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Abstract

We introduce an efficient method for translating planning tasks specified in the stan-
dard PDDL formalism into a concise grounded representationthat uses finite-domain state
variables instead of the straight-forward propositional encoding.

Translation is performed in four stages. Firstly, we transform the input task into an equiv-
alent normal form expressed in a restricted fragment of PDDL. Secondly, we synthesize in-
variants of the planning task that identify groups of mutually exclusive propositions which
can be represented by a single finite-domain variable. Thirdly, we perform an efficient re-
laxed reachability analysis using logic programming techniques to obtain a grounded rep-
resentation of the input. Finally, we combine the results ofthe third and fourth stage to
generate the final grounded finite-domain representation.

The presented approach has originally been implemented as part of the Fast Downward
planning system for the 4th International Planning Competition (IPC4). Since then, it has
been used in a number of other contexts with considerable success, and the use of concise
finite-domain representations has become a common feature of state-of-the-art planners.
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1 Introduction

Consider the transportation planning task illustrated in Fig. 1. There are three cars,
a train, and two parcels, located in two cities comprising several locations each. The
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Fig. 1. A transportation planning task. Deliver parcelp1 from C to G and parcelp2 from F
to E, using the carsc1, c2, c3 and traint. The cars may only use roads (thin edges), the train
may only use the railway (thick edge).

cars may move along a network of roads within their respective city of origin, while
the train moves along a single railway link that connects thetwo cities. Parcels may
be loaded into any vehicle that is present at the same location, and parcels carried
by a vehicle may be unloaded to the current location of that vehicle at any time.
The objective is to move each parcel to a designated goal location.

1.1 PDDL representations

In order to find a plan for this example task using a general-purpose planning sys-
tem, we must first represent it in a way that such a system can reason about. Since
its inception in 1998 [37], the Planning Domain Definition Language (PDDL) has
become the de-facto standard language for representing classical planning tasks.
The original PDDL formalism, as used in the first two International Planning Com-
petitions, was purely logic-based and can be considered a syntactic variant of the
earlier ADL language [38] (excluding the support for functional fluents, which are
present in ADL). Since then, the language has been extended to more easily ex-
press additional aspects of real-world planning tasks, such as numbers and dura-
tions [20], state variables whose values are derived from the values of other state
variables [17], and most recently plan constraints and preferences [23].

In PDDL, planning tasks are described in terms ofobjectsof the world (cars, lo-
cations, parcels),predicatesthat describe static or dynamic relations that hold be-
tween these objects (whether or not two given locations are connected by a road,
whether or not a given parcel is currently inside a given vehicle), operatorsthat
manipulate these relations (moving a car from one location to another, unloading
a parcel), aninitial state that describes the situation before plan execution, and a
goal specificationdescribing the objectives that solution plans must achieve.
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While PDDL itself is a (restricted) first-order formalism, all state-of-the-art plan-
ning systems compile the input specification into a propositional representation at
an early stage bygroundingpredicates, operators and goal specifications. Many
planners go even further and transform the grounded task into a particularly sim-
ple syntactic form calledpropositional STRIPS, where states of the world can be
represented as sets of (satisfied) atomic propositions and operators are represented
in terms of which propositions must be true for the operator to be applicable (pre-
conditions), which propositions the operator makes true (add effects), and which
propositions it makes false (delete effects). The example task can be naturally mod-
elled in propositional STRIPS; (part of) such a representation is shown in Fig. 2.

PDDL- or STRIPS-based representations of planning tasks have a number of de-
sirable features. Due to the close relationship to first-order logic (for ungrounded
PDDL) and propositional logic (for grounded PDDL), the semantics are easy to
understand for researchers and practitioners with a background in formal logics.
Moreover, representing all properties of a world state in terms of truth values has
the appeal of simplicity. There is a certain mathematical elegance to the formalism,
and it clearly achieves the language designers’ maxim of describing planning tasks
in terms of their “physics, not advice” [37].

1.2 Finite-domain representations

The absence of any form of “advice” from the PDDL representation is appropri-
ate for a language designed for general problem solvers, butit comes at a price,
to be paid by planning algorithms that have to reason about the represented task.
In particular, the state space induced by a propositional representation such as the
one shown in Fig. 2 is very unstructured. A priori, a proposition like at-p1-a (stat-
ing that the first parcel is at locationA) bears no closer relationship toat-p1-b
(stating that the first parcel is at locationB) than to, say,in-p2-t (stating that the
second parcel is currently inside the train). However, if wetake into account their
intended meaning, propositions that represent potential locations of the same parcel
are clearly more closely related to each other than to ones that encode properties
of the other parcel. In particular, only one of the propositions of the format-p1-x
can be true at the same time in any feasible world state. To theplanner, there appear
to be as many as 235≈ 3.4 ·1010 feasible world states in the example task, corre-
sponding to all valuations of the 35 propositional state variables, yet in truth the
number of relevant states is only 11616≈ 1.2 ·104, as all other valuations are not
reachable from the given initial state.

An alternative representation of the example task is shown in Fig. 3. This repre-
sentation uses generalfinite-domainvariables, not just binary ones, to represent the
state of the world. For example, a single variablep1 with a domain of 11 values
completely encodes the state of the first parcel, subsuming the information of all
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Propositions:
at-p1-a, at-p1-b, at-p1-c, at-p1-d, at-p1-e, at-p1-f, at-p1-g,
at-p2-a, at-p2-b, at-p2-c, at-p2-d, at-p2-e, at-p2-f, at-p2-g,
at-c1-a, at-c1-b, at-c1-c, at-c1-d,
at-c2-a, at-c2-b, at-c2-c, at-c2-d,
at-c3-e, at-c3-f, at-c3-g,
at-t-d, at-t-e,
in-p1-c1, in-p1-c2, in-p1-c3, in-p1-t,
in-p2-c1, in-p2-c2, in-p2-c3, in-p2-t

Init:
at-p1-c, at-p2-f, at-c1-a, at-c2-b, at-c3-g, at-t-e

Goal:
at-p1-g, at-p2-e

Operatordrive-c1-a-d:
PRE: at-c1-a ADD: at-c1-d DEL: at-c1-a

Operatordrive-c1-b-d:
PRE: at-c1-b ADD: at-c1-d DEL: at-c1-b

Operatordrive-c1-c-d:
PRE: at-c1-c ADD: at-c1-d DEL: at-c1-c

...
Operatorload-c1-p1-a:

PRE: at-c1-a, at-p1-a ADD: in-p1-c1 DEL: at-p1-a
Operatorload-c1-p1-b:

PRE: at-c1-b, at-p1-b ADD: in-p1-c1 DEL: at-p1-b
Operatorload-c1-p1-c:

PRE: at-c1-c, at-p1-c ADD: in-p1-c1 DEL: at-p1-c
...
Operatorunload-c1-p1-a:

PRE: at-c1-a, in-p1-c1 ADD: at-p1-a DEL: in-p1-c1
Operatorunload-c1-p1-b:

PRE: at-c1-b, in-p1-c1 ADD: at-p1-b DEL: in-p1-c1
Operatorunload-c1-p1-c:

PRE: at-c1-c, in-p1-c1 ADD: at-p1-c DEL: in-p1-c1
...

Fig. 2. Propositional STRIPS representation of the transportation planning task.

propositionsat-p1-x andin-p1-y from the STRIPS encoding. Using this repre-
sentation, the set of feasible world states coincides with the set of syntactically legal
ones.

In this article, we present an efficient algorithm for translating planning tasks spec-
ified in PDDL 2.2 into a compact finite-domain representation. The algorithm has
been implemented as part of the Fast Downward planner [28] and used by a num-
ber of other planning algorithms [48,26,30,3,47]. It extends an earlier algorithm
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Variables:
p1, p2 ∈ {at-a, at-b, at-c, at-d, at-e, at-f, at-g,

in-c1, in-c2, in-c3, in-t}
c1, c2 ∈ {at-a, at-b, at-c, at-d}
c3 ∈ {at-e, at-f, at-g}
t ∈ {at-d, at-e}

Init:
p1 = at-c, p2 = at-f
c1 = at-a, c2 = at-b, c3 = at-g, t = at-e

Goal:
p1 = at-g, p2 = at-e

Operatordrive-c1-a-d:
PRE: c1 = at-a EFF: c1 = at-d

Operatordrive-c1-b-d:
PRE: c1 = at-b EFF: c1 = at-d

Operatordrive-c1-c-d:
PRE: c1 = at-c EFF: c1 = at-d

...
Operatorload-c1-p1-a:

PRE: c1 = at-a, p1 = at-a EFF: p1 = in-c1
Operatorload-c1-p1-b:

PRE: c1 = at-b, p1 = at-b EFF: p1 = in-c1
Operatorload-c1-p1-c:

PRE: c1 = at-c, p1 = at-c EFF: p1 = in-c1
...
Operatorunload-c1-p1-a:

PRE: c1 = at-a, p1 = in-c1 EFF: p1 = at-a
Operatorunload-c1-p1-b:

PRE: c1 = at-b, p1 = in-c1 EFF: p1 = at-b
Operatorunload-c1-p1-c:

PRE: c1 = at-c, p1 = in-c1 EFF: p1 = at-c
...

Fig. 3. Finite-domain representation of the transportation planning task.

by Edelkamp and Helmert [14] which also translates PDDL tasks to finite-domain
representations, but is limited to a much smaller language fragment (STRIPS, no
typing, no domain constants in operator definitions).

As far as we know, no other algorithms for this problem have been described in
the literature, so the main contribution of this article is the first description of
a method to generate concise finite-domain representationsfrom arbitrary (non-
numeric, non-temporal) PDDL tasks. From a high-level perspective, our approach
follows very similar ideas to the algorithm of Edelkamp and Helmert, but the gen-
eralization beyond STRIPS requires significant extensionsto the core components
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of the translation algorithm,invariant synthesis(Section 5) andgrounding(Sec-
tion 6). (Indeed, even though the emphasis in this article ison the overall goal of
transforming PDDL tasks into a concise finite-domain representation, we believe
that the invariant synthesis and grounding algorithms we present are also useful for
planning algorithms that work on traditional PDDL representations, so the algo-
rithms presented in Sections 5 and 6 may be seen as additionalcontributions of this
paper.)

1.3 Why finite-domain representations?

Before diving into more technical matters, let us briefly discuss why compact finite-
domain representations might be desirable. We already noted that in the STRIPS
representation, unlike the finite-domain representation,there is a vastly larger num-
ber of syntactically valid states than feasible (reachable) states in the planning task.
This is not necessarily problematic – for example, a planning algorithm based on
forward search, such as Hoffmann and Nebel’s FF [32], will never encounter any
of the infeasible states, so there is no obvious advantage tothe finite-domain repre-
sentation. However, a number of other planning approaches do benefit significantly
from the changed representation:

• Planning algorithms based on SAT-solving [34,35] can use SAT representations
that disallow exploring partial valuations that assign inconsistent values to a sin-
gle finite-domain variable. This is an example of the more general notion of
mutex constraints, which is critical to the performance of SAT planners [42]. A
naive SAT encoding would need to search the full space of syntactically valid
STRIPS states within each variable layer. In addition to theuse of mutexes, the
recently successful MaxPlan planner [6] also uses the finite-domain representa-
tion to derive so-calledlondex constraints, which are reported as the key innova-
tion of the planner. Londex constraints need finite-domain representations to be
effective: for binary state variables, they offer no additional pruning power over
mutex constraints.

• Planners that perform a symbolic exploration of the state space with binary de-
cision diagrams (BDDs) can use the finite-domain representation to reduce the
number of variables required in the BDD encoding, compared to a naive en-
coding. Moreover, the finite-domain representation leads to a variable ordering
where closely related propositions are grouped together, which is critical to good
performance of BDD exploration [16].

• Heuristic planning approaches using pattern databases or other homomorphism
abstractions [13,26,30] benefit from the more concise finite-domain encoding
because larger subtasks can be solved and stored in memory and thus used as an
abstraction heuristic. Moreover, as for BDDs, the finite-domain representation
groups related propositions which should be considered together in abstractions.

• Planners based on constraint programming [46,10] can buildmore efficient CSP
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Fig. 4. Causal graph for the example task (STRIPS representation).

c1 c2 c3 t

p1 p2

Fig. 5. Causal graph for the example task (finite-domain representation).

representations from finite-domain representations than from a direct encoding
of the state variables in the PDDL representation. As a case in point, CPlan by
van Beek and Chen [46] uses hand-tailored CSP encodings of standard planning
domains. In most cases, its state representations are identical to the finite-domain
representations generated by the algorithm presented in this article.

• Compilations to integer programming (IP) can use the finite-domain representa-
tion to get more concise IP representations. By modelling the value changes of a
single finite-domain variable as a network flow problem, which is very naturally
expressible as a linear or integer program, it is also possible to use a richer notion
of “plan steps” than in traditional Graphplan-like encodings. This helps reduce
the IP size and often translates to better performance [48].

• Planning approaches based on problem decomposition, such as the causal graph
heuristic [27] used in the Fast Downward planner [28], benefit from the simpler
causal structure of the finite-domain representation. To illustrate this, compare
the causal graph of the STRIPS encoding of the example problem (Fig. 4) to
the causal graph of its finite-domain counterpart (Fig. 5). Indeed, it has recently
been shown that the causal graph heuristic degenerates to aninferior variant of
the additive heuristic on binary representations [29].

This concludes our discussion of the potential advantages of concise finite-domain
representations. In the next section, we formally introduce PDDL and finite-domain
representations, before we begin describing the translation algorithm in Section 3.
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2 Definitions

As remarked in the introduction, PDDL is the language in which planning tasks
are most commonly expressed. In particular, the planning tasks of the international
planning competitions (IPC) are expressed in PDDL, so a planning system must
be able to deal with this language in order to participate. Inthis work, we consider
the non-numerical, non-temporalfragment of PDDL 2.2, i. e., “level 1” of that
language (where level 2 introduces numerical state variables and level 3 introduces
temporal planning features). We do not consider the most recent additions to the
language, namely the capabilities for expressing plan constraints and preferences
in PDDL 3 [23]. However, these features are orthogonal to theissue of binary vs.
finite-domain encoding, so that extending our work in this direction is conceptually
easy.

Our definition of PDDL tasks uses common notations from first-order logic which
we assume to be known; we refer to the literature [12] for formal definitions.
Throughout the section, we assume that all logical formulaeare over a first-order
languageL which consists of sufficiently many constant symbols (objectsin PDDL
terminology), relation symbols (predicates) and variable symbols. There are no
function symbols, unless one considers constants to be 0-ary functions. We use the
notation free(ϕ) to refer to the set of free variables of a first-order formulaϕ.

Definition 1 PDDL operators
A PDDL operator is a pair 〈χ,e〉, which consists of a (possibly open) first-order
formula χ called itspreconditionand aPDDL effect e. PDDL effects are recur-
sively defined by finite application of the following rules:

• A first-order literal l is a PDDL effect called asimple effect.
• If e1, . . . ,en are PDDL effects, then e1∧ · · · ∧en is a PDDL effect called acon-

junctive effect.
• If χ is a first-order formula and e is a PDDL effect, thenχ �e is a PDDL effect

called aconditional effect.
• If v1, . . . ,vk are variable symbols and e is a PDDL effect, then∀v1 . . .vk : e is a

PDDL effect called auniversally quantified effector universal effect.

