Complexity results for standard benchmark
domains in planning

Malte Helmert

Institut fur Informatik, Albert-Ludwigs-Universitat Freiburg, Georges-Kohler-Allee,
Gebdude 052, 79110 Freiburg, Germany

Abstract

The efficiency of Al planning systems is usually evaluated empirically. For the va-
lidity of conclusions drawn from such empirical data, the problem set used for eval-
uation is of critical importance. In planning, this problem set usually, or at least
often, consists of tasks from the various planning domains used in the first two in-
ternational planning competitions, hosted at the 1998 and 2000 AIPS conferences.
It is thus surprising that comparatively little is known about the properties of these
benchmark domains, with the exception of BLOCKSWORLD, which has been studied
extensively by several research groups.

In this contribution, we try to remedy this fact by providing a map of the com-
putational complexity of non-optimal and optimal planning for the set of domains
used in the competitions. We identify a common transportation theme shared by the
majority of the benchmarks and use this observation to define and analyze a general
transportation problem that generalizes planning in several classical domains such
as LoagisTics, MYSTERY and GRIPPER. We then apply the results of that analy-
sis to the actual transportation domains from the competitions. We next examine
the remaining benchmarks, which do not exhibit a strong transportation feature,
namely SCHEDULE and FREECELL.

Relating the results of our analysis to empirical work on the behavior of the
recently very successful FF planning system, we observe that our theoretical results
coincide well with data obtained from empirical investigations.

Key words: complexity of planning, planning benchmarks, planning domains,
transportation problems

Email address: helmert@informatik.uni-freiburg.de (Malte Helmert).

Preprint submitted to Elsevier Science 24 June 2002

1 Introduction

Empirical methods have become the standard for performance evaluation in
Al planning. Running time on tasks from classical planning domains such as
LogisTics and BLOCKSWORLD has often been (and still is) used for compar-
ing the relative merits of planning systems, or, put a bit more provocatively,
to draw the line between good and bad ones. However, this kind of comparison
has its difficulties. If no planning system performs well in a given domain, does
that mean that they are all poor, or is that domain intrinsically hard? If they
all perform well, is this because of their strength or because of the simplicity
of the task?

Because of these issues it is rather surprising that so far, comparatively little
research has been conducted on the complexity of planning in the classical do-
mains. In contrast, domain-independent complexity results for STRIPS plan-
ning and related formalisms are quite well-known. Different variants of the
planning problem have been investigated by several researchers [1-3]. How-
ever, they focus on special cases of planning defined by purely syntactical
features such as the number of operator preconditions or effects, while the
actual representation of a planning domain is of no concern to our work.

The complexity of planning has also been studied in the case where some
planning domain is fixed in advance (which is essentially domain-dependent
planning, but for an unspecified domain) [2]. The results show that planning
in a domain that can be represented in the STRIPS subset of PDDL can
be PSPACE-complete, but no worse. This provides an upper bound for the
complexity of all planning domains.

However, there is one classical planning domain, BLOCKSWORLD, which has
been studied extensively by several researchers. The existing analyses cover
the domain in its standard form as well as extensions, such as blocks of differ-
ent size. A classical reference for this line of research is [4]. Other references
emphasize the important distinction between optimal and non-optimal plan-
ning in general and in the BLOCKSWORLD domain in particular [5,6], where
the latter article contains a deep analysis of the algorithmics and empiricism
of BLOCKSWORLD planning.

Theoretical knowledge of the complexity of planning in a particular domain is
not only useful for judging the runtime behavior of planning systems. It also
helps in addressing the question whether planning systems that plan quickly
or planning systems that generate short plans should be preferred. Of course it
should be pointed out that it is not possible to provide a general answer here:
in some application contexts high quality plans might be critically important,
whereas in other cases, being able to plan (and act) quickly is preferable.

Year Domain name | Year Domain name

1998 ASSEMBLY 2000 BLOCKSWORLD
GRID FREECELL
GRIPPER LogisTics
LocgisTics Miconic-10
MovVIE SCHEDULE
MYSTERY
MYSTERY’

Fig. 1. Domains from the ATPS 1998 and AIPS 2000 planning competitions.

But still, theoretical results can contribute to this discussion in several ways.
On the one hand, in domains where generating optimal plans is a problem
that can be solved in polynomial time, there are fewer reasons to be content
with non-optimal plans and generating overly long plans can be viewed as
a deficiency of a planning algorithm. On the other hand, in domains where
there is a difference in computational complexity between non-optimal and
optimal planning, striving for optimal plans clearly demands a price in runtime
performance, which the user of a planning system might not always be willing
to pay.

