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Abstract

We introduce an efficient method for translating planningksaspecified in the stan-
dard PDDL formalism into a concise grounded representdtiahuses finite-domain state
variables instead of the straight-forward propositiomaiaaling.

Translation is performed in four stages. Firstly, we transfthe input task into an equiv-
alent normal form expressed in a restricted fragment of PDE#condly, we synthesize in-
variants of the planning task that identify groups of mutuekclusive propositions which
can be represented by a single finite-domain variable. Bhiwe perform an efficient re-
laxed reachability analysis using logic programming téghes to obtain a grounded rep-
resentation of the input. Finally, we combine the resultshef third and fourth stage to
generate the final grounded finite-domain representation.

The presented approach has originally been implementedrasfithe Fast Downward
planning system for the 4th International Planning Contipeti(IPC4). Since then, it has
been used in a number of other contexts with considerableesacand the use of concise
finite-domain representations has become a common fedtstate-of-the-art planners.
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1 Introduction

Consider the transportation planning task illustratedign E. There are three cars,
a train, and two parcels, located in two cities comprisingesa locations each. The
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Fig. 1. A transportation planning task. Deliver parpelfrom C to G and parceb, from F
to E, using the carsy, ¢, ¢z and traint. The cars may only use roads (thin edges), the train
may only use the railway (thick edge).

cars may move along a network of roads within their respedity of origin, while
the train moves along a single railway link that connectdwecities. Parcels may
be loaded into any vehicle that is present at the same logatiad parcels carried
by a vehicle may be unloaded to the current location of thatole at any time.
The objective is to move each parcel to a designated godidoca

1.1 PDDL representations

In order to find a plan for this example task using a genergbgse planning sys-

tem, we must first represent it in a way that such a system emoneabout. Since
its inception in 1998 [37], the Planning Domain Definitionnguage (PDDL) has

become the de-facto standard language for representisgicd planning tasks.
The original PDDL formalism, as used in the first two Interoaél Planning Com-

petitions, was purely logic-based and can be considereditacjc variant of the

earlier ADL language [38] (excluding the support for fuoctal fluents, which are

present in ADL). Since then, the language has been extedetbte easily ex-

press additional aspects of real-world planning tasksh ssscnumbers and dura-
tions [20], state variables whose values are derived fran#iues of other state
variables [17], and most recently plan constraints andepegices [23].

In PDDL, planning tasks are described in termsbjectsof the world (cars, lo-
cations, parcelspredicateghat describe static or dynamic relations that hold be-
tween these objects (whether or not two given locations eanaected by a road,
whether or not a given parcel is currently inside a given elef)j operatorsthat
manipulate these relations (moving a car from one locatioaniother, unloading

a parcel), annitial state that describes the situation before plan execution, and a
goal specificatiordescribing the objectives that solution plans must achieve



While PDDL itself is a (restricted) first-order formalismil state-of-the-art plan-
ning systems compile the input specification into a propmsi representation at
an early stage bgroundingpredicates, operators and goal specifications. Many
planners go even further and transform the grounded taskaiparticularly sim-

ple syntactic form calleghropositional STRIPSwvhere states of the world can be
represented as sets of (satisfied) atomic propositions pecimrs are represented
in terms of which propositions must be true for the operaidre applicable (pre-
conditions), which propositions the operator makes trulel @ffects), and which
propositions it makes false (delete effects). The exangsle¢an be naturally mod-
elled in propositional STRIPS; (part of) such a represémas shown in Fig. 2.

PDDL- or STRIPS-based representations of planning tasks aanumber of de-
sirable features. Due to the close relationship to firseoidgic (for ungrounded
PDDL) and propositional logic (for grounded PDDL), the seiizs are easy to
understand for researchers and practitioners with a baakgrin formal logics.

Moreover, representing all properties of a world state imgeof truth values has
the appeal of simplicity. There is a certain mathematicag@hce to the formalism,
and it clearly achieves the language designers’ maxim afrdesg planning tasks
in terms of their “physics, not advice” [37].

1.2 Finite-domain representations

The absence of any form of “advice” from the PDDL represeoiais appropri-
ate for a language designed for general problem solverst bames at a price,
to be paid by planning algorithms that have to reason abautdpresented task.
In particular, the state space induced by a propositioqmesentation such as the
one shown in Fig. 2 is very unstructured. A priori, a progdositike at - p1- a (stat-
ing that the first parcel is at locatiol) bears no closer relationship #&b- p1- b
(stating that the first parcel is at locati@) than to, sayi n- p2-t (stating that the
second parcel is currently inside the train). However, iftake into account their
intended meaning, propositions that represent potentiations of the same parcel
are clearly more closely related to each other than to oredseticode properties
of the other parcel. In particular, only one of the propasis of the format - p1- x
can be true at the same time in any feasible world state. Tpl#mmer, there appear
to be as many as®2~ 3.4- 10'° feasible world states in the example task, corre-
sponding to all valuations of the 35 propositional statealdes, yet in truth the
number of relevant states is only 116%6L.2- 10%, as all other valuations are not
reachable from the given initial state.

An alternative representation of the example task is showiig. 3. This repre-
sentation uses genefalite-domairvariables, not just binary ones, to represent the
state of the world. For example, a single variaplewith a domain of 11 values
completely encodes the state of the first parcel, subsurhmgnformation of all



Propositions:

at-pl-a,at-
at-p2-a,at-
at-cl-a,at-
at-c2-a,at-
at-c3-e,at-

pl-b,at-
p2- b, at -
cl-b,at-
c2-b,at-
c3-f,at-

pl-c,at-pl-d,at-pl-
p2-c,at-p2-d,at-p2-
cl-c,at-cl-d,
c2-c,at-c2-d,

c3-9,

e,at-pl-f,at-pl-g,
e,at-p2-f,at-p2-g,

at-t-d,at-t-e,
in-pl-cl,in-pl-c2,in-pl-c3,in-pl-t,
in-p2-cl,in-p2-c2,in-p2-c3,in-p2-t
Init:
at-pl-c,at-p2-f,at-cl-a,at-c2-b,at-c3-g,at-t-e
Goal:
at-pl-g,at-p2-e
Operatordrive-cl-a-d:

PRE: at-cl-a ADD: at-cl-d DEL: at-cl-a
Operatordrive-cl-b-d:

PRE: at-cl-b ADD: at-cl-d DEL: at-cl-b
Operatordrive-cl-c-d:

PRE: at-cl-c ADD: at-cl-d DEL: at-cl-c

Operatorl oad- c1-pl- a:

PRE: at-cl-a,at-pl-a ADD: in-pl-cl DEL: at-pl-a
Operatorl oad-c1-pl- b:

PRE: at-cl-Db,at-pl-b ADD: in-pl-cl DEL: at-pl-b
Operatorl oad- c1-pl-c:

PRE: at-cl-c,at-pl-c ADD: in-pl-cl DEL: at-pl-c
Operatorunl oad- c1- pl-a:

PRE: at-cl-a,in-pl-cl ADD: at-pl-a DEL: in-pl-cl
Operatorunl oad- c1- pl1-b:

PRE: at-cl-b,in-pl-cl ADD: at-pl-b DEL: in-pl-cl
Operatorunl oad- c1- pl-c:

PRE: at-cl-c,in-pl-cl ADD: at-pl-c DEL: in-pl-cl

Fig. 2. Propositional STRIPS representation of the trartafion planning task.

propositionsat - p1- x andi n- p1-y from the STRIPS encoding. Using this repre-
sentation, the set of feasible world states coincides \wilset of syntactically legal
ones.

In this article, we present an efficient algorithm for traisig planning tasks spec-
ified in PDDL 2.2 into a compact finite-domain representatibime algorithm has
been implemented as part of the Fast Downward planner [2BlLiaad by a num-
ber of other planning algorithms [48,26,30,3,47]. It exteran earlier algorithm



Variables:
pl,p2 € {at-a,at-b,at-c,at-d,at-e,at-f,at-g,
in-cl,in-c2,in-c3,in-t}
cl,c2 € {at-a,at-b,at-c,at-d}
c3 € {at-e,at-f,at-g}
t € {at-d,at-e}
Init:
at-c,p2 = at-f
at-a,c2 = at-b,c3 = at-g,t = at-e

pl
cl
Goal:
pl = at-g,p2
Operatordrive-cl-
PRE: cl = at-
Operatordri ve-cl-
PRE:cl = at-
Operatordri ve-cl-
PRE: cl = at-

EFF: cl = at-d

EFF: cl = at-d

o0 o T
o

EFF: cl = at-d

Operatorl oad-c1-pl- a:
PRE:cl = at-a,pl
Operatorl oad- c1- pl- b:
PRE:cl = at-b,pl
Operatorl oad-c1-pl-c:
PRE:cl = at-c,pl

in-cl

I
=
1
)

EFF: pl

in-cl

I

=4
1

o

EFF: pl

in-cl

I
=4
1
o

EFF: pl

Operatorunl oad- c1- pl-a:

PRE:cl = at-a,pl = in-cl EFF: pl
Operatorunl oad- c1- pl-b:

PRE:cl = at-b,pl = in-cl EFF: pl
Operatorunl oad- c1- pl-c:

PRE:cl = at-c,pl = in-cl EFF: pl

at-a

at-b

at-c

Fig. 3. Finite-domain representation of the transpontaptanning task.

by Edelkamp and Helmert [14] which also translates PDDL gdsKinite-domain
representations, but is limited to a much smaller langueagnient (STRIPS, no
typing, no domain constants in operator definitions).

As far as we know, no other algorithms for this problem havenbéescribed in
the literature, so the main contribution of this article ke tfirst description of
a method to generate concise finite-domain representafiions arbitrary (non-
numeric, non-temporal) PDDL tasks. From a high-level pectige, our approach
follows very similar ideas to the algorithm of Edelkamp anelidert, but the gen-
eralization beyond STRIPS requires significant extensiornise core components



of the translation algorithminvariant synthesigSection 5) andyrounding(Sec-
tion 6). (Indeed, even though the emphasis in this articishe overall goal of
transforming PDDL tasks into a concise finite-domain repnéstion, we believe
that the invariant synthesis and grounding algorithms vesgmt are also useful for
planning algorithms that work on traditional PDDL represgions, so the algo-
rithms presented in Sections 5 and 6 may be seen as additimmiaibutions of this

paper.)

1.3 Why finite-domain representations?

Before diving into more technical matters, let us brieflycdiss why compact finite-
domain representations might be desirable. We alreadydribtd in the STRIPS
representation, unlike the finite-domain representattaare is a vastly larger num-
ber of syntactically valid states than feasible (reachadibges in the planning task.
This is not necessarily problematic — for example, a plag@ilgorithm based on
forward search, such as Hoffmann and Nebel's FF [32], willemeencounter any
of the infeasible states, so there is no obvious advantathe tinite-domain repre-
sentation. However, a number of other planning approachégdefit significantly
from the changed representation:

¢ Planning algorithms based on SAT-solving [34,35] can us€ &fresentations
that disallow exploring partial valuations that assigroingistent values to a sin-
gle finite-domain variable. This is an example of the moreegainnotion of
mutex constraintswvhich is critical to the performance of SAT planners [42]. A
naive SAT encoding would need to search the full space ofasyictlly valid
STRIPS states within each variable layer. In addition toube of mutexes, the
recently successful MaxPlan planner [6] also uses the {fdoteain representa-
tion to derive so-calletbndex constraintsvhich are reported as the key innova-
tion of the planner. Londex constraints need finite-domeapresentations to be
effective: for binary state variables, they offer no aduifil pruning power over
mutex constraints.

e Planners that perform a symbolic exploration of the statéespvith binary de-
cision diagrams (BDDs) can use the finite-domain represient#o reduce the
number of variables required in the BDD encoding, compaced haive en-
coding. Moreover, the finite-domain representation leads variable ordering
where closely related propositions are grouped togethechws critical to good
performance of BDD exploration [16].

e Heuristic planning approaches using pattern databasether lkomomorphism
abstractions [13,26,30] benefit from the more concise fiditaain encoding
because larger subtasks can be solved and stored in mentbtlyenused as an
abstraction heuristic. Moreover, as for BDDs, the finitenéin representation
groups related propositions which should be considereetheg in abstractions.

e Planners based on constraint programming [46,10] can nole efficient CSP
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Fig. 4. Causal graph for the example task (STRIPS represamta
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Fig. 5. Causal graph for the example task (finite-domainasgmtation).

representations from finite-domain representations tham & direct encoding
of the state variables in the PDDL representation. As a gageint, CPlan by
van Beek and Chen [46] uses hand-tailored CSP encodingarafastd planning
domains. In most cases, its state representations arecaldotthe finite-domain
representations generated by the algorithm presentedsiartiicle.
Compilations to integer programming (IP) can use the fidieiain representa-
tion to get more concise IP representations. By modellieg/lue changes of a
single finite-domain variable as a network flow problem, ahgvery naturally
expressible as a linear or integer program, it is also pteswluse a richer notion
of “plan steps” than in traditional Graphplan-like encagnThis helps reduce
the IP size and often translates to better performance [48].

Planning approaches based on problem decomposition, suble aausal graph
heuristic [27] used in the Fast Downward planner [28], berefin the simpler
causal structure of the finite-domain representation. [listilate this, compare
the causal graph of the STRIPS encoding of the example proffiég. 4) to
the causal graph of its finite-domain counterpart (Fig. &eked, it has recently
been shown that the causal graph heuristic degeneratesféeanor variant of
the additive heuristic on binary representations [29].

This concludes our discussion of the potential advantafjesrise finite-domain
representations. In the next section, we formally intred@®DL and finite-domain
representations, before we begin describing the translaigorithm in Section 3.



2 Definitions

As remarked in the introduction, PDDL is the language in \Wwhitanning tasks

are most commonly expressed. In particular, the planniskgtaf the international
planning competitions (IPC) are expressed in PDDL, so anptensystem must
be able to deal with this language in order to participatehismwork, we consider
the non-numerical non-temporalfragment of PDDL 2.2, i.e., “level 1" of that
language (where level 2 introduces numerical state vasadohd level 3 introduces
temporal planning features). We do not consider the mosintegdditions to the

language, namely the capabilities for expressing plantcaings and preferences
in PDDL 3 [23]. However, these features are orthogonal tagkee of binary vs.

finite-domain encoding, so that extending our work in thrediion is conceptually
easy.

Our definition of PDDL tasks uses common notations from firster logic which
we assume to be known; we refer to the literature [12] for farahefinitions.
Throughout the section, we assume that all logical formataeover a first-order
languageL which consists of sufficiently many constant symbolsjéctsn PDDL
terminology), relation symbolsp(edicate$ and variable symbols. There are no
function symbols, unless one considers constants to bg fivactions. We use the
notation freéd) to refer to the set of free variables of a first-order formpula

Definition 1 PDDL operators

A PDDL operatoris a pair (X, €), which consists of a (possibly open) first-order
formulax called itspreconditionand aPDDL effecte. PDDL effects are recur-
sively defined by finite application of the following rules:

A first-order literal | is a PDDL effect called aimple effect

If e1,...,e, are PDDL effects, theme\ --- A g, is a PDDL effect called @on-

junctive effect

If X is a first-order formula and e is a PDDL effect, thgn- e is a PDDL effect
called aconditional effect

If vq,...,Vk are variable symbols and e is a PDDL effect, théa...v:eisa
PDDL effect called ainiversally quantified effecor universal effect

Free variables of simple effects are defined as for literalBrst-order logic. Free
variables of other effects are defined by structural indurcti

o freelep A---Aey) =free(e)) U---Ufree(en)
o free(x>e) = fregx) Ufreg(e)
o free(Vvy...v:e) =freele) \ {vi,..., W}

The set of free variables of a PDDL operator is definedras((x, e)) = free(x) U
freg(e). Free variables are also calleparameterf the operator.



PDDL operators define the ways in which a planning algoritammove from one
world state to another. If the current state satisfies thegoition of an operator,
then the operator may be applied, leading to a new state vididke the old one
except that it is modified in certain ways specified by theatftd the operator. An
operator with parameters cannot be applied directly; ittrficst be groundedby
substituting concrete objects for the parameters.

Definition 2 PDDL axioms

A PDDL axiomis a pair (¢, ) such thatp is a first-order atom andp is a first-
order formula withfree(y) C free(¢). We write the axionid, ) as$ «— Y and call
¢ theheadandy thebodyof the axiom.

A set4 of PDDL axioms is calledtratifiableiff there exists a total preorder on

the predicate symbols & such that for each axiom where predicate Q occurs in
the head, we have R Q for all predicates P occurring in the body, andPQ

for all predicates P occurring in a negative literal in theatrslation of the body to
negation normal form.

Axioms provide a way of defining certain predicates based therp“more ba-
sic” predicates. For example, givenam op predicate, we can define its transitive
closureabove with the two axiomsabove(x,y) < ont op(x,y) andabove(x,z) «
Jy(ont op(x,y) Aabove(y,z)).

Stratifiability of a set of axioms is necessary for ensurirag the outcome of axiom
evaluation is well-defined. Without such a condition, it \Wbloie possible to specify
rules of the form P(x) is true wheneveP(x) is false.” Intuitively,P < Q means
that the truth value of atoms overmust be determined before the truth value of
atoms oveR.

Definition 3 PDDL tasks
A PDDL taskis given by a 4-tuplél = (X0, Xx, 4, O) with the following compo-
nents:

Xo is a finite set of ground atoms called timitial state.
X« IS a closed formula called thgoal formula.

A4 is afinite stratified set of PDDL axioms.

O is a finite set of PDDL operators.

Predicates occurring in the head of an axiom/hare calledderived predicates
Predicates occurring in the initial state or in simple etieof operators inO are
called fluent predicatesThe sets of derived and fluent predicates are required to
be disjoint.

We assume that the reader is already familiar with PDDL séiceand point to the
language definition [20,17] for more information. Apartrfigyntactic differences,
there are three aspects of non-numerical, non-temporallPDPnot captured by



our definition:

e There are no operator names. Our translation algorithm reaps grounded
PDDL operator to a unique finite-domain representationatperso that an im-
plementation need only propagate operator names, and ang generated for
the translated task need not undergo any form of post-psotgto apply to the
original task.

e There is no distinction between domain constants and abjgcthe problem
instance, or indeed between the domain and problem instgpemfication in
general. At the level of individual problem instances at abhthe translation
algorithm works, there is no need for such a distinction.

e There are no types. Our translation algorithm compiles atypgs into unary
predicates in the very first processing step (see Sectignsblwe can assume
untyped representations for all following stages.

With PDDL as a starting point, let us now introduce the kinfiglanning tasks that
the translation algorithm generates, which we call FDRtéiiiomain representa-
tion) tasks. FDR tasks are based on the SA%nning formalism [2,33], extended
with axioms and conditional effects.

The definition exhibits a number of similarities, but als@wa differences between
PDDL tasks and our planning model. FDR tasks only allow sengoinjunctions in
goals, axioms and operators, and conditional effects ddmoested. Moreover,
PDDL tasks use first-order concepts such as schematic operahose variables
can be instantiated in many different ways, while FDR tasksggounded. These
two differences to PDDL, in particular the use of a groundgaesentation, are due
to a desire to keep the FDR formalism simple, to reduce thddsufor planners
that use it. Indeed, all the planning approaches for finttierain representations
listed in the previous section have been introduced for,(enahost cases, require)
grounded representations. (We believe, however, that rofthe translation ideas
introduced in this article can be adapted to schematic fadot@ain representations
where such representations appear more desirable.)

Definition 4 Planning tasks in finite-domain representation (FDR tasks)
A planning task in finite-domain representation (FDR task3 given by a 5-tuple
N =(v,%,s, 4, 0) with the following components:

e 7 is afinite set oftate variableswhere each variable g 7’ has an associated
finite domain?y,. State variables are partitioned inftuents (affected by oper-
ators) andderived variablegcomputed by evaluating axioms). The domains of
derived variables must contain tliefault value L.

A partial variable assignmenover 7/ is a function s on some subsetidfsuch
that gv) € 7 wherever §v) is defined. A partial variable assignment is called
a stateif it is defined for all fluents and none of the derived variahle?’. It is
called anextended statéf it is defined for all variables in?’. In the context of

10



partial variable assignments, we write~vd for the variable-value pairingv,d)
orve—d.

e S is a state overl/ called theinitial state.

e S, is a partial variable assignment ovér called thegoal.

e 7 is a finite set of (FDRaxiomsover 7. Axioms are triplegcondv,d), where
cond is a partial variable assignment called tbendition or bodyof the axiom,
v is a derived variable called thaffected variable and de D is called the
derived valuéfor v. The pair(v,d) is called theheadof the axiom.

The axiom sefl is partitioned into a totally ordered set akiom layers4; <

.-+ < 4, such that within the same layer, each affected variable legps¢ar with
a unique value in all axiom heads and bodies. In other wordthimvthe same
layer, axioms with the same affected variable but diffesrived values are
forbidden, and if a variable appears in an axiom head, themaly not appear
with a different value in a body. This is called tlagrering property

e O is a finite set of (FDRpperatorsover 4. An operator(pre, effy consists of
a partial variable assignment pre over called its precondition and a finite
set ofeffectseff. Effects are triplescond v, d), where cond is a (possibly empty)
partial variable assignment called theffect condition v is a fluent called the
affected variableand de 2 is called thenew valuefor v.

For axioms and effects, we commonly write cend := d in place of(cond v, d).

To provide a formal semantics for planning for FDR tasks, nst fieed to formal-
ize the semantics of axioms.

Definition 5 Extended states defined by a state

Let s be a state of an FDR ta§kwith axioms4, layered as4; < --- < 4x. The
extended state defined tsy written as4(s), is the result sof the following algo-
rithm:

algorithm evaluate-axiomsqy, ..., A, S):
for eachvariablev:
d(v) - s(v) if vis afluent variable
(V)= 1 if vis a derived variable
forie{1,...,k}:
while there exists an axiorftond— v:=d) € 4
with condC s and s'(v) # d:
Choose such an axiooond— v:=d.
s(v):=d

In other words, axioms are evaluated in a layer-by-layenitasusing fixed point
computations, which is very similar to the semantics oftstea logic programs. It
is easy to see that the layering property from Definition 4rgniees that the algo-
rithm terminates and produces a deterministic result. ktpdefined the semantics
of axioms, we can now define the state space of an FDR task.

11



Definition 6 FDR state spaces

Thestate spacef an FDR taskl = (7, s, s, 4, O), denoted as (M), is a directed
graph. Its vertex set is the set of stateslgfand it contains an args, s iff there
exists some operatdpre, effy € O such that:

reC 4(s),
(v) d for all effects(cond— v :=d) € eff with condC A4(s), and
(v) = s(v) for all fluents v where no such effect exists.

Finally, we can define the FDR planning problem.

LY
o ¢
o (v

Definition 7 FDR planning

FDR-RLAN is the following search problem: Given an FDR td3kwith initial
state §, goal s. and axioms4, compute a path itF(M) from g to some state’s
with s, C 4(s), or prove that none exists.

FDR-RPLANEX is the following decision problem: Given an FDR t&gkvith initial
state g, goal s and axiomsZ, doesS(IM) contain a path fromto some state’s
with s, C 4(5)?

The FDR-RANEX problem is easily shown to leSPACE-hard because it gen-
eralizes the plan existence problem for propositional $IRIwhich is known to
be PSPACE-complete [5]. It is also easy to see that the addition of himvary do-
mains, axioms and conditional effects does not increasthdwetical complexity
of FDR planning beyond propositional STRIPS. Thus, we amhelour formal in-
troduction of FDR planning by stating that FDR-AN EX is PSPACE-complete.
In the following section, we turn to the problem of genergioncise finite-domain
representations from PDDL representations.

3 Translation overview

Translation is performed in four stages. Starting from a BBipecification, we
first apply some well-known logical equivalences to compil&ay types and sim-
plify conditions and effects in theormalizationstage (Section 4). Next, thevari-
ant synthesistage computes mutual exclusion relations between atomsh\are
later used for synthesizing the FDR variables (Section B@groundingstage per-
forms a relaxed reachability analysis to compute the setadrgd atoms, axioms
and operators that are considered relevant for the plartaglgand computes a
grounded PDDL representation (Section 6). Invariant ssithand grounding are
not related to one another and could just as well be perfoimta opposite order.
Finally, theFDR task generatiostage chooses the final set of state variables by
using the information from invariants and grounding anddpies the FDR output
(Section 7).
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PDDL 2.2 task

’ Normalization

Normalized PDDL 2.2 task

¥ Invariant synthesis

Normalized PDDL 2.2 task
+ invariants

¥y Grounding

Grounded PDDL 2.2 task
+ invariants

¥ FDR task generation

Task in finite-domain representation

Fig. 6. Overview of the translation algorithm.

The complete translation process is outlined in Fig. 6. Befee begin the detailed
discussion of these stages in the following sections, wellshpoint out that of

these four stages, only three are necessary to convert a R&3RIto an FDR task:
the invariant synthesis stage can be omitted. Howeverowitthe use of invari-

ants, there would be a 1:1 correspondence between (releyranind atoms of the
PDDL task and state variables of the FDR task; in particallhistate variables in
the generated FDR task would be binary. Therefore, invegiare important for
obtaining aconcisefinite-domain representation.

4 Normalization

The normalization stage has three responsibilities: ctingpaway types, simpli-
fying conditions, and simplifying effects. Its result imarmalized PDDL 2.2 task
which is a PDDL task with a number of strong syntactical restms.

Definition 8 Normalized PDDL tasks
A normalized PDDL taskis a PDDL task that satisfies the following structural
restrictions:

e The goal formula is a conjunction of literals.
e All axiom bodies are conjunctions of literals (except foe ghossible implicit
existential quantification of free variables not occurrimghe axiom head).

13



¢ All operator preconditions are conjunctions of literals.

¢ All effect conditions are conjunctions of literals.

e All operator effects are conjunctions of universally quiadl conditional simple
effects.

4.1 Compiling away types

As suggested earlier, types are compiled away as the vetrpifogsessing step. For
each type occurring in the input, and for the tybgect , we introduce a new unary
predicate with the same name. Typed constructs occur in PRDPIspecifications
in a semantically meaningful way in three places:

(1) Definition of domain constants and objects of the taged objects

(2) Definition of formal parameters of schematic operattyisgd operators

(3) Definition of quantified variables in existential and wersal conditions and
universal effectstyped quantifiers

Typed objects are translated into new atoms for the initiates For example,
the specificatiorsoneobj - sometype leads to a new initial atonisomet ype
someobj ), plus an additional atorfisupert ype soneobj) for each supertype of
sonet ype, including the universal supertypéj ect .

Typed operators are transformed by introducing new pratond. For exam-
ple, for an operator with parameter specificatigar aneters (?parl - typel
?par2 - type2) and precondition, the parameter specification is replaced by
:parameters (?parl ?par2) and the precondition is replaced pgnd (typel

?parl) (type2 ?par2) ¢).

Typed quantifiers in conditions are compiled away with thealibogic idioms, turn-
ing (exists (?v - type) ¢) into (exists (?v) (and (type ?v) ¢)) and
(forall (?v - type) ¢) into(forall (?v) (inply (type ?v) ¢)).

Finally, typed universal effects are compiled into uniatrsonditional effects, so
(forall (?v - type) €) becomegforall (?v) (when (type ?v) €).

After types have been eliminated, we are left with a PDDL tiasthe sense of
Definition 3. We will thus use the more concise logical natatirom that definition
in the following, rather than lengthy PDDL syntax. For exaenpve writed v |
instead of or ¢ ) and¢ > einstead of when ¢ €).

14



4.2 Simplifying conditions

In PDDL tasks, general first-order formulae may occur in mplages: goal for-
mula, axiom bodies, operator preconditions and conditaironditional effects.
Our aim is to replace all these with simple conjunctionstefréls.

Towards this goal, we first eliminate implications with thguavalencep — g =
—¢ v Y and translate the resulting conditions into first-orderatieg normal form
using de Morgan’s laws for first-order logic.

The next step is slightly tricky. If there are any univergagilantified conditions, we
rewrite the outermost universal quantification in all caigais with the equivalence
Vx¢ = -3Ix—¢. This might seem somewhat counterproductive becauseré#ms-t
formation destroys negation normal form, so after the r@ywe introduce a new
axiom for the subformula that violates the normal form progeix—¢. Formally,
if free(Ix—¢) = {v1,...,}, we introduce a new derived predicatew- pr ed of
arity k, defined by the axiomew- pred(vy,...,Vk) < Y, wherey is the translation
of Ix—¢ to negation normal form. We can then replace the originatitton Vx¢
by —new- pred(vy,...,V). If several variables are universally quantified together
within the same expression, we transform them togetheadating only one new
derived predicate for the quantifier group. We repeat thap sintil there are no
more universally quantified conditions. Note that only @nsally quantifieccon-
ditionsare translated, not universaffects which also use the notation. Universal
effects cannot be compiled away easily, so we deal with thegmarately in a later
stage.

If after elimination of universal quantifiers the goal caiah is not a simple con-
junction (i. e., if it contains disjunctions or existent@hantifiers), we replace it
by a new axiom, since the following transformations somesimequire splitting
several conditions into two, which is easy to do for axiomibsdoperator pre-
conditions and effect conditions, but not possible in oumfalism for goal con-
ditions, of which there can be only one. So for example, if goal is¢ Vv ,
we introduce a new parameterless derived predigadé- pr ed and a new axiom
goal - pred() <— ¢ vy, replacing the original goal with the atagoal - pred().

The next step is the elimination of disjunctions. We moveguaistions to the roots
of conditions by applying the equivalences(¢ v ) = Ixp vV IxP andd A (Y V
Y)=(9AY)V(dAY) and the laws of associativity and commutativity. In the-
ory, moving disjunctions over conjunctions can lead to googential increase in
formula size, which we could avoid by introducing new axidorscomponent for-
mulae. In practice, the conditions encountered in actwaimphg domains are not
problematic in this regard, so that axioms are not neceg$anythe intended appli-
cations of finite-domain representations mentioned iniSedt.3, we believe that
of two otherwise identical representations, the one thas diswer state variables
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is usually preferable, so we attempt to avoid introducing state variables unless
there is a compelling reason to do so.)

After disjunctions have been moved to the root of all forneulae can eliminate
them by splitting the surrounding structures. If the disfion ¢ Vv Y is part of an

axiom body, we generate two axioms with identical head, ortk ody ¢ and

one with bodwp. If the disjunction is part of an operator precondition, wplace

the operator by two copies of the original, one with prectodi¢ and one with

preconditiony. Finally, if the disjunction is part of an effect conditione replace
the conditional effect¢ v @) >eby (p>e) A (Pr>e).

Next, we move existential quantifiers out of conjunctionsapyplying the equiva-
lence(3Ixd) AP = IX(¢ AW). The equivalence only holds wher¢ free(y), so to
avoid trouble here and later, we first rename all variablasw\ddoy quantifiers to
some unique name.

Having moved existential quantifiers to the root of conditipwe can eliminate
them. For axioms, we simply drop them, following the logiogramming conven-
tion that all free variables in the body that are not part &f tlead are implicitly
existentially quantified. For operator preconditions, W@ arop them, adding the
existentially quantified variables to the parameter lighefschematic operator. For
effect conditions, we repladelx¢) > eby Vx: (¢ >e).

4.3 Simplifying effects

After the somewhat laborious simplification of conditiomsfect simplification

is conceptually very simple. First, universal and condiibeffects are moved
into conjunctive effects by the equivalences: (eA€) = (Vx:e) A (Vx: €) and

b (en€)=(dr>e)A(dr>¢€). Second, conditional effects are moved into univer-
sal effects by the equivalenge> (Vx: e) = Vx: (¢ > e). Finally, nested effects of
the same type are flattened, i. e., conjunctive effects aantaconjunctive effects
are collapsed into a single conjunctive effect with morgenats, universal effects
containing universal effects are collapsed into a singlearsal effect quantify-
ing over more variables, and nested conditional effectb@typed > (> €) are
transformed tq ¢ A W) > e. Note that this latter modification preserves the previ-
ously generated normal form for effect conditions.

After these transformations, the possible nesting of &ffecthus restricted to the
simple chainconjunctive effect universal effect- conditional effect- simple
effect However, not all effect types must necessarily be predentexample, a
universal effect may, but need not, contain a conditiorfebef To enforce a regular
effect structure, we replace simple effeetsot surrounded by conditional effects
by T >e (T is seen as the empty conjunction, so this condition is in @abform),
conditional effect® not surrounded by universal effects Wy e (quantifying over
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zero variables), and universal effeetaot surrounded by conjunctive effects by a
conjunctive effect containing the singleten

As a result, after normalization each operator has a cotijgneffect, where each
conjunct is a simple effect with an associated set of unaleggantifiers and an
associated condition, both of which can be trivial. Thus ot necessary to store
normalized operator effects in a tree structure; a flat vastsufficient.

This concludes the normalization stage. For the sake ofdl@afing discussion,
we briefly recapitulate the structural restrictions formatized PDDL tasks (Defi-
nition 8):

e The representation is untyped.

¢ All formulas (goal, preconditions, effect conditions, @xi bodies) are conjunc-
tions of literals.

e The effect of each operator is a conjunctive effect whoséspe of the form
Yvi...Vk : ¢ > e whereeis a simple effect.

In the following, we will refer to the individual simple effés of an operator in a
normalized PDDL task as being arranged inediect list For the simple effece
occurring within the universal conditional effeégt; ... vk : ¢ > e, we will refer to
{v1,...,%} as the set obound variable®f e and to$ as theconditionof e. If eis
a positive literal, we will call it aradd effectotherwise alelete effect

5 Invariant synthesis

An invariant of a planning task is a property which is sattsty all world states
that are reachable from the initial state. Many invariamésuminteresting; for ex-
ample, the property “At least five state variables are trgedn invariant for most
propositional STRIPS planning tasks, but does not seemtéil aruseful (i. e., ex-
ploitable) piece of information for a planner. Other ineartis would be useful to
know but are too difficult to verify. For example, “The goalnet satisfied” is an
invariant iff the planning task is not solvable, so confirnthe invariance of that
state property i®eSPACE-hard for a propositional STRIPS task.

Nevertheless, invariants are a useful tool for many plajpsaystems, which is why
they have been studied by many researchers in a variety téxtsrj19,24,40,41].
Section 5.5 discusses related work on invariants, and whintkeduce a new in-
variant synthesis algorithm in the following instead of @ one of the algo-
rithms from the literature. The short answer is that mosbtigms from the lit-
erature are limited to STRIPS domains. Moreover, some ahthee prohibitively
expensive for the largest planning tasks in the IPC bendkshate.
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For the purposes of translating planning tasks to a finitealo representation,
mutual exclusior{mutey invariants are especially interesting. A mutex invariant
states that certain propositions can never be true at the same. This affects
translation because a set of propositions which are pammistually exclusive can
be easily encoded assingle state variable whose value specifighich of the
propositions is true (or that none of them is true at allheathan as a number of
state variables encoding the truth value for each propositidividually.

Invariance is usually proven inductively. First, one shdied a hypothesized prop-
erty is true in the initial state. Then, one shows that if theperty is true in some
state, it must also be true in all its successor states. fiegahis implies that the
property is true in all reachable states, and thus an imnvaria

As mentioned before, the automatic discovery of invariasis hard problem in
general, but for many relevant types of state propertigficent conditions ex-
ist that can be checked quickly. Still, synthesizing inaats is costly, and for this
reason, we are interested in algorithms working directiyhe first-order PDDL
description of a planning task, not on a grounded representdndeed, our algo-
rithm goes beyond this requirement by not relying on thermgation in thetask
part of the PDDL input at all, solely exploiting informatigmesent in thelomain
part. This is a valuable feature, but it rules out the pobsilof directly proving
mutex conditions, because a mutex cannot be establishbdwithecking the ini-
tial state. Instead, we consider a slight generalizatiamatexes.

Definition 9 Monotonicity invariant candidates

A monotonicity invariant candidatdor a PDDL taskl1 is given by a pairl =
(V,®), where V is a set of first-order variables called th@rametersof the can-
didate, and® is a set of atoms. Variables occurring freely @ which are not
parameters are calledounted variable®f the candidate.

ForV ={vi,...,Vm} and® = {¢1,..., ok}, we writel as¥vy...Vmb1+---+ bk |
In the special case W= 0, we writeV - ¢1+ -+ ¢ |.

In the following, we will mostly refer to monotonicity inveant candidates as-
variant candidate®r simply candidatesas we do not consider other kinds of in-
variant candidates.

The preceding definition defines the syntax for invariantiadates; we now have to
provide the semantics. This is somewhat involved, so weigecan example from
the LoGisTics domain first. Consider the candidatép},{at (p,!),i n(p,v)}),
wherep, | andv are variable symbols. We write this &pat (p,l)+in(p,v) |
and read it as “For all packages the number of locationssuch thatt (p,1) is
true plus the number of vehiclessuch thai n(p, V) is true, is non-increasing.” In
our terminology,p is the parameter of the candidate, wHikendv are the counted
variables. This invariant candidate is an actual invaramidoeshold in all reach-
able states — and it is one of the invariants found by our &@lgarin LOGISTICS
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Let us now formalize what it means for a candidate to be arrigwa

Definition 10 Monotonicity invariants
Let 7 = (V,®) be a monotonicity invariant candidate of a PDDL tdsk

Aninstanceof I is a functiona mapping the variables in V to objectsiaf

The set otovered factof an instancex of I is the set of all ground atoms of the
planning task which unify with somé € ® undera, i.e., the set of all ground
atomsodo of N for which there exists a variable m@> o such thaf3(¢) = ¢o for
somep € P.

Theweightof an instancex of I in a state s is the number of covered factsxof
which are true in s.

The monotonicity invariant candidafas called amonotonicity invariantiff for all
instancesx of 7, all states s reachable from the initial stateldfand all successor
states 5of s, the weight ofi in §' is no greater than the weight of in s.

Similar to our convention for invariant candidates, we Ulguafer to monotonicity
invariants simply agvariants

The definition is probably best understood by consideriegotteviously discussed
example invariant. To get an instance of the candidai&t (p,l)+in(p,v) |, we
must mapp to a particular object, say iy= { p— packagel}. The set of covered
facts ofa in a given statsthen consists of all atoms of the folah(packagel,1) or

i n(packagel,v) that are satisfied ia In a reachable state, there will typically only
be one such atom, for example given by the mapfirga U {l — | ocati onl},
so the weight ofx in swill be 1. But even if we consider strange states witere
has a greater weight than 1, it is easy to see that the weightro& successor state
of sis never greater than the weight @fin s. This is true for all instances of the
candidate, so it is indeed an invariant.

As hinted before, monotonicity invariants are useful fasugping a number of re-
lated propositions into a single finite-domain variablevé have found an invariant
for a planning taslkand a given instance of that invariant has weight 1 in the initial
state, then the facts covered by that instance are pairwiseathy exclusive. This

is how the synthesized invariants are utilized during therlstages of translation.

So how do we generate invariants? Since there are too masiplie@andidates
to enumerate exhaustively, we follow a guidgaess, check and repaapproach.

Starting from a set of a few simple initial candidates, wettryprove that a given
candidate is indeed an invariant. Whenever this is the sasdeep the invariant
and do not consider it further. However, when the proof fails try to detectvhy

this is the case and refine the candidate to generate moréateslthat do not
fail for the same reason (although they might fail for otheasons). From a high-
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level perspective, this is a search problem, and indeed We gausing standard
breadth-first search, using a closed list to avoid explotitegsame invariant can-
didate twice. (This guarantees termination of the algari)hTo fully specify the
invariant synthesis algorithm, it thus suffices to disctssearch space:

¢ Initial states:What are the initial candidates?
e Termination testHow do we prove that a candidate is an invariant?
e Successor setlow do we refine a candidate for which this proof fails?

In the following, we deal with these three questions in seqae

5.1 Initial candidates

Before starting the actual invariant synthesis, we checlchvpredicates are af-
fected by operators at all: some predicates, including btitimited to those rep-
resenting types, amonstantin the sense that atoms over these predicates have the
same truth values in all states. Such predicates are norloegeled after ground-
ing, so we need not consider them for invariant candidatésoQOrse, a constant
predicate trivially satisfies a monotonicity invariantf luese are not very useful.

Therefore, we limit the set of interesting predicates taradifiable fluent predi-

catesi. e., predicates which occur within operator effects @ of a simple effect,

not merely as part of an effect condition). Note that this &scludes derived pred-
icates. In theory, there is no reason why there should be mmtonicity invariants

involving derived predicates, but in practice we have nansexamples of this,
and detecting them would require more global reasoning thamproof methods
we use for fluent predicates. We will come back to the issueedf/ed predicates
when discussing our method for proving invariance.

The set of initial invariant candidates consists of all tngandidates (up to iso-
morphism, i. e., renaming of variables) which contain atthoog counted variable
and exactly one atom, over a modifiable fluent predicate, pasameters are dis-
tinct variables. In our experience, mutexes based on iawtgwith several counted
variables per atom are exceedingly rare; in fact, we haveseeh an example in
practice.

To illustrate the initialization of invariant candidatese show the three candidates
generated for the binamt predicate in the bGisTicsdomain:

vxat (x,1) | 1)
Vlat (x,1) | 2)
vx,lat (x,1) | (3)

Similar candidates are introduced for thepredicate. Intuitively, the first candidate
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states that no object can be at more locations in the suacstse than in the
current state, the second candidate states that no locaiobe occupied by more
objects in the successor state than in the current stateharthkird candidate states
that a given object cannot occupy a given location in the essmr state if this is
not the case in the current state.

Candidates (2) and (3) are obviously not invariants. Caatdifll) is not an invariant
either because an object which is currently inside a velsaebe at some location
in the successor state while being at no location in the nustate. However, we
will see that we can refine (1) into an invariant.

5.2 Proving invariance

In order to prove that a given invariant candidate is an iavdy we must show that
no operator can increase the weight of any of its instancesopferator increases
the weight of some instance of an invariant candidate iffitbhenber of covered

facts that it makes true is greater than the number of coviaied that it makes

false. If an operator does not increase the weight of angmtst, then we say that
it is balancedwith regard to the invariant.

Ultimately, we are interested in instances of monotoniicitAariants that give rise
to mutexes, so that only instances of weight 1 are relevanigoFor this reason,
we use the following condition which is slightly strongeathbalance.

Definition 11 Threatened invariant candidates
An invariant candidatd is threatenedby a schematic operator iff one of the fol-
lowing two conditions holds:

e The operator has an add effect that can increase the weighhahstance of
I in some state, but no delete effect that is guaranteed taedserthe weight
of the same instance in the same state. In this case, we sathéhaperator is
unbalancedwith regard to/.

e When ignoring delete effects, the operator can increasevikight of some in-
stance ofl in some state by at lea&t In this case, we say that the operator is
too heavyfor 1.

Clearly, not being threatened by any schematic operatosugfient condition for
being a monotonicity invariant. Note that just showing thatoperator is unbal-
anced in the sense of the definition is not sufficient for iraraze, as the balance
test considers different add effects in isolation. For eplgran operator might have
two add effects, each of which is individually balanced byketk effect. However,
the operator might still cause a net increase of the weighnahvariant instance
if the two balancing delete effects can be identical. Thisasalways obvious; for
example, consider an (incorrectly modelled) operator fovimg something which
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is currently at two locationg andl, to two other location$s andly:

Precondition: at (x,l1) Aat (x,12)
Add effects: at (x,l3) Aat (X,14)
Delete effects: at (x,11) Aat (x,12)

At first glance, the operator does not seem to be problematiihé monotonicity
invariant candidat&xat (x,1) |, but actually it is: in the caske = I, andlz # Iy, it
increases the number of locations tka currently at. Attempting to capture such
subtleties in the balance test makes this test more congdicand even more so in
the presence of universally quantified effects, which cahadarbitrary number
of facts. We avoid such complications by adding the heasitest, which would
reject the invariant candidate because the operator caease the weight of its
instances by two.

Clearly, the heaviness test is stricter than necessarjpelfabove operator were
extended with the preconditida # |2, thenxat (x,1) | might indeed be an in-
variant, but it would still be rejected due to the operatdngeoo heavy for it. In
the context of translation to finite domain representatilois,does not appear to be
problematic because we are only interested in invariamth&purpose of generat-
ing mutex groups. In that setting, the weight of interestm@riant instances is at
most one, so operators that add more than one fact eithertdaxisb or are never
applicable, and typical PDDL models do not contain schenwgderators which are
never applicable.

Definition 11 gives rise to the algorithm shown in Fig. 7. Mo§the actual work

is in unifying operator parameters and quantified variabfamiversal conditions;

the algorithm simplifies significantly in STRIPS domains. W& not discuss the
algorithm in full detail, instead focusing on two points thiaquire some expla-
nation, namely the satisfiability and entailment tests titaur towards the end of
functionsis-operator-too-heavgndis-add-effect-unbalanced

For the heaviness test, two add effects can only lead to aiatmpédeing too heavy
in statess where the operator is actually applicabt&.frecond is true irs), the
triggering conditions of both add effects are satisfieddnd ande’.cond are true
in s) and the add effects actually add propositions that weretrnet previously
(e.atom ande.atom are false irs). An operator is considered too heavy isy
operator-too-heavyf all these conditions can hold together, i. e., their cojpion
is satisfiable. (Even if the conjunction is satisfiable, ibfscourse possible that
none of the satisfying states is reachable from the init&es so this may be overly
conservative.)

For the imbalance test, an add effect leads to an imbalancetaylt. However,
it can be balanced if whenever the operator is actually egph a states (which
requires that'.precond is true in sta® and the add effect triggers.€ond is true
in s) and actually adds somethingdtom is false irs), then something is deleted at
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the same time, which means that the delete effect triggeod is true irs) and
deletes something that was previously trdeatom is true irs). Functionis-add-
effect-unbalancedonducts logical entailment tests to check if a balancirigtde
effect is guaranteed to exist. (Again, this may be overlyseovative because all
states in which balance is violated might be unreachable.)

Coming back to the earlier @GISTICS example, all three initial candidates are
threatened by the same operatof oad- t r uck:

Precondition: package(x) Atruck(t) Al ocation(l)Aat (t,I) Ain(xt)
Add effects: at (x,1)
Delete effects: i n(x,t)

The operator is unbalanced with regard to all invariant catds due to the add
effectat (x,1). Thus, as indicated before, none of (1)—(3) is an invariare.will
discuss possible refinements of the candidates shortly.

There are a few subtleties about the algorithm which we wapbtnt out briefly:

e We duplicate universal effects at the beginningssbperator-too-heavgo that
we can detect if two different instantiations of the sameversal effect can si-
multaneously increase the weight of some instance of treriemt candidate.

e Where Fig. 7 contains statements like “lcébe a copy ob where variables are
renamed so that...”, the question arises whether such anregas uniquely
determined, and what to do if it is not. Indeed, renamingsiargue (and easy to
compute) as long as all atoms of the candidate refdifterentpredicates, which
is usually the case. However, the algorithm generalizesvariant candidates
with several occurrences of the same predicate Mka (x,y) +at (y,X) |. This
requires that all possible (non-isomorphic) renamingstroasonsidered foo’
in function is-add-effect-unbalancedn our experience, invariants of this type
are not very useful, but our implementation does supporthe

¢ We have noted before that we do not consider invariantsvinvglderived pred-
icates. This is because axioms correspond to operatorhi@tvat a single add
effect, but no delete effect. Invariant candidates inaigdierived predicates can
thus never be balanced in the sense of Definition 11, excebé iixiom body
already entails the head, which is not a very interesting.cas

e Because the operator preconditions and effect conditiomsranormal form
(conjunctions of literals), the satisfiability test in furon is-operator-too-heavy
is performed on a conjunction of literals, which is possiblénear time. (Just
check if any two literals in the conjunction are complemenjeSimilarly, func-
tion is-add-effect-unbalancetésts entailment between two conjunctions of lit-
erals, which is also possible in linear time.

One final subtlety concerns the semantics of PDDL operatdits ‘wonflicting”
effects. Note that our balance test requires &xtiom does not equal.atom, i. e.,
the atom that is added is different from the one which is @€lethe reason for this
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function prove-invarianty, ®):
for each schematic operatar.
if is-operator-too-heavg(V, ®):
return false. { Reject the candidateé.
for each add effecte of o that affects a predicate b:
if is-add-effect-unbalanceal(e, V, P):
return false. { Reject or refine the candidate.
return true . { Accept the candidate.

function is-operator-too-heavg(V, ®):
Let o’ be a copy ob.
Duplicate all (non-trivially) quantified effects af.
Assign unique names to all quantified variables in effects .of
for each pair (e, €) of add effects ob’ that affect a predicate i:
if the parameters of operatdrcan be renamed so that
(e.atom+# €.atomand
coversy, @, e.atom)and coversy, @, €.atom)and
o .precond\ e.condA €.condA —e.atomA —€.atom
is satisfiable):
return true . { The operator is too heavy.
return false. { The operator is not too heavy.

function is-add-effect-unbalanceal(e, V, ®):
Let o’ be a copy ob where the parameters are minimally
renamed so that cove¥s(®, e.atom) is true.
for each delete effec¥ of o’ that affects a predicate i:
if the quantified variables @& can be renamed so that
(e.atom+# €.atomand coversy, ®, €.atom)and
o' .precondA e.condA —e.atoml= €.condA €.atom):
return false. { € balance®. }
return true . { The add effect is unbalancef.

function coversy, ®, y):
for each ¢ € ®:
if the counted variables ifn (those not irV)
can be renamed so thiat= :
return true .
return false.

Fig. 7. Algorithm for proving that an invariant candidgté ®) is an invariant.

is that PDDL semantics mandate that if the same atom is batbdadnd deleted
simultaneously, it is actually added, so that an atom cabalaince itself.
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algorithm refine-candidat®(, ®):
Select some schematic operaband add effece such that
is-add-effect-unbalanceal(e, V, @) returnstrue.
for eachatom¢’ over variables fronv and at most one other variable
for which coversy, ®, ¢’) is not true:
' =dU{¢’}
Simplify @' by removing atoms fron® that are covered by’.
(These cannot contribute to the weight of an instanc&/oP’).)
Simplify @' by removing unused parameters.
if not is-add-effect-unbalanceal(g, V, @'):
Add (V,®’) to the set of invariant candidates.

Fig. 8. Algorithm for refining an unbalanced invariant catade (V, ®).

5.3 Refining failed candidates

As indicated in the overview of the invariant synthesis alfpon, we do not give
up immediately if we cannot prove a given candidate to be wariant. Instead,
we try torefineit by adding atoms that can restore balance. In algoritherins,
whenever we reject an invariant candidée®), we try to generate a set of new
candidates of the fornV, U {¢'}).

Whether or not this is promising depends on the reason whydhédidate was

rejected. If it was rejected because an operator is too h#@sty no possible refine-
ment that adds an atom to the candidate can change thisridoyeagive up on the

candidate completely. If, however, it was rejected becafisebalanced operators,
there is hope that we can deal with the flaw by adding an atotc#mamatch some

delete effect of the threatening operator, balancing thalamced add effect.

The basic refinement algorithm is shown in Fig. 8. The actngléementation does
not generate all possible refining atodrisiaively, but rather uses information from
the set of delete effects of the threatening operatand the failed call tas-add-
effect-unbalancedo only consider atomé’ for which there is a chance that the
new balance check will succeed. Since this is conceptutiyght-forward, we do
not go into more detail about this technique.

Instead, let us return to thedGisTiCcs example. Recall that invariant candidate
(1), ¥xat (x,1) |, is threatened by the operataml oad- t r uck, whose add effect
at (x,1) is unbalanced. The operator has only one delete effect, lgarna(x,t).
Indeed,i n(x,t) is a suitable refinement atom f@f without further variable re-
naming, since thenl oad-t ruck operator is balanced with regard to the refined
candidatevxat (x,1) +in(x,t) |. So we add this candidate to the set of currently
considered candidates. At a later stage, it will be consitldéxry prove-invariant
which will show that it is indeed an invariant.

25



In contrast, the other two candidates cannot be suitablye@fiFor (3), consider
thedri ve-truck operator:

Precondition: truck(t) Al ocation(l) Al ocation(l’)Acity(c)A
in-city(l,c)Ain-city(l’,c)Aat (t,I")
Add effects: at (t,1)
Delete effects: at (t,l")

In order to refine (3)yx,l at (x,1) |, to balance this operator, we would need to add
the atomat (x,1’), asat (t,l’) is the only delete effect of the operator a@nshifies to

x. However, this atom covers the original atatr(x, | ) (note that the converse is not
true, because only is a counted variable), leading to the candidatd at (x, 1)
where parametdris unnecessary, so that it simplifieswoat (x,1). This candidate

is isomorphic to (1) and hence not considered again.

Considering candidate (2) and ttiel ve-t r uck operator, the only possible refine-
mentisv- at (x,1") | (“The total number ot propositions is non-increasing”), but
this has more than one counted variable and thus will not heidered byefine-
candidate Supposing that we removed the restriction to candidatidsat/imost one
counted variabley - at (x,1) | would turn out to be violated by thenl oad-t r uck
operator, but could be further refined¥o at (x,1’) +i n(x,l") | (“The total num-
ber ofat andi n propositions is non-increasing”). This latter candidatagtually
a monotonicity invariant. However, its only instance clgdras a weight greater
than 1 in the initial state of any non-trivialdGisTicstask and thus is not useful
for providing any mutex information. (Of course, it wouldllgdbe a monotonicity
invariant, and be part of the output of the algorithm, if thstriction to at most one
counted variable were removed. To derive mutex informatiom monotonicity
invariants, we must also consider the initial state infdiarg this happens in the
“Variable selection” stage of the translation algorithrasdribed in Section 7.1.)

5.4 Examples

This concludes our description of the invariant synthelgjsrdghm. To give an im-
pression of the kind of invariants it generates, Fig. 9 shearse of the results
obtained on IPC domains. The invariants found in trgisdomain are most in-
teresting, as they include some monotonicity informatioat is not covered by
mutexes: the third @D invariant states that the total number of open and locked
doors never increases, the fourth invariant states thatdh&er of locked doors
never increases, and the sixth invariant states that a dowhvis not locked can
never become locked.

26



LOGISTICS vx at (x,1)+in(xt) |

BLOCKSWORLD V- handenpty() -+ hol di ng(b) |
Vb hol di ng(b) +cl ear (b) +on(b’,b) |
Vb hol di ng(b) + ont abl e(b) 4+ on(b,b’) |

GRID V- arnmenpty() +hol di ng(k) |
V- at-robot () |
V- open(d)+1 ocked(d) |
V- I ocked(d) |
vd open(d) + 1 ocked(d) |
vd | ocked(d) |
vk hol di ng(k) +at (k,I) |

Fig. 9. Invariants found in some standard benchmark domains

5.5 Related work

Before moving on to the next translation stage, we shouldtpmit that the algo-

rithm described in this section is not the only approach vaiiiant synthesis pro-
posed in the literature. We thus provide a brief comparism@ix other approaches,
sorted in decreasing order of relatedness:

Edelkamp and Helmert’s algorithm [14] proposed for the M@&hner [16,15],
Scholz’s algorithm for finding-constraint443],

Gerevini and Schubert’s DISCOPLAN [24,25],

Rintanen’s invariant synthesis algorithm [41],

Bonet and Geffner’s algorithm for generating mutexes [4f a

Fox and Long’s TIM [19,8].

Apart from the first algorithm in the list, all of these weresdped independently
from ours, although all but the last one follow very simildeas. Edelkamp and
Helmert's algorithm is the most closely related approaciiatt, our algorithm can
be considered an extension of the MIPS algorithm to non-8BRlomains. Com-
pared to the original algorithm, our method incorporatasesa@osmetic and per-
formance improvements, but the main difference is the @meof universal and
conditional effects. Note, however, that this is no smafledence, as it is much
easier to reason about STRIPS operators than about the emeeadclass of oper-
ators occurring in normalized PDDL tasks. On STRIPS domdiath algorithms

generate the same set of invariants.

Scholz’s algorithm is very similar to Edelkamp and Helngertvith only slight
differences in the way that failed invariant candidatesrafimed to generate new
invariant candidates. It shares the weakness of beingdthid STRIPS domains.

DISCOPLAN also uses a very similar guess, check and reppinoaph. However,
its method for refining invariant candidates is quite déf@r In particular, while

27



our algorithm immediately refines an invariant as soon aseatbning operator is
discovered, DISCOPLAN first collects all threats to an imar for all operators.
Only then does it generate refinements, which attempt toeaddall these threats
at the same time. On the one hand, collecting threats acpasators allows mak-
ing more informed choices in invariant refinement. On theeptand, it appears
that this approach incurs a performance penalty. For examgiile our algorithm
always terminates in less than a second on all IPC benchmaskk,tDISCOPLAN
exceeds a 30 minute timeout on large instances of the IP@#@RT domain. It
should be noted, though, that DISCOPLAN generates mangesasf invariants
besides mutexes, because it was designed as a generamismthesis tool, not
with finite-domain representations in mind. This differenn purpose should be
taken into account when comparing runtime results, asikedfthat better runtime
results could be obtained for DISCOPLAN by only considemmgtual exclusion
invariants. (Modifying DISCOPLAN's algorithm to derive dlu a specialization
appears feasible, but an appropriate modification of thdadla implementation
appears to be a practically non-trivial task.) Apart frorficegncy concerns, an-
other consideration is that even though DISCOPLAN is noitéchto STRIPS, it
can only deal with a subset of ADL features which is not sudhtly rich for all
IPC benchmarks. Finally, even for STRIPS domains, we fohatidome invariants
important for a concise finite-domain encoding which oupalpm discovers were
missed by DISCOPLAN. For example, in theRDDERLOG domain, our approach
can prove that a given driver can only be at one place or insdetruck at the
same time, which allows encoding driver location in a singleable. An encoding
based on the invariants found by DISCOPLAN would need toahice a separate
state variable for each driver-location and driver-truekr p(After discussing this
point with the DISCOPLAN authors, the algorithm has beenrathed, so that the
most recent version of DISCOPLAN now finds this invariant.)

Rintanen’s algorithm follows the same guess-check-reftaircture as our algo-
rithm and DISCOPLAN. One main difference (and advantageRiotanen’s al-
gorithm is that its “check” step uses the information fra@th current invariant
candidates, rather than just the one currently being cereil] to strengthen the
induction hypothesis. An interesting difference is thaasite to our algorithm, it
always proceeds from stronger invariant candidates to @reakes. Note that for
inductive proofs, both strengthening and weakening arriamacandidate can be a
promising refinement strategy. In particular, weaker stai@s are not necessarily
easier to prove than stronger ones because the inductiathiegs is also weaker.
A problem of Rintanen’s algorithm is that it is limited to pasitional STRIPS and
that it is not sufficiently efficient for many of the IPC bencrks. For this reason,
we have not made a detailed comparison regarding the kindsariants it can or
cannot find; from our limited experience, we believe the apphes to be compara-
ble in this respect, at least for the mutexes we are intatéstéike DISCOPLAN,
Rintanen’s approach can find more general classes of imiarilaan mutexes.
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Bonet and Geffner’s algorithm for generating mutexes carsdmn as a special
case of Rintanen’s algorithm that starts from a differerediter) set of invariant
candidates and immediately rejects all failed candidatstead of trying to refine
them. Like Rintanen’s algorithm, it is limited to STRIPS amdrks on a grounded
representation, which makes it much more expensive to ctemiou large IPC
benchmarks than our first-order algorithm. To keep the numtmanageable, the
algorithm puts some severe restrictions on the potentiggxmairs to consider. For
example, ifat (x) is a set of propositions that encodes the location of an bbjec
a graph, the algorithm fails to prove mutual exclusion if themeter of the graph
is greater than 2. (Examples of this arise in thRRORT, DRIVERLOG, GRID,
MPRIME, MYSTERY and TPP domains.)

Finally, Fox and Long’s TIM (fortype inference modulés (or can be interpreted
as) an invariant synthesis algorithm which follows a comgally very different
approach to the other algorithms described here, basedeomation ofproperty
spaceswhich are generated from the type structure of the task, wisdn turn
derived by atype inferencdéechnique which gives the system its name. TIM was
originally [19] limited to STRIPS and thus not directly usalor us. It has since
been extended to handle some ADL constructs [8], indepélydeinthe develop-
ment of our invariant synthesis algorithm.

6 Grounding

After computing monotonicity invariants, the next traigla stage generates a
variable-free representation of the normalized PDDL tagkpcess which is called
grounding

Definition 12 Grounded PDDL tasks
A grounded PDDL taskis a PDDL task such that all literals occurring in the goal
formula, axioms and operators are ground literals (i. e.,rai contain variables).

Grounding is a conceptually simple operationQlfs the set of objects of the task,
a variablex in a parameterized structure (operator, axiom or univgrgalantified
effect) can be eliminated by replacing the original struetwith |O| copies, one for
each objecb € O, wherex is substituted witlo in the respective copy. If the PDDL
task were not already in normal form, quantifiers in condsicould be similarly
eliminated by replacingix¢ with the disjunction\/,co$[x/0] andVx$ with the
conjunction/\ oo $[x/0l.

In general, the grounded task can be exponentially largar the original one:
for example, an operator witk parameters gives rise t®| many ground in-
stances, anéd can grow linearly with the task size. However, in practice tlum-
ber of parameterk is usually low, and in particular it is fixed for a given plangi
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domain. Moreover, the exponential blowup through grougdsncomputationally
unavoidable, since planning with grounded representai®exponentially easier
than planning with schematic representations [18].

In practice, for the majority of common planning domainggrding is not a time-
critical operation, and simple grounding schemes like the autlined above suf-
fice. However, there are exceptions to this rule: the naieeimging algorithm is
not computationally feasible for the whole spectrum of IR@ping domains. To
illustrate that grounding can be challenging, we testedjtbanding algorithm im-
plemented in the FF planner [32] on the IPC benchmark sutposing a runtime
limit of 30 minutes and a memory limit of 2 GB. (FF does not dthg support
derived predicates, but for the purposes of groundingyvddrpredicates can be
treated as if they were operators with a single effect, whierdid for this experi-
ment.) FF is particularly suited for comparison becauseonie of the few planners
that support the full ADL subset of the PDDL language, ancabee its grounded
tasks follow a very similar normal form to the one in this @di (The only signif-
icant difference is that it compiles away negative literalsonditions.) Moreover,
it uses a fairly sophisticated grounding procedure, ogliyrintroduced by Koehler
and Hoffmann for the IPP planner [36].

Our experiment showed that even though grounding in FF &@rinjdy fast for the
vast majority of benchmarks, there are scaling issues irestemains. In partic-
ular, the grounding procedure failed on 57 tasks (28 from@reTELEGRAPH
domain, 2 from RTHWAYS, and 27 from PSR-RRGE) by exhausting the memory
limit. Being unable to ground a planning task would not begm#icant problem
if these tasks were beyond reach of current planners, but aideem are not.
For example, the results reported by Richter et al. [39] stiat their landmark-
based planner can solve (in at least one of the planner coafigns described in
the paper) all these tasks except for 16 of the largest PSRGE instances under
similar time and memory constraints. Furthermore, evenifsogntly increasing
the memory limit for the grounding procedure does not elaterthe bottleneck in
the grounding procedure: with a 28 GB memory limit, grouigdivith FF still fails
on 26 tasks (11 from ©TTELEGRAPH 15 from PSR-IARGE), of which 16 are
solved by the planner of Richter et al. with a 3 GB memory bound

6.1 Improving the naive grounding algorithm

How can we perform grounding more efficiently than the naigedthm that in-
stantiates each variable with each possible object? Thelkesrvation here is that
many ground operators produced by the naive algorithm arapuicable in any
reachable state of the task, and thus can be safely omitiedtire grounded rep-
resentation.
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Operatorl oad-t ruck(p,t,I):
Precond.: package(p) Atruck(t) Al ocation(l)Aat (t,1)Aat(p,l)
Effect: in(p,t)A—at(p,l)

Operatowunl oad-t ruck(p,t,I):
Precond.: package(p) Atruck(t) Al ocation(l)Aat (t,1)Ain(p,t)
Effect: at (p,I) A—in(p,t)

Operatorri ve-truck(t,l,l’,c):
Precond.: truck(t) Al ocation(l)Alocation(l’)Acity(c)A
in-city(l,c)Ain-city(l’,c)Aat (t,I)
Effect: at (t,l’) A—at (t,1)

Operatorl oad- ai r pl ane(p,a,l):
Precond.: package(p) Aairplane(a) Al ocation(l)Aat (a,l)Aat(p,l)
Effect: in(p,a)A—at(p,l)

Operatomunl oad- ai r pl ane(p,a,!):
Precond.: package(p)Aairplane(a)Alocation(l)Aat(al)Ain(p,a)
Effect: at(p,I)A—in(p,a)

Operatoff | y-ai rpl ane(a,l,l’):
Precond.: airplane(a)Aairport(l)Aairport(l’)Aat(al)
Effect: at(a,l’) A—at (a,l)

Fig. 10. Schematic operators of the&isTicsdomain.

algorithm operators
naive 5.82-100
checking types 1.94.1C8
checking static preconditions 3.00-10°
checking relaxed reachability 1.53-10°
checking relaxed reachability and pruning no-ods51-10°

Fig. 11. Number of ground operator generated by differeatigding algorithms for task
LoGIsTICS#28 (IPC1).

We illustrate this point with the operators of the@&isTics domain, shown in

Fig. 10, using instance #28 from IPC1 [37] as a running examphere are 490
objects in this task, so that the naive algorithm genera8§ground instances of
each operator witk parameters. There are 5 operators with 3 parameters each and
one operator with 4 parameters, so we end up With9® + 490* = 5.82. 1010
operators (cf. first row of Fig. 11), which is clearly infelaigi. We will now discuss

a number of increasingly sophisticated techniques to mduis number, leading

up to the ideas underlying the new grounding method intredua this article,
which is then discussed in the remainder of this section.
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6.1.1 Exploiting type information

A brief look at the output of the naive algorithm shows tha&t ¥ast majority of op-
erators is useless. For examglead-t ruck(cityl,truck4,airportl) requires
thatpackage(ci tyl) is true, which is never the case in a reachable state. Indeed,
even though the @GisTics domain from IPCL1 is untyped, it is easy to see that
the unary predicatesi r pl ane, ai rport, city, | ocation, package andtruck

are used as “implicit types”: they are static (do not appearerator effects) and
serve to restrict the possible instantiations of the opefzrameters.

As a first enhancement, we can take such (implicit or expligging information
into account. The example task has 42 packages, 83 truckglares, 20 cities
and 340 locations (17 in each city). One location in each isitgn airport, so
there are 20 airports. Exploiting this information, we onged to generate 483-
340 ground instances bbad- t r uck andunl oad- t r uck, 83- 340- 340- 20 ground
instances oflri ve-truck, 42-5-340 ground instances ¢foad- ai r pl ane and
unl oad- ai r pl ane and 5 20- 20 ground instances 6f y- ai r pl ane, for a total of
1.94-10° ground operators (second row of Fig. 11). Despite the imgment of
more than two orders of magnitude, this is still infeasilalsgle for a 2 GB memory
limit.

6.1.2 Checking static preconditions

The vast majority of generated ground operators are inetaofdr i ve-t r uck, and
most of them are not useful because the preconditions onntha ty predicate
can never be true. Like the type predicates previously demnsd,i n-city is a
static predicate, so a natural second enhancement would be to geaetating
operators which violate a precondition any static predicate, not just unary ones.
This reduces the number of ground instancesdforve-truck to 83-340-17-1
(after parametersand| are instantiated arbitrarily, there are only 17 valid opsio
for parametet’ and only one valid option for paramet®r The other operators do
not mention any non-unary static predicates, so their nurmbground instances
remains the same, for a total ofd®- 10° ground operators (third row of Fig. 11),
another improvement of roughly two orders of magnitude.

An important caveat, though, is that unlike the naive grang@lgorithm and the
algorithm that takes type information into account, a gaing algorithm that fil-
ters on static preconditions cannot be implemented in sushyathat it is guar-
anteed to run in linear time in the size of its output, unless NP. To see this,
consider a planning task with just a single operator, whaeegndition is a con-
junction of atoms over static predicates. Such an operagrr defines aonstraint
satisfaction problengCSP) [9], where the domains of the variables are given by the
objects of the task, the constraint schemas are given bwthe for the static pred-
icates in the initial state, and the preconditions of therajpe correspond to the
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constraints. Deciding whether or not an operatordmagvalid instantiation is thus
akin to deciding CSP solvability, which i8P-complete. The problem is already
NP-hard in the case where (using planning terminology instda@SP terminol-
ogy) there are only three objects and predicates are at nmetybby reduction
from 3-COLORABILITY [21, problem GT4], or in the case whetete are only
two objects and predicates are at most ternary, by reduitbom3-SAT [21, prob-
lem LOZ2]. The actual problem we need to solve, finding alldvalistantiations of
an operator, corresponds to findialyj solutions to a CSP. This is even harder: even
with only two objects and at most binary predicates (a casevtieciding solution
existence is easygountingthe number of solutions igP-complete [7].

For this reason, a grounding algorithm that checks allstateconditions will in
general do some wasteful work. One approach is to enumdiaipeaaators that
satisfy the type constraints and reject those which vi@attic precondition. This
approach is no faster than the algorithm that generateydtcorrect operators
without checking non-unary static predicates, but it gatesy fewer operators and
hence requires less space, since infeasible ground opein be immediately
removed.

A more elaborate idea is to reject a partially instantiatpdrator as soon as one
of its static preconditions can no longer become true gilencurrent partial as-
signment. This is the approach taken by the IPP groundingyigthign [36], and it
is closely related to a technique callgward checkingn the CSP literature [9],
generalized to constraints on more than two variables.

The pruning power of the forward checking approach dependseorder in which
variables of an operator are instantiated. To see thisslegturn to the bGISTICS
example. The only operator where we can potentially obtabemefit over the
simpler type-checking algorithm & i ve- t r uck. If its parameters are instantiated
in the order shown in Fig. 10, the forward checking techniqffers no benefit
over the simpler approach: for all type-correct choicesrotk t and locationd
andl’, there exists a feasible value for the cityor each static precondition. (In
most cases, there exists no value ¢ahat satisfies bothn- city preconditions
simultaneouslybut this is not detected by the forward-checking algorijhm

However, if the variables are instantiated in the opposideo many partial instan-
tiations ofl” andc or of I, I’ andc can be rejected immediately. The total number
of partial instantiations to consider is then limited tg- 20+ 20- 340+ 20- 17-
340+ 20-17-17-83= 602161 (counting, in this sequence, instantiations of 0, 1,
..., 4 variables). This is only 26% larger than the numberrotigd operators that
satisfy all static preconditions, 479740. In contrast,dimepler algorithm needs to
test 192- 108 instances of this operator, which is a factor of 400 largentthe
number of surviving instantiations.

The price for the improvement offered by the forward cheglatgorithm is that
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large indexing structures are needed for efficiently chegkrhether a given partial
instantiation of a static predicate can be extended to afsthntiation. We believe
that the space requirements of these indexing structueetaa large degree re-
sponsible for the failures of the IPP/FF grounding algonitbn some IPC tasks.
We remark that the size of these index structures grows exyp@ily with the arity
of predicates, and the domains on which we observe failueealbamong the few
domains in the IPC suite where predicate arity is not bourmye® (the maximal
arity is 3 in RTHWAYS and 4 in PTTELEGRAPHand PSR).

6.1.3 Checking relaxed reachability

In practice, for our loGISTICS example, the grounding algorithm that filters on
static preconditions is fast enough to allow grounding esmmnable time, at least
if we use the forward checking idea and instantiate varginle favourable order.
However, significant enhancements are still possible andhwiile, as reducing
the number of ground operators has a beneficial influence @t phenning algo-
rithms. For example, the per-state overhead of a searchithligiaends to increase
with the number of ground operators it must test for applidsb

In the LoGIsTICS example, more than 90% of the generated operators are still
unreachable. The reason for this is that these operatoesihteasible precondi-
tions involving thenon-staticpredicateat . In particular, a truck can never be at a
location that does not belong to its initial city, and an &g can never be at a
non-airport location. By respecting these constraintsgarerestrict the number of
ground instances to 483- 17 for| oad-t ruck andunl oad-t ruck, to 83-17-17

for drive-truck, and to 425- 20 for | oad- ai r pl ane andunl oad- ai r pl ane.

(The number of instantiations &f y- ai r pl ane cannot be reduced further.) This
results in a total of 152914 1.53- 10° ground operators, another improvement by
more than an order of magnitude (fourth row of Fig. 11).

It is thus desirable to also rule out ground operators witeasible preconditions
on non-static predicates. However, there is a problem:lkchgavhether a given
atom can ever be satisfied in a reachable state is as hardhasngjaself. Thus, in
practice we need to compute an approximation of the set ohedde facts, which is
at the same time conservative (includes all reachable)flaatsalso tight (excludes
as many facts as possible). One such approximation methibe: igse ofdelete

relaxations[32]. Instead of computing the set of reachable facts of anatized

PDDL taskI itself, we compute the reachable facts of a relaxed plantasy

R (M), which differs froml as follows:

¢ Negative literals in axiom bodies, operator preconditjaffect conditions and
the goal condition are assumed to be always true.
e Delete effects of operators are ignored.

The set of reachable atoms &f(IM) is a superset of the set of reachable atoms
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of M. (This follows from the fact that the so-calléd heuristic iscompleteness-
preserving see Hoffmann’s article [31] for details.) In many practicases, this
superset relationship is quite tight. For example, in tlweslsTics domain, the
sets of reachable atoms @& (M) and N are identical. In other words, if we re-
strict the grounded representation of thedusTicstask to those operators whose
preconditions are reachable in the delete relaxation,nioefarther pruning is pos-
sible without removing operators that are actually reatthdblowever, we remark
that one may in some cases safely remove reachable opetatous example, the
grounded task contains about X¥-opoperators, namely movements of a vehicle
from locationl to | itself. The last row of Fig. 11 shows the number of remaining
operators after no-op pruning. Our grounding procedures ¢ detect such no-
ops, but they are filtered out in a final post-processing stédggn the finite-domain
representation is generated.)

Computing the reachable atoms of a relaxed planning taskichraasier than for
general planning tasks. In particular, if a relaxed plagnask is already grounded,
its reachable atoms can be computed in linear time with th&ingalgorithm for
propositional Horn logic [11]. Indeed, the grounding algan of FF proceeds by
first applying the IPP grounding algorithm (i. e., the fordia@hecking algorithm
described above), and then computing the reachable atodhserators of the
delete relaxation to further reduce the grounded repratent While this leads to
a tight representation, the drawback of the approach isitlmats the same time
and space requirements as the IPP algorithm, as it gené¢hatéBP output as an
intermediate result. As discussed in the introduction ie fection, there are a
number of planning tasks for which this approach fails.

For this reason, we have designed a new grounding algorithithvgenerates the
set of facts and operators (and axioms) that are reachalle irelaxed taskli-
rectly, without ever considering any facts that are not relaxedhable. We now
turn to a description of this algorithm.

6.2 Overview of Datalog exploration

The basic idea of our new grounding algorithm, which we DPallalog exploration
is to encode the atom reachability problem for relaxed plamtasks as a set of
logical facts and rules, i. e., as a logic program. This adlawto efficiently compute
the set of reachable atoms by computingghronical modedf that logic program,
which consists of the set of ground atoms that it logicallplies. The algorithm
consists of three steps: generating the logic programshating it into a normal
form that supports efficient evaluation, and computingaisanical model. Before
going into detail for each of these steps, let us formallyraefivhat we mean by
a logic program. As in the other parts of the paper, we assiwateaur logical
vocabulary does not contain function symbols of non-zeity.ar
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Definition 13 Datalog programs

A Datalog rule (also calledpositive Horn clausg is a first-order formula of the
formd1A--- Adx — Y (k > 0), whered; and  are (usually not ground) atoms.
It can be written asp — ¢1, ..., ¢x. Using this notationyp is called theheadand
d1,...,¢k is called thebodyof the rule. Datalog rules are usually assumed to be
universally quantified: for a given Datalog rujewith free(x) = {v1,...,w}, we
definexy = (Vv1...V : X). Similarly, for a set of Datalog rule® , we defineRy =

{xvlxer}.

A Datalog programis a pair (¥, R ), where¥ is a set of ground atoms called the
set offactsand R is a set of Datalog rules called the setrofes.

Thecanonical modelof a Datalog program( ¥, R ) is the set of all ground atoms

o with F U Ry = ¢.

Next, we show how to translate the relaxed reachability lerobinto a Datalog
program. Afterwards, we demonstrate how to translate ggslprogram into a
particularly simple form and how to compute the canonicatisl@f the simplified
logic program efficiently.

6.3 Generating the logic program

Reachability in a relaxed normalized PDDL task is straifgintvard to represent as
a logic program. A ground atom is reachable in the relaxeditas is true in the
initial state or there exists some reachable axiom or opecdthe relaxed task that
can make it true. Therefore, the set of facts of the logic @oygis formed by the
atoms in the initial state of the planning task, and the satlef is derived from the
axiom and operator definitions. Additionally, we introd@ceile for the goal of the
planning task to detect whether the relaxed task is solydhiet, the original task
is also unsolvable, which we can report immediately to sheptanslation process
early.

Recall from Section 4 that at this stage, all conditions ateg in the PDDL task
are conjunctions of literals. For such conjuncti@nswve denote the conjunction
of all positiveliterals in¢ by ¢ . In the context of logic programs, we follow the
PROLOG convention of using uppercase letters for firstdovddables and lower-
case letters for constants and predicates. The exploraties for a normalized
PDDL task are generated as follows:

e Axioms: For schematic axioma = (¢ < W) with ¢* = Y] A--- A and
free(d) Ufree(P) = {Xy,..., Xk}, we generate thaxiom applicability rule

a-appl i cabl e(Xg,..., Xk) — Wi ,..., P
and theaxiom effect rule

¢ «— a-appl i cabl e(Xy,...,Xk).
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e Operators:For schematic operatomswith parametergXg, ..., Xx} and precon-
dition ¢ with ™ = ¢ A--- Ad/h, we generate theperator applicability rule
o-appl i cabl e(Xq,...,Xc) < 67 ...,/
and for each add effeetof o adding the aton) with bound variablegYs, ..., Y}
and effect conditiol with x™ = x7 A---AX,l, we generate theffect trigger rule
e-triggered(Xy,..., X, Y1,...,Y)
— o-applicabl e(Xq,..., %), X7 - Xnh -
andeffect rule
Y «—etriggered(Xy,..., Xk, Y1,.-.,Y|).
e Goal: For the goatp with ¢ = ¢ A--- A d/,,, we generate thgoal rule
goal -reachabl e() — ¢7,....d/h.

The correctness of these rules should be evident, as thejstréditeral trans-
lations of the PDDL semantics for the relaxed planning tasie reader might
wonder why we sometimes introduce new predicates that dee®wrh necessary
for computing the set of reachable facts. For example, axapplicability rules
and axiom effect rules could be combined into a single rulhevit introducing
the auxiliary predicat@- appl i cabl e. The purpose of these auxiliary predicates
is to track which axioms and operators must be instantiateeilhwgrounding the
PDDL task. For example, in thedGisTicsdomain, we will not generate a ground
operatorf | y-ai r pl ane(pl anel,l ocl,l oc3) if 1 oc3 is not an airport location,
since in this case the canonical model of the logic prograssdwt include the
atomf | y-ai rpl ane- appl i cabl e(pl anel,l oc1,l oc3). The operator applicabil-
ity predicates serve the additional purpose of factorirtggommon subexpressions.
Without them, all operator preconditions would need to lpeated in each effect
trigger rule (or effect rule, if effect trigger rules wererslarly eliminated).

6.4 Translating the logic program to normal form

Having generated a logic program representation, we neéidda way to effi-
ciently generate the canonical model. Returning to tbeisTicsexample, one of
the generated rules is

drive-truck-applicabl e(T,L,L',C) «truck(T),l ocation(L),
l ocation(L),city(C),in-city(L,C),in-city(L’,C),at (T,L).

Given a set of reachable facts, we need to determine thebp@ssstantiations

of the rule for which all conditions in the body are reachalbMe must do this
without systematically trying out all possible instantats — otherwise, nothing is
gained over the naive instantiation method. Moreover, veégpito evaluate the rule
incrementally whenever a new instantiation of a predicate in the body e
(say, the facat (truckl,l oc5)), we want to derive new consequences of the rule
without re-generating previously derived facts. In ora@eichieve these objectives,
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we consider a particular class of Datalog programs.

Definition 14 Datalog programs in normal form

A first-order logic atom is calledariable-uniqueif it does not contain two occur-
rences of the same variable. (For example, an atom ligé, ¥, X) is not variable-
unique because variable X occurs twice. Repetition of ewmrstis allowed.) A
Datalog rule is calledvariable-uniqueif its head and all atoms in its body are
variable-unique.

A Datalog rule is called grojection ruleif it is variable-unique and of the form
¢ — ¢1 with fregdp) C free(dp1). In other words, projection rules are unary rules
where all variables in the head occur in the body.

A Datalog rule is called goin rule if it is variable-unique and of the fornh <
d1,d2 with freg(¢1) Ufree(dpo) = free(dp) U (free(dpq) Nfree(dz)). In other words,
join rules are binary rules where all variables occurring tine head occur in the
body, and all variables occurring in the body but not in thetieccur inboth
atoms of the body.

A Datalog program isn normal form if all rules are projection or join rules.

The names of the rule types in Definition 14 are reminiscetii®felated database-
theoretic operations from relational algebra [44]: pragTrules correspond to the
projection operatort and join rules correspond to the natural join oper&idior
strictly speaking, a combination of natural join and prémt). The advantage of
Datalog programs in normal form is that each rule can be mergally evaluated
very efficiently. (We will describe an algorithm for this ¢éaton.) Note that the
same imottrue for general rules — as discussed in Section 6.1.2, igoichether
a general Datalog rule has any valid instantiation is edeintao CSP solvability.

We now describe how to convert Datalog programs to normath fdfirstly, we
eliminate duplicate variable occurrences as follows: yf arle contains atoms with
duplicate occurrences of the same varia¥)eve change one occurrence X%fin
any such atom into a new variab¥é and add the atorequal s(X, X’) to the rule
body. We repeat until no further such transformations argsibte. If any such
transformation was necessary, we add the éaatl s(0,0) to the logic program
for each objecb of the planning task.

Secondly, for any variabl¥ that occurs in the head but not in the body of a rule,
we add the atonobj ect (X) to the rule body. (Remember from Section 4.1 that
obj ect (0) is true for any objecb of the planning task.)

Thirdly, all rules with an empty body are converted into fadtheir heads must be

ground atoms because all variables occurring in the heatiaoasr in the (in this
case, empty) body after the previous transformation.
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After these transformations, all remaining unary rulespagection rules; we still
need to normalize rules with two or more atoms in the bodys Thiessentially

a conjunctive query optimization problemommonly studied in database theory
[45]. As a first step towards normalizing such a rule, we detee if any atom

in its body contains variables that occur in no other atonhefrule, neither in the
body nor in the head. If this is the case, such variables ajeged away, following

the general principle for query optimization that projens should be performed

as early as possible. In detail, assume we are given thérdlaby, ..., dm, where
free(¢i) = {Xq,..., Xk} contains variables not present in any of the other atoms, say
{Xj+1,-.-,%}. Then we introduce a new predicgteand replace the original rule

by the rulesp «— ¢1,...,di_1, p(Xl,...,Xj),¢i+1,...,¢m andp(Xl,...,Xj) — ;.

After this transformation, all binary rules are valid jouries, while rules withm > 2
atoms correspond torary joins which still need to be decomposed into binary
joins. How exactly this decomposition is performed can inegal greatly affect
performance. To see this, consider the rule

drive-truck-applicable(t,l,lI’,c) —in-city(l,c),in-city(l’,c),at (t,I).

from LoGisTics (For brevity, we omit some additional conditions from thozlip
of the actual rule, which are not relevant to the discus¥iOme possible decom-
position into binary join rules results in the following twoles:

tenpy(t,l,c) —in-city(l,c),at (t,I).
drive-truck-applicable(t,l,lI’,c) « tenpy(t,l,c),in-city(l’,c).

Another possible decomposition results in these rules:

tenpo(t,1,1",¢c) «—in-city(l’,c),at (t,1).
drive-truck-applicable(t,l,lI’,c) « tenp,(t,l,l’,c),in-city(l,c).

Of the two possibilities, the first is vastly preferable: thember of reachable in-
stances of enp; is only as large as the number of reachable instancas,dfe-
cause for any reachable faadt(t,l), exactly one cityc will satisfy i n-city(l,c).
The number of reachable instanced efip,, on the other hand, is theroductof
the number of reachable instancesbfand the total number of locations, which is
much larger than the number of reachable instancésiafe- t r uck- appl i cabl e.

Finding a good decomposition is thus key to good performabcgortunately,
finding the best possible ordering is generally not easyeaddthe closely related
problem ofjoin orderingis one of the central problems in query optimization for
databases, and typical query optimizers address it by stikialy considering an
exponentially large space of possibilities [45, Chap. 11].

The fact sets we have to deal with in planning tasks are nairge bs the relations
considered in database systems, so our normalizationguoeeoes not quite go
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algorithm greedy-joinfule):
while |rule.body > 2:
Choosep, ¢’ € rule.body such thap # ¢’ and
join-cos{rule,d,$’) is minimal.
Xi,..., X = join-vargrule,d,d’)
Generate a new predicate symipokith arity k.
Generate a new join rulg(Xy, ..., Xk) < ¢,¢’.

rule.body = rule.body\ {¢,d’} U{p(Xs,..., X}

function join-varsfule, ¢, ¢):
{ Compute the relevant variables for the predicate generated
by joining$ and¢’. }
return free({¢,¢’}) Nfree({rule.nead U (rule.body\ {¢,¢'})).

function join-costfule, ¢, ¢'):
new-arity:= |join-vargrule, ¢, ¢’)|
max-old-arity:= max|free(¢)/, |free(d’)
min-old-arity:= min(|free(d)|, |free(¢’)|
return (new-arity— max-old-arity
new-arity— min-old-arity,
new-arity).
{ Cost estimates are triples which are compared lexicogcafi
We prefer joins where “new arity”“max old arity” (the increase
in arity) is small and consider the other criteria only festi}

)
)

Fig. 12. The greedy join algorithm for decomposing a rule join rules.

to such lengths. Instead of an exhaustive search that findtsbalty optimal de-
composition, it applies a sequence of greedy (locally oakjraccording to some
simple heuristics) transformations without backtrackingr any choices it makes.
The algorithm, calledyreedy-join is shown in Fig. 12. To decompose a rule, it it-
eratively picks two atom¢ and¢’ from the rule body and joins them, introducing
a new predicat@ for the result of the join and replacing the two atoms in tHe ru
body by an instance of that new predicate. This process &ated until the body
of the rule no longer contains more than two atoms. In eaghdadtéhe algorithm,
the two atomsp and¢’ to join are picked in order to minimize the (estimated) ef-
fort for computing their join, according to the followingree rules (without loss of
generality$ has at least as many variablespls

(1) Preferjoins where the arity @fminus the number of variables ¢fs smallest.

(2) If ties need to be broken, prefer joins where the aritp @hinus the number
of variables ofp’ is smallest.

(3) Ifties still need to be broken, prefer joins where théyaof p is lowest.
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The net effect of these rules is that the algorithm prefensing atoms with a
large number of common variables. In the&isTiIcsexample above, this heuristic
steers clear of the second decomposition, where the setgiables of the joined
atoms are disjoint.

6.5 Computing the canonical model

Once the Datalog program has been converted to normal foerares ready to
compute its canonical model. We use an incremental apprsaokvn in Fig. 13.

The algorithm maintains two variables to keep track of rehbd facts. Variable
canonical-modetecords the set of all atoms that the algorithm has detertime
be reachable so far. It grows monotonically throughout eten of the algorithm

and contains the result upon termination. Variadpleuekeeps track of all atoms

which are currentlyopen i. e., have been determined reachable, but have not yet

been considered for matching conditions in the rule bodMessay that an atom is
closedif it is contained incanonical-mode(has been reached) and is not open.

In addition tocanonical-modelnd queue the algorithm uses the following data
structures:

e Rule matcherA rule matcher is an indexing structure that supports effici
unification queries on the bodies of Datalog programs. Wheenga ground
atoma, the rule matcher determines all projection rupes- ¢, and join rules
¢ — d1,¢2 such thatp, or ¢po unifies witha, i.e., such that it is possible to
substitute objects for variables ¢n or ¢» in such a way thaa is obtained. The
rule matcher reports the matched rules and whephesr ¢, was matched (if
both unify witha, two matches are generated).

Note that matching ground atoms to the rules they can triggeimple if
the rules do not contain constants in the body. Unfortugaselme of the IPC
benchmarks contain a huge number of operator schemas iingodonstants
(most importantly, the STRIPS formulation of therR®*ORT domain), and an ef-
ficient indexing structure is important for those. Rule rhats are implemented
as decision-tree like data structures very similasiocessor generatof28].

e Join rule indices:Each join ruler = ¢ < ¢1,¢2 maintains two hash tables
r.index andr.index that map instantiations of the common variableg$ pand
¢» to instantiations of the variables ¢f andd,, respectively.

Atany time (except during updates) and for any assigntkeyio the common
variables ofp, and¢y, r.index [key contains those variable mappings> key
for the variables ofp; for which a(¢1) belongs to the closed set. Similarly,
r.index[key contains those variable mappir@3 keyfor the variables o for
which 3(¢2) belongs to the closed set. We call this propertyititex invariant

The index information can be exploited for quickly determgnall possible
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algorithm compute-canonical-modef(, R):
for eachjoinruler € R
r.index := make-empty-hashtalle
r.index := make-empty-hashtalle
rule-matcher= make-rule-matchégr)
queue = make-empty-queyée
canonical-model= 0
{ In the following,enqueuing fact means adding it ipueueand
canonical-modeif it is not yet an element ofanonical-model}
Enqueue all facts irf.
while queuds not empty:
current-fact= queuepop()
for each matchm € rule-matchematch{current-facy:
if mrefers to, in a projection rule = ¢ «— ¢1:
Let a be the variable assignment
for which a(¢1) = current-fact
Enqueuex(¢).
else ifmrefers to4 in a join ruler = ¢ — ¢1, ¢2:
Let a be the variable assignment
for whicha(¢1) = current-fact
key:= a restricted to fre@y) Nfree(do)
Add a tor.index [key.
Enqueuga UB)(¢) for eachP € r.index[key.
else ifmrefers tod, in a join ruler = ¢ — ¢1, ¢2:
{ Analogous to the previous case.

Fig. 13. Computing the canonical model of a Datalog progt&m® ) in normal form.

instantiations ofp, that match a given instantiation ¢f, or vice versa, as is
done in the algorithm. Note that the variable assignnoenf considered in the
algorithm is indeed a well-defined function, sirc@nd agree on all variables
for which they are both defined.

The algorithm clearly terminates, as each loop iterati@mapces a new closed atom
(by removing an open atom frogueug, which can only happen a finite number
of times. To motivate its correctness, we state an importaatriant of thewhile
loop: all atoms that can be derived in one step from the riResind the closed
atoms are contained in the canonical-model set

This property is true when the while loop is first entered bseghere are no closed
atoms at this stage, and no atoms can be derivedftand the empty set of atoms.
It is not hard to prove that the property is also preserved sipgle iteration of the
while loop: each such iteration causes the single new atoment-factto become
closed, so we only need to consider one-step derivatiohstalge use of this atom,
and possibly other atoms that are already closed. The miocesf current-fact
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then causes precisely those atoms which can be generatedibgerivations to be
engueued, adding themdanonical-modeif they are not already present. Thus, the
property is indeed a loop invariant. (A more formal proof \Wbneed to establish
this invariant simultaneously with the index invariant.)

The loop invariant implies that upon termination of the aitjon, when all atoms

in the canonical-modeket are closed, the set is closed under applicatio® of
Because it also contains all facts frgfand only contains facts that can be derived
from ¥, it thus contains exactly the canonical model &f, R ).

6.6 Axiom and operator instantiation

With the help of the canonical model, instantiating axiomd aperators is very
straight-forward. To compute the grounded representatverscan through the set
of ground atoms in the canonical model in the order in whigytiere generated,
creating axiom and operator instances as follows:

e When encountering atoms of the foranappl i cabl e(xy,...,x) wherea is a
schematic axiom, we generate a ground instaneanth the parameters substi-
tuted withxy, ..., Xk.

e When encountering atoms of the foronappl i cabl e(xs,...,x) whereo is a
schematic operator, we generate a ground instanoendthout effects. Like in
the case of axioms, the parameters of the operator are subgtwithxy, . . ., Xk,
and the precondition is instantiated accordingly.

e When encountering atoms of the foet ri gger ed(xy, ..., X, Y1,-..,Yi) Where
eis an effect of some operator we look up the set of already generated ground
operators to find the operatofx,...,xx). This operator must have been gen-
erated previously because et ri gger ed atom can only be derived after the
correspondingp- appl i cabl e atom. Having found the ground operator, we at-
tach to it the effect obtained by instantiating the variahiee with y1,...,y;.

After a single pass through the canonical model, this proeetias produced a
grounded representation of the normalized PDDL task.

6.7 Performance

We conclude our discussion of the Datalog exploration dligor with some re-
marks on performance. In practice, the only performandesal part for ground-
ing is algorithmcompute-canonical-modedll the processing that happens before
is generally negligible (linear-time for a fixed domain)dahe processing that hap-
pens afterwards, while not always negligible in absoluteatg only requires linear
time in the combined size of its input and output, which ismagiotically optimal.
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How costly, then, is computing the canonical model? To siiythe analysis, we
only consider the case where the planning domain is fixedhdhdase, theulesof

the Datalog program are fixed, and only the facts differ frostance to instance.
Under this assumption, the runtime edmpute-canonical-modés linear in the
number of attempts tenqueuea fact (see Fig. 13). In the best case, this number
is identical to the number of facts in the canonical modeltfar initial Datalog
program (before normalization), so that the overall grongdilgorithm runs in
linear time in its combined input and output size and is heasyanptotically op-
timal. However, this is not always the case, as there are wesiple sources of
inefficiency:

e Duplicates There may be several attempts to enqueue the same fact ie. g.
projection rules project different facts to the same factbecause the fact is
generated by different rules). For a given run of the algamitwe define the
duplicate ratioas the total number of attempts to enqueue a fact, dividetidy t
size of the canonical model upon completion.

¢ Irrelevant facts Facts that correspond to temporary predicates introddegdg
normalization of the Datalog program are irrelevant for tinal instantiation
stage. For a given run of the algorithm, we defineithedevance raticas the size
of the canonical model, divided by the number of facts in theonical model
that are relevant (i. e., do not refer to predicates intredwring normalization).

The overhead otalculate-canonical-modetompared to an idealized algorithm
that could generate the set of relevant facts in linear timtsisize, is the product
of the duplicate ratio and irrelevance ratio. In the peréase, both numbers would
be equal to 1. However, as we saw in Section 6.4 for the diftedecompositions
of thedrive-truck-applicabl e rule into binary joins, the irrelevance ratio in
particular can be considerably larger, especially if theegy join algorithm makes
poor choices. Indeed, the existence of a grounding algonitith only polynomial
overhead in th@eneral casewhere the Datalog rules are not fixed, would prove
P = NP.

It is thus natural to ask how large these ratios become irtipeaclo answer that
guestion, we applied the grounding algorithm to all taskshef IPC1-5 bench-
mark suite, measuring the duplicate ratio and irrelevaate for each. The results
are summarized in Fig. 14, which shows the minimal and malxduapglicate and

irrelevance ratios that were observed in each domain. Tédtseshow that the
duplicate ratios are generally benign, always stayingwel@alue of 4. The irrele-
vance ratios are also usually low, consistently stayingwe value of 5 for all but

two domains: McoNic-FuLL and RoVERS For MicONIC-FuULL, the irrelevance
ratios can become as large as 6.48; however, the ratios t&lgdnversely cor-

related with problem size, becoming lower as the problemssiacrease. Only the
20% smallest instances have irrelevance ratios over 3, lhntstances of above
average size have irrelevance ratios below 2. Thus, there@aserious scalability
issues in this domain.
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domain DR IR domain DR IR
AIRPORT 1.16-1.49 1.90-3.4LOPTTELEGRAPH 1.22-1.27 2.75-2.82
ASSEMBLY 1.34-1.57 1.09-1.2BPATHWAYS 1.12-1.60 1.48-1.72
BLOCKSWORLD 1.56-1.72 1.67-1.6/PHILOSOPHERS 1.10-1.13 2.66-2.79
DepPOT 1.35-2.47 1.50-2.4BPIPESNOTANK  1.40-2.15 2.30-3.44
DRIVERLOG 1.19-1.65 1.36-2.26PIPES TANK 1.35-3.91 1.43-4.99
FREECELL 2.01-3.48 1.26-2.28PSR-LARGE 1.03-1.07 3.04-3.65
GRID 1.99-2.23 1.34-1.4DPSR-MDDLE 1.02-1.08 3.01-3.70
GRIPPER 1.28-1.35 1.68-1.74PSR-S4ALL 1.32-1.99 1.00-1.00
LoGIsTICS 1.11-1.53 1.48-2.2DROVERS 1.05-1.35 2.35-27.96
MICONIC-FULL 1.08-3.00 1.65-6.48BSATELLITE 1.22-1.97 1.02-1.72
MicoNic-SIMPLE  1.11-1.74 1.33-1.68SCHEDULE 1.70-2.65 1.19-1.27
MIcoNIC-STRIPS 1.02-1.34 1.74-2.295TORAGE 1.08-2.41 1.56-2.46
MovIE 1.18-1.24 1.00-1.0pTPP 1.03-1.64 2.34-3.71
MPRIME 1.76-2.74 1.12-1.84TRUCKS 1.70-2.71 1.03-1.37
MYSTERY 1.32-2.47 1.28-2.25ZENOTRAVEL 1.42-2.42 1.22-2.51
OPENSTACKS 1.54-2.54 1.05-1.39

Fig. 14. Duplicate ratios (DR) and irrelevance ratios (I&)the IPC benchmarks. For each
domain, we report the range of ratios observed across #dlrioss.

The only domain which produces somewhat worrying resullRaseERrs, where

the irrelevance ratios become as large as 27.96, signifjcardre than for all

other domains. Moreover, the ratios tend to increase widhrgg problem size.
Closer inspection reveals that an unfortunate choice bytbedy join algorithm

is to blame for this sub-par performance. In normalizing thie for the predi-

cateconmuni cat e- r ock- dat a- appl i cabl e(r,l, p,Xx,y), which has 11 conditions
in the body, the following four conditions remain after 7naiteps:

t enp4(r, p) = waypoi nt (p) Ahave-rock-anal ysi s(r, p)

t enpy(r,X) =rover (r) Aavai | abl e(r) Awaypoi nt (x) Aat (r,X)

tenps(l,y) =1 ander (1) Achan-free(l) Awaypoi nt (y) Aat -1 ander (1,y)
vi si bl e(x,y)

At this point, there are three possible joins that the grgeitlyalgorithm considers
optimal: joiningt enp4 with t enp,, joiningt enp, with vi si bl e, and joiningt enp3
with vi si bl e. Of these three possibilities, our implementation arhbitrgpicks the
second, which happens to be the worst possible choice etare is a very large
number of reachable instantiations f@mp,(r,x) Avi si bl e(x,y), most of which
cannot be extended to feasible assignments for all conditibhe reason for this
is that there is only one value fgifor whicht enps(l,y) is reachable (there is only
one lander and it is not mobile, so tlet | ander has only one reachable instance).

To determine the impact of this unfortunate tie breakingsies, we have instru-
mented the greedy join algorithm to override its defaultick@and instead join
t enps with vi si bl e at this choice point, and similarly for an equivalent choice
point for the isomorphicomuni cat e- soi | - dat a- appl i cabl e predicate. With
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this modification, the worst-case irrelevance ratio in ttievyBrRS domain reduces
from 27.96 to 4.83. By additionally overriding the subsetfyein decision to pre-
vent the algorithm from joiningenp, with t enp,, the worst-case irrelevance ratio
can be further reduced to 1.97. In terms of overall runtimeHe grounding algo-
rithm, the reduced irrelevance ratio translates to an esflenagnitude improve-
ment.

This small case study illustrates two things: on the one hardlearly see that join

ordering choices can have a significant impact on the pedooma of the ground-

ing algorithm and thus do require attention. On the othedhtre essentially linear

scaling behaviour for all domains excepd¥RERS indicates that the heuristic deci-
sions of the greedy join algorithm are usually quite solid.

7 Generating the finite-domain representation

Together with the invariants synthesized earlier, the gdedl PDDL task generated
in the previous stage provides all the information we neegfoducing the finite-
domain representation in the final translation stage. R&oah Definition 4 that an
FDR task is given by a set of finite-domain variabfiésan initial states; and goal

S., axiomsA4 and operator®). We start by defining suitable variables and variable
domains; everything else then more or less falls into place.

7.1 Variable selection

Each variable of the generated FDR task corresponds to omoi (reachable)
ground atoms of the STRIPS task. We start by extracting thePsef all such
atoms from the canonical model and partitioning them intoret?; which are
instances ofmodifiable fluent predicates derived predicateand atoms?; which
are instances afonstant predicate&f. Section 5.1).

We want to represent as many ground atoms by a single stasdlaas possible.
To achieve this, we first determine the sebaftex groupghduced by the computed
invariants. Mutex groups are computed in a straight-fodvaanner by instantiat-
ing the monotonicity invariants in all possible ways, chagkfor each instance if
it has weight 1 in the initial state, and if so, which atomsir@; it covers. The

algorithm is shown in Fig. 15. The actual implementationsuse indexing struc-
ture to efficiently determine the set of reachable atomsreoVBy a given invariant
instance.

Normally, not every mutex group will correspond to an FDRestzariable, since
the same atom can be part of several mutex groups, but ofecontg needs to be
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algorithm compute-mutex-groupisf/ariants s, S):
for eachinvariant’ € invariants

for eachinstancen of I:
if weight(a,sp) = 1:
Create a mutex group containing all atomsfn
covered bya.

Fig. 15. Computing mutex groups from the set of monotonigitsariantsinvariants the
set of reachable aton® and the initial statey.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

{hol di ng(a),cl ear (a),on(a,a),on(b,a),on(c,a),on(d,a)}

{hol di ng(b),cl ear (b),on(a,b),on(b,b),on(c,b),on(d,b)}

{hol di ng(c),cl ear (c),on(a,c),on(b,c),on(c,c),on(d,c)}

{hol di ng(d),cl ear (d),on(a,d),on(b,d),on(c,d),on(d,d)}

{hol di ng(a),ont abl e(a),on(a,a),on(a,b),on(a,c),on(a,d)}
{hol di ng(b),ont abl e(b),on(b,a),on(b,b),on(b,c),on(b,d)}
{hol di ng(c),ont abl e(c),on(c,a),on(c,b),on(c,c),on(c,d)}
{hol di ng(d),ont abl e(d),on(d,a),on(d,b),on(d,c),on(d,d)}
{hol di ng(a),hol di ng(b),hol d| ng(c),hol di ng(d),handenpt y()}

Fig. 16. Mutex groups for a BockswoORLD task with four blocks. Some atoms, such as
on(a,a), are reachable in the relaxed task although they are nexeirtthe “real” task.

encoded once. As an example of this phenomenon, considet&igvhich shows
the mutex groups of a IBbCKsSwORLD task with four blocks. If, for example, we
decide to encode mutex groups (1)—(4) with four finite-donsaate variables, then
we only need to encode one atom from each of the other groun®, allon and
hol di ng atoms are already represented. Therefore, the translatddirst gen-
erate four state variables with domains consisting of sexdmes each, namely
hol di ng(x), cl ear (x), on(a,x), on(b,x), on(c,X), on(d,x) and the seventh option
“none of the other six is true”. (Of these seven values, twdoekox being on top
of itself and none of the six atoms being true — are actuallgassible.) After-
wards, it would encode the truth values of the remaining atomhabl e(x) and
handenpt y() with binary state variables.

In this case, there was at least one atom in each mutex gratpés unique to this
particular group, so that the resulting encoding is not mhetker than an encoding
which simply takes all mutex groups and introduces a statahia for each. How-

ever, in other cases, one group can be completely coverethkysp examples of

this can be found in the ®PORT domain. In this case we prefer covering the set

of reachable atoms with as few state variables as possible.

Unfortunately, set cover problems of this kind ate-complete [21, problem SP5]
and indeed not even approximable with a constant-factoroxppation ratio [1],
so we limit our covering efforts to the greedy algorithm shaw Fig. 17, which
is among the best approximation algorithms known for thisbfgm, achieving
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algorithm choose-variablegf, mutex-groups

uncovered= Ps

while mutex-groups 0:
Pick a mutex grou of maximal cardinality.
Create a variable with domain?, = PU{_L}.
uncovered= uncovered P
mutex-groups= { P"\ P | P’ € mutex-groupg
mutex-groups= { P’ | P’ € mutex-groups. |P'| > 2 }

Create a variable with domain{p, L} for each remaining

element ofuncovered

Fig. 17. Greedy algorithm for computing the FDR variabled aariable domains.

an O(logn)-approximation [1]. Iteratively, we pick a mutex grofpof maximal
cardinality and introduce a new FDR state variable with dorfau { L}, where L
stands for “none of the elementsffs true”. We then remove all covered elements
from all other mutex groups, removing groups that no longat&n more than one
element. This process is repeated until all mutex groups haen removed. At this
stage, the remaining uncovered atomare represented by binary variables with
domain{p, L}.

After execution of the algorithm, for each reachable afom P; there is exactly
one FDR variable whose domain includesThe translation will ensure that this
variable, which we denote agr(p) in the following, assumes the valyein an
FDR state iff p is true in the corresponding state of the PDDL task. With this
information, we can now go about converting the rest of th&P@ask to the
finite-domain representation.

7.2 Converting the initial state

We start by converting the initial state, which is the edsésp. For each atompc
Ps that is in the initial state, we set the initial valueafr(p) to p. FDR variables
for which there is no initial state atomwith var(p) = p are initialized tol . Note
that different initial state atomg, p’ € P; must satisfyar(p) # var(p’), because
and p’ could only be represented by the same FDR variable if they wartually
exclusive, which implies their not being in the initial gabgether. Therefore, the
converted initial state is well-defined.

7.3 Converting operator effects

Translating the state changes incurred by operator effegtsires some care. For
add effects setting an atomto true, conversion is easy: such an effect is always
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translated to an FDR effect settimgr(p) to p, because we know to be true after
operator application if the effect fires.

However, for delete effects setting an at@ro false, the correct translation is not
as clear. We cannot simply sear(p) to L (“none of the variables represented
by var(p) is true”) unconditionally, because this is not always ccirré could be
the case that another effect of the same operator triggedtsineously and adds
another atom represented by the same variable, orptivedis not truewhen the
operator was applied, but some other atom representegdrbg) was.

Therefore, the correct behaviour is to sat(p) to L only if we know thatp was
previously true and that no effect adding an atom repreddnyevar(p) triggers
simultaneously. In other situations, the delete effecuthaot cause a change in
the value ofvar(p). If the other effects of the operator that add atoms repteden
by var(p) have effect conditiongs, ..., Xk, then this is achieved by addinm/
—X1 /- A =Xk to the effect condition of the translated effect.

If some of the formulag; are proper conjunctions (i. e., neither constant true nor
singleton literals), this results in an effect conditionigbhis not a conjunction of
literals. In this case, we introduce a new derived variapkhat evaluates to true
whenever-y; is true, and usg; in the effect condition instead.

All things considered, this conversion of delete effectskbbvery complicated, and
indeed in most cases simpler translations are possiblahiopurpose, we detect
two common special cases, with which we deal differently:

¢ If we see that whenever the delete effect triggers, some tielct affecting the
same variable must trigger as well, because it has the samenare general
effect condition, then we do not need to represent the defédet in the finite-
domain representation at all. The add effect will take catb@value change of
its affected variable.

e On the other hand, if we see that no add effect affecting theesaariable can
trigger at the same time, because no such effect exists or afaibheir effect
conditions is inconsistent with the condition of the deletfect, then we can
convert the delete effect to an effect settirag(p) to L. If p is not already part
of the operator precondition or effect condition, we mugl &dto the effect
condition to make sure thaar(p) is only cleared if it was previously set o

In most cases, translating delete effects is straightdomecause the two simpler
cases are by far more common than the general case. In partion unconditional
effects, one of the special cases always applies.
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7.4 Converting conditions

The third major translation step is the conversion of coadg of the grounded
PDDL task. Conditions occur in the goal specification, inrapar preconditions,
in conditional effects and in axiom bodies.

To translate a grounded condition, we first check if it camtany atoms not if®s.
These have constant truth values, so that the condition eainlplified accord-
ingly. If this leads to a constant false condition, we reacioadingly (for the goal,
we report that the task is unsolvable; for axiom bodies, apempreconditions or
effect conditions, we remove the axiom, operator or effect)

If the condition is not trivially false, we translate eachitsfpositive literalsp into

the pairingvar(p) = p. Translating negative literalsp is slightly more tricky. Re-

call the B.ockswoORLD example discussed earlier, where we generated the FDR
state variablev with 7%, = {hol di ng(a), cl ear (a), on(a,a), on(b,a), on(c,a),
on(d,a), L}, and consider a condition including the ateron(c,a). If the condi-

tion also contains some positive literal represented biakev, for example the
atomcl ear (a), then we do not need to encoden(c,a) at all, because it is im-
plied by the conditiorv = cl ear (a). However, otherwise there is no simple way to
represent-on(c,a) as an FDR condition. We would need to write something like
v #£on(c,a), but conditions of this form are not supported by the repred®on.

Therefore, in situations like this, similar to what we did evhtranslating non-
conjunctive effect conditions that may arise for certaitetie effects, we intro-
duce a new derived variablt - p with domain{T, L} and generate an axiom
(v=d) — (not- p:=T) for each valuel € D\ {p}. The pairingnot- p=T can
then serve as a translation of the literg.

If we wanted to avoid introducing new axioms, we could furthermalize the
PDDL task so that no negative literals occur in conditiortsefé are well-known
compilation methods to achieve such a normal form [22]. H@xethis transfor-
mation method may introduce many more state variables tlearssary, which
runs counter to our objective of a concise finite-domainesentation. (If it can
be avoided, there is little point in having two finite-domaariables in the repre-
sentation with the property that the value of each is a fonctif the value of the
other.) As a compromise, we might consideotdy use such a compilation method
for propositions that appear in negative literals for whaelr translation method
would otherwise introduce a new axiom. In practice (on thé tbmains), neg-
ative conditions are not commonly used, so the choice of ar@sm for dealing
with them makes little difference.
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7.5 Computing axiom layers

As a final translation step, we must compute the axiom layerghe finite-domain
representation in such a way that the semantics for stchtifigic programs is
matched (cf. Definitions 2 and 5).

This is done as follows: whenever the body of an axiom witkec#d variable
v includes the conditiov’ = 1 for some derived variable, then the value of
v must be computed before the valuevpfo we introduce an ordering constraint
V < v. Similarly, if some axiom affecting includes the conditiow = d for derived
variablev andd # L, we introduce an ordering constraint= v.

Axiom layers can be derived from these ordering constramt&/o stages. In the
first stage, we compute the strongly connected componertteajraph induced
by the < relation. All axioms that affect variables in the same sfifgrconnected
component belong to the same axiom layer.

To compute the ordering of axiom layers, we topologicallst sloe graph whose
vertices are the axiom layers and which has an arc from ldyterlayerL iff some
axiom inL’ affectsv, some axiom irL affectsv, andv < v. Thei-th axiom layer is
then the one which appears at ik position in the computed topological order.
If the axioms of the original PDDL task are stratifiable, sactopological sort is
always possible.

7.6 Post-processing

With axioms partitioned into layers, the translation is gbate. Before generating
output, we apply a few post-processing techniques to siyngile generated task
where possible.

Most importantly, if there are two axioms with the same head,(cond— v:=d)

anda = (cond — v:=d) such thatondc cond, thenais triggered wheneve is
triggered, s@& is unnecessary. In such a case, which occurs frequentlynraohs
where axioms encode transitive closures, we sayaliamminates aand remove

from the representation.

8 Discussion

Having finished our presentation of the translation algponitthe question arises
how one should evaluate it. There are two important criterigonsider:
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Runtime at most 1s 1054 tasks
Runtime 1s-10s 452 tasks
Runtime 10s-30s 67 tasks
Runtime 30s—-60s 10 tasks
Runtime 60s-120s 14 tasks

Runtime beyond 120s:
SATELLITE #35  129.793 PSR-IARGE #49  306.30s
PSR-LARGE #47 145.809 SATELLITE #32 371.98s
SATELLITE #31 147.978 PSR-IARGE #44  376.69s
PSR-LARGE #42 154.363 PSR-LARGE#46 570.23s
PSR-LARGE #43 181.993 PSR-LARGE #48 714.73s
PSR-LARGE #45 182.479 SATELLITE #33 805.66s
SATELLITE #36  188.529 PSR-IARGE #50 1190.82s
PSR-LARGE #40 197.575

Fig. 18. Absolute runtime on the IPC1-5 tasks.

e PerformanceHow quickly is the representation computed?
e Quality: How good is the generated finite-domain representation?

8.1 Notes on performance

We will keep the discussion of performance short: on a stbtée-art computer,

the translation algorithm is sufficiently efficient to geaer finite-domain repre-

sentations for all IPC1-5 benchmark tasks in reasonable timparticular, in the

different planning systems that use the translator, inolyéielmert and Richter’s

Fast Downward [28], van den Briel et al.’s Integer Prograngrplanner [48] and

Helmert et al.'sflexible abstraction heuristicsystem [30], the conversion to FDR
is never the main bottleneck of the overall planning al¢yonit- translation time is

negligible compared to search time in the vast majority sesa(Some exceptions
to this exist in “structurally simple” domains likeASELLITE and LOGISTICS)

A summary of translation time for the IPC1-5 benchmark gsigthown in Fig. 18.
All experiments were conducted on a machine with a 2.66 Gk Xeon CPU un-
der a 2 GB memory limit. The algorithm was implemented in tiighBn language,
and we estimate that a speed improvement by a factor of 10islédkily achiev-
able with a C++ implementation. Even so, 65.4% of the instarare translated in
less than one second, and 93.4% in less than ten seconds. thew&% require
more than one minute, and fewer than 1% require more than timates. The
instances that take longest to translate are all from the-BSRGE and SXTEL-
LITE domains and are very large: for example, the largeseSLITE instance has
989250 operators, and the largest PSRREE instance has 544209 state variables
(however, a backchaining analysis reveals that only 604@fese are relevant to
the goal).
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domain #tasks I/O norm. invar. ground. FDR

AIRPORT 30/50 8-18% 1-4% 2-8% 48-64% 20-27%
ASSEMBLY 4/30 5-8% <1% <1% 80-84% 10-13%
DeEPOT 7122 4-6% <1% <1% 65-70% 26-30%
DRIVERLOG 5/20 4-6% <1% <1% 69-73% 22-26%
FREECELL 76/80 35% <1% <1% 67-71% 24-28%
GRID 4/5 4% <1% <1% 69-72% 24-27%
LoGIsTICS 21/63 36% <1% <1% 68-75% 21-30%
MicoNnIc-FuLL  95/150 1-5% 0-2% <1% 84-92% 7-10%
MPRIME 23/35 3-6% <1% <1% 70-75% 22-27%
MYSTERY 14/30 3-6% <1% <1% 70-74% 22-27%

OPENSTACKS 7/30 4-6% <1% <1% 63-65% 30-33%
OPTTELEGRAPH 41/48 4-7% <1% <1% 60-68% 25-35%
PIPESNOTANK  22/50 36% <1% <1% 71-75% 20-24%
PIPES TANK 43/50 2-5% <1% <1% 71-76% 19-26%
PSR-LARGE 43/50 5-7% <1% <1% 80-87% 7-16%
PSR-MDDLE 27/50 5-8% <1% <1% 81-87% 8-14%

PSR-S1ALL 2/50 29-34% 4% 1-11% 39-56% 11-13%
ROVERS 22/40 2-7% <1% <1% 77-95% 4-17%
SATELLITE 18/36 1-6% <1% <1% 66-75% 20-34%
STORAGE 12/30 5-6% <1% <1% 64-67% 27-32%
TPP 15/30 35% <1% <1% 73-76% 20-24%
TRUCKS 20/30 5-9% <1% <1% 62-69% 25-33%
ZENOTRAVEL 7120 4% <1% <1% 73-76% 21-24%

Fig. 19. Distribution of runtimes across the different stagf the translation algorithm,
by domain. Only tasks with overall runtime above 1s are takémaccount. The second
column shows the number of such tasks in each domain, tagettiethe number of total
tasks in that domain. The following columns show, in ordweg, ppercentage of time that was
spent on input/output (including parsing), normalizati@ection 4), invariant synthesis
(Section 5), grounding (Section 6) and FDR generation {@&ct). Ranges denote the
minimum and maximum percentage for all considered tasksamomain.

In addition to overall runtime, it is also interesting tomdiéy which of the different
stages of the algorithm form the main bottlenecks, and véretiis varies from
domain to domain. To address this question, we producedetetantime results
for all tasks that required an overall runtime beyond 1s éfitst experiment. For
each domain, we report thminimal and maximalpercentage of overall runtime
spent on each stage of the algorithm (Fig. 19). For examipéegntry in column
“FDR” for the LoGIsTiIcsdomain indicates that on those@BGisTicstasks which
required an overall runtime above one second (21 of the @annoss), between
21% and 30% of the overall runtime was spent on the final sthgeealgorithm,
generating the finite-domain representation.

The results show that normalization and invariant synthase not time critical.
In absolute numbers, normalization never requires mone €ha4s, and invariant
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synthesis never requires more than 0.38s. In a typical dgnaliout 70% of the
time is required for grounding, and about 25% for FDR gemanail here are four
domains where grounding can require more than 85% of themenMicoNIcC-
FuLL, PSR-IARGE, PSR-MDDLE, ROVERS). Relating this observation to our
earlier analysis of the Datalog grounding algorithm (Fig),these are precisely
the four domains with the highest average irrelevance.r&to completeness, we
mention that within the grounding stage, the vast majotiityroe is spent comput-
ing the canonical model (Section 6.5) and performing thd bparator and axiom
instantiation (Section 6.6). The initial steps of the aithon, generating (Section
6.3) and normalizing (Section 6.4) the logic program togetbquire at most 1.88s,
and there is only one task (PSR4&LL #25) for which they require more than 1s.

8.2 Notes on quality

So what about the quality of the representation? In almbptaining domains we
considered (including all IPC1-5 domains), the algorithenerates finite-domain
representations that are very close or identical to one wed\tave designed man-
ually. However, while this is encouraging, it is not how theafity of the represen-
tation should be measured.

Ultimately, whether or not a finite-domain representat®muoseful depends on how
well it serves its intended purpose. In Section 1.3, we dised a number of possi-
ble uses for finite-domain representations, including SKhping, symbolic state
space exploration with BDDs, heuristic planning with pattdatabases and other
homomorphism abstractions, planning using integer progreng compilations,
and heuristic planning based on causal graph decompasition

For SAT planning, the MaxPlan system [6], joint winner of thatimal proposi-
tional track of IPC5, has clearly established the usef@médinite-domain repre-
sentations. Although the exact details of the FDR trarmtathethod of MaxPlan
have not been published, it is directly inspired by the tégpies presented in this
article, and follows a very similar overall strategy (perabcommunications). As
Chen et al. report, finite-domain representations playtecalirole in planner per-
formance [6] — in the binary state variable case,|ltmelex constraintshat are the
key innovation of MaxPlan reduce to the usual mutex con#isaised by all state-
of-the-art SAT planners, so londex constraints requiretnoral FDR encodings.

For planning with BDDs, finite-domain representations halveays been critical
for performance, to the point where compilations that usérectpropositional
encoding lead to prohibitively bad performance. Indeed i the reason why
Edelkamp and Helmert’s algorithm for devising concise érdbmain representa-
tions [14] was originally developed. We remark that for ta@®mains that their
algorithm can handle — STRIPS domains without constantpamnador definitions
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— the encodings generated by the algorithm presented hegeaerally equivalent
to those found by the Edelkamp and Helmert algorithm.

For planning with homomorphism abstractions, the situmisosimilar. For exam-
ple, the flexible abstraction heuristics of Helmert et aQ][@ritically rely on the
finite-domain representation generated by the method preddere, degrading by
several orders of magnitude and solving significantly fetaeks if a direct propo-
sitional encoding is used instead.

The same performance degradation can be observed in hepl#stning based on
causal graph decompositions [28] — without the concise FRstation, the causal
graph heuristic is not competitive with other approaches.

Finally, van den Briel et al. [48] use our FDR translationalthm within their
Integer Programming compilation approach and report 8ggmt performance ad-
vantages over earlier approaches based on propositiocadiegs.

In summary, there is a wide spectrum of planning technigu@sdan significantly
benefit from automatically derived concise finite-domajpresentations using the
techniques presented in this work.
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