Free variables of simple effects are defined as for literals in first-order logic. Free
variables of other effects are defined by structural induction:

• free(e1∧· · ·∧en) = free(e1)∪· · ·∪ free(en)
• free(χ�e) = free(χ)∪ free(e)
• free(∀v1 . . .vk : e) = free(e)\{v1, . . . ,vk}

The set of free variables of a PDDL operator is defined asfree(〈χ,e〉) = free(χ)∪
free(e). Free variables are also calledparametersof the operator.
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PDDL operators define the ways in which a planning algorithm can move from one
world state to another. If the current state satisfies the precondition of an operator,
then the operator may be applied, leading to a new state whichis like the old one
except that it is modified in certain ways specified by the effect of the operator. An
operator with parameters cannot be applied directly; it must first begroundedby
substituting concrete objects for the parameters.

Definition 2 PDDL axioms
A PDDL axiom is a pair 〈ϕ,ψ〉 such thatϕ is a first-order atom andψ is a first-
order formula withfree(ψ)⊆ free(ϕ). We write the axiom〈ϕ,ψ〉 asϕ←ψ and call
ϕ theheadandψ thebodyof the axiom.

A setA of PDDL axioms is calledstratifiable iff there exists a total preorder� on
the predicate symbols ofA such that for each axiom where predicate Q occurs in
the head, we have P� Q for all predicates P occurring in the body, and P≺ Q
for all predicates P occurring in a negative literal in the translation of the body to
negation normal form.

Axioms provide a way of defining certain predicates based on other, “more ba-
sic” predicates. For example, given anontop predicate, we can define its transitive
closureabove with the two axiomsabove(x,y)← ontop(x,y) andabove(x,z)←
∃y(ontop(x,y)∧above(y,z)).

Stratifiability of a set of axioms is necessary for ensuring that the outcome of axiom
evaluation is well-defined. Without such a condition, it would be possible to specify
rules of the form “P(x) is true wheneverP(x) is false.” Intuitively,P≺ Q means
that the truth value of atoms overP must be determined before the truth value of
atoms overQ.

Definition 3 PDDL tasks
A PDDL task is given by a 4-tupleΠ = 〈χ0,χ⋆,A ,O〉 with the following compo-
nents:

• χ0 is a finite set of ground atoms called theinitial state.
• χ⋆ is a closed formula called thegoal formula.
• A is a finite stratified set of PDDL axioms.
• O is a finite set of PDDL operators.

Predicates occurring in the head of an axiom inA are calledderived predicates.
Predicates occurring in the initial state or in simple effects of operators inO are
calledfluent predicates. The sets of derived and fluent predicates are required to
be disjoint.

We assume that the reader is already familiar with PDDL semantics and point to the
language definition [20,17] for more information. Apart from syntactic differences,
there are three aspects of non-numerical, non-temporal PDDL 2.2 not captured by
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our definition:

• There are no operator names. Our translation algorithm mapseach grounded
PDDL operator to a unique finite-domain representation operator, so that an im-
plementation need only propagate operator names, and any plans generated for
the translated task need not undergo any form of post-processing to apply to the
original task.

• There is no distinction between domain constants and objects of the problem
instance, or indeed between the domain and problem instancespecification in
general. At the level of individual problem instances at which the translation
algorithm works, there is no need for such a distinction.

• There are no types. Our translation algorithm compiles awaytypes into unary
predicates in the very first processing step (see Section 4.1), so we can assume
untyped representations for all following stages.

With PDDL as a starting point, let us now introduce the kinds of planning tasks that
the translation algorithm generates, which we call FDR (finite-domain representa-
tion) tasks. FDR tasks are based on the SAS+ planning formalism [2,33], extended
with axioms and conditional effects.

The definition exhibits a number of similarities, but also a few differences between
PDDL tasks and our planning model. FDR tasks only allow simple conjunctions in
goals, axioms and operators, and conditional effects cannot be nested. Moreover,
PDDL tasks use first-order concepts such as schematic operators whose variables
can be instantiated in many different ways, while FDR tasks are grounded. These
two differences to PDDL, in particular the use of a grounded representation, are due
to a desire to keep the FDR formalism simple, to reduce the burden for planners
that use it. Indeed, all the planning approaches for finite-domain representations
listed in the previous section have been introduced for (and, in most cases, require)
grounded representations. (We believe, however, that manyof the translation ideas
introduced in this article can be adapted to schematic finite-domain representations
where such representations appear more desirable.)

Definition 4 Planning tasks in finite-domain representation (FDR tasks)
A planning task in finite-domain representation (FDR task)is given by a 5-tuple
Π = 〈V ,s0,s⋆, A ,O〉 with the following components:

• V is a finite set ofstate variables, where each variable v∈ V has an associated
finite domainDv. State variables are partitioned intofluents (affected by oper-
ators) andderived variables(computed by evaluating axioms). The domains of
derived variables must contain thedefault value⊥.

A partial variable assignmentoverV is a function s on some subset ofV such
that s(v) ∈ Dv wherever s(v) is defined. A partial variable assignment is called
a stateif it is defined for all fluents and none of the derived variables in V . It is
called anextended stateif it is defined for all variables inV . In the context of
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partial variable assignments, we write v= d for the variable-value pairing〈v,d〉
or v 7→ d.

• s0 is a state overV called theinitial state.
• s⋆ is a partial variable assignment overV called thegoal.
• A is a finite set of (FDR)axiomsoverV . Axioms are triples〈cond,v,d〉, where

cond is a partial variable assignment called theconditionor bodyof the axiom,
v is a derived variable called theaffected variable, and d∈ Dv is called the
derived valuefor v. The pair〈v,d〉 is called theheadof the axiom.

The axiom setA is partitioned into a totally ordered set ofaxiom layersA1≺
·· · ≺Ak such that within the same layer, each affected variable mustappear with
a unique value in all axiom heads and bodies. In other words, within the same
layer, axioms with the same affected variable but differentderived values are
forbidden, and if a variable appears in an axiom head, then itmay not appear
with a different value in a body. This is called thelayering property.

• O is a finite set of (FDR)operatorsover V . An operator〈pre,eff〉 consists of
a partial variable assignment pre overV called itsprecondition, and a finite
set ofeffectseff. Effects are triples〈cond,v,d〉, where cond is a (possibly empty)
partial variable assignment called theeffect condition, v is a fluent called the
affected variable, and d∈Dv is called thenew valuefor v.

For axioms and effects, we commonly write cond→ v := d in place of〈cond,v,d〉.

To provide a formal semantics for planning for FDR tasks, we first need to formal-
ize the semantics of axioms.

Definition 5 Extended states defined by a state
Let s be a state of an FDR taskΠ with axiomsA , layered asA1 ≺ ·· · ≺ Ak. The
extended state defined bys, written asA(s), is the result s′ of the following algo-
rithm:

algorithm evaluate-axioms(A1, . . . , Ak, s):
for eachvariablev:

s′(v) :=

{

s(v) if v is a fluent variable

⊥ if v is a derived variable
for i ∈ {1, . . . ,k}:

while there exists an axiom(cond→ v := d) ∈ Ai

with cond⊆ s′ and s′(v) 6= d:
Choose such an axiomcond→ v := d.
s′(v) := d

In other words, axioms are evaluated in a layer-by-layer fashion using fixed point
computations, which is very similar to the semantics of stratified logic programs. It
is easy to see that the layering property from Definition 4 guarantees that the algo-
rithm terminates and produces a deterministic result. Having defined the semantics
of axioms, we can now define the state space of an FDR task.
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Definition 6 FDR state spaces
Thestate spaceof an FDR taskΠ = 〈V ,s0,s⋆,A ,O〉, denoted asS(Π), is a directed
graph. Its vertex set is the set of states ofV , and it contains an arc〈s,s′〉 iff there
exists some operator〈pre,eff〉 ∈ O such that:

• pre⊆ A(s),
• s′(v) = d for all effects(cond→ v := d) ∈ eff with cond⊆ A(s), and
• s′(v) = s(v) for all fluents v where no such effect exists.

Finally, we can define the FDR planning problem.

Definition 7 FDR planning
FDR-PLAN is the following search problem: Given an FDR taskΠ with initial
state s0, goal s⋆ and axiomsA , compute a path inS(Π) from s0 to some state s′

with s⋆ ⊆ A(s′), or prove that none exists.

FDR-PLAN EX is the following decision problem: Given an FDR taskΠ with initial
state s0, goal s⋆ and axiomsA , doesS(Π) contain a path from s0 to some state s′

with s⋆ ⊆ A(s′)?

The FDR-PLAN EX problem is easily shown to bePSPACE-hard because it gen-
eralizes the plan existence problem for propositional STRIPS, which is known to
bePSPACE-complete [5]. It is also easy to see that the addition of non-binary do-
mains, axioms and conditional effects does not increase thetheoretical complexity
of FDR planning beyond propositional STRIPS. Thus, we conclude our formal in-
troduction of FDR planning by stating that FDR-PLAN EX is PSPACE-complete.
In the following section, we turn to the problem of generating concise finite-domain
representations from PDDL representations.

3 Translation overview

Translation is performed in four stages. Starting from a PDDL specification, we
first apply some well-known logical equivalences to compileaway types and sim-
plify conditions and effects in thenormalizationstage (Section 4). Next, theinvari-
ant synthesisstage computes mutual exclusion relations between atoms, which are
later used for synthesizing the FDR variables (Section 5). Thegroundingstage per-
forms a relaxed reachability analysis to compute the set of ground atoms, axioms
and operators that are considered relevant for the planningtask and computes a
grounded PDDL representation (Section 6). Invariant synthesis and grounding are
not related to one another and could just as well be performedin the opposite order.
Finally, theFDR task generationstage chooses the final set of state variables by
using the information from invariants and grounding and produces the FDR output
(Section 7).
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PDDL 2.2 task

Normalized PDDL 2.2 task

Normalized PDDL 2.2 task
+ invariants

Grounded PDDL 2.2 task
+ invariants

Task in finite-domain representation

Normalization

Invariant synthesis

Grounding

FDR task generation

Fig. 6. Overview of the translation algorithm.

The complete translation process is outlined in Fig. 6. Before we begin the detailed
discussion of these stages in the following sections, we should point out that of
these four stages, only three are necessary to convert a PDDLtask to an FDR task:
the invariant synthesis stage can be omitted. However, without the use of invari-
ants, there would be a 1:1 correspondence between (relevant) ground atoms of the
PDDL task and state variables of the FDR task; in particular,all state variables in
the generated FDR task would be binary. Therefore, invariants are important for
obtaining aconcisefinite-domain representation.

4 Normalization

The normalization stage has three responsibilities: compiling away types, simpli-
fying conditions, and simplifying effects. Its result is anormalized PDDL 2.2 task,
which is a PDDL task with a number of strong syntactical restrictions.

Definition 8 Normalized PDDL tasks
A normalized PDDL taskis a PDDL task that satisfies the following structural
restrictions:

• The goal formula is a conjunction of literals.
• All axiom bodies are conjunctions of literals (except for the possible implicit

existential quantification of free variables not occurringin the axiom head).
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• All operator preconditions are conjunctions of literals.
• All effect conditions are conjunctions of literals.
• All operator effects are conjunctions of universally quantified conditional simple

effects.

4.1 Compiling away types

As suggested earlier, types are compiled away as the very first processing step. For
each type occurring in the input, and for the typeobject, we introduce a new unary
predicate with the same name. Typed constructs occur in PDDL2.2 specifications
in a semantically meaningful way in three places:

(1) Definition of domain constants and objects of the task (typed objects).
(2) Definition of formal parameters of schematic operators (typed operators).
(3) Definition of quantified variables in existential and universal conditions and

universal effects (typed quantifiers).

Typed objects are translated into new atoms for the initial state. For example,
the specificationsomeobj - sometype leads to a new initial atom(sometype
someobj), plus an additional atom(supertype someobj) for each supertype of
sometype, including the universal supertypeobject.

Typed operators are transformed by introducing new preconditions. For exam-
ple, for an operator with parameter specification:parameters (?par1 - type1
?par2 - type2) and preconditionϕ, the parameter specification is replaced by
:parameters (?par1 ?par2) and the precondition is replaced by(and (type1
?par1) (type2 ?par2) ϕ).

Typed quantifiers in conditions are compiled away with the usual logic idioms, turn-
ing (exists (?v - type) ϕ) into (exists (?v) (and (type ?v) ϕ)) and
(forall (?v - type) ϕ) into (forall (?v) (imply (type ?v) ϕ)).

Finally, typed universal effects are compiled into universal conditional effects, so
(forall (?v - type) e) becomes(forall (?v) (when (type ?v) e)).

After types have been eliminated, we are left with a PDDL taskin the sense of
Definition 3. We will thus use the more concise logical notation from that definition
in the following, rather than lengthy PDDL syntax. For example, we writeϕ∨ψ
instead of(or ϕ ψ) andϕ�e instead of(when ϕ e).
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4.2 Simplifying conditions

In PDDL tasks, general first-order formulae may occur in manyplaces: goal for-
mula, axiom bodies, operator preconditions and conditionsof conditional effects.
Our aim is to replace all these with simple conjunctions of literals.

Towards this goal, we first eliminate implications with the equivalenceϕ→ ψ ≡
¬ϕ∨ψ and translate the resulting conditions into first-order negation normal form
using de Morgan’s laws for first-order logic.

The next step is slightly tricky. If there are any universally quantified conditions, we
rewrite the outermost universal quantification in all conditions with the equivalence
∀xϕ ≡ ¬∃x¬ϕ. This might seem somewhat counterproductive because this trans-
formation destroys negation normal form, so after the rewrite, we introduce a new
axiom for the subformula that violates the normal form property, ∃x¬ϕ. Formally,
if free(∃x¬ϕ) = {v1, . . . ,vk}, we introduce a new derived predicatenew-pred of
arity k, defined by the axiomnew-pred(v1, . . . ,vk)← ψ, whereψ is the translation
of ∃x¬ϕ to negation normal form. We can then replace the original condition ∀xϕ
by ¬new-pred(v1, . . . ,vk). If several variables are universally quantified together
within the same expression, we transform them together, introducing only one new
derived predicate for the quantifier group. We repeat this step until there are no
more universally quantified conditions. Note that only universally quantifiedcon-
ditionsare translated, not universaleffects, which also use the∀ notation. Universal
effects cannot be compiled away easily, so we deal with them separately in a later
stage.

If after elimination of universal quantifiers the goal condition is not a simple con-
junction (i. e., if it contains disjunctions or existentialquantifiers), we replace it
by a new axiom, since the following transformations sometimes require splitting
several conditions into two, which is easy to do for axiom bodies, operator pre-
conditions and effect conditions, but not possible in our formalism for goal con-
ditions, of which there can be only one. So for example, if thegoal is ϕ∨ψ,
we introduce a new parameterless derived predicategoal-pred and a new axiom
goal-pred()← ϕ∨ψ, replacing the original goal with the atomgoal-pred().

The next step is the elimination of disjunctions. We move disjunctions to the roots
of conditions by applying the equivalences∃x(ϕ∨ψ) ≡ ∃xϕ∨∃xψ andϕ∧ (ψ∨
ψ′) ≡ (ϕ∧ψ)∨ (ϕ∧ψ′) and the laws of associativity and commutativity. In the-
ory, moving disjunctions over conjunctions can lead to an exponential increase in
formula size, which we could avoid by introducing new axiomsfor component for-
mulae. In practice, the conditions encountered in actual planning domains are not
problematic in this regard, so that axioms are not necessary. (For the intended appli-
cations of finite-domain representations mentioned in Section 1.3, we believe that
of two otherwise identical representations, the one that uses fewer state variables
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is usually preferable, so we attempt to avoid introducing new state variables unless
there is a compelling reason to do so.)

After disjunctions have been moved to the root of all formulae, we can eliminate
them by splitting the surrounding structures. If the disjunction ϕ∨ψ is part of an
axiom body, we generate two axioms with identical head, one with body ϕ and
one with bodyψ. If the disjunction is part of an operator precondition, we replace
the operator by two copies of the original, one with precondition ϕ and one with
preconditionψ. Finally, if the disjunction is part of an effect condition,we replace
the conditional effect(ϕ∨ψ)�eby (ϕ�e)∧ (ψ�e).