Another point in favor of theoretical analyses is their potential to expose
sources of hardness in planning domains. For instance, if we discovered that
in a hypothetical PAC-MAN domain, plans can be generated in polynomial
time if there is a single ghost, while the corresponding problem with multiple
ghosts is NP-hard, then this would allow us to draw the conclusion that one
source of hardness in this domain is the number of ghosts.

Seeing that domain-specific complexity results for planning problems appear to
be useful, the question arises which domains should be analyzed. It is evident
that it is impossible to investigate the complexity of every single planning
domain imaginable. So we try to select a set of domains which are especially
important in Al planning, ones that are considered standard benchmarks.

The domains from the AIPS planning competitions (Figure 1) certainly satisfy
this criterion and hence form the core of our domain catalogue. The competi-
tion domains are of interest because they are well-known and because there is
a high amount of empirical data available for them in the form of the compe-
tition results. This makes it possible to compare empirical performance and
theoretical complexity, and hence identify shortcomings of current planning
systems: If we can prove polynomial complexity results in a given domain,
but observe poor scaling behavior of a system, this might tell us what kind of

issues should be addressed in order to improve overall performance. The com-
petition featured a few domains which might be called atypical for planning
(like FREECELL), but nevertheless we will try to cover all of them to provide
a more complete picture. We will, however, not be able to make a decisive
statement regarding the complexity of the ASSEMBLY domain from the AIPS
1998 competition, because the domain definition has several flaws which make
the intended semantics unclear. We will come back to this point in Section
4.1.

Of course it would be possible to look at each competition domain in isola-
tion. However, we will see that there are strong commonalities between some
of them, which can be exploited to get a clearer picture of the sources of
hardness in those benchmarks. In this case, it makes more sense to investigate
a family of related planning domains, including competition domains as well
as natural generalizations. This motivates the definition of the TRANSPORT
domain family in Section 3.

We proceed as follows. In the following section, we will define the formal
framework of our analysis and address the (non-trivial) question what we
understand by planning in a given domain.

In Section 3 we investigate transportation planning by introducing the TRANS-
PORT domain family, analyzing its complexity and applying the results to the
competition domains GRIPPER, LOGISTICS, MYSTERY and MYSTERY’. The
other two competition benchmarks with a transportation theme, GRID and
Miconic-10, are covered in greater detail at the end of that section.

The remaining competition domains, which are not naturally subsumed under
“transportation planning”, are treated in Section 4. MOVIE, ASSEMBLY and
BLOCKSWORLD are only discussed briefly for different reasons, but SCHEDULE
and FREECELL are discussed in depth.

We summarize and discuss our results in Section 5, which also hints at possible
directions for future research.

2 Planning domains

To get started, we will formalize the concept of planning in a given domain.
For each domain, which can be understood as an infinite set of planning tasks,
we are interested in two decision problems:

e PLANEX-DOMAIN: Given a planning task from DOMAIN, does the task have
a solution, i.e. an operator sequence transforming the initial situation into

one that meets the goal requirements?
e PLANLEN-DOMAIN: Given a planning task from DOMAIN and an integer
K, does the task have a solution of length at most K?

2.1 Formal definitions

These informal statements show that solving a planning task corresponds to
finding a path in some state space, leading from a specified initial state to
some goal state. The following definition captures the semantics of a planning
task.

Definition 1 Planning task state model

A planning task state model is a four-tuple M = (S, so, Sg, A), where
S s a finite set of states,

so € S s the tnitial state,

Sq C S is the set of goal states, and
A s a finite set of actions, partial functions from S to S.

M defines the transition graph T (M), a labeled digraph with vertex set S
and an arc labeled a from s to a(s) for all actions a and all states s in the
domain of a.

We can now define what we mean by a planning domain.
Definition 2 Planning domain

A planning domain D is a function that maps words over some encoding
language to planning task state models. A word T that is part of the domain
(in the usual mathematical sense) of D is called a planning task of D. We
write ||T|| to denote its length.

In practice, the encoding language for planning tasks is usually PDDL. How-
ever, since we are not interested in representational issues here, we will de-
scribe planning tasks in terms of structures that are natural to the domain at
hand (such as roadmap graphs or fuel functions) rather than encode them in
propositional logic. For our results to be applicable to planning in PDDL, we
must make sure that encoding lengths of planning tasks in this two different
representation are polynomially equivalent. Fortunately, this is the case for
all the domains we will investigate, and we will not explicitly mention en-
coding lengths in the following definitions of planning domains. This point is
discussed in more detail in the reference [7].

Having defined planning domains, we can now formally define the decision
problems introduced before.

Definition 3 PLANEX-D decision problem

Let D be a planning domain. Then the PLANEX-D decision problem is defined
as follows:

Given a planning task T from D, with D(T) = M = (S, so, Sg, 4), is there a
path in T (M) leading from sy to some state from Sg?

We call PLANEX-D the plan existence problem for domain D. It is the deci-
sion problem counterpart of plan generation. Informally, we ask if there is a
sequence of actions that transforms the initial situation of a given planning
task into a situation where the goal requirements are met, i.e. we ask about
the existence of a solution to the planning task. Such a sequence of actions
will also be called a plan in the following.

Definition 4 PLANLEN-D decision problem

Let D be a planning domain. Then the PLANLEN-D decision problem is de-
fined as follows:

Given a planning task T from D, with D(T) = M = (S, s, Sa, A), and an
integer K, is there a path of length at most K in T (M) leading from sq to
some state from Sg?

We call PLANLEN-D the bounded plan existence problem for domain D. It is
the decision problem counterpart of optimal plan generation in the same sense
that the Traveling Salesman decision problem is the counterpart of the Trav-
eling Salesman optimization problem. Informally, we ask about the existence
of a short solution to the planning task.

Most of the results we will present in the following are polynomial-time re-
ducibility results for different versions of the plan existence and bounded
plan existence decision problems. Throughout the article, we use the nota-
tion PROBLEM1 <, PROBLEMZ2 to denote that there is a polynomial-time
reduction from PROBLEM1 to PROBLEM2. We complement our definitions
with two simple reducibility results of this kind.

Theorem 5 Plan existence vs. bounded plan existence

Let D be a planning domain. If there is a function f : N — N which can
be computed in polynomial time such that for all tasks T € D that have a
solution, the length of the shortest solution can be bounded by f(||T|), then
PLANEX-D <, PLANLEN-D.

PROOF. The function mapping T to (T, f(||T]|)) is a polynomial reduc-
tion. O

The conditions of the previous theorem are satisfied for all planning domains in
this paper, and indeed for all planning domains that can be concisely encoded
in propositional PDDL, using the function f : n — 2". We will thus in the
following apply this theorem without giving an explicit reference. The same is
true for the following straight-forward result.

Theorem 6 Generalization/Specialization

Let D and D' be planning domains such that all tasks of D are tasks of D',
and for all such tasks T, D(T) = D'(T'). Then PLANEX-D <, PLANEX-D’
and PLANLEN-D <, PLANLEN-D'.

PROOF. The reductions are simply by embedding, i.e. T is mapped to T
and (T, K) is mapped to (T, K). O

2.2 What is a planning domain?

Having formalized planning domains, the question arises how the planning
domains from the competitions fit into this framework. Which tasks should
be considered part of a given domain? An obvious idea is to make use of the
available PDDL [8] domain definitions to identify valid tasks. Only tasks that
can be defined by coupling the (prespecified) PDDL domain file with a PDDL
problem file can be tasks of the domain.

We consider this criterion necessary, but not sufficient for deciding whether a
given task is part of a specific domain. In many domains, important pieces of
information are not (and cannot be made) explicit in the PDDL domain file.
For example, the fact that a block cannot sit on top of itself is an important
property of BLOCKSWORLD tasks, yet the domain file does not require or
imply this property. Similarly, in domains with a transportation theme like
LoaisTics, it is usually assumed but not made explicit that locations, carriers
and portable objects are disjoint classes, and hence carriers cannot pick up
other carriers or move locations around.

So there must be a second, restricting criterion to narrow the choice of tasks.
Unfortunately, for most domains this is not formalized in the literature, so
we must identify the “intended” set of tasks in a given domain ourselves. We
are guided in this process by the domain descriptions that are available in the
literature and by the set of tasks that have been used as benchmarks to date.

The latter is of special relevance if our results are to be employed for judg-
ing the performance of planning systems on the existing benchmark suites.
As an example, consider the GRIPPER domain, where a robot moves objects
between different rooms. Although the PDDL definition allows for more gen-
eral specifications, in all GRIPPER tasks which were used for benchmarking,
there are only two rooms, all objects are initially located in the same room
as the robot, and all objects need to be moved to the other room. What is
more, the term “GRIPPER task” is generally used only in this restricted sense.
For this reason, it makes more sense for our formal definition of the domain
to mirror these implicit constraints and not exploit the full potential of the
PDDL specification of the domain.

Fortunately, we do not have to resort to a lot of guesswork to capture the
original intentions of the domain designers: We will be able to refer to the
descriptions of McDermott [8] and Bacchus [9], where they are not ambiguous.

3 Transportation domains

We begin this section by quoting the descriptions of some of the AIPS 1998
planning domains from an article by the competition organizer, Drew McDer-
mott [8]:

GRID: There is a square grid of locations. A robot can move one grid square
at a time horizontally and vertically. If a square is locked, the robot can
move to it only by unlocking it, which requires having a key of the same
shape as the lock. The keys must be fetched and can themselves be in locked
locations. Only one object can be carried at a time. The goal is to get objects
from various locations to various new locations.

GRIPPER: Here, a robot must move a set of balls from one room to another,
being able to grip two balls at a time, one in each gripper. There are three
actions: (1) move, (2) pick, and (3) drop.

LoaisTics: There are several cities, each containing several locations, some
of which are airports. There are also trucks, which can drive within a single
city, and airplanes, which can fly between airports. The goal is to get some
packages from various locations to various new locations.

The following description by Drew McDermott was taken from the web re-
source of the AIPS 1998 competition:

MysTERY: There is a planar graph of nodes. At each node are vehicles,
cargo items, and some amount of fuel. Objects can be loaded onto vehicles

(up to their capacity), and the vehicles can move between nodes; but a
vehicle can leave a node only if there is a nonzero amount of fuel there,
and the amount decreases by one unit. The goal is to get cargo items from
various nodes to various new nodes.

And the last domain from the 1998 competition that we want to address in
this section, again quoted from the article by McDermott [8]:

MyYSTERY’: This is the MYSTERY domain with one extra action, the ability
to squirt a unit of fuel from any node to any other node, provided the
originating node has at least two units.

Finally, here is a brief description of the M1CONIC-10 domain from the AIPS
2000 competition, discussed in more detail in Section 3.7:

Miconic-10: There is an elevator moving between the floors of a building.
There are passengers waiting at various floors. The goal is to move each
passenger to their destination floor. There are three variants of this domain,
including one where special constraints such as VIP service restrict elevator
movement.

It is evident that there are some commonalities between those planning do-
mains. Specifically, they all share the following properties (terminology is bor-
rowed from Long and Fox [10]).

e There is a set of locations (grid squares, rooms, airports, ...), which are
connected by roads (adjacent grid squares, doors, airways, ...), forming a
roadmap graph.

e There is a set of mobiles (robots, trucks, elevators, ...), which traverse the
roadmap.

e There is a set of portables (keys, balls, passengers, ...), which can either be

at a location or carried by a mobile.

e These classes of entities are disjoint, and there are no other entities.

e The goal is to move (a subset of) the portables to their respective final
destinations.

Of course, there is also a number of differences, including the following:

e Capacity constraints: In GRID, mobiles can only carry one portable at a
time, in GRIPPER two portables. In MYSTERY and MYSTERY’, mobiles
have varying capacities, and in LocisTics and MICONIC-10, capacity is
unbounded.

e Fuel constraints: In MYSTERY and MYSTERY’, fuel is consumed by and
required for movement, unlike the other domains.

e Number of mobiles: In GRIPPER, GRID and MICONIC-10, there is only a
single mobile. In the other domains, there can be several.

o Type of roadmaps: In MYSTERY and MYSTERY’, the roadmap can be any
planar graph, in GRID it must be a grid, in other domains a complete graph.
In LocisTics, there is the additional restriction that different mobiles can
use different roads: Roads within cities are only used by trucks, and airways
only by airplanes.

e Dynamic roadmaps: In GRID, new links between locations can be established
by opening doors. In the most complex variant of Miconic-10, the set
of accessible floors varies when passengers board or debark. In the other
domains, dynamic changes of this kind do not occur.

3.1 The TRANSPORT domain family

In the rest of this section, we will define and analyze a hierarchy of planning do-
mains combining the key features of the transportation planning benchmarks
mentioned. Different members of that family model different constraints on ca-
pacity, fuel, number of mobiles and types of roadmaps. The dynamic roadmap
features of GRID and MICONIC-10 are more unusual and will be discussed
in greater detail further on. However, the following general results are also
applicable to these two domains, as they have special cases without dynamic
roadmaps, namely GRID without doors and MicoNic-10 without special pas-
sengers.

Definition 7 TRANSPORT task
A TRANSPORT task is a 9-tuple (V, M, P,ly, Pg, lg, fuely, cap, road), where

V' is a finite set of locations,

M 1is a finite set of mobiles,

P s a finite set of portables,

lo: (M UP)—V is the initial location function,
Pg C P is the set of goal portables,

lg : Po — V is the goal location function,

fuely : V — