∈ {♦,♥,♠,♣} }
BTableau = { redv | v ∈ {1, . . . , val − 1} } ∪ { blackv | v ∈ {1, . . . , val − 1} }

BCell = {emptycell, f illedcell}
BFound = { foundv,s | v ∈ {0, . . . , val}, s ∈ {♦,♥,♠,♣} }

BInit = { initc,r | (c, r) ∈ dom(setup), r > 1 }

B = BCard ∪ BTableau ∪ BCell ∪ BFound ∪ BInit

BC = BTableau ∪ {filledcell} ∪ BFound \ {found0,s | s ∈ {♦,♥,♠,♣} }
BD = BTableau ∪ {filledcell} ∪ BInit

redI
v = (B ∩ {cv+1,♠, cv+1,♣, blackv+1, initsetup−1((v+1,♠)), initsetup−1((v+1,♣))},

{cv,♦, cv,♥}, ∅) for v ∈ {1, . . . , val − 1}
blackI

v = (B ∩ {cv+1,♦, cv+1,♥, redv+1, initsetup−1((v+1,♦)), initsetup−1((v+1,♥))},
{cv,♠, cv,♣}, ∅) for v ∈ {1, . . . , val − 1}

filledcellI = ({emptycell}, BCard, ∅)
foundI

v,s = ({foundv−1,s}, {cv,s}, ∅) for v ∈ {1, . . . , val}, s ∈ {♦,♥,♠,♣}
initIc,2 = ({csetup((c,1))}, {csetup((c,2))}, ∅) for c with (c, 2) ∈ dom(setup)
initIc,r = ({initc,r−1}, {csetup((c,3))}, ∅) for (c, r) ∈ dom(setup) with r ≥ 3

71

Pos = {tableau1, . . . , tableaucol} ∪ {cell1, . . . , cellcells}
∪ {found♦, . . . , found♣}

init = { (tableauc, (initc,r(c), (initc,r(c)−1, . . . , (initc,2, csetup((c,1)), csetup((c,2))),
. . . , csetup((c,r(c)−1))), csetup((c,r(c))))) |
c ∈ {1, . . . , col}, r(c) = max{row ∈ N0 | (c, row) ∈ dom(setup) } }

∪ {(cell1, emptycell), . . . , (cellcells, emptycell)}
∪ {(found♦, found0,♦), . . . , (found♣, found0,♣)}

goal = { (founds, (foundval,s, (foundval−1,s, . . . , (found1,s, found0,s, c1,s),
. . . , cval−1,s), cval,s)) | s ∈ {♦,♥,♠,♣} }

∪ {(cell1, emptycell), . . . , (cellcells, emptycell)}

This definition embeds the generalized FreeCell domain into the Construct hier-
archy. It is a domain with stack-like composites, no equipment and a restricted number
of table positions. An instance is characterized by the number of cards per suit (val for
different card values), the number of tableau piles (col for columns), the number of free
cells (cells) and the initial setup of cards.

Cards are referred to as (v, s), denoting the value and suit of the card. In standard
FreeCell problems, the value ranges from 1 to 13, where 1 corresponds to an ace and 13
to a king. The suit can be diamonds, hearts, spades or clubs. Throughout the definition,
v always denotes the value and s the suit of a card.

The initial setup function maps positions in the tableau to cards, where the mapping
setup((r, c)) = (v, s) means that the card (v, s) is initially located in the r-th row (i. e.,
is the r-th card from the bottom of the pile) of the c-th column (i. e. tableau pile) of the
initial tableau. The constraints ensure that each card appears at exactly one position and
that all tableau piles comprise an equal number of cards. If the number of cards is not a
multiple of the number of tableau piles, the first piles will hold one more card.

The blueprints in FreeCell instances are individual cards (cv,s), tableau piles char-
acterized by the value and colour of their top card (redv for diamonds and hearts, blackv

for spades and clubs), free cells holding or not holding a card (filledcell and emptycell),
foundation piles characterized by their top card (foundv,s, where a value of 0 denotes a
foundation pile without any card in it) and initial tableau piles, which differ from other
tableau piles in that they do not have to adhere to the constraints for putting a card on
top of another one (initc,r, the blueprint for the r bottommost cards of the c-th tableau
pile).

Cards can be added to tableau piles, free cells or foundations by creating new objects
of types from BTableau, filledcell or BFound. Note that blueprints from BInit are not
composable because they do not necessarily adhere to the constraints on the suit and
value of the top card.

However, initial piles can always be decomposed, as can “legal” tableau piles from
BTableau and filled free cells. Cards cannot be moved from foundations, so BFound does
not contain decomposable blueprints.

The interpretation of the various blueprints follows the intuitive description of the
rules of FreeCell provided earlier in this section. The most important part is the
definition of the allowed base parts of red and black tableau piles. The definition lists all
blueprints of cards with a matching colour and value and piles of cards that can appear
on the tableau (that is, elements of BTableau and BInit) which have a top card satisfying
these requirements. The specified sets are intersected with B to avoid having to specify

72

special cases (for example, redval and init1,1 do not exist in B, so they are ruled out by
this operation).

There are three different kinds of table positions, related to the tableau, free cells or
foundations. Although objects can of course be picked up and dropped on different table
positions to destroy the intuitive relationship between the names of the table positions
and their purpose, there will always be exactly cells table positions occupied by objects of
type emptycell or filledcell and exactly one table position occupied by an object of type
foundv,s for each of the four possible values of s. Thus, it is not possible to temporarily
trade in an additional table position for the tableau by only using three foundation piles
or violate the rules of the game in a similar way.

The specifications of the initial state and goal should be self-explanatory.
From Theorem 4.19, we know that there are sets of instances within the Construct-

S1E0P1 domain that feature very long plans. The FreeCell domain, especially in the
special case without any free cells, resembles the Towers of Hanoi problem used in that
proof in some ways. However, as we will prove now, it does not have the same exponential
plan length property.

Theorem 4.25 PlanLen-FreeCell ∈ NP
PlanEx-FreeCell and PlanLen-FreeCell are in NP.
Proof: We will prove that FreeCell is a domain with polynomial length plans and
apply Lemma 2.10.

To this end, we first observe that there are only two kinds of actions within FreeCell

that cannot be undone immediately by applying an inverse action, namely decomposing
a card from an initial pile and adding a card to a foundations pile. If m is the number
of cards in the instance, then any plan will contain no more than m actions of the first
and exactly m actions of the second kind. Thus, the number of non-undoable actions is
polynomial in the number of cards and thus the size of the instance, and thus we only
need to come up with a polynomial bound for the length of any sequence of undoable
actions appearing within an optimal plan.

To provide this bound, we will give an algorithm that, given an initial and goal state
such that the goal state can be reached from the initial state by only using undoable
actions, calculates a polynomial length action sequence that accomplishes this state tran-
sition. We call this subproblem without “unsafe” moves the safe FreeCell problem.

In fact, we will not bound the actual number of actions but the number of macro
moves that are part of the plan, where a macro move is a sequence of actions that moves
an entire tableau pile or several cards of it onto another tableau pile or to an empty
column of the tableau, possibly making use of free cells, empty positions and other piles.
A macro move that moves one card simply consists of a single pickup or decompose and
a single drop or compose action.

Macro moves involving m free cells as temporary storage positions only (free cell
moves) can move no more than m + 1 cards, moving one card into each free cell, then
moving the bottommost card, then moving the cards from the free cells to their destina-
tion.

Let C(m, k) be the maximum number of cards that can be moved from one table posi-
tion to another by using m free cells and k empty table positions as temporary locations,
and let T (m, k) be the number of free cell moves required for that operation. Clearly,
C(m, 0) = m + 1 and T (m, 0) = 1.

73

Having k > 0 temporary locations for moving a pile of cards from A to C, the operation
can be divided into three parts: First move some of the cards from A to an intermediary
location B, then move the remaining cards from A to C, and finally move the cards from
B to C. For the last two operations, k− 1 temporary locations are available (the original
ones except B), so the number of cards that can be moved in this fashion is 2C(m, k−1),
and clearly T (m, k) = 3T (m, k − 1). This recursion solves to C(m, k) = (m + 1)2k−1 and
T (m, k) = 3k−1, and thus T (m, k) = (C(m, k)/(m + 1))log23, showing that the number
of moves required is polynomial in the number of cards being moved. The same is true
for macro moves also involving non-empty table positions as temporary locations, as is
not hard to see and will not be spelled out in detail. This property is the fundamental
difference between the Towers of Hanoi problem and FreeCell.

A card (v, c) is called red-even if c ∈ {♦,♥} and v is even, or if c /∈ {♦,♥} and v is
odd. Otherwise, it is called red-odd. In tableau piles, only red-even cards are added to
red-even cards, and only red-odd cards are added to red-odd cards. Consequently, the
same adjectives can be used when referring to tableau piles. The card on top of another
card in a tableau pile is called the son of that card.

The safe FreeCell problem can be solved in three stages: Firstly, compact the
tableau by making all piles as big as possible, freeing up as many table positions and free
cells as possible. This can clearly be done with a polynomial number of steps, because
each card needs to be made the son of a given other card as the effect of a macro move
at most once.

Secondly, identify bad son cards, i. e. cards which have a son in both the current and
goal state, and the two son cards are of different suits (they must have the same value and
colour). As long as there are any bad son cards, choose one of them with maximal value,
apply a number of macro moves to move all cards on top of the bad son card to other
locations, using up as few free cells and empty table positions as possible, then apply a
macro move to move the pile of cards with the correct son on top of the bad son card and
compact the tableau again. This card will now no longer be a bad son card. Clearly, this
takes a polynomial number of macro moves.

Only cards of lower value than the corrected card c are moved in this process, which
means that cards of a higher value than the corrected card cannot become bad son cards
as a result of these movements. We do not care if cards of a lower value are made bad
son cards, because this can be changed by further iterations of the correction procedure.
A card cC of an equal value but different colour cannot be made a bad son card because
if c is red-even, all cards moved are red-even and thus cannot be moved on top of cC , and
if c is red-odd, all cards moved are red-odd and again cC is unaffected.

Finally, the card cS of an equal value and colour but different suit as c cannot be a
bad son card afterwards because if cS has a son in both the current and goal state, then
it must be the correct one, because otherwise the (newly corrected) son of c would have
to be incorrect, too. Thus, after a number of iterations of this correction procedure that
is limited by the total number of cards, there are no longer any bad son cards.

Once there are no more bad son cards, all that needs to be done to reach the goal state
is rearranging the piles in a way that is inverse to the compacting procedure that formed
the first step. The number of macro moves in this third part of the action sequence can
consequently be bounded by the same polynomial as was used for the first step.

Putting the different parts together, we conclude that there is an overall polynomial
bound on the number of actions required to solve any solvable FreeCell instance, as

74

we wanted to prove.

The NP-completeness proof for FreeCell is once again based on the 3SAT problem.
For simplifying the presentation of the reduction, the generated FreeCell instances will
not contain tableau piles of equal height. This is not really a problem, because their
height could be made equal by adding additional cards of low value to the smaller piles,
which can be moved to foundations immediately. For example, in standard FreeCell

instances it is never bad to move an ace to a foundation pile, because no card can ever
be moved on top of it, so it just uses up space on the tableau or in a free cell. Once all
aces are moved to foundations, the same is true for twos, and so on. Indeed, moves of
this kind are performed automatically by many FreeCell computer programs.

Theorem 4.26 NP-completeness of PlanEx-FreeCell

PlanEx-FreeCell is NP-complete, for any fixed number of free cells.
Proof: Membership in NP was shown in the last theorem. Let cells be the fixed number
of free cells. We will first assume that cells = 0 and then explain how the mapping could
be adapted for other values of cells.

Let F = (V, C) = ({v1, . . . , v|V |}, {{l1,1, l1,2, l1,3}, . . . , {l|C|,1, l|C|,2, l|C|,3}}) be the 3SAT

instance. The positive literal vi is called the (2i − 1)-th literal, written as l2i−1, and the
negative literal ¬vi is called the 2i-th literal, written as l2i.

For k ∈ {1, . . . , 2|V |}, we define the cumulated number of occurrences of literals up to
lk as cocc(k) = |{ (i, j) ∈ {1, . . . , |C|} × {1, 2, 3} | li,j = lk′, k′ ≤ k }|. We will also talk
about li,j being the m-th occurrence of some literal within C, with the obvious meaning.

Furthermore, we define the selection value valSEL = |C|+2|V |+2 and the literal value
of the k-th literal as valk = valSEL + 2k + 2cocc(k), the clause value valCL = val2|V | + 2
and the bottom value valBOT = valCL + 6|C|.

F maps to the FreeCell instance characterized by (val, col, cells, setup), where

val
def
= valBOT + 4|C| − 2

col
def
= 6|C| + 2|V | + 2

cells
def
= 0

setup(1, 1)
def
= (valSEL,♠)

For i ∈ {1, . . . , |V |}: setup(2i, 1)
def
= (val2i−1,♠)

setup(2i, 2)
def
= (valSEL − 2i,♠)

setup(2i, 3)
def
= (valSEL − 2i + 1,♦)

setup(2i + 1, 1)
def
= (val2i,♠)

setup(2i + 1, 2)
def
= (valSEL − 2i,♣)

setup(2i + 1, 3)
def
= (valSEL − 2i + 1,♥)

For i ∈ {1, . . . , |C|}, j ∈ {1, 2, 3}, where li,j is the m-th occurrence of lk:

setup(6i + 2|V | − 5 + j, 1)
def
= (valBOT + 4(i − 1), j)

setup(6i + 2|V | − 5 + j, 2)
def
= (valCL + 6(i − 1) + 1, j)

setup(6i + 2|V | − 5 + j, 3)
def
= (valk − 2m,♠)

setup(6i + 2|V | − 5 + j, 4)
def
= (valk − 2m + 1,♦)

75

For i ∈ {1, . . . , |C|}: setup(6i + 2|V | − 1, 1)
def
= (valBOT + 4(i − 1),♣)

setup(6i + 2|V | − 1, 2)
def
= (valCL + 6(i − 1) + 4,♦)

setup(6i + 2|V | − 1, 3)
def
= (valCL + 6(i − 1),♦)

setup(6i + 2|V | + 0, 1)
def
= (valBOT + 4(i − 1) + 2,♦)

setup(6i + 2|V | + 0, 2)
def
= (valCL + 6(i − 1) + 4,♥)

setup(6i + 2|V | + 0, 3)
def
= (valCL + 6(i − 1),♠)

setup(6i + 2|V | + 1, 1)
def
= (valBOT + 4(i − 1) + 2,♥)

setup(6i + 2|V | + 1, 2)
def
= (i,♣)

setup(6i + 2|V | + 1, 3)
def
= (valCL + 6(i − 1) + 3,♠)

setup(6|C| + 2|V | + 2, 4val − (6|V | + 21|C| + 1))
def
= (|C| + 1,♣)

All the other cards are in the last tableau pile, below the specified card, ordered by
value such that cards with lower value are closer to the top.

This mapping requires some explanation. Figure 4.2 gives an example of the mapping,
which should help understand the idea behind it.

The piles of the initial tableau fall into three groups. The first 2|V |+1 piles are called
the literal selection piles. The next 6|C| piles are called the clausal piles, organized into
groups of six piles that relate to a specific clause, called clausal groups. The last pile,
holding most of the cards, is called the big pile.

We first show that the FreeCell instance can be solved if there is a satisfying
assignment to the variables of the logical formula. So assume there is such a satisfying
assignment α ∈ V → {⊤,⊥}. The FreeCell instance can then be solved as follows:

• For each i ∈ {1, . . . , |V |}, move the top two cards from tableau pile 2i to the first
tableau pile if vi = ⊤, or else move the top two cards from tableau pile 2i+1 to the
first tableau pile if vi = ⊥. This releases the bottom cards of some literal selection
piles, spades cards which can then be used to move cards from the clausal piles. In
the example of Figure 4.2, for the assignment {(v1,⊤), (v2,⊤), (v3,⊥)} these are the
15, 27 and 41 of spades. These are called the literal choice cards.

• The first three piles of each clausal group relate to the literals in that clause. The
top two cards of such a pile can be moved to the literal selection piles if and only if
the literal choice card of the corresponding literal has been revealed.

Because we have a satisfying truth assignment, it is possible to satisfy a literal in
each clause, and thus it is possible to remove the top two cards of one of the first
three piles of any clausal group, releasing a card of value valCL + 6(i − 1) + 1 for
the i-th clause. If the first or second literal is true, it will be a red card, and the top
card from the fifth pile of the clausal group can be moved on top of it. If the third
literal is true, the top card from the fourth pile of the clausal group can be moved
on top of it. In either case, a red card of value valCL + 6(i− 1) + 4 is revealed, and
the top card of the sixth pile of the clausal group can be moved on top of it.

• After this has been done for all clauses, the first |C| cards of clubs are available
in the sixth piles of the clausal groups and can be moved to foundations, allowing
to move the top card of the big pile to foundations. This reveals many low-valued
cards, and it is not hard to see that all cards of values up to valSEL can be moved

76

v1 ¬v1 v2 ¬v2 v3 ¬v3

♠11 ♠15 ♠21 ♠27 ♠31 ♠37 ♠41
♠9 ♣9 ♠7 ♣7 ♠5 ♣5

♦10 ♥10 ♦8 ♥8 ♦6 ♥6

v1 ∨ v2 ∨ v3

♦61 ♥61 ♠61 ♣61 ♦63 ♥63
♦44 ♥44 ♠44 ♦47 ♥47 ♣1
♠13 ♠25 ♠35 ♦43 ♠43 ♠46
♦14 ♦26 ♦36

¬v1 ∨ v2 ∨ v3

♦65 ♥65 ♠65 ♣65 ♦67 ♥67
♦50 ♥50 ♠50 ♦53 ♥53 ♣2
♠19 ♠23 ♠33 ♦49 ♠49 ♠52
♦20 ♦24 ♦34

¬v1 ∨ ¬v2 ∨ ¬v3

♦69 ♥69 ♠69 ♣69 ♦71 ♥71
♦56 ♥56 ♠56 ♦59 ♥59 ♣3
♠17 ♠29 ♠39 ♦55 ♠55 ♠58
♦18 ♦30 ♦40

. . .
♣4

Figure 4.2: FreeCell instance corresponding to the formula with variable set {v1, v2, v3}
and clause set {{v1, v2, v3}, {¬v1, v2, v3}, {¬v1,¬v2,¬v3}}. Cards at the top of a pile are
depicted nearer the bottom of the picture, following the convention of FreeCell imple-
mentations on computers. The first group of piles form the literal selection piles, the next
three groups are clausal groups, and the big pile is shown at the bottom (most of its cards
are omitted).

77

to foundations immediately. This reveals the literal choice cards of all literals that
are false under the chosen assignment, allowing to move the top two cards of the
clausal group piles relating to unsatisfied literals to the literal selection piles as well.
After this has been done, all piles are ordered by value, with cards of lower value
closer to the top, allowing to move all remaining cards to foundations, solving the
instance.

Now assume that the FreeCell instance is solvable. It is not possible to move the
bottom card of any tableau pile before the top card of the big pile is moved, because all
cards that they could be moved on top of are buried in the big pile. Before the top card of
the big pile is moved, it is not possible to move the bottom card of any pile to foundations
either. This implies that the first movement of the top card of the big pile cannot go to
an empty tableau position.

On the other hand, it can not be moved on top of any other card as its first movement,
because all possible destination cards are buried under it. Together, this implies that its
first (and thus only) movement must be directly to foundations.

This in turn requires all lower-valued clubs cards to be moved to foundations first,
requiring movements within the clausal piles. For each clausal group, the top card of the
sixth pile must be moved, and it can only be moved to the second card of the fourth or
fifth pile, requiring the top card of either of these piles to be moved. These in turn can
only be moved on top of the second (counting from the bottom) card from any of the first
three piles of that clausal group. Thus, in each clausal group, the top two cards of one of
the first three piles must be moved somewhere else for the instance to be solvable.

The only way this can be done is by uncovering the literal choice cards of corresponding
literals in the way explained in the first part of the proof. As it is not possible to uncover
the literal choice card for vi and ¬vi at the same time (for any i), this requires the existence
of a satisfying assignments to the truth variables, completing the proof for zero free cells.

If there are more than zero free cells (cells > 0), a very similar reduction can be used
by ensuring that all free cells must be filled right at the beginning and cannot be cleared
before the top card of the big pile is moved to foundations. This is done by first adding
cells · col values below the range of the cards specified in the reduction above (i. e., all
values of cards in the reduction are increased by cells · col) and cells values above that
range. Now the cells lowest-valued cards of clubs are added to the first pile in order, with
the ♣1 on top, the next cells cards are added to the second pile, and so on. After that,
the highest cells cards of clubs are added to the first pile, in any order. The new cards of
the other suits can be added to the big pile below its original top card, maintaining the
property that this subpile is ordered by card value.

If the zero-cell instance was solvable, then this new instance can be solved by moving
the cards on top of the ♣1 to the free cells, then moving the first cells · col cards of clubs
to foundations and then proceeding as described above.

If the zero-cell instance was not solvable, then the new instance cannot be solved
either, because the first cells moves must go to free cells since the top cells cards of each
pile are of the same colour and none of them can go to foundations, and no free cell can
be released before the original top card of the big pile is moved to foundations. This
concludes the proof.

With this result we conclude the discussion of FreeCell. Both decision problems
for this domain are NP-complete. As our proofs show, the hardness in this domain does

78

not (or not only) come from the difficulty in allocating free cells or empty table positions,
but rather from the choice of which card to move on top of another one when there are
two possible choices.

4.7 Assembly

The last domain to be discussed in this chapter is called Assembly and formed part
of the ADL track of the AIPS 1998 competition. Although we consider it an important
domain within the construction framework, as it combines many of the features discussed
before, there are some peculiarities to it which make it difficult to handle.

First of all, although the domain was part of the competition, neither of the two
participating ADL planners was able to solve a single competition instance, so any results
we could provide on this domain are less valuable because of the lack of empirical data
for comparison.

More importantly, some of the competition problems are given in incorrect ADL,
making it impossible to feed them to an ADL-capable planning system that should in
theory be able to solve them, such as FF [Hoffmann and Nebel, 2001]. Specifically, the
competition instances 7, 12, 13, 14, 19 and 27 contain errors in their PDDL definitions.

Last and most importantly, there seem to be some severe errors in the definition
of the domain itself, namely in the remove operator, which in its current state allows
completely disassembling a composite object without making it unavailable or incomplete.
For example, consider the (impossible) task of creating a rectangular table and an oval
table out of four legs, a rectangular board and an oval board. In the domain as specified
for the competition, it would be possible to build the rectangular table out of the board
and the legs, remove the legs (which leaves the rectangular table in its complete state)
and then use the legs and the oval board to build the oval table, creating two tables.

There is another minor oddity with regard to resource allocation, which allows to
allocate resources such as a voltmeter to an object, incorporate this object into other
objects while the resource stays allocated and then deallocate the resource although the
object it has been allocated to is no longer available because of being buried inside another
object. This oddity does not have any consequences for the complexity of the planning
task however, because any “odd” late resource deallocations could easily be moved to a
more appropriate earlier place within the plan without affecting its validity.

We will first introduce a corrected and simplified version of the Assembly domain
and prove that in this domain, plans can have exponential length. We will then briefly
discuss what causes this behaviour and point out differences between the corrected and
the original version.

Definition 4.27 Assembly domain
The Assembly domain is the special case of Construct-S2E2P0 where for all signatures
Σ = (B, BC , BD, BI) and instances (Σ, P os, init, goal), there is a finite set M of multi-
composites, including a goal multi-composite mgoal, a function parts : M → N0 \ {0, 1}
and sets of blueprints BHull, BTriv, BAss, BCompl and BRes such that the following is true:

BHull = { (m, 0) | m ∈ M }
BAss = { (m, i) | m ∈ M, i ∈ {1, . . . , parts(m)} }

BCompl = { (m, parts(m)) | m ∈ M } ∪ BTriv

79

BTriv ∩ (BHull ∪ BAss) = ∅
BRes ∩ (BHull ∪ BAss ∪ BTriv) = ∅

B = BHull ∪ BTriv ∪ BAss ∪ BRes

BC = BD = dom BI = BAss

For (m, i), (m′, i′) ∈ BAss,where (m, i)I = (B1, B2, BE), (m′, i′)I = (B′
1, B

′
2, B

′
E):

B1 = {(m, i − 1)}
|B2| = 1
B2 ⊆ BCompl \ {(mgoal, parts(mgoal))}

B2 = B′
2 ⇒ (m, i) = (m′, i′)

BE ⊆ BRes ∪ BCompl \ {(m, parts(m))}
m = m′ ⇒ BE ∩ BRes = B′

E ∩ BRes

BE ∩ B′
E ∩ BCompl 6= ∅ ⇒ m = m′ ∧ ∀i′′ ∈ {i, . . . , i′} with (m, i′′)I = (B′′

1 , B′′
2 , B

′′
E) :

BE ∩ B′
E ∩ BCompl ⊆ B′′

E

Pos = { posa | a ∈ AtomΣ }
init = { (posa, a) | a ∈ AtomΣ }
goal = { (posr, r) | r ∈ BRes } ∪ {(pos(mgoal,0), o)}

for o ∈ OΣ with τΣ(o) = (mgoal, parts(mgoal))

In the original Assembly domain, it is possible to have objects with more than two
immediate subparts. In our modelling, we have to introduce intermediary composites for
partially built objects to achieve a similar affect. A composite in the original domain
relates to a multi-composite in our modelling, and a composite assembly (m, i) refers to
an object of (multi-composite) type m where i parts have been attached already. Objects
with all subparts attached (including atomic assemblies, which do not have subparts) are
called complete objects and have types from BCompl (the set of complete assemblies).

Rephrasing the above definition in words, we see that instances of Assembly have
the following properties that distinguish them from arbitrary Construct instances with
unlimited table positions:

• There are four disjoint classes of blueprints, BHull for the empty “hulls” of composite
assemblies (which are implicit in the AIPS definition), BTriv for atomic (trivial)
assemblies, BAss for composite assemblies and BRes for resources. Resources are
always atomic and cannot be incorporated into other objects. Hulls are always
atomic and form the base parts of composite blueprints (more precisely, the “first
part” of a multi-composite object). Trivial assemblies are always atomic. The only
composite blueprints are composite assemblies, and these can be composed and
decomposed.

• Composite assemblies must have the previous composite assembly of their multi-
composite as their base part or the corresponding hull if they correspond to the
first subpart of the multi-composite. There is only one allowed type for the added
part, and this must be a complete assembly other than the one from the goal multi-
composite. This implies that all objects of the same type are equal. Each assembly
can form part of at most one other composite.

• Only resources and complete assemblies are used as equipment, and a complete
assembly will not be used as equipment for a composite of its own multi-composite.
Two assemblies from the same multi-composite require the same resource equipment.

80

Non-resources (complete assemblies) can only be used as equipment for at most one
multi-composite, and if they are needed for two of its composite assemblies, then
they are needed for all composite assemblies in between these two in the multi-
composite sequence as well.

• In the initial state, one exemplar of each atom (hull, atomic assembly or resource)
is located at some table position. Since there is only one instance of each atom and
objects of a given type can only be built up in one way, there can be at most one
object of any given type in any state. In goal states, in addition to the resource
objects, there must be one complete object of the goal multi-composite type, con-
taining all atomic assemblies and hulls as immediate or remote subparts. This goal
object is not specified in detail in the above definition because there is only one
possible object in OΣ that is of type (mgoal, parts(mgoal)).

This definition differs somewhat from the Assembly domain as used in the AIPS
competition. Apart from the two modelling oddities in the competition version that have
been mentioned before and are not present in the domain as defined here, there are two
more differences. Firstly, the original Assembly domain allows to specify an arbitrary
partial order on the subparts of any multi-composite assembly, and parts can be attached
to the multi-composite as long as they adhere to that partial order, whereas our version
is more strict and enforces a linear order on subparts. With regard to that property, our
domain is a special case of the AIPS domain.

The second difference lies in the use of assemblies as equipment. This is an attempt
of modelling the notion of “transient parts” in the original domain, where it might be
necessary to temporarily incorporate a given assembly into another assembly, following
some partial order constraints. For example, in constructing a “widget” multi-composite,
a “tube” might need to be incorporated as a transient part before the “frob” is added and
it may not be removed before the “socket” is added. In our modelling, we would require
the tube as equipment for all construction steps of the multi-composite from adding the
frob to adding the socket. This is an equivalent way of modelling transient parts except
for the fact that in our modelling, the transient part can be released and recommitted
in between different steps of working on the multi-composite, which is not allowed in the
original modelling.

However, since this difference adds to the set of applicable actions, it can only lead
to shorter plans if it makes any difference at all. Thus, our next proof (which shows
that plan lengths can grow exponentially in the Assembly domain) still holds in the less
flexible (with regard to the allocation of equipment) version of Assembly that we would
like to call the corrected competition version.

Theorem 4.28 Exponential plans for Assembly

Shortest plan lengths in Assembly can grow exponentially in the encoding length of the
instance, even in the absence of resources.
Proof: We devise a sequence (In)n∈N0

of instances for which encoding lengths grow
polynomially but shortest plan lengths grow exponentially.

For n ∈ N0, the multi-composite set Mn and instance signature Σn = (B, BC , BD, BI)
are defined as follows:

Mn
def
=

⋃

i∈{1,...,n}{Ai, Bi}

BHull
def
=

⋃

i∈{1,...,n}{(Ai, 0), (Bi, 0)}

81

BTriv
def
=

⋃

i∈{1,...,n}{xi, yi, zi} ∪ {(B0, 2)}

BAss
def
=

⋃

i∈{1,...,n}{(Ai, 1), (Ai, 2), (Ai, 3), (Bi, 1), (Bi, 2)}

B
def
= BHull ∪ BTriv ∪ BAss

BC
def
= BD

def
= BAss

(A1, 1)I
def
= ({(A1, 0)}, {x1}, ∅)

(Ai, 1)I
def
= ({(Ai, 0)}, {xi}, {(Ai−1, 3)}) for i ∈ {2, . . . , n}

(A1, 2)I
def
= ({(A1, 1)}, {y1}, ∅)

(Ai, 2)I
def
= ({(Ai, 1)}, {yi}, {xi−1}) for i ∈ {2, . . . , n}

(Ai, 3)I
def
= ({(Ai, 2)}, {(Bi−1, 2)}, ∅) for i ∈ {1, . . . , n}

(Bi, 1)I
def
= ({(Bi, 0)}, {zi}, ∅) for i ∈ {1, . . . , n}

(Bi, 2)I
def
= ({(Bi, 1)}, {(Ai, 3)}, ∅) for i ∈ {1, . . . , n}

For n ∈ N0, n ≥ 1, In is defined as the Assembly instance with instance signature
Σn and goal multi-composite Bn (There is only one such instance, because the instance
signature and goal multi-composite define Pos, init and goal). Clearly, encoding length
of In is polynomial in n, and these are valid Assembly instances.

All of these instances are solvable using the following strategy (not spelled out in all
detail): I1 is trivial to solve, and for instances In for n ≥ 2, we can begin by solving the
In−1 subproblem except for the step that creates (Bn−1, 2) out of (Bn−1, 1) and (An−1, 3),
then commit the table position of (An−1, 3) to the one holding (An, 0) and attach xn to
it to form (An, 1), release (An−1, 3) and completely decompose it (a problem inverse to a
subproblem of In−1), commit the table position of xn−1 to the one holding (An, 1), attach
yn to it to form (An, 2), release xn−1, create (Bn−1, 2) by solving another subproblem like
In−1, attach it to (An, 2) to form (An, 3) and finally attach zn and then (An, 3) to (Bn, 0)
to solve the instance.

As for minimal plan length, we only count the number of steps required for building
an object of type (An, 3), which is a lower bound for minimal plan length because this
needs to be done at some point in order to reach a goal state.

For n = 1, building this object takes more than zero steps, so it suffices to observe
that for any n ≥ 2, the shortest action sequence for generating an object of type (An, 3)
from the initial state is at least twice as long as the shortest action sequence for the
corresponding problem with (An−1, 3).

Constructing an object of type (An, 3) first requires generating an object of type
(An−1, 3) to be used as equipment for (An, 1). At some point after an object of type (An, 1)
has been generated for the first time, the object of type (An−1, 3) must be disassembled
to obtain an object of type xn−1. For decomposing (An−1, 2) into (An−1, 1), an object
of type xn−2 is required (at least for n ≥ 3), which can only be obtained by recursively
decomposing the object of type An−2, and so on, so in fact everything except the object
of type (An, 1) must be decomposed into atoms at that stage. So when an object of type
(Bn−1, 2) is needed later, it must be assembled from scratch, requiring building an object
of type (An−1, 3) a second time. This proves our claim.

Note that the exponential growth of plan length critically relies on the use of non-
atomic equipment, called transient parts in Assembly terminology. Without transient
parts, Assembly becomes a special case of Construct-S2E1P0, for which we have

82

proved polynomial plan length and indeed polynomial time plan generation in Theorem
4.21 on page 67.

Our proof of NP-hardness for finding short plans in that domain was based on the
Blocksworld domain. However, Blocksworld becomes easy if there are no compos-
ites in the initial state, as is always the case for Assembly. Another possible source of
hardness, resource allocation, is no issue for Assembly without transient parts either,
because there is only ever one object of each resource type and resource allocation does
not require making any difficult choices. We will assign the name Assembly-Simple to
the special case of Assembly without transient parts.

Theorem 4.29 PlanLen-Assembly-Simple ∈ P
PlanLen-Assembly-Simple can be solved in polynomial time.
Proof: The following greedy algorithm finds an optimal plan for a given instance. As
long as the goal state has not been reached, choose any multi-composite for which all
parts are available. Allocate all resources that are required for that multi-composite to
the table position of its hull. Add all parts. Deallocation of equipment is done in a lazy
fashion, i. e. a piece of equipment is released whenever it is needed at another location or
when the object at the table position it is allocated to shall be picked up.

It is obvious that this solves the instance and does not contain any unnecessary actions.
This concludes the proof.

Basically the same algorithm can be applied in the (corrected or uncorrected) com-
petition version of Assembly if no transient parts are present. The different behaviour
in decomposing does not matter here, because no decomposition takes place in optimal
plans in the absence of transient parts. The presence of partial orders on subparts does
not make the problem any harder. In the uncorrected version, some care must be taken to
avoid unnecessary release actions because equipment need not be released from a table
position to be able to pick up the object at that position. Thus, in this domain, equipment
should only be released when it is required for another construction.

Note, however that the previous result (Theorem 4.28), while applying to the corrected
competition version of Assembly as pointed out before, does not hold in the uncorrected
competition version if transient parts are allowed. Because objects that have been con-
structed once in that domain never have to be constructed again (they can be decomposed
and still be treated as if they were complete), a given part should only ever be added to
and removed from a composite at most once, giving a polynomial bound on the number
of compose and decompose actions, which in turn implies a polynomial bound on the
number of other actions in reasonable plans. Indeed, a greedy strategy similar to the one
used in the last proof, decomposing an object into its subparts after it has been built
completely, can be used to (non-optimally) solve all solvable instances of that version of
Assembly.

Because of the limited practical relevance of the competition domain, however, we
will not discuss this issue further and conclude this section and indeed our discussion of
construction domains.

4.8 Summary

We have seen a number of quite different planning domains in this chapter, and it is worth
recapitulating the results. We mentioned in the introductory section that our family of

83

manipulation domains is far less homogenous than the transportation family we have
studied in the previous chapter, and indeed this shows in the results. Whereas in all but
the most trivial transportation domains (namely Gripper), finding optimal plans was an
NP-equivalent problem and finding any plan was either a polynomial problem or NP-
equivalent, there is a greater variety in results for the domains within the manipulation
framework.

We first observed that the PlanEx and PlanLen problem for manipulation domains
becomes PSPACE-complete as soon as both transformations and composites are allowed,
i. e. for all domains in the hierarchy that fall between Manipulate-S1T1E0P0 and the
most general Manipulate-S2T1E2P1. This implies the presence of exponentially long
plans in these domains, and in fact there are several other conditions under which plan
lengths can grow exponentially, summarized in Figure 4.3.

Plan lengths in Manipulate-SiTjEkPl can grow exponentially with the encoding
length of instances in any of these cases:

• There are both composite objects and transformations in the domain (i. e.,
i ≥ 1 and j = 1). In fact, deciding PlanEx for these domains is PSPACE-
complete (Theorems 4.8 and 4.9).

• Arbitrary equipment is allowed, in either a transformation or construction
domain (i. e., k = 2 and either i ≥ 1 or j = 1). This is also true in the As-

sembly domain, which is a special case of Construct-S2E1P0 (Theorems
4.14, 4.20 and 4.28).

• In a construction domain, the number of table positions is limited (i. e. i ≥ 1
and l = 1). However, in FreeCell, which is also a construction domain
with limited table positions, this is not the case (Theorems 4.19 and 4.25).

In all other domains we have discussed, plan lengths can be bounded by a poly-
nomial. This is obvious for domains featuring neither composites nor transforma-
tions and has been proved for the other cases, special cases of Transform-E1,
the Schedule domain and special cases of Construct-S2E1P0 (Theorems 4.11,
4.18 and 4.21).

Figure 4.3: Manipulation domains and plan length.

In most of these cases, plans can get long because it is possible to enforce that ba-
sically the same subproblem must be solved twice because of resource requirements. If
table positions are not an issue and the available equipment cannot change through the
execution of actions, this kind of construction is not possible, and plan lengths become
polynomial.

Indeed, instances of the latter kind can usually be solved by a greedy strategy, making
monotonic progress towards the goal, and for all of these generating any plan is a problem
that can be solved in polynomial time. This is true for Transform-E1, Schedule and
Construct-S2E1P0, and in fact we have only encountered one domain where generating
a plan is an NP-equivalent problem, FreeCell.

84

Of the domains for which generating a plan can be done in polynomial time, only the
most simple ones allow finding optimal plans in polynomial time unless P = NP. The
only construction domain for which this is possible is Assembly-Simple, and there are
two transformation domains, Transform-E0 and Schedule, which share that property.
For the other domains with easy plan generation, finding optimal plans is either made
hard because of the scheduling of equipment, as in Transform-E1, or the ordering of
subgoals, as in Blocksworld.

In the three easy domains, these two issues do not arise because subgoals can be
handled independently (as in Transform-E0 or Schedule) or any reasonable ordering
is equally good (as in Assembly-Simple), and equipment is either non-existent (as in
Transform-E0), easy to schedule because the correct order of composition is obvious
(as in Assembly-Simple), or the cardinality of objects to be used as equipment is fixed
(as in Schedule).

Figure 4.4 summarizes these results.

In the manipulation domains with polynomial plan lengths we have investigated,
the status of the PlanEx problem is as follows:

• It is NP-complete for FreeCell (Theorem 4.26).

• Plans can be generated in polynomial time in all other cases, namely
Transform-E1, Schedule and Construct-S2E1P0 (Theorems 4.11,
4.18 and 4.21).

Of course, this implies that PlanLen-FreeCell is NP-complete. For the other
domains, the status of PlanLen is as follows:

• PlanLen-Transform-E1 is NP-complete (Theorem 4.13).

• PlanLen-Blocksworld, and thus PlanLen for any domain in the hi-
erarchy between Construct-S2E1P0 and Construct-S1E0P0, is NP-
complete (Theorem 4.23).

• Optimal plans in Transform-E0 and Schedule can be generated in poly-
nomial time (Theorems 4.10 and 4.18).

• Optimal plans in Assembly-Simple can be generated in polynomial time
(Theorem 4.29).

Figure 4.4: Complexity of manipulation domains with polynomial plan length.

The results for the domains of the AIPS competitions are summarized in Figure 4.5.
Figure 4.6 summarizes the generalization/specialization relationship between the domains
discussed in this chapter and recapitulates our results, with page references.

Before closing the chapter, we want to briefly raise the question whether allowing for
parallel activity makes any difference in the manipulation domains we discussed. Certainly
this can only be the case for domains with polynomial length plans for which PlanEx is
not already NP-complete.

85

Domain name PlanEx PlanLen

Assembly exponential length plans
Blocksworld polynomial NP-complete

FreeCell NP-complete NP-complete
Schedule polynomial polynomial

Figure 4.5: Complexity results for the manipulation domains from the AIPS 1998 and
AIPS 2000 planning competitions. Note that the Assembly result only applies to the
corrected version of the domain.

For transformation domains (including Schedule), this is not the case, as has already
been mentioned in Section 4.4. For construction domains, the way we introduced them,
there cannot be any parallel activity except for the parallel allocation and deallocation
of equipment, which does not make a difference for Blocksworld, so the results for
the Construct family are the same as well, with the possible exception of Assembly-

Simple which might actually be harder to solve optimally in parallel because the resource
allocation subproblem becomes more involved.6

However, reformulating the domain in a way that allows for direct movement between
table positions rather than separate pickup and drop actions could allow for an addi-
tional kind of parallelism, and it is indeed not hard to think of an alternative version of
Blocksworld using this formalism for which optimal parallel plans could be generated
in polynomial time. However, this affects only a very small branch of the Manipulate

family, namely those domains with unlimited table positions that do not require any
equipment at all (Construct-S1E0P0 and Construct-S2E0P0).

7

6For the competition version of Assembly without transient parts, this is the case. Optimal plans can
be found in polynomial time there, but deciding the existence of a parallel plan of bounded length is an
NP-complete problem, even if the number of resource objects is fixed (to be three). This can be proved
by a reduction of the NP-complete Precedence Constrained Scheduling problem. However, this
proof requires allowing arbitrary partial orders for subparts of an object and thus does not carry over to
our version of Assembly-Simple.

7We claim that parallel plan length for Construct-S1E1P0 is NP-complete, which can be proved
by a reduction of the strongly NP-complete 3-Partition problem. However, as it requires more effort
than we are willing to spend here to define the parallel Construct-S1E1P0 domain, we will not go into
detail.

86

Manipulate

Theorem 4.9
Page 59

Construct

Manipulate

S1T1E0P0

Theorem 4.8
Page 57

Transform

Theorem 4.14
Page 61

Construct

S2E2P0

Construct

S1E0P1

Theorem 4.19
Page 65

Transform

E1

Theorem 4.11
Theorem 4.13
Pages 60, 61

Assembly

Theorem 4.28
Page 81

Construct

S2E1P0

Theorem 4.21
Page 67

Construct

S1E2P0

Theorem 4.20
Page 66

FreeCell

Theorem 4.25
Theorem 4.26
Pages 73, 75

Transform

E0

Theorem 4.10
Page 59

Schedule

Theorem 4.18
Page 64

Assembly-

Simple

Theorem 4.29
Page 83

Construct-
S1E1P0

Construct-
S1E0P0

Blocksworld

Theorem 4.23
Page 70

Figure 4.6: The manipulation domains hierarchy. Domains further up in the graph are
more general than their descendants. A white box is used for domains for which the
decision (and search) problems are polynomial. A light grey box indicates that plans
can be generated in polynomial time, but the PlanLen problem is NP-complete. For
domains in medium grey boxes, both decision problems are NP-complete. In domains
with dark grey boxes, plans can be exponentially long. The domains linked with a light
grey line are similar, but neither is more or less general than the other (cf. Section 4.4).

87

Chapter 5

Conclusions

In this thesis, we defined two planning domains called Transport and Manipulate

and analyzed the computational complexity of deciding the PlanEx and PlanLen de-
cision problems with regard to these two domains. For both of them we defined special
cases which we considered particularly relevant, analyzed their complexity and related
the results to some well-known planning domains that formed part of the AIPS 1998 and
2000 competitions.

One of our intentions in looking at hierarchies of planning domains rather than isolated
decision problems was to find the boundary between easy and hard problems within
the general domains. For Transport, this boundary is clearly defined: For domains
with restricted fuel, it is hard to generate plans, whereas for domains with unlimited
fuel, solving this task it easy. One possible explanation why fuel restrictions make these
problems harder is that, by bounding the number of movements that can be performed,
they effectively limit the length of the generated plans, and hence the problem of just
finding any plan becomes akin to the problem of finding an optimal plan.

This problem is hard to solve for all but the most trivial special cases of Transport

(i. e., for all except Gripper). The main source of this hardness that we could identify is
a difficulty in ordering : While it is evident how individual portables should be delivered,
the interactions between different portables make optimally solving the overall task a hard
problem.

The previous two paragraphs cover our results for the competition domains Logistics,
Gripper, Mystery, Mystery’ and Grid. In the Grid domain, we were able to identify
another source of hardness in the decision of which of the different existing possibilities
to clear the (locked) path to the goal locations should be pursued.

The Miconic-10 elevator domain, which is the only transportation domain we ana-
lyzed where fuel is not restricted and yet generating plans is hard, shows how side effects
of actions can make a greedy strategy inappropriate. Specifically, the idea of picking
up one person after the other and moving them to their goal destination does not work
because it is not possible to keep other people (who we do not intend to move to their
destination yet) from boarding the elevator, and their boarding can render the task of
moving the other passengers to their destinations more difficult or impossible because of
access restrictions or required attendance.

Because of its greater diversity, the boundary of hardness for Manipulate is a bit
harder to identify. Plans in the Manipulate domain mainly build on two kinds of op-
erations: composition/decomposition and transformation. We observed that if both are

88

present in a domain, deciding the existence of a plan is very hard (PSPACE-complete)
and hence focused our analysis on the cases that contain either of these two kinds of opera-
tions, but not both. The resulting subfamilies were called Construct and Transform.

A difficulty that arose repeatedly within these domains was the existence of planning
instances for which shortest lengths are exponentially long in the size of the instance
encoding. Like in the well-known Towers of Hanoi problem, this difficulty arises in the
presence of limited table positions, but it also occurs as long as there are no restrictions
on the kind of equipment requirements that may be specified in the domain. This is
true for both Construct and Transform. While none of the competition domains
explicitly models this kind of equipment requirements, the “transient parts” in the As-

sembly domain are related to this problem, and we showed that a corrected version of
the Assembly domain features exponentially long plans.

In the only competition domain with restricted table positions, FreeCell, plan
lengths can be bounded by a polynomial in the number of cards. However, the scarceness
of free positions contributes to the hardness of this problem, too. Of all the manipula-
tion problems with polynomially long plans we investigated, it is the only one for which
generating a plan is an NP-equivalent problem, and this is because of the limited num-
ber of table positions, since removing this constraint would make it a special case of the
Construct-S1E0P0 domain, for which plans can be generated in polynomial time.

Indeed, we showed that for all special cases of Construct with unlimited table posi-
tions and without arbitrary equipment requirements, plans can be generated in polynomial
time. Because of a well-known result for the Blocksworld domain, we also know that
finding optimal plans is an NP-equivalent problem in these domains.

For the branch of the Manipulate hierarchy containing the transformation domains,
we already mentioned that allowing for general equipment can lead to an explosion of
plan lengths. If equipment is not being generated or destroyed itself, then plans can be
generated in polynomial time. However, finding an optimal plan is still hard, except if no
equipment is needed at all.

The Schedule domain used in the AIPS 2000 competition lies somewhere in between
those two extremes, since it allows for equipment, but the objects to be used as equipment
are fixed for the domain rather than being part of the individual instances. This leads
to a complexity somewhere between these two cases of Transform: Although optimal
plans for Schedule can be generated in polynomial time, the algorithm we could provide
is not really practical, and we will not go so far as to say that generating optimal plans
for Schedule is an easy problem.

So if we were to describe the border between easy and hard problems in both families
in one sentence, we could say that transportation domains are mainly difficult in the
presence of fuel constraints, and manipulation domains are mainly difficult when limited
table positions and complex procurement of equipment come into play. However, we think
that this summary would be missing the point, because we believe the real divide to be
somewhere else, namely between PlanGen and PlanOpt.

For many relevant domains, including all variants of Transport without fuel and a
big subhierarchy of Construct, there is a difference in complexity between the problem
of generating any plan and generating optimal plans. This is interesting to note, because it
is a point that must not be neglected when evaluating planning algorithms. Optimal and
non-optimal planning systems cannot be compared to one another in terms of performance

89

in a meaningful way, because they are solving different problems. While this fact is by
no means new, it is interesting to note that it actually applies to many of the benchmark
domains that are regularly used for comparing planning systems.

Moreover, this helps explain why planning systems based on local search, most notably
the FF system, are doing so much better than ones based on Graphplan, generating
optimal parallel plans, which we have seen to be just as hard a task as finding optimal
sequential plans in most cases.

We want to close our conclusions with this remark. While we have answered some
questions in the previous chapters, other open issues remain. In some cases it would be
interesting to enlarge the hierarchies of domains we have analyzed by adding more special
cases. For example, we showed that plans can be generated in polynomial time in the
simplified Miconic-10 domain, but the corresponding problem is NP-equivalent if all
types of special passengers and access restrictions from the full domain are allowed. But
what is the complexity of the problem if only some of the enhancements are made?

As a second point, for domains for which generating plans is NP-equivalent, it would
be interesting to discover what hard instances look like, trying to discover a phase tran-
sition between (usually easy) under-constrained and (usually easy) over-constrained in-
stances, and if it can be found, characterize the part of the instance space containing the
“hard” instances.

As a last point, the distinction between PlanGen and PlanOpt is quite coarse, and
for the domains which exhibit differences in complexity for these two, the question arises
if it is possible to find good (if not optimal) plans in polynomial time, for example plans
that are guaranteed not to exceed the length of optimal ones by more than a constant
factor. It is evident that such performance guarantees are not hard to give in Logistics

or Blocksworld, but what about Grid?

We close the chapter with the following figure, which looks suspiciously like the one we
started out with in Chapter 1, but with one column added that makes all the difference:

Year Domain name Domain family Complexity
1998 Assembly Construction exponential

Grid Transportation polynomial/NP-equivalent
Gripper Transportation polynomial
Logistics Transportation polynomial/NP-equivalent
Movie Other polynomial
Mystery Transportation NP-equivalent
Mystery’ Transportation NP-equivalent

2000 Blocksworld Construction polynomial/NP-equivalent
FreeCell Construction NP-equivalent
Logistics Transportation polynomial/NP-equivalent
Miconic-10 Transportation NP-equivalent
Schedule Transformation polynomial

Figure 5.1: Domains from the AIPS 1998 and AIPS 2000 planning competitions.
For more detailed results, see Figure 3.9 on page 45 and Figure 4.6 on page 87.

90

Bibliography

[Allen et al., 1990] Allen, J., Hendler, J., and Tate, A., editors (1990). Readings in Plan-
ning. Morgan Kaufmann.

[Bacchus, 2001] Bacchus, F. (2001). The AIPS’00 planning competition. AI Magazine,
22(3):47–56.

[Blum and Furst, 1997] Blum, A. and Furst, M. (1997). Fast planning through planning
graph analysis. Artificial Intelligence, 90(1–2):281–300.

[Bonet and Geffner, 2000] Bonet, B. and Geffner, H. (2000). Planning with incomplete
information as heuristic search in belief space. In Chien, S., Kambhampati, S., and
Knoblock, C. A., editors, Proceedings of the Fifth International Conference on Artificial
Intelligence Planning and Scheduling (AIPS 2000), pages 52–61. AAAI Press.

[Bylander, 1994] Bylander, T. (1994). The computational complexity of propositional
STRIPS planning. Artificial Intelligence, 69(1–2):165–204.

[Erol et al., 1995] Erol, K., Nau, D. S., and Subrahmanian, V. S. (1995). Complexity,
decidability and undecidability results for domain-independent planning. Artificial In-
telligence, 76(1–2):65–88.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new approach
to the application of theorem proving to problem solving. Artificial Intelligence, 2:189–
208.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and
Intractability — A Guide to the Theory of NP-Completeness. Freeman.

[Gupta and Nau, 1992] Gupta, N. and Nau, D. S. (1992). On the complexity of blocks-
world planning. Artificial Intelligence, 56(2–3):223–254.

[Hoffmann and Nebel, 2001] Hoffmann, J. and Nebel, B. (2001). The FF planning sys-
tem: Fast plan generation through heuristic search. Journal of Artificial Intelligence
Research, 14:253–302.

[Koehler and Schuster, 2000] Koehler, J. and Schuster, K. (2000). Elevator control as
a planning problem. In Chien, S., Kambhampati, S., and Knoblock, C. A., editors,
Proceedings of the Fifth International Conference on Artificial Intelligence Planning
and Scheduling (AIPS 2000), pages 331–338. AAAI Press.

[Lifschitz, 1987] Lifschitz, V. (1987). On the semantics of STRIPS. In Georgeff, M. and
Lansky, A., editors, Reasoning about Actions and Plans, pages 1–9. Morgan Kaufmann.

91

[Long and Fox, 2000] Long, D. and Fox, M. (2000). Automatic synthesis and use of
generic types in planning. In Chien, S., Kambhampati, S., and Knoblock, C. A., editors,
Proceedings of the Fifth International Conference on Artificial Intelligence Planning and
Scheduling (AIPS 2000), pages 196–205. AAAI Press.

[Long et al., 2000] Long, D., Kautz, H., Selman, B., Bonet, B., Geffner, H., Koehler, J.,
Brenner, M., Hoffmann, J., Rittinger, F., Anderson, C. R., Weld, D. S., Smith, D. E.,
and Fox, M. (2000). The AIPS-98 planning competition. AI Magazine, 21(2):13–33.

[McDermott, 2000] McDermott, D. (2000). The 1998 AI Planning Systems competition.
AI Magazine, 21(2):35–55.

[Mehlhorn and Näher, 1999] Mehlhorn, K. and Näher, S. (1999). LEDA — A Platform
for Combinatorial and Geometric Computing. Cambridge University Press.

[Selman, 1994] Selman, B. (1994). Near-optimal plans, tractability, and reactivity. In
Doyle, J., Sandewall, E., and Torasso, P., editors, Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Fourth International Conference (KR’94),
pages 521–529. Morgan Kaufmann.

92