Next, we move existential quantifiers out of conjunctions byapplying the equiva-
lence(∃xϕ)∧ψ ≡ ∃x(ϕ∧ψ). The equivalence only holds whenx /∈ free(ψ), so to
avoid trouble here and later, we first rename all variables bound by quantifiers to
some unique name.

Having moved existential quantifiers to the root of conditions, we can eliminate
them. For axioms, we simply drop them, following the logic programming conven-
tion that all free variables in the body that are not part of the head are implicitly
existentially quantified. For operator preconditions, we also drop them, adding the
existentially quantified variables to the parameter list ofthe schematic operator. For
effect conditions, we replace(∃xϕ)�eby ∀x : (ϕ�e).

4.3 Simplifying effects

After the somewhat laborious simplification of conditions,effect simplification
is conceptually very simple. First, universal and conditional effects are moved
into conjunctive effects by the equivalences∀x : (e∧e′) ≡ (∀x : e)∧ (∀x : e′) and
ϕ�(e∧e′)≡ (ϕ�e)∧(ϕ�e′). Second, conditional effects are moved into univer-
sal effects by the equivalenceϕ � (∀x : e) ≡ ∀x : (ϕ �e). Finally, nested effects of
the same type are flattened, i. e., conjunctive effects containing conjunctive effects
are collapsed into a single conjunctive effect with more conjuncts, universal effects
containing universal effects are collapsed into a single universal effect quantify-
ing over more variables, and nested conditional effects of the typeϕ � (ψ �e) are
transformed to(ϕ∧ψ)� e. Note that this latter modification preserves the previ-
ously generated normal form for effect conditions.

After these transformations, the possible nesting of effects is thus restricted to the
simple chainconjunctive effect≻ universal effect≻ conditional effect≻ simple
effect. However, not all effect types must necessarily be present;for example, a
universal effect may, but need not, contain a conditional effect. To enforce a regular
effect structure, we replace simple effectse not surrounded by conditional effects
by⊤�e (⊤ is seen as the empty conjunction, so this condition is in normal form),
conditional effectse not surrounded by universal effects by∀ : e (quantifying over
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zero variables), and universal effectse not surrounded by conjunctive effects by a
conjunctive effect containing the singletone.

As a result, after normalization each operator has a conjunctive effect, where each
conjunct is a simple effect with an associated set of universal quantifiers and an
associated condition, both of which can be trivial. Thus it is not necessary to store
normalized operator effects in a tree structure; a flat vector is sufficient.

This concludes the normalization stage. For the sake of the following discussion,
we briefly recapitulate the structural restrictions for normalized PDDL tasks (Defi-
nition 8):

• The representation is untyped.
• All formulas (goal, preconditions, effect conditions, axiom bodies) are conjunc-

tions of literals.
• The effect of each operator is a conjunctive effect whose parts are of the form
∀v1 . . .vk : ϕ�e, wheree is a simple effect.

In the following, we will refer to the individual simple effects of an operator in a
normalized PDDL task as being arranged in aneffect list. For the simple effecte
occurring within the universal conditional effect∀v1 . . .vk : ϕ �e, we will refer to
{v1, . . . ,vk} as the set ofbound variablesof e and toϕ as theconditionof e. If e is
a positive literal, we will call it anadd effect, otherwise adelete effect.

5 Invariant synthesis

An invariant of a planning task is a property which is satisfied by all world states
that are reachable from the initial state. Many invariants are uninteresting; for ex-
ample, the property “At least five state variables are true” is an invariant for most
propositional STRIPS planning tasks, but does not seem to entail a useful (i. e., ex-
ploitable) piece of information for a planner. Other invariants would be useful to
know but are too difficult to verify. For example, “The goal isnot satisfied” is an
invariant iff the planning task is not solvable, so confirming the invariance of that
state property isPSPACE-hard for a propositional STRIPS task.

Nevertheless, invariants are a useful tool for many planning systems, which is why
they have been studied by many researchers in a variety of contexts [19,24,40,41].
Section 5.5 discusses related work on invariants, and why weintroduce a new in-
variant synthesis algorithm in the following instead of applying one of the algo-
rithms from the literature. The short answer is that most algorithms from the lit-
erature are limited to STRIPS domains. Moreover, some of them are prohibitively
expensive for the largest planning tasks in the IPC benchmark suite.
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For the purposes of translating planning tasks to a finite-domain representation,
mutual exclusion(mutex) invariants are especially interesting. A mutex invariant
states that certain propositions can never be true at the same time. This affects
translation because a set of propositions which are pairwise mutually exclusive can
be easily encoded as asingle state variable whose value specifieswhich of the
propositions is true (or that none of them is true at all), rather than as a number of
state variables encoding the truth value for each proposition individually.

Invariance is usually proven inductively. First, one showsthat a hypothesized prop-
erty is true in the initial state. Then, one shows that if the property is true in some
state, it must also be true in all its successor states. Together, this implies that the
property is true in all reachable states, and thus an invariant.

As mentioned before, the automatic discovery of invariantsis a hard problem in
general, but for many relevant types of state properties, sufficient conditions ex-
ist that can be checked quickly. Still, synthesizing invariants is costly, and for this
reason, we are interested in algorithms working directly with the first-order PDDL
description of a planning task, not on a grounded representation. Indeed, our algo-
rithm goes beyond this requirement by not relying on the information in thetask
part of the PDDL input at all, solely exploiting informationpresent in thedomain
part. This is a valuable feature, but it rules out the possibility of directly proving
mutex conditions, because a mutex cannot be established without checking the ini-
tial state. Instead, we consider a slight generalization ofmutexes.

Definition 9 Monotonicity invariant candidates
A monotonicity invariant candidatefor a PDDL taskΠ is given by a pairI =
〈V,Φ〉, where V is a set of first-order variables called theparametersof the can-
didate, andΦ is a set of atoms. Variables occurring freely inΦ which are not
parameters are calledcounted variablesof the candidate.

For V = {v1, . . . ,vm} andΦ = {ϕ1, . . . ,ϕk}, we writeI as∀v1 . . .vm ϕ1+ · · ·+ϕk ↓.
In the special case V= /0, we write∀ · ϕ1 + · · ·+ϕk ↓.

In the following, we will mostly refer to monotonicity invariant candidates asin-
variant candidatesor simplycandidates, as we do not consider other kinds of in-
variant candidates.

The preceding definition defines the syntax for invariant candidates; we now have to
provide the semantics. This is somewhat involved, so we provide an example from
the LOGISTICS domain first. Consider the candidate〈{p},{at(p, l),in(p,v)}〉,
where p, l and v are variable symbols. We write this as∀pat(p, l) + in(p,v) ↓
and read it as “For all packagesp, the number of locationsl such thatat(p, l) is
true plus the number of vehiclesv such thatin(p,v) is true, is non-increasing.” In
our terminology,p is the parameter of the candidate, whilel andv are the counted
variables. This invariant candidate is an actual invariant– it doeshold in all reach-
able states – and it is one of the invariants found by our algorithm in LOGISTICS.
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Let us now formalize what it means for a candidate to be an invariant.

Definition 10 Monotonicity invariants
Let I = 〈V,Φ〉 be a monotonicity invariant candidate of a PDDL taskΠ.

An instanceof I is a functionα mapping the variables in V to objects ofΠ.

The set ofcovered factsof an instanceα of I is the set of all ground atoms of the
planning taskΠ which unify with someϕ ∈ Φ underα, i. e., the set of all ground
atomsϕ0 of Π for which there exists a variable mapβ⊇ α such thatβ(ϕ) = ϕ0 for
someϕ ∈Φ.

Theweight of an instanceα of I in a state s is the number of covered facts ofα
which are true in s.

The monotonicity invariant candidateI is called amonotonicity invariantiff for all
instancesα of I , all states s reachable from the initial state ofΠ and all successor
states s′ of s, the weight ofα in s′ is no greater than the weight ofα in s.

Similar to our convention for invariant candidates, we usually refer to monotonicity
invariants simply asinvariants.

The definition is probably best understood by considering the previously discussed
example invariant. To get an instance of the candidate∀pat(p, l)+in(p,v) ↓, we
must mapp to a particular object, say byα = {p 7→ package1}. The set of covered
facts ofα in a given states then consists of all atoms of the format(package1, l) or
in(package1,v) that are satisfied ins. In a reachable state, there will typically only
be one such atom, for example given by the mappingβ = α∪{l 7→ location1},
so the weight ofα in s will be 1. But even if we consider strange states whereα
has a greater weight than 1, it is easy to see that the weight ofα in a successor state
of s is never greater than the weight ofα in s. This is true for all instances of the
candidate, so it is indeed an invariant.

As hinted before, monotonicity invariants are useful for grouping a number of re-
lated propositions into a single finite-domain variable: ifwe have found an invariant
for a planning taskanda given instance of that invariant has weight 1 in the initial
state, then the facts covered by that instance are pairwise mutually exclusive. This
is how the synthesized invariants are utilized during the later stages of translation.

So how do we generate invariants? Since there are too many feasible candidates
to enumerate exhaustively, we follow a guidedguess, check and repairapproach.
Starting from a set of a few simple initial candidates, we tryto prove that a given
candidate is indeed an invariant. Whenever this is the case,we keep the invariant
and do not consider it further. However, when the proof fails, we try to detectwhy
this is the case and refine the candidate to generate more candidates that do not
fail for the same reason (although they might fail for other reasons). From a high-
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level perspective, this is a search problem, and indeed we solve it using standard
breadth-first search, using a closed list to avoid exploringthe same invariant can-
didate twice. (This guarantees termination of the algorithm.) To fully specify the
invariant synthesis algorithm, it thus suffices to discuss its search space:

• Initial states:What are the initial candidates?
• Termination test:How do we prove that a candidate is an invariant?
• Successor set:How do we refine a candidate for which this proof fails?

In the following, we deal with these three questions in sequence.

5.1 Initial candidates

Before starting the actual invariant synthesis, we check which predicates are af-
fected by operators at all: some predicates, including but not limited to those rep-
resenting types, areconstantin the sense that atoms over these predicates have the
same truth values in all states. Such predicates are no longer needed after ground-
ing, so we need not consider them for invariant candidates. Of course, a constant
predicate trivially satisfies a monotonicity invariant, but these are not very useful.

Therefore, we limit the set of interesting predicates to allmodifiable fluent predi-
cates, i. e., predicates which occur within operator effects (as part of a simple effect,
not merely as part of an effect condition). Note that this also excludes derived pred-
icates. In theory, there is no reason why there should be no monotonicity invariants
involving derived predicates, but in practice we have not seen examples of this,
and detecting them would require more global reasoning thanthe proof methods
we use for fluent predicates. We will come back to the issue of derived predicates
when discussing our method for proving invariance.

The set of initial invariant candidates consists of all those candidates (up to iso-
morphism, i. e., renaming of variables) which contain at most one counted variable
and exactly one atom, over a modifiable fluent predicate, whose parameters are dis-
tinct variables. In our experience, mutexes based on invariants with several counted
variables per atom are exceedingly rare; in fact, we have notseen an example in
practice.

To illustrate the initialization of invariant candidates,we show the three candidates
generated for the binaryat predicate in the LOGISTICSdomain:

∀xat(x, l) ↓ (1)
∀l at(x, l) ↓ (2)
∀x, l at(x, l) ↓ (3)

Similar candidates are introduced for thein predicate. Intuitively, the first candidate
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states that no object can be at more locations in the successor state than in the
current state, the second candidate states that no locationcan be occupied by more
objects in the successor state than in the current state, andthe third candidate states
that a given object cannot occupy a given location in the successor state if this is
not the case in the current state.

Candidates (2) and (3) are obviously not invariants. Candidate (1) is not an invariant
either because an object which is currently inside a vehiclecan be at some location
in the successor state while being at no location in the current state. However, we
will see that we can refine (1) into an invariant.

5.2 Proving invariance

In order to prove that a given invariant candidate is an invariant, we must show that
no operator can increase the weight of any of its instances. An operator increases
the weight of some instance of an invariant candidate iff thenumber of covered
facts that it makes true is greater than the number of coveredfacts that it makes
false. If an operator does not increase the weight of any instance, then we say that
it is balancedwith regard to the invariant.

Ultimately, we are interested in instances of monotonicityinvariants that give rise
to mutexes, so that only instances of weight 1 are relevant for us. For this reason,
we use the following condition which is slightly stronger than balance.

Definition 11 Threatened invariant candidates
An invariant candidateI is threatenedby a schematic operator iff one of the fol-
lowing two conditions holds:

• The operator has an add effect that can increase the weight ofan instance of
I in some state, but no delete effect that is guaranteed to decrease the weight
of the same instance in the same state. In this case, we say that the operator is
unbalancedwith regard toI .

• When ignoring delete effects, the operator can increase theweight of some in-
stance ofI in some state by at least2. In this case, we say that the operator is
too heavyfor I .

Clearly, not being threatened by any schematic operator is asufficient condition for
being a monotonicity invariant. Note that just showing thatno operator is unbal-
anced in the sense of the definition is not sufficient for invariance, as the balance
test considers different add effects in isolation. For example, an operator might have
two add effects, each of which is individually balanced by a delete effect. However,
the operator might still cause a net increase of the weight ofan invariant instance
if the two balancing delete effects can be identical. This isnot always obvious; for
example, consider an (incorrectly modelled) operator for moving something which
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is currently at two locationsl1 andl2 to two other locationsl3 andl4:

Precondition: at(x, l1)∧at(x, l2)
Add effects: at(x, l3)∧at(x, l4)

Delete effects: at(x, l1)∧at(x, l2)

At first glance, the operator does not seem to be problematic for the monotonicity
invariant candidate∀xat(x, l) ↓, but actually it is: in the casel1 = l2 andl3 6= l4, it
increases the number of locations thatx is currently at. Attempting to capture such
subtleties in the balance test makes this test more complicated, and even more so in
the presence of universally quantified effects, which can add an arbitrary number
of facts. We avoid such complications by adding the heaviness test, which would
reject the invariant candidate because the operator can increase the weight of its
instances by two.

Clearly, the heaviness test is stricter than necessary. If the above operator were
extended with the preconditionl1 6= l2, then∀xat(x, l) ↓ might indeed be an in-
variant, but it would still be rejected due to the operator being too heavy for it. In
the context of translation to finite domain representation,this does not appear to be
problematic because we are only interested in invariants for the purpose of generat-
ing mutex groups. In that setting, the weight of interestinginvariant instances is at
most one, so operators that add more than one fact either do not exist or are never
applicable, and typical PDDL models do not contain schematic operators which are
never applicable.

Definition 11 gives rise to the algorithm shown in Fig. 7. Mostof the actual work
is in unifying operator parameters and quantified variablesof universal conditions;
the algorithm simplifies significantly in STRIPS domains. Wedo not discuss the
algorithm in full detail, instead focusing on two points that require some expla-
nation, namely the satisfiability and entailment tests thatoccur towards the end of
functionsis-operator-too-heavyandis-add-effect-unbalanced.

For the heaviness test, two add effects can only lead to an operator being too heavy
in statess where the operator is actually applicable (o′.precond is true ins), the
triggering conditions of both add effects are satisfied (e.cond ande′.cond are true
in s) and the add effects actually add propositions that were nottrue previously
(e.atom ande′.atom are false ins). An operator is considered too heavy byis-
operator-too-heavyif all these conditions can hold together, i. e., their conjunction
is satisfiable. (Even if the conjunction is satisfiable, it isof course possible that
none of the satisfying states is reachable from the initial state, so this may be overly
conservative.)

For the imbalance test, an add effect leads to an imbalance bydefault. However,
it can be balanced if whenever the operator is actually applied in a states (which
requires thato′.precond is true in states) and the add effect triggers (e.cond is true
in s) and actually adds something (e.atom is false ins), then something is deleted at
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the same time, which means that the delete effect triggers (e′.cond is true ins) and
deletes something that was previously true (e′.atom is true ins). Functionis-add-
effect-unbalancedconducts logical entailment tests to check if a balancing delete
effect is guaranteed to exist. (Again, this may be overly conservative because all
states in which balance is violated might be unreachable.)

Coming back to the earlier LOGISTICS example, all three initial candidates are
threatened by the same operatorunload-truck:

Precondition: package(x)∧truck(t)∧location(l)∧at(t, l)∧in(x, t)

Add effects: at(x, l)

Delete effects: in(x, t)

The operator is unbalanced with regard to all invariant candidates due to the add
effect at(x, l). Thus, as indicated before, none of (1)–(3) is an invariant.We will
discuss possible refinements of the candidates shortly.

There are a few subtleties about the algorithm which we want to point out briefly:

• We duplicate universal effects at the beginning ofis-operator-too-heavyso that
we can detect if two different instantiations of the same universal effect can si-
multaneously increase the weight of some instance of the invariant candidate.

• Where Fig. 7 contains statements like “Leto′ be a copy ofo where variables are
renamed so that. . . ”, the question arises whether such a renaming is uniquely
determined, and what to do if it is not. Indeed, renamings areunique (and easy to
compute) as long as all atoms of the candidate refer todifferentpredicates, which
is usually the case. However, the algorithm generalizes to invariant candidates
with several occurrences of the same predicate, like∀xat(x,y)+at(y,x) ↓. This
requires that all possible (non-isomorphic) renamings must be considered foro′

in function is-add-effect-unbalanced. In our experience, invariants of this type
are not very useful, but our implementation does support them.

• We have noted before that we do not consider invariants involving derived pred-
icates. This is because axioms correspond to operators thathave a single add
effect, but no delete effect. Invariant candidates including derived predicates can
thus never be balanced in the sense of Definition 11, except ifthe axiom body
already entails the head, which is not a very interesting case.

• Because the operator preconditions and effect conditions are in normal form
(conjunctions of literals), the satisfiability test in function is-operator-too-heavy
is performed on a conjunction of literals, which is possiblein linear time. (Just
check if any two literals in the conjunction are complementary.) Similarly, func-
tion is-add-effect-unbalancedtests entailment between two conjunctions of lit-
erals, which is also possible in linear time.

One final subtlety concerns the semantics of PDDL operators with “conflicting”
effects. Note that our balance test requires thate.atom does not equale′.atom, i. e.,
the atom that is added is different from the one which is deleted. The reason for this
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function prove-invariant(V, Φ):
for each schematic operatoro:

if is-operator-too-heavy(o, V, Φ):
return false. { Reject the candidate.}

for eachadd effecteof o that affects a predicate inΦ:
if is-add-effect-unbalanced(o, e, V, Φ):

return false. { Reject or refine the candidate.}
return true . { Accept the candidate.}

function is-operator-too-heavy(o, V, Φ):
Let o′ be a copy ofo.
Duplicate all (non-trivially) quantified effects ofo′.
Assign unique names to all quantified variables in effects ofo′.
for each pair (e,e′) of add effects ofo′ that affect a predicate inΦ:

if the parameters of operatoro′ can be renamed so that
(e.atom6= e′.atomand
covers(V, Φ, e.atom)and covers(V, Φ, e′.atom)and
o′.precond∧e.cond∧e′.cond∧¬e.atom∧¬e′.atom
is satisfiable):

return true . { The operator is too heavy.}
return false. { The operator is not too heavy.}

function is-add-effect-unbalanced(o, e, V, Φ):
Let o′ be a copy ofo where the parameters are minimally

renamed so that covers(V, Φ, e.atom) is true.
for each delete effecte′ of o′ that affects a predicate inΦ:

if the quantified variables ofe′ can be renamed so that
(e.atom6= e′.atomand covers(V, Φ, e′.atom)and
o′.precond∧ e.cond∧ ¬e.atom|= e′.cond∧ e′.atom):

return false. { e′ balancese. }
return true . { The add effect is unbalanced.}

function covers(V, Φ, ψ):
for each ϕ ∈Φ:

if the counted variables inϕ (those not inV)
can be renamed so thatϕ = ψ:

return true .
return false.

Fig. 7. Algorithm for proving that an invariant candidate〈V,Φ〉 is an invariant.

is that PDDL semantics mandate that if the same atom is both added and deleted
simultaneously, it is actually added, so that an atom cannotbalance itself.
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algorithm refine-candidate(V , Φ):
Select some schematic operatoro and add effectesuch that

is-add-effect-unbalanced(o, e, V, Φ) returnstrue.
for each atomϕ′ over variables fromV and at most one other variable

for which covers(V, Φ, ϕ′) is not true:
Φ′ := Φ∪{ϕ′}
Simplify Φ′ by removing atoms fromΦ that are covered byϕ′.
(These cannot contribute to the weight of an instance of〈V,Φ′〉.)
Simplify Φ′ by removing unused parameters.
if not is-add-effect-unbalanced(o, e, V, Φ′):

Add 〈V,Φ′〉 to the set of invariant candidates.

Fig. 8. Algorithm for refining an unbalanced invariant candidate〈V,Φ〉.

5.3 Refining failed candidates

As indicated in the overview of the invariant synthesis algorithm, we do not give
up immediately if we cannot prove a given candidate to be an invariant. Instead,
we try to refine it by adding atoms that can restore balance. In algorithmic terms,
whenever we reject an invariant candidate〈V,Φ〉, we try to generate a set of new
candidates of the form〈V,Φ∪{ϕ′}〉.

Whether or not this is promising depends on the reason why thecandidate was
rejected. If it was rejected because an operator is too heavy, then no possible refine-
ment that adds an atom to the candidate can change this fact, and we give up on the
candidate completely. If, however, it was rejected becauseof unbalanced operators,
there is hope that we can deal with the flaw by adding an atom that can match some
delete effect of the threatening operator, balancing the unbalanced add effect.

The basic refinement algorithm is shown in Fig. 8. The actual implementation does
not generate all possible refining atomsϕ′ naively, but rather uses information from
the set of delete effects of the threatening operatoro and the failed call tois-add-
effect-unbalancedto only consider atomsϕ′ for which there is a chance that the
new balance check will succeed. Since this is conceptually straight-forward, we do
not go into more detail about this technique.

Instead, let us return to the LOGISTICS example. Recall that invariant candidate
(1), ∀xat(x, l) ↓, is threatened by the operatorunload-truck, whose add effect
at(x, l) is unbalanced. The operator has only one delete effect, namely ¬in(x, t).
Indeed,in(x, t) is a suitable refinement atom forϕ′ without further variable re-
naming, since theunload-truck operator is balanced with regard to the refined
candidate∀xat(x, l)+ in(x, t) ↓. So we add this candidate to the set of currently
considered candidates. At a later stage, it will be considered byprove-invariant,
which will show that it is indeed an invariant.
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In contrast, the other two candidates cannot be suitably refined. For (3), consider
thedrive-truck operator:

Precondition: truck(t)∧location(l)∧location(l ′)∧city(c)∧

in-city(l ,c)∧in-city(l ′,c)∧at(t, l ′)

Add effects: at(t, l)

Delete effects: at(t, l ′)

In order to refine (3),∀x, l at(x, l) ↓, to balance this operator, we would need to add
the atomat(x, l ′), asat(t, l ′) is the only delete effect of the operator andt unifies to
x. However, this atom covers the original atomat(x, l) (note that the converse is not
true, because onlyl ′ is a counted variable), leading to the candidate∀x, l at(x, l ′)
where parameterl is unnecessary, so that it simplifies to∀xat(x, l ′). This candidate
is isomorphic to (1) and hence not considered again.

Considering candidate (2) and thedrive-truck operator, the only possible refine-
ment is∀· at(x, l ′) ↓ (“The total number ofat propositions is non-increasing”), but
this has more than one counted variable and thus will not be considered byrefine-
candidate. Supposing that we removed the restriction to candidates with at most one
counted variable,∀ · at(x, l ′) ↓ would turn out to be violated by theunload-truck
operator, but could be further refined to∀ · at(x, l ′)+ in(x, l ′) ↓ (“The total num-
ber ofat andin propositions is non-increasing”). This latter candidate is actually
a monotonicity invariant. However, its only instance clearly has a weight greater
than 1 in the initial state of any non-trivial LOGISTICS task and thus is not useful
for providing any mutex information. (Of course, it would still be a monotonicity
invariant, and be part of the output of the algorithm, if the restriction to at most one
counted variable were removed. To derive mutex informationfrom monotonicity
invariants, we must also consider the initial state information; this happens in the
“Variable selection” stage of the translation algorithm, described in Section 7.1.)

5.4 Examples

This concludes our description of the invariant synthesis algorithm. To give an im-
pression of the kind of invariants it generates, Fig. 9 showssome of the results
obtained on IPC domains. The invariants found in the GRID domain are most in-
teresting, as they include some monotonicity information that is not covered by
mutexes: the third GRID invariant states that the total number of open and locked
doors never increases, the fourth invariant states that thenumber of locked doors
never increases, and the sixth invariant states that a door which is not locked can
never become locked.

26



LOGISTICS ∀x at(x, l)+in(x, t) ↓

BLOCKSWORLD ∀· handempty()+holding(b) ↓
∀b holding(b)+clear(b)+on(b′,b) ↓
∀b holding(b)+ontable(b)+on(b,b′) ↓

GRID ∀· armempty()+holding(k) ↓
∀· at-robot(l) ↓
∀· open(d)+locked(d) ↓
∀· locked(d) ↓
∀d open(d)+locked(d) ↓
∀d locked(d) ↓
∀k holding(k)+at(k, l) ↓

Fig. 9. Invariants found in some standard benchmark domains.

5.5 Related work

Before moving on to the next translation stage, we should point out that the algo-
rithm described in this section is not the only approach to invariant synthesis pro-
posed in the literature. We thus provide a brief comparison to six other approaches,
sorted in decreasing order of relatedness:

• Edelkamp and Helmert’s algorithm [14] proposed for the MIPSplanner [16,15],
• Scholz’s algorithm for findingc-constraints[43],
• Gerevini and Schubert’s DISCOPLAN [24,25],
• Rintanen’s invariant synthesis algorithm [41],
• Bonet and Geffner’s algorithm for generating mutexes [4], and
• Fox and Long’s TIM [19,8].

Apart from the first algorithm in the list, all of these were developed independently
from ours, although all but the last one follow very similar ideas. Edelkamp and
Helmert’s algorithm is the most closely related approach. In fact, our algorithm can
be considered an extension of the MIPS algorithm to non-STRIPS domains. Com-
pared to the original algorithm, our method incorporates some cosmetic and per-
formance improvements, but the main difference is the coverage of universal and
conditional effects. Note, however, that this is no small difference, as it is much
easier to reason about STRIPS operators than about the more general class of oper-
ators occurring in normalized PDDL tasks. On STRIPS domains, both algorithms
generate the same set of invariants.

Scholz’s algorithm is very similar to Edelkamp and Helmert’s, with only slight
differences in the way that failed invariant candidates arerefined to generate new
invariant candidates. It shares the weakness of being limited to STRIPS domains.

DISCOPLAN also uses a very similar guess, check and repair approach. However,
its method for refining invariant candidates is quite different. In particular, while
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our algorithm immediately refines an invariant as soon as a threatening operator is
discovered, DISCOPLAN first collects all threats to an invariant for all operators.
Only then does it generate refinements, which attempt to address all these threats
at the same time. On the one hand, collecting threats across operators allows mak-
ing more informed choices in invariant refinement. On the other hand, it appears
that this approach incurs a performance penalty. For example, while our algorithm
always terminates in less than a second on all IPC benchmark tasks, DISCOPLAN
exceeds a 30 minute timeout on large instances of the IPC4 AIRPORT domain. It
should be noted, though, that DISCOPLAN generates many classes of invariants
besides mutexes, because it was designed as a general invariant synthesis tool, not
with finite-domain representations in mind. This difference in purpose should be
taken into account when comparing runtime results, as it is likely that better runtime
results could be obtained for DISCOPLAN by only consideringmutual exclusion
invariants. (Modifying DISCOPLAN’s algorithm to derive such a specialization
appears feasible, but an appropriate modification of the available implementation
appears to be a practically non-trivial task.) Apart from efficiency concerns, an-
other consideration is that even though DISCOPLAN is not limited to STRIPS, it
can only deal with a subset of ADL features which is not sufficiently rich for all
IPC benchmarks. Finally, even for STRIPS domains, we found that some invariants
important for a concise finite-domain encoding which our algorithm discovers were
missed by DISCOPLAN. For example, in the DRIVERLOG domain, our approach
can prove that a given driver can only be at one place or insideone truck at the
same time, which allows encoding driver location in a singlevariable. An encoding
based on the invariants found by DISCOPLAN would need to introduce a separate
state variable for each driver-location and driver-truck pair. (After discussing this
point with the DISCOPLAN authors, the algorithm has been amended, so that the
most recent version of DISCOPLAN now finds this invariant.)

Rintanen’s algorithm follows the same guess-check-repairstructure as our algo-
rithm and DISCOPLAN. One main difference (and advantage) ofRintanen’s al-
gorithm is that its “check” step uses the information fromall current invariant
candidates, rather than just the one currently being considered, to strengthen the
induction hypothesis. An interesting difference is that, opposite to our algorithm, it
always proceeds from stronger invariant candidates to weaker ones. Note that for
inductive proofs, both strengthening and weakening an invariant candidate can be a
promising refinement strategy. In particular, weaker statements are not necessarily
easier to prove than stronger ones because the induction hypothesis is also weaker.
A problem of Rintanen’s algorithm is that it is limited to propositional STRIPS and
that it is not sufficiently efficient for many of the IPC benchmarks. For this reason,
we have not made a detailed comparison regarding the kinds ofinvariants it can or
cannot find; from our limited experience, we believe the approaches to be compara-
ble in this respect, at least for the mutexes we are interested in. Like DISCOPLAN,
Rintanen’s approach can find more general classes of invariants than mutexes.
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Bonet and Geffner’s algorithm for generating mutexes can beseen as a special
case of Rintanen’s algorithm that starts from a different (weaker) set of invariant
candidates and immediately rejects all failed candidates instead of trying to refine
them. Like Rintanen’s algorithm, it is limited to STRIPS andworks on a grounded
representation, which makes it much more expensive to compute for large IPC
benchmarks than our first-order algorithm. To keep the runtime manageable, the
algorithm puts some severe restrictions on the potential mutex pairs to consider. For
example, ifat(x) is a set of propositions that encodes the location of an object on
a graph, the algorithm fails to prove mutual exclusion if thediameter of the graph
is greater than 2. (Examples of this arise in the AIRPORT, DRIVERLOG, GRID,
MPRIME, MYSTERY and TPP domains.)

Finally, Fox and Long’s TIM (fortype inference module) is (or can be interpreted
as) an invariant synthesis algorithm which follows a conceptually very different
approach to the other algorithms described here, based on the notion ofproperty
spaceswhich are generated from the type structure of the task, which is in turn
derived by atype inferencetechnique which gives the system its name. TIM was
originally [19] limited to STRIPS and thus not directly usable for us. It has since
been extended to handle some ADL constructs [8], independently of the develop-
ment of our invariant synthesis algorithm.

6 Grounding

After computing monotonicity invariants, the next translation stage generates a
variable-free representation of the normalized PDDL task,a process which is called
grounding.

Definition 12 Grounded PDDL tasks
A grounded PDDL taskis a PDDL task such that all literals occurring in the goal
formula, axioms and operators are ground literals (i. e., donot contain variables).

Grounding is a conceptually simple operation. IfO is the set of objects of the task,
a variablex in a parameterized structure (operator, axiom or universally quantified
effect) can be eliminated by replacing the original structure with |O| copies, one for
each objecto∈O, wherex is substituted witho in the respective copy. If the PDDL
task were not already in normal form, quantifiers in conditions could be similarly
eliminated by replacing∃xϕ with the disjunction

W

o∈Oϕ[x/o] and∀xϕ with the
conjunction

V

o∈Oϕ[x/o].

In general, the grounded task can be exponentially larger than the original one:
for example, an operator withk parameters gives rise to|O|k many ground in-
stances, andk can grow linearly with the task size. However, in practice the num-
ber of parametersk is usually low, and in particular it is fixed for a given planning
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domain. Moreover, the exponential blowup through grounding is computationally
unavoidable, since planning with grounded representations is exponentially easier
than planning with schematic representations [18].

In practice, for the majority of common planning domains, grounding is not a time-
critical operation, and simple grounding schemes like the one outlined above suf-
fice. However, there are exceptions to this rule: the naive grounding algorithm is
not computationally feasible for the whole spectrum of IPC planning domains. To
illustrate that grounding can be challenging, we tested thegrounding algorithm im-
plemented in the FF planner [32] on the IPC benchmark suite, imposing a runtime
limit of 30 minutes and a memory limit of 2 GB. (FF does not directly support
derived predicates, but for the purposes of grounding, derived predicates can be
treated as if they were operators with a single effect, whichwe did for this experi-
ment.) FF is particularly suited for comparison because it is one of the few planners
that support the full ADL subset of the PDDL language, and because its grounded
tasks follow a very similar normal form to the one in this article. (The only signif-
icant difference is that it compiles away negative literalsin conditions.) Moreover,
it uses a fairly sophisticated grounding procedure, originally introduced by Koehler
and Hoffmann for the IPP planner [36].

Our experiment showed that even though grounding in FF is blazingly fast for the
vast majority of benchmarks, there are scaling issues in some domains. In partic-
ular, the grounding procedure failed on 57 tasks (28 from theOPTTELEGRAPH

domain, 2 from PATHWAYS, and 27 from PSR-LARGE) by exhausting the memory
limit. Being unable to ground a planning task would not be a significant problem
if these tasks were beyond reach of current planners, but most of them are not.
For example, the results reported by Richter et al. [39] showthat their landmark-
based planner can solve (in at least one of the planner configurations described in
the paper) all these tasks except for 16 of the largest PSR-LARGE instances under
similar time and memory constraints. Furthermore, even significantly increasing
the memory limit for the grounding procedure does not eliminate the bottleneck in
the grounding procedure: with a 28 GB memory limit, grounding with FF still fails
on 26 tasks (11 from OPTTELEGRAPH, 15 from PSR-LARGE), of which 16 are
solved by the planner of Richter et al. with a 3 GB memory bound.

6.1 Improving the naive grounding algorithm

How can we perform grounding more efficiently than the naive algorithm that in-
stantiates each variable with each possible object? The keyobservation here is that
many ground operators produced by the naive algorithm are not applicable in any
reachable state of the task, and thus can be safely omitted from the grounded rep-
resentation.
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Operatorload-truck(p, t, l):
Precond.: package(p)∧truck(t)∧location(l)∧at(t, l)∧at(p, l)

Effect: in(p, t)∧¬at(p, l)

Operatorunload-truck(p, t, l):
Precond.: package(p)∧truck(t)∧location(l)∧at(t, l)∧in(p, t)

Effect: at(p, l)∧¬in(p, t)

Operatordrive-truck(t, l , l ′,c):
Precond.: truck(t)∧location(l)∧location(l ′)∧city(c)∧

in-city(l ,c)∧in-city(l ′,c)∧at(t, l)
Effect: at(t, l ′)∧¬at(t, l)

Operatorload-airplane(p,a, l):
Precond.: package(p)∧airplane(a)∧location(l)∧at(a, l)∧at(p, l)

Effect: in(p,a)∧¬at(p, l)

Operatorunload-airplane(p,a, l):
Precond.: package(p)∧airplane(a)∧location(l)∧at(a, l)∧in(p,a)

Effect: at(p, l)∧¬in(p,a)

Operatorfly-airplane(a, l , l ′):
Precond.: airplane(a)∧airport(l)∧airport(l ′)∧at(a, l)

Effect: at(a, l ′)∧¬at(a, l)

Fig. 10. Schematic operators of the LOGISTICSdomain.

algorithm operators
naive 5.82·1010

checking types 1.94·108

checking static preconditions 3.00·106

checking relaxed reachability 1.53·105

checking relaxed reachability and pruning no-ops1.51·105

Fig. 11. Number of ground operator generated by different grounding algorithms for task
LOGISTICS#28 (IPC1).

We illustrate this point with the operators of the LOGISTICS domain, shown in
Fig. 10, using instance #28 from IPC1 [37] as a running example. There are 490
objects in this task, so that the naive algorithm generates 490k ground instances of
each operator withk parameters. There are 5 operators with 3 parameters each and
one operator with 4 parameters, so we end up with 5· 4903 + 4904 = 5.82· 1010

operators (cf. first row of Fig. 11), which is clearly infeasible. We will now discuss
a number of increasingly sophisticated techniques to reduce this number, leading
up to the ideas underlying the new grounding method introduced in this article,
which is then discussed in the remainder of this section.
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6.1.1 Exploiting type information

A brief look at the output of the naive algorithm shows that the vast majority of op-
erators is useless. For example,load-truck(city1,truck4,airport1) requires
thatpackage(city1) is true, which is never the case in a reachable state. Indeed,
even though the LOGISTICS domain from IPC1 is untyped, it is easy to see that
the unary predicatesairplane, airport, city, location, package andtruck
are used as “implicit types”: they are static (do not appear in operator effects) and
serve to restrict the possible instantiations of the operator parameters.

As a first enhancement, we can take such (implicit or explicit) typing information
into account. The example task has 42 packages, 83 trucks, 5 airplanes, 20 cities
and 340 locations (17 in each city). One location in each cityis an airport, so
there are 20 airports. Exploiting this information, we onlyneed to generate 42·83·
340 ground instances ofload-truck andunload-truck, 83·340·340·20 ground
instances ofdrive-truck, 42· 5 · 340 ground instances ofload-airplane and
unload-airplane and 5·20·20 ground instances offly-airplane, for a total of
1.94·108 ground operators (second row of Fig. 11). Despite the improvement of
more than two orders of magnitude, this is still infeasibly large for a 2 GB memory
limit.

6.1.2 Checking static preconditions

The vast majority of generated ground operators are instances ofdrive-truck, and
most of them are not useful because the preconditions on thein-city predicate
can never be true. Like the type predicates previously considered,in-city is a
static predicate, so a natural second enhancement would be to avoidgenerating
operators which violate a precondition onanystatic predicate, not just unary ones.
This reduces the number of ground instances fordrive-truck to 83·340·17·1
(after parameterst andl are instantiated arbitrarily, there are only 17 valid options
for parameterl ′ and only one valid option for parameterc). The other operators do
not mention any non-unary static predicates, so their number of ground instances
remains the same, for a total of 3.00·106 ground operators (third row of Fig. 11),
another improvement of roughly two orders of magnitude.

An important caveat, though, is that unlike the naive grounding algorithm and the
algorithm that takes type information into account, a grounding algorithm that fil-
ters on static preconditions cannot be implemented in such away that it is guar-
anteed to run in linear time in the size of its output, unlessP = NP. To see this,
consider a planning task with just a single operator, whose precondition is a con-
junction of atoms over static predicates. Such an operator then defines aconstraint
satisfaction problem(CSP) [9], where the domains of the variables are given by the
objects of the task, the constraint schemas are given by the facts for the static pred-
icates in the initial state, and the preconditions of the operator correspond to the
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constraints. Deciding whether or not an operator hasanyvalid instantiation is thus
akin to deciding CSP solvability, which isNP-complete. The problem is already
NP-hard in the case where (using planning terminology insteadof CSP terminol-
ogy) there are only three objects and predicates are at most binary, by reduction
from 3-COLORABILITY [21, problem GT4], or in the case where there are only
two objects and predicates are at most ternary, by reductionfrom 3-SAT [21, prob-
lem LO2]. The actual problem we need to solve, finding all valid instantiations of
an operator, corresponds to findingall solutions to a CSP. This is even harder: even
with only two objects and at most binary predicates (a case where deciding solution
existence is easy),countingthe number of solutions is#P-complete [7].

For this reason, a grounding algorithm that checks all static preconditions will in
general do some wasteful work. One approach is to enumerate all operators that
satisfy the type constraints and reject those which violatea static precondition. This
approach is no faster than the algorithm that generates all type-correct operators
without checking non-unary static predicates, but it generates fewer operators and
hence requires less space, since infeasible ground operators can be immediately
removed.

A more elaborate idea is to reject a partially instantiated operator as soon as one
of its static preconditions can no longer become true given the current partial as-
signment. This is the approach taken by the IPP grounding algorithm [36], and it
is closely related to a technique calledforward checkingin the CSP literature [9],
generalized to constraints on more than two variables.

The pruning power of the forward checking approach depends on the order in which
variables of an operator are instantiated. To see this, let us return to the LOGISTICS

example. The only operator where we can potentially obtain abenefit over the
simpler type-checking algorithm isdrive-truck. If its parameters are instantiated
in the order shown in Fig. 10, the forward checking techniqueoffers no benefit
over the simpler approach: for all type-correct choices of truck t and locationsl
and l ′, there exists a feasible value for the cityc for each static precondition. (In
most cases, there exists no value forc that satisfies bothin-city preconditions
simultaneously, but this is not detected by the forward-checking algorithm.)

However, if the variables are instantiated in the opposite order, many partial instan-
tiations ofl ′ andc or of l , l ′ andc can be rejected immediately. The total number
of partial instantiations to consider is then limited to 1+ 20+ 20· 340+ 20·17·
340+ 20·17·17·83= 602161 (counting, in this sequence, instantiations of 0, 1,
. . . , 4 variables). This is only 26% larger than the number of ground operators that
satisfy all static preconditions, 479740. In contrast, thesimpler algorithm needs to
test 1.92· 108 instances of this operator, which is a factor of 400 larger than the
number of surviving instantiations.

The price for the improvement offered by the forward checking algorithm is that
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large indexing structures are needed for efficiently checking whether a given partial
instantiation of a static predicate can be extended to a fullinstantiation. We believe
that the space requirements of these indexing structures are to a large degree re-
sponsible for the failures of the IPP/FF grounding algorithm on some IPC tasks.
We remark that the size of these index structures grows exponentially with the arity
of predicates, and the domains on which we observe failures are all among the few
domains in the IPC suite where predicate arity is not boundedby 2 (the maximal
arity is 3 in PATHWAYS and 4 in OPTTELEGRAPH and PSR).

6.1.3 Checking relaxed reachability

In practice, for our LOGISTICS example, the grounding algorithm that filters on
static preconditions is fast enough to allow grounding in reasonable time, at least
if we use the forward checking idea and instantiate variables in a favourable order.
However, significant enhancements are still possible and worthwhile, as reducing
the number of ground operators has a beneficial influence on most planning algo-
rithms. For example, the per-state overhead of a search algorithm tends to increase
with the number of ground operators it must test for applicability.

In the LOGISTICS example, more than 90% of the generated operators are still
unreachable. The reason for this is that these operators have infeasible precondi-
tions involving thenon-staticpredicateat. In particular, a truck can never be at a
location that does not belong to its initial city, and an airplane can never be at a
non-airport location. By respecting these constraints, wecan restrict the number of
ground instances to 42·83·17 for load-truck andunload-truck, to 83·17·17
for drive-truck, and to 42· 5 · 20 for load-airplane andunload-airplane.
(The number of instantiations offly-airplane cannot be reduced further.) This
results in a total of 152911= 1.53·105 ground operators, another improvement by
more than an order of magnitude (fourth row of Fig. 11).

It is thus desirable to also rule out ground operators with infeasible preconditions
on non-static predicates. However, there is a problem: checking whether a given
atom can ever be satisfied in a reachable state is as hard as planning itself. Thus, in
practice we need to compute an approximation of the set of reachable facts, which is
at the same time conservative (includes all reachable facts) but also tight (excludes
as many facts as possible). One such approximation method isthe use ofdelete
relaxations[32]. Instead of computing the set of reachable facts of a normalized
PDDL taskΠ itself, we compute the reachable facts of a relaxed planningtask
R (Π), which differs fromΠ as follows:

• Negative literals in axiom bodies, operator preconditions, effect conditions and
the goal condition are assumed to be always true.

• Delete effects of operators are ignored.

The set of reachable atoms ofR (Π) is a superset of the set of reachable atoms
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of Π. (This follows from the fact that the so-calledh+ heuristic iscompleteness-
preserving; see Hoffmann’s article [31] for details.) In many practical cases, this
superset relationship is quite tight. For example, in the LOGISTICS domain, the
sets of reachable atoms ofR (Π) and Π are identical. In other words, if we re-
strict the grounded representation of the LOGISTICS task to those operators whose
preconditions are reachable in the delete relaxation, thenno further pruning is pos-
sible without removing operators that are actually reachable. (However, we remark
that one may in some cases safely remove reachable operators. In our example, the
grounded task contains about 1%no-opoperators, namely movements of a vehicle
from locationl to l itself. The last row of Fig. 11 shows the number of remaining
operators after no-op pruning. Our grounding procedure does not detect such no-
ops, but they are filtered out in a final post-processing stagewhen the finite-domain
representation is generated.)

Computing the reachable atoms of a relaxed planning task is much easier than for
general planning tasks. In particular, if a relaxed planning task is already grounded,
its reachable atoms can be computed in linear time with the marking algorithm for
propositional Horn logic [11]. Indeed, the grounding algorithm of FF proceeds by
first applying the IPP grounding algorithm (i. e., the forward checking algorithm
described above), and then computing the reachable atoms and operators of the
delete relaxation to further reduce the grounded representation. While this leads to
a tight representation, the drawback of the approach is thatit has the same time
and space requirements as the IPP algorithm, as it generatesthe IPP output as an
intermediate result. As discussed in the introduction to this section, there are a
number of planning tasks for which this approach fails.

For this reason, we have designed a new grounding algorithm which generates the
set of facts and operators (and axioms) that are reachable inthe relaxed taskdi-
rectly, without ever considering any facts that are not relaxed reachable. We now
turn to a description of this algorithm.

6.2 Overview of Datalog exploration

The basic idea of our new grounding algorithm, which we callDatalog exploration,
is to encode the atom reachability problem for relaxed planning tasks as a set of
logical facts and rules, i. e., as a logic program. This allows us to efficiently compute
the set of reachable atoms by computing thecanonical modelof that logic program,
which consists of the set of ground atoms that it logically implies. The algorithm
consists of three steps: generating the logic program, translating it into a normal
form that supports efficient evaluation, and computing its canonical model. Before
going into detail for each of these steps, let us formally define what we mean by
a logic program. As in the other parts of the paper, we assume that our logical
vocabulary does not contain function symbols of non-zero arity.
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Definition 13 Datalog programs
A Datalog rule (also calledpositive Horn clause) is a first-order formula of the
form ϕ1∧ · · · ∧ϕk→ ψ (k≥ 0), whereϕi and ψ are (usually not ground) atoms.
It can be written asψ← ϕ1, . . . ,ϕk. Using this notation,ψ is called theheadand
ϕ1, . . . ,ϕk is called thebodyof the rule. Datalog rules are usually assumed to be
universally quantified: for a given Datalog ruleχ with free(χ) = {v1, . . . ,vk}, we
defineχ∀ = (∀v1 . . .vk : χ). Similarly, for a set of Datalog rulesR , we defineR∀ =
{ χ∀ | χ ∈ R }.

A Datalog programis a pair 〈F ,R 〉, whereF is a set of ground atoms called the
set offactsandR is a set of Datalog rules called the set ofrules.

Thecanonical modelof a Datalog program〈F ,R 〉 is the set of all ground atoms
ϕ with F ∪R∀ |= ϕ.

Next, we show how to translate the relaxed reachability problem into a Datalog
program. Afterwards, we demonstrate how to translate this logic program into a
particularly simple form and how to compute the canonical model of the simplified
logic program efficiently.

6.3 Generating the logic program

Reachability in a relaxed normalized PDDL task is straight-forward to represent as
a logic program. A ground atom is reachable in the relaxed task iff it is true in the
initial state or there exists some reachable axiom or operator of the relaxed task that
can make it true. Therefore, the set of facts of the logic program is formed by the
atoms in the initial state of the planning task, and the set ofrules is derived from the
axiom and operator definitions. Additionally, we introducea rule for the goal of the
planning task to detect whether the relaxed task is solvable; if not, the original task
is also unsolvable, which we can report immediately to stop the translation process
early.

Recall from Section 4 that at this stage, all conditions occurring in the PDDL task
are conjunctions of literals. For such conjunctionsϕ, we denote the conjunction
of all positiveliterals inϕ by ϕ+. In the context of logic programs, we follow the
PROLOG convention of using uppercase letters for first-order variables and lower-
case letters for constants and predicates. The explorationrules for a normalized
PDDL task are generated as follows:

• Axioms: For schematic axiomsa = (ϕ ← ψ) with ψ+ = ψ+
1 ∧ · · · ∧ψ+

m and
free(ϕ)∪ free(ψ) = {X1, . . . ,Xk}, we generate theaxiom applicability rule

a-applicable(X1, . . . ,Xk)← ψ+
1 , . . . ,ψ+

m.
and theaxiom effect rule

ϕ← a-applicable(X1, . . . ,Xk).
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• Operators:For schematic operatorso with parameters{X1, . . . ,Xk} and precon-
dition ϕ with ϕ+ = ϕ+

1 ∧· · ·∧ϕ+
m, we generate theoperator applicability rule

o-applicable(X1, . . . ,Xk)← ϕ+
1 , . . . ,ϕ+

m.
and for each add effecteof o adding the atomψ with bound variables{Y1, . . . ,Yl}
and effect conditionχ with χ+ = χ+

1 ∧· · ·∧χ+
n , we generate theeffect trigger rule

e-triggered(X1, . . . ,Xk,Y1, . . . ,Yl )
← o-applicable(X1, . . . ,Xk),χ+

1 , . . . ,χ+
n .

andeffect rule
ψ← e-triggered(X1, . . . ,Xk,Y1, . . . ,Yl).

• Goal: For the goalϕ with ϕ+ = ϕ+
1 ∧· · ·∧ϕ+

m, we generate thegoal rule
goal-reachable()← ϕ+

1 , . . . ,ϕ+
m.

The correctness of these rules should be evident, as they arejust literal trans-
lations of the PDDL semantics for the relaxed planning task.The reader might
wonder why we sometimes introduce new predicates that do notseem necessary
for computing the set of reachable facts. For example, axiomapplicability rules
and axiom effect rules could be combined into a single rule without introducing
the auxiliary predicatea-applicable. The purpose of these auxiliary predicates
is to track which axioms and operators must be instantiated when grounding the
PDDL task. For example, in the LOGISTICSdomain, we will not generate a ground
operatorfly-airplane(plane1,loc1,loc3) if loc3 is not an airport location,
since in this case the canonical model of the logic program does not include the
atomfly-airplane-applicable(plane1,loc1,loc3). The operator applicabil-
ity predicates serve the additional purpose of factoring out common subexpressions.
Without them, all operator preconditions would need to be repeated in each effect
trigger rule (or effect rule, if effect trigger rules were similarly eliminated).

6.4 Translating the logic program to normal form

Having generated a logic program representation, we need tofind a way to effi-
ciently generate the canonical model. Returning to the LOGISTICSexample, one of
the generated rules is

drive-truck-applicable(T,L,L′,C)← truck(T),location(L),

location(L′),city(C),in-city(L,C),in-city(L′,C),at(T,L).

Given a set of reachable facts, we need to determine the possible instantiations
of the rule for which all conditions in the body are reachable. We must do this
without systematically trying out all possible instantiations – otherwise, nothing is
gained over the naive instantiation method. Moreover, we prefer to evaluate the rule
incrementally: whenever a new instantiation of a predicate in the body is derived
(say, the factat(truck1,loc5)), we want to derive new consequences of the rule
without re-generating previously derived facts. In order to achieve these objectives,
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we consider a particular class of Datalog programs.

Definition 14 Datalog programs in normal form
A first-order logic atom is calledvariable-uniqueif it does not contain two occur-
rences of the same variable. (For example, an atom like P(X,Y,X) is not variable-
unique because variable X occurs twice. Repetition of constants is allowed.) A
Datalog rule is calledvariable-unique if its head and all atoms in its body are
variable-unique.

A Datalog rule is called aprojection rule if it is variable-unique and of the form
ϕ← ϕ1 with free(ϕ) ⊆ free(ϕ1). In other words, projection rules are unary rules
where all variables in the head occur in the body.

A Datalog rule is called ajoin rule if it is variable-unique and of the formϕ←
ϕ1,ϕ2 with free(ϕ1)∪ free(ϕ2) = free(ϕ)∪ (free(ϕ1)∩ free(ϕ2)). In other words,
join rules are binary rules where all variables occurring inthe head occur in the
body, and all variables occurring in the body but not in the head occur inboth
atoms of the body.

A Datalog program isin normal form if all rules are projection or join rules.

The names of the rule types in Definition 14 are reminiscent ofthe related database-
theoretic operations from relational algebra [44]: projection rules correspond to the
projection operatorπ and join rules correspond to the natural join operator1 (or
strictly speaking, a combination of natural join and projection). The advantage of
Datalog programs in normal form is that each rule can be incrementally evaluated
very efficiently. (We will describe an algorithm for this later on.) Note that the
same isnot true for general rules – as discussed in Section 6.1.2, deciding whether
a general Datalog rule has any valid instantiation is equivalent to CSP solvability.

We now describe how to convert Datalog programs to normal form. Firstly, we
eliminate duplicate variable occurrences as follows: if any rule contains atoms with
duplicate occurrences of the same variableX, we change one occurrence ofX in
any such atom into a new variableX′ and add the atomequals(X,X′) to the rule
body. We repeat until no further such transformations are possible. If any such
transformation was necessary, we add the factequals(o,o) to the logic program
for each objecto of the planning task.

Secondly, for any variableX that occurs in the head but not in the body of a rule,
we add the atomobject(X) to the rule body. (Remember from Section 4.1 that
object(o) is true for any objecto of the planning task.)

Thirdly, all rules with an empty body are converted into facts. Their heads must be
ground atoms because all variables occurring in the head must occur in the (in this
case, empty) body after the previous transformation.
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After these transformations, all remaining unary rules areprojection rules; we still
need to normalize rules with two or more atoms in the body. This is essentially
a conjunctive query optimization problem, commonly studied in database theory
[45]. As a first step towards normalizing such a rule, we determine if any atom
in its body contains variables that occur in no other atom of the rule, neither in the
body nor in the head. If this is the case, such variables are projected away, following
the general principle for query optimization that projections should be performed
as early as possible. In detail, assume we are given the ruleϕ← ϕ1, . . . ,ϕm, where
free(ϕi) = {X1, . . . ,Xk} contains variables not present in any of the other atoms, say
{Xj+1, . . . ,Xk}. Then we introduce a new predicatep and replace the original rule
by the rulesϕ← ϕ1, . . . ,ϕi−1, p(X1, . . . ,Xj),ϕi+1, . . . ,ϕm andp(X1, . . . ,Xj)← ϕi .

After this transformation, all binary rules are valid join rules, while rules withm> 2
atoms correspond tom-ary joins which still need to be decomposed into binary
joins. How exactly this decomposition is performed can in general greatly affect
performance. To see this, consider the rule

drive-truck-applicable(t, l , l ′,c)← in-city(l ,c),in-city(l ′,c),at(t, l).

from LOGISTICS. (For brevity, we omit some additional conditions from the body
of the actual rule, which are not relevant to the discussion.) One possible decom-
position into binary join rules results in the following tworules:

temp1(t, l ,c)← in-city(l ,c),at(t, l).

drive-truck-applicable(t, l , l ′,c)← temp1(t, l ,c),in-city(l
′,c).

Another possible decomposition results in these rules:

temp2(t, l , l
′,c)← in-city(l ′,c),at(t, l).

drive-truck-applicable(t, l , l ′,c)← temp2(t, l , l
′,c),in-city(l ,c).

Of the two possibilities, the first is vastly preferable: thenumber of reachable in-
stances oftemp1 is only as large as the number of reachable instances ofat, be-
cause for any reachable factat(t, l), exactly one cityc will satisfy in-city(l ,c).
The number of reachable instances oftemp2, on the other hand, is theproductof
the number of reachable instances ofat and the total number of locations, which is
much larger than the number of reachable instances ofdrive-truck-applicable.

Finding a good decomposition is thus key to good performance. Unfortunately,
finding the best possible ordering is generally not easy. Indeed, the closely related
problem ofjoin ordering is one of the central problems in query optimization for
databases, and typical query optimizers address it by exhaustively considering an
exponentially large space of possibilities [45, Chap. 11].

The fact sets we have to deal with in planning tasks are not as large as the relations
considered in database systems, so our normalization procedure does not quite go
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algorithm greedy-join(rule):
while |rule.body|> 2:

Chooseϕ, ϕ′ ∈ rule.body such thatϕ 6= ϕ′ and
join-cost(rule,ϕ,ϕ′) is minimal.

X1, . . . ,Xk := join-vars(rule,ϕ,ϕ′)
Generate a new predicate symbolp with arity k.
Generate a new join rulep(X1, . . . ,Xk)← ϕ,ϕ′.
rule.body := rule.body\{ϕ,ϕ′}∪{p(X1, . . . ,Xk)}

function join-vars(rule, ϕ, ϕ′):
{ Compute the relevant variables for the predicate generated

by joiningϕ andϕ′. }
return free({ϕ,ϕ′})∩ free({rule.head}∪ (rule.body\{ϕ,ϕ′})).

function join-cost(rule, ϕ, ϕ′):
new-arity:= |join-vars(rule,ϕ,ϕ′)|
max-old-arity:= max(|free(ϕ)|, |free(ϕ′)|)
min-old-arity:= min(|free(ϕ)|, |free(ϕ′)|)
return (new-arity−max-old-arity,

new-arity−min-old-arity,
new-arity).

{ Cost estimates are triples which are compared lexicographically.
We prefer joins where “new arity”−“max old arity” (the increase
in arity) is small and consider the other criteria only for ties.}

Fig. 12. The greedy join algorithm for decomposing a rule into join rules.

to such lengths. Instead of an exhaustive search that finds a globally optimal de-
composition, it applies a sequence of greedy (locally optimal, according to some
simple heuristics) transformations without backtrackingover any choices it makes.
The algorithm, calledgreedy-join, is shown in Fig. 12. To decompose a rule, it it-
eratively picks two atomsϕ andϕ′ from the rule body and joins them, introducing
a new predicatep for the result of the join and replacing the two atoms in the rule
body by an instance of that new predicate. This process is repeated until the body
of the rule no longer contains more than two atoms. In each step of the algorithm,
the two atomsϕ andϕ′ to join are picked in order to minimize the (estimated) ef-
fort for computing their join, according to the following three rules (without loss of
generality,ϕ has at least as many variables asϕ′):

(1) Prefer joins where the arity ofp minus the number of variables ofϕ is smallest.
(2) If ties need to be broken, prefer joins where the arity ofp minus the number

of variables ofϕ′ is smallest.
(3) If ties still need to be broken, prefer joins where the arity of p is lowest.
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The net effect of these rules is that the algorithm prefers joining atoms with a
large number of common variables. In the LOGISTICSexample above, this heuristic
steers clear of the second decomposition, where the sets of variables of the joined
atoms are disjoint.

6.5 Computing the canonical model

Once the Datalog program has been converted to normal form, we are ready to
compute its canonical model. We use an incremental approach, shown in Fig. 13.

The algorithm maintains two variables to keep track of reachable facts. Variable
canonical-modelrecords the set of all atoms that the algorithm has determined to
be reachable so far. It grows monotonically throughout execution of the algorithm
and contains the result upon termination. Variablequeuekeeps track of all atoms
which are currentlyopen, i. e., have been determined reachable, but have not yet
been considered for matching conditions in the rule bodies.We say that an atom is
closedif it is contained incanonical-model(has been reached) and is not open.

In addition tocanonical-modelandqueue, the algorithm uses the following data
structures:

• Rule matcher: A rule matcher is an indexing structure that supports efficient
unification queries on the bodies of Datalog programs. When given a ground
atoma, the rule matcher determines all projection rulesϕ← ϕ1 and join rules
ϕ← ϕ1,ϕ2 such thatϕ1 or ϕ2 unifies with a, i. e., such that it is possible to
substitute objects for variables inϕ1 or ϕ2 in such a way thata is obtained. The
rule matcher reports the matched rules and whetherϕ1 or ϕ2 was matched (if
both unify witha, two matches are generated).

Note that matching ground atoms to the rules they can triggeris simple if
the rules do not contain constants in the body. Unfortunately, some of the IPC
benchmarks contain a huge number of operator schemas involving constants
(most importantly, the STRIPS formulation of the AIRPORT domain), and an ef-
ficient indexing structure is important for those. Rule matchers are implemented
as decision-tree like data structures very similar tosuccessor generators[28].

• Join rule indices:Each join ruler = ϕ ← ϕ1,ϕ2 maintains two hash tables
r.index1 andr.index2 that map instantiations of the common variables ofϕ1 and
ϕ2 to instantiations of the variables ofϕ1 andϕ2, respectively.

At any time (except during updates) and for any assignmentkeyto the common
variables ofϕ1 andϕ2, r.index1[key] contains those variable mappingsα ⊇ key
for the variables ofϕ1 for which α(ϕ1) belongs to the closed set. Similarly,
r.index2[key] contains those variable mappingsβ⊇ keyfor the variables ofϕ2 for
whichβ(ϕ2) belongs to the closed set. We call this property theindex invariant.

The index information can be exploited for quickly determining all possible
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algorithm compute-canonical-model(F , R ):
for each join rule r ∈ R :

r.index1 := make-empty-hashtable()
r.index2 := make-empty-hashtable()

rule-matcher:= make-rule-matcher(R )
queue:= make-empty-queue()
canonical-model:= /0
{ In the following,enqueuinga fact means adding it toqueueand

canonical-modelif it is not yet an element ofcanonical-model. }
Enqueue all facts inF .
while queueis not empty:

current-fact:= queue.pop()
for eachmatchm∈ rule-matcher.match(current-fact):

if m refers toϕ1 in a projection ruler = ϕ← ϕ1:
Let α be the variable assignment

for whichα(ϕ1) = current-fact.
Enqueueα(ϕ).

else ifm refers toϕ1 in a join ruler = ϕ← ϕ1,ϕ2:
Let α be the variable assignment

for whichα(ϕ1) = current-fact.
key:= α restricted to free(ϕ1)∩ free(ϕ2)
Add α to r.index1[key].
Enqueue(α∪β)(ϕ) for eachβ ∈ r.index2[key].

else ifm refers toϕ2 in a join ruler = ϕ← ϕ1,ϕ2:
{ Analogous to the previous case.}

Fig. 13. Computing the canonical model of a Datalog program〈F ,R 〉 in normal form.

instantiations ofϕ2 that match a given instantiation ofϕ1, or vice versa, as is
done in the algorithm. Note that the variable assignmentα∪β considered in the
algorithm is indeed a well-defined function, sinceα andβ agree on all variables
for which they are both defined.

The algorithm clearly terminates, as each loop iteration produces a new closed atom
(by removing an open atom fromqueue), which can only happen a finite number
of times. To motivate its correctness, we state an importantinvariant of thewhile
loop: all atoms that can be derived in one step from the rulesR and the closed
atoms are contained in the canonical-model set.

This property is true when the while loop is first entered because there are no closed
atoms at this stage, and no atoms can be derived fromR and the empty set of atoms.
It is not hard to prove that the property is also preserved by asingle iteration of the
while loop: each such iteration causes the single new atomcurrent-factto become
closed, so we only need to consider one-step derivations that make use of this atom,
and possibly other atoms that are already closed. The processing of current-fact
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then causes precisely those atoms which can be generated by such derivations to be
enqueued, adding them tocanonical-modelif they are not already present. Thus, the
property is indeed a loop invariant. (A more formal proof would need to establish
this invariant simultaneously with the index invariant.)

The loop invariant implies that upon termination of the algorithm, when all atoms
in the canonical-modelset are closed, the set is closed under application ofR .
Because it also contains all facts fromF and only contains facts that can be derived
from F , it thus contains exactly the canonical model of〈F ,R 〉.

6.6 Axiom and operator instantiation

With the help of the canonical model, instantiating axioms and operators is very
straight-forward. To compute the grounded representation, we scan through the set
of ground atoms in the canonical model in the order in which they were generated,
creating axiom and operator instances as follows:

• When encountering atoms of the forma-applicable(x1, . . . ,xk) wherea is a
schematic axiom, we generate a ground instance ofa with the parameters substi-
tuted withx1, . . . ,xk.

• When encountering atoms of the formo-applicable(x1, . . . ,xk) whereo is a
schematic operator, we generate a ground instance ofo without effects. Like in
the case of axioms, the parameters of the operator are substituted withx1, . . . ,xk,
and the precondition is instantiated accordingly.

• When encountering atoms of the forme-triggered(x1, . . . ,xk,y1, . . . ,yl ) where
e is an effect of some operatoro, we look up the set of already generated ground
operators to find the operatoro(x1, . . . ,xk). This operator must have been gen-
erated previously because ane-triggered atom can only be derived after the
correspondingo-applicable atom. Having found the ground operator, we at-
tach to it the effect obtained by instantiating the variables inewith y1, . . . ,yl .

After a single pass through the canonical model, this procedure has produced a
grounded representation of the normalized PDDL task.

6.7 Performance

We conclude our discussion of the Datalog exploration algorithm with some re-
marks on performance. In practice, the only performance-critical part for ground-
ing is algorithmcompute-canonical-model: all the processing that happens before
is generally negligible (linear-time for a fixed domain), and the processing that hap-
pens afterwards, while not always negligible in absolute terms, only requires linear
time in the combined size of its input and output, which is asymptotically optimal.
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How costly, then, is computing the canonical model? To simplify the analysis, we
only consider the case where the planning domain is fixed. In that case, therulesof
the Datalog program are fixed, and only the facts differ from instance to instance.
Under this assumption, the runtime ofcompute-canonical-modelis linear in the
number of attempts toenqueuea fact (see Fig. 13). In the best case, this number
is identical to the number of facts in the canonical model forthe initial Datalog
program (before normalization), so that the overall grounding algorithm runs in
linear time in its combined input and output size and is henceasymptotically op-
timal. However, this is not always the case, as there are two possible sources of
inefficiency:

• Duplicates: There may be several attempts to enqueue the same fact (e. g., if
projection rules project different facts to the same fact, or because the fact is
generated by different rules). For a given run of the algorithm, we define the
duplicate ratioas the total number of attempts to enqueue a fact, divided by the
size of the canonical model upon completion.

• Irrelevant facts: Facts that correspond to temporary predicates introducedduring
normalization of the Datalog program are irrelevant for thefinal instantiation
stage. For a given run of the algorithm, we define theirrelevance ratioas the size
of the canonical model, divided by the number of facts in the canonical model
that are relevant (i. e., do not refer to predicates introduced during normalization).

The overhead ofcalculate-canonical-model, compared to an idealized algorithm
that could generate the set of relevant facts in linear time in its size, is the product
of the duplicate ratio and irrelevance ratio. In the perfectcase, both numbers would
be equal to 1. However, as we saw in Section 6.4 for the different decompositions
of the drive-truck-applicable rule into binary joins, the irrelevance ratio in
particular can be considerably larger, especially if the greedy join algorithm makes
poor choices. Indeed, the existence of a grounding algorithm with only polynomial
overhead in thegeneral case, where the Datalog rules are not fixed, would prove
P = NP.

It is thus natural to ask how large these ratios become in practice. To answer that
question, we applied the grounding algorithm to all tasks ofthe IPC1–5 bench-
mark suite, measuring the duplicate ratio and irrelevance ratio for each. The results
are summarized in Fig. 14, which shows the minimal and maximal duplicate and
irrelevance ratios that were observed in each domain. The results show that the
duplicate ratios are generally benign, always staying below a value of 4. The irrele-
vance ratios are also usually low, consistently staying below a value of 5 for all but
two domains: MICONIC-FULL and ROVERS. For MICONIC-FULL , the irrelevance
ratios can become as large as 6.48; however, the ratios are actually inversely cor-
related with problem size, becoming lower as the problem sizes increase. Only the
20% smallest instances have irrelevance ratios over 3, and all instances of above
average size have irrelevance ratios below 2. Thus, there are no serious scalability
issues in this domain.
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domain DR IR domain DR IR
A IRPORT 1.16–1.49 1.90–3.41OPTTELEGRAPH 1.22–1.27 2.75–2.82
ASSEMBLY 1.34–1.57 1.09–1.28PATHWAYS 1.12–1.60 1.48–1.72
BLOCKSWORLD 1.56–1.72 1.67–1.67PHILOSOPHERS 1.10–1.13 2.66–2.79
DEPOT 1.35–2.47 1.50–2.48PIPES-NOTANK 1.40–2.15 2.30–3.44
DRIVERLOG 1.19–1.65 1.36–2.26PIPES-TANK 1.35–3.91 1.43–4.99
FREECELL 2.01–3.48 1.26–2.28PSR-LARGE 1.03–1.07 3.04–3.65
GRID 1.99–2.23 1.34–1.49PSR-MIDDLE 1.02–1.08 3.01–3.70
GRIPPER 1.28–1.35 1.68–1.74PSR-SMALL 1.32–1.99 1.00–1.00
LOGISTICS 1.11–1.53 1.48–2.29ROVERS 1.05–1.35 2.35–27.96
M ICONIC-FULL 1.08–3.00 1.65–6.48SATELLITE 1.22–1.97 1.02–1.72
M ICONIC-SIMPLE 1.11–1.74 1.33–1.63SCHEDULE 1.70–2.65 1.19–1.27
M ICONIC-STRIPS 1.02–1.34 1.74–2.29STORAGE 1.08–2.41 1.56–2.46
MOVIE 1.18–1.24 1.00–1.00TPP 1.03–1.64 2.34–3.71
MPRIME 1.76–2.74 1.12–1.84TRUCKS 1.70–2.71 1.03–1.37
MYSTERY 1.32–2.47 1.28–2.25ZENOTRAVEL 1.42–2.42 1.22–2.51
OPENSTACKS 1.54–2.54 1.05–1.39

Fig. 14. Duplicate ratios (DR) and irrelevance ratios (IR) for the IPC benchmarks. For each
domain, we report the range of ratios observed across all instances.

The only domain which produces somewhat worrying results isROVERS, where
the irrelevance ratios become as large as 27.96, significantly more than for all
other domains. Moreover, the ratios tend to increase with scaling problem size.
Closer inspection reveals that an unfortunate choice by thegreedy join algorithm
is to blame for this sub-par performance. In normalizing therule for the predi-
catecommunicate-rock-data-applicable(r, l , p,x,y), which has 11 conditions
in the body, the following four conditions remain after 7 join steps:

temp1(r, p)≡ waypoint(p)∧have-rock-analysis(r, p)

temp2(r,x)≡ rover(r)∧available(r)∧waypoint(x)∧at(r,x)

temp3(l ,y)≡ lander(l)∧chan-free(l)∧waypoint(y)∧at-lander(l ,y)

visible(x,y)

At this point, there are three possible joins that the greedyjoin algorithm considers
optimal: joiningtemp1 with temp2, joiningtemp2 with visible, and joiningtemp3
with visible. Of these three possibilities, our implementation arbitrarily picks the
second, which happens to be the worst possible choice because there is a very large
number of reachable instantiations fortemp2(r,x)∧visible(x,y), most of which
cannot be extended to feasible assignments for all conditions. The reason for this
is that there is only one value fory for whichtemp3(l ,y) is reachable (there is only
one lander and it is not mobile, so thatat-lander has only one reachable instance).

To determine the impact of this unfortunate tie breaking decision, we have instru-
mented the greedy join algorithm to override its default choice and instead join
temp3 with visible at this choice point, and similarly for an equivalent choice
point for the isomorphiccommunicate-soil-data-applicable predicate. With
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this modification, the worst-case irrelevance ratio in the ROVERS domain reduces
from 27.96 to 4.83. By additionally overriding the subsequent join decision to pre-
vent the algorithm from joiningtemp1 with temp2, the worst-case irrelevance ratio
can be further reduced to 1.97. In terms of overall runtime for the grounding algo-
rithm, the reduced irrelevance ratio translates to an order-of-magnitude improve-
ment.

This small case study illustrates two things: on the one hand, we clearly see that join
ordering choices can have a significant impact on the performance of the ground-
ing algorithm and thus do require attention. On the other hand, the essentially linear
scaling behaviour for all domains except ROVERS indicates that the heuristic deci-
sions of the greedy join algorithm are usually quite solid.

7 Generating the finite-domain representation

Together with the invariants synthesized earlier, the grounded PDDL task generated
in the previous stage provides all the information we need for producing the finite-
domain representation in the final translation stage. Recall from Definition 4 that an
FDR task is given by a set of finite-domain variablesV , an initial states0 and goal
s⋆, axiomsA and operatorsO. We start by defining suitable variables and variable
domains; everything else then more or less falls into place.

7.1 Variable selection

Each variable of the generated FDR task corresponds to one ormore (reachable)
ground atoms of the STRIPS task. We start by extracting the set P of all such
atoms from the canonical model and partitioning them into atoms P f which are
instances ofmodifiable fluent predicatesor derived predicatesand atomsPc which
are instances ofconstant predicates(cf. Section 5.1).

We want to represent as many ground atoms by a single state variable as possible.
To achieve this, we first determine the set ofmutex groupsinduced by the computed
invariants. Mutex groups are computed in a straight-forward manner by instantiat-
ing the monotonicity invariants in all possible ways, checking for each instance if
it has weight 1 in the initial state, and if so, which atoms from P f it covers. The
algorithm is shown in Fig. 15. The actual implementation uses an indexing struc-
ture to efficiently determine the set of reachable atoms covered by a given invariant
instance.

Normally, not every mutex group will correspond to an FDR state variable, since
the same atom can be part of several mutex groups, but of course only needs to be
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algorithm compute-mutex-groups(invariants, P f , s0):
for each invariantI ∈ invariants:

for each instanceα of I :
if weight(α,s0) = 1:

Create a mutex group containing all atoms inP f

covered byα.

Fig. 15. Computing mutex groups from the set of monotonicityinvariantsinvariants, the
set of reachable atomsP f and the initial states0.

(1) {holding(a),clear(a),on(a,a),on(b,a),on(c,a),on(d,a)}
(2) {holding(b),clear(b),on(a,b),on(b,b),on(c,b),on(d,b)}
(3) {holding(c),clear(c),on(a,c),on(b,c),on(c,c),on(d,c)}
(4) {holding(d),clear(d),on(a,d),on(b,d),on(c,d),on(d,d)}
(5) {holding(a),ontable(a),on(a,a),on(a,b),on(a,c),on(a,d)}
(6) {holding(b),ontable(b),on(b,a),on(b,b),on(b,c),on(b,d)}
(7) {holding(c),ontable(c),on(c,a),on(c,b),on(c,c),on(c,d)}
(8) {holding(d),ontable(d),on(d,a),on(d,b),on(d,c),on(d,d)}
(9) {holding(a),holding(b),holding(c),holding(d),handempty()}

Fig. 16. Mutex groups for a BLOCKSWORLD task with four blocks. Some atoms, such as
on(a,a), are reachable in the relaxed task although they are never true in the “real” task.

encoded once. As an example of this phenomenon, consider Fig. 16, which shows
the mutex groups of a BLOCKSWORLD task with four blocks. If, for example, we
decide to encode mutex groups (1)–(4) with four finite-domain state variables, then
we only need to encode one atom from each of the other groups, since allon and
holding atoms are already represented. Therefore, the translator would first gen-
erate four state variables with domains consisting of sevenvalues each, namely
holding(x), clear(x), on(a,x), on(b,x), on(c,x), on(d,x) and the seventh option
“none of the other six is true”. (Of these seven values, two – block x being on top
of itself and none of the six atoms being true – are actually impossible.) After-
wards, it would encode the truth values of the remaining atoms ontable(x) and
handempty() with binary state variables.

In this case, there was at least one atom in each mutex group that was unique to this
particular group, so that the resulting encoding is not muchbetter than an encoding
which simply takes all mutex groups and introduces a state variable for each. How-
ever, in other cases, one group can be completely covered by others; examples of
this can be found in the AIRPORT domain. In this case we prefer covering the set
of reachable atoms with as few state variables as possible.

Unfortunately, set cover problems of this kind areNP-complete [21, problem SP5]
and indeed not even approximable with a constant-factor approximation ratio [1],
so we limit our covering efforts to the greedy algorithm shown in Fig. 17, which
is among the best approximation algorithms known for this problem, achieving
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algorithm choose-variables(P f , mutex-groups):
uncovered:= P f

while mutex-groups6= /0:
Pick a mutex groupP of maximal cardinality.
Create a variablev with domainDv = P∪{⊥}.
uncovered:= uncovered\P
mutex-groups:= { P′ \P | P′ ∈mutex-groups}
mutex-groups:= { P′ | P′ ∈mutex-groups∧|P′| ≥ 2 }

Create a variablev with domain{p,⊥} for each remaining
element ofuncovered.

Fig. 17. Greedy algorithm for computing the FDR variables and variable domains.

an O(logn)-approximation [1]. Iteratively, we pick a mutex groupP of maximal
cardinality and introduce a new FDR state variable with domain P∪{⊥}, where⊥
stands for “none of the elements ofP is true”. We then remove all covered elements
from all other mutex groups, removing groups that no longer contain more than one
element. This process is repeated until all mutex groups have been removed. At this
stage, the remaining uncovered atomsp are represented by binary variables with
domain{p,⊥}.

After execution of the algorithm, for each reachable atomp∈ P f there is exactly
one FDR variable whose domain includesp. The translation will ensure that this
variable, which we denote asvar(p) in the following, assumes the valuep in an
FDR state iff p is true in the corresponding state of the PDDL task. With this
information, we can now go about converting the rest of the PDDL task to the
finite-domain representation.

7.2 Converting the initial state

We start by converting the initial state, which is the easiest step. For each atomp∈
P f that is in the initial state, we set the initial value ofvar(p) to p. FDR variables
for which there is no initial state atomp with var(p) = p are initialized to⊥. Note
that different initial state atomsp, p′ ∈ P f must satisfyvar(p) 6= var(p′), becausep
andp′ could only be represented by the same FDR variable if they were mutually
exclusive, which implies their not being in the initial state together. Therefore, the
converted initial state is well-defined.

7.3 Converting operator effects

Translating the state changes incurred by operator effectsrequires some care. For
add effects setting an atomp to true, conversion is easy: such an effect is always
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translated to an FDR effect settingvar(p) to p, because we knowp to be true after
operator application if the effect fires.

However, for delete effects setting an atomp to false, the correct translation is not
as clear. We cannot simply setvar(p) to ⊥ (“none of the variables represented
by var(p) is true”) unconditionally, because this is not always correct: it could be
the case that another effect of the same operator triggers simultaneously and adds
another atom represented by the same variable, or thatp was not truewhen the
operator was applied, but some other atom represented byvar(p) was.

Therefore, the correct behaviour is to setvar(p) to⊥ only if we know thatp was
previously true and that no effect adding an atom represented by var(p) triggers
simultaneously. In other situations, the delete effect should not cause a change in
the value ofvar(p). If the other effects of the operator that add atoms represented
by var(p) have effect conditionsχ1, . . . , χk, then this is achieved by addingp∧
¬χ1∧· · ·∧¬χk to the effect condition of the translated effect.

If some of the formulaeχi are proper conjunctions (i. e., neither constant true nor
singleton literals), this results in an effect condition which is not a conjunction of
literals. In this case, we introduce a new derived variablevi that evaluates to true
whenever¬χi is true, and usevi in the effect condition instead.

All things considered, this conversion of delete effects looks very complicated, and
indeed in most cases simpler translations are possible. Forthis purpose, we detect
two common special cases, with which we deal differently:

• If we see that whenever the delete effect triggers, some add effect affecting the
same variable must trigger as well, because it has the same ora more general
effect condition, then we do not need to represent the deleteeffect in the finite-
domain representation at all. The add effect will take care of the value change of
its affected variable.

• On the other hand, if we see that no add effect affecting the same variable can
trigger at the same time, because no such effect exists or each of their effect
conditions is inconsistent with the condition of the deleteeffect, then we can
convert the delete effect to an effect settingvar(p) to⊥. If p is not already part
of the operator precondition or effect condition, we must add it to the effect
condition to make sure thatvar(p) is only cleared if it was previously set top.

In most cases, translating delete effects is straight-forward because the two simpler
cases are by far more common than the general case. In particular, for unconditional
effects, one of the special cases always applies.
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7.4 Converting conditions

The third major translation step is the conversion of conditions of the grounded
PDDL task. Conditions occur in the goal specification, in operator preconditions,
in conditional effects and in axiom bodies.

To translate a grounded condition, we first check if it contains any atoms not inP f .
These have constant truth values, so that the condition can be simplified accord-
ingly. If this leads to a constant false condition, we react accordingly (for the goal,
we report that the task is unsolvable; for axiom bodies, operator preconditions or
effect conditions, we remove the axiom, operator or effect).

If the condition is not trivially false, we translate each ofits positive literalsp into
the pairingvar(p) = p. Translating negative literals¬p is slightly more tricky. Re-
call the BLOCKSWORLD example discussed earlier, where we generated the FDR
state variablev with Dv = {holding(a), clear(a), on(a,a), on(b,a), on(c,a),
on(d,a), ⊥}, and consider a condition including the atom¬on(c,a). If the condi-
tion also contains some positive literal represented by variablev, for example the
atomclear(a), then we do not need to encode¬on(c,a) at all, because it is im-
plied by the conditionv= clear(a). However, otherwise there is no simple way to
represent¬on(c,a) as an FDR condition. We would need to write something like
v 6= on(c,a), but conditions of this form are not supported by the representation.

Therefore, in situations like this, similar to what we did when translating non-
conjunctive effect conditions that may arise for certain delete effects, we intro-
duce a new derived variablenot-p with domain{⊤,⊥} and generate an axiom
(v = d)→ (not-p :=⊤) for each valued ∈Dv\{p}. The pairingnot-p =⊤ can
then serve as a translation of the literal¬p.

If we wanted to avoid introducing new axioms, we could further normalize the
PDDL task so that no negative literals occur in conditions. There are well-known
compilation methods to achieve such a normal form [22]. However, this transfor-
mation method may introduce many more state variables than necessary, which
runs counter to our objective of a concise finite-domain representation. (If it can
be avoided, there is little point in having two finite-domainvariables in the repre-
sentation with the property that the value of each is a function of the value of the
other.) As a compromise, we might consider toonlyuse such a compilation method
for propositions that appear in negative literals for whichour translation method
would otherwise introduce a new axiom. In practice (on the IPC domains), neg-
ative conditions are not commonly used, so the choice of mechanism for dealing
with them makes little difference.
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7.5 Computing axiom layers

As a final translation step, we must compute the axiom layers for the finite-domain
representation in such a way that the semantics for stratified logic programs is
matched (cf. Definitions 2 and 5).

This is done as follows: whenever the body of an axiom with affected variable
v includes the conditionv′ = ⊥ for some derived variablev′, then the value of
v′ must be computed before the value ofv, so we introduce an ordering constraint
v′≺ v. Similarly, if some axiom affectingv includes the conditionv′= d for derived
variablev′ andd 6=⊥, we introduce an ordering constraintv′ � v.

Axiom layers can be derived from these ordering constraintsin two stages. In the
first stage, we compute the strongly connected components ofthe graph induced
by the� relation. All axioms that affect variables in the same strongly connected
component belong to the same axiom layer.

To compute the ordering of axiom layers, we topologically sort the graph whose
vertices are the axiom layers and which has an arc from layerL′ to layerL iff some
axiom inL′ affectsv′, some axiom inL affectsv, andv′ ≺ v. Thei-th axiom layer is
then the one which appears at thei-th position in the computed topological order.
If the axioms of the original PDDL task are stratifiable, sucha topological sort is
always possible.

7.6 Post-processing

With axioms partitioned into layers, the translation is complete. Before generating
output, we apply a few post-processing techniques to simplify the generated task
where possible.

Most importantly, if there are two axioms with the same head,a= (cond→ v := d)
anda′= (cond′→ v := d) such thatcond⊂ cond′, thena is triggered whenevera′ is
triggered, soa′ is unnecessary. In such a case, which occurs frequently in domains
where axioms encode transitive closures, we say thata dominates a′ and removea′

from the representation.

8 Discussion

Having finished our presentation of the translation algorithm, the question arises
how one should evaluate it. There are two important criteriato consider:
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Runtime at most 1s 1054 tasks
Runtime 1s–10s 452 tasks
Runtime 10s–30s 67 tasks
Runtime 30s–60s 10 tasks
Runtime 60s–120s 14 tasks

Runtime beyond 120s:
SATELLITE #35 129.79s PSR-LARGE #49 306.30s
PSR-LARGE #47 145.80s SATELLITE #32 371.98s
SATELLITE #31 147.97s PSR-LARGE #44 376.69s
PSR-LARGE #42 154.36s PSR-LARGE #46 570.23s
PSR-LARGE #43 181.99s PSR-LARGE #48 714.73s
PSR-LARGE #45 182.47s SATELLITE #33 805.66s
SATELLITE #36 188.52s PSR-LARGE #50 1190.82s
PSR-LARGE #40 197.57s

Fig. 18. Absolute runtime on the IPC1–5 tasks.

• Performance:How quickly is the representation computed?
• Quality: How good is the generated finite-domain representation?

8.1 Notes on performance

We will keep the discussion of performance short: on a state-of-the-art computer,
the translation algorithm is sufficiently efficient to generate finite-domain repre-
sentations for all IPC1–5 benchmark tasks in reasonable time. In particular, in the
different planning systems that use the translator, including Helmert and Richter’s
Fast Downward [28], van den Briel et al.’s Integer Programming planner [48] and
Helmert et al.’sflexible abstraction heuristicssystem [30], the conversion to FDR
is never the main bottleneck of the overall planning algorithm – translation time is
negligible compared to search time in the vast majority of cases. (Some exceptions
to this exist in “structurally simple” domains like SATELLITE and LOGISTICS.)

A summary of translation time for the IPC1–5 benchmark suiteis shown in Fig. 18.
All experiments were conducted on a machine with a 2.66 GHz Intel Xeon CPU un-
der a 2 GB memory limit. The algorithm was implemented in the Python language,
and we estimate that a speed improvement by a factor of 10–100is easily achiev-
able with a C++ implementation. Even so, 65.4% of the instances are translated in
less than one second, and 93.4% in less than ten seconds. Fewer than 2% require
more than one minute, and fewer than 1% require more than two minutes. The
instances that take longest to translate are all from the PSR-LARGE and SATEL-
LITE domains and are very large: for example, the largest SATELLITE instance has
989250 operators, and the largest PSR-LARGE instance has 544209 state variables
(however, a backchaining analysis reveals that only 60467 of these are relevant to
the goal).
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domain #tasks I/O norm. invar. ground. FDR
A IRPORT 30/50 8–18% 1–4% 2–8% 48–64% 20–27%
ASSEMBLY 4/30 5–8% < 1% < 1% 80–84% 10–13%
DEPOT 7/22 4–6% < 1% < 1% 65–70% 26–30%
DRIVERLOG 5/20 4–6% < 1% < 1% 69–73% 22–26%
FREECELL 76/80 3–5% < 1% < 1% 67–71% 24–28%
GRID 4/5 4% < 1% < 1% 69–72% 24–27%
LOGISTICS 21/63 3–6% < 1% < 1% 68–75% 21–30%
M ICONIC-FULL 95/150 1–5% 0–2% < 1% 84–92% 7–10%
MPRIME 23/35 3–6% < 1% < 1% 70–75% 22–27%
MYSTERY 14/30 3–6% < 1% < 1% 70–74% 22–27%
OPENSTACKS 7/30 4–6% < 1% < 1% 63–65% 30–33%
OPTTELEGRAPH 41/48 4–7% < 1% < 1% 60–68% 25–35%
PIPES-NOTANK 22/50 3–6% < 1% < 1% 71–75% 20–24%
PIPES-TANK 43/50 2–5% < 1% < 1% 71–76% 19–26%
PSR-LARGE 43/50 5–7% < 1% < 1% 80–87% 7–16%
PSR-MIDDLE 27/50 5–8% < 1% < 1% 81–87% 8–14%
PSR-SMALL 2/50 29–34% 4% 1–11% 39–56% 11–13%
ROVERS 22/40 2–7% < 1% < 1% 77–95% 4–17%
SATELLITE 18/36 1–6% < 1% < 1% 66–75% 20–34%
STORAGE 12/30 5–6% < 1% < 1% 64–67% 27–32%
TPP 15/30 3–5% < 1% < 1% 73–76% 20–24%
TRUCKS 20/30 5–9% < 1% < 1% 62–69% 25–33%
ZENOTRAVEL 7/20 4% < 1% < 1% 73–76% 21–24%

Fig. 19. Distribution of runtimes across the different stages of the translation algorithm,
by domain. Only tasks with overall runtime above 1s are takeninto account. The second
column shows the number of such tasks in each domain, together with the number of total
tasks in that domain. The following columns show, in order, the percentage of time that was
spent on input/output (including parsing), normalization(Section 4), invariant synthesis
(Section 5), grounding (Section 6) and FDR generation (Section 7). Ranges denote the
minimum and maximum percentage for all considered tasks in the domain.

In addition to overall runtime, it is also interesting to identify which of the different
stages of the algorithm form the main bottlenecks, and whether this varies from
domain to domain. To address this question, we produced detailed runtime results
for all tasks that required an overall runtime beyond 1s in the first experiment. For
each domain, we report theminimal andmaximalpercentage of overall runtime
spent on each stage of the algorithm (Fig. 19). For example, the entry in column
“FDR” for the LOGISTICS domain indicates that on those LOGISTICS tasks which
required an overall runtime above one second (21 of the 63 instances), between
21% and 30% of the overall runtime was spent on the final stage of the algorithm,
generating the finite-domain representation.

The results show that normalization and invariant synthesis are not time critical.
In absolute numbers, normalization never requires more than 0.74s, and invariant
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synthesis never requires more than 0.38s. In a typical domain, about 70% of the
time is required for grounding, and about 25% for FDR generation. There are four
domains where grounding can require more than 85% of the runtime (MICONIC-
FULL , PSR-LARGE, PSR-MIDDLE, ROVERS). Relating this observation to our
earlier analysis of the Datalog grounding algorithm (Fig. 14), these are precisely
the four domains with the highest average irrelevance ratio. For completeness, we
mention that within the grounding stage, the vast majority of time is spent comput-
ing the canonical model (Section 6.5) and performing the final operator and axiom
instantiation (Section 6.6). The initial steps of the algorithm, generating (Section
6.3) and normalizing (Section 6.4) the logic program together require at most 1.88s,
and there is only one task (PSR-SMALL #25) for which they require more than 1s.

8.2 Notes on quality

So what about the quality of the representation? In almost all planning domains we
considered (including all IPC1–5 domains), the algorithm generates finite-domain
representations that are very close or identical to one we would have designed man-
ually. However, while this is encouraging, it is not how the quality of the represen-
tation should be measured.

Ultimately, whether or not a finite-domain representation is useful depends on how
well it serves its intended purpose. In Section 1.3, we discussed a number of possi-
ble uses for finite-domain representations, including SAT planning, symbolic state
space exploration with BDDs, heuristic planning with pattern databases and other
homomorphism abstractions, planning using integer programming compilations,
and heuristic planning based on causal graph decompositions.

For SAT planning, the MaxPlan system [6], joint winner of theoptimal proposi-
tional track of IPC5, has clearly established the usefulness of finite-domain repre-
sentations. Although the exact details of the FDR translation method of MaxPlan
have not been published, it is directly inspired by the techniques presented in this
article, and follows a very similar overall strategy (personal communications). As
Chen et al. report, finite-domain representations play a critical role in planner per-
formance [6] – in the binary state variable case, thelondex constraintsthat are the
key innovation of MaxPlan reduce to the usual mutex constraints used by all state-
of-the-art SAT planners, so londex constraints require non-trivial FDR encodings.

For planning with BDDs, finite-domain representations havealways been critical
for performance, to the point where compilations that use a direct propositional
encoding lead to prohibitively bad performance. Indeed, this is the reason why
Edelkamp and Helmert’s algorithm for devising concise finite-domain representa-
tions [14] was originally developed. We remark that for those domains that their
algorithm can handle – STRIPS domains without constants in operator definitions
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– the encodings generated by the algorithm presented here are generally equivalent
to those found by the Edelkamp and Helmert algorithm.

For planning with homomorphism abstractions, the situation is similar. For exam-
ple, the flexible abstraction heuristics of Helmert et al. [30] critically rely on the
finite-domain representation generated by the method presented here, degrading by
several orders of magnitude and solving significantly fewertasks if a direct propo-
sitional encoding is used instead.

The same performance degradation can be observed in heuristic planning based on
causal graph decompositions [28] – without the concise FDR translation, the causal
graph heuristic is not competitive with other approaches.

Finally, van den Briel et al. [48] use our FDR translation algorithm within their
Integer Programming compilation approach and report significant performance ad-
vantages over earlier approaches based on propositional encodings.

In summary, there is a wide spectrum of planning techniques that can significantly
benefit from automatically derived concise finite-domain representations using the
techniques presented in this work.
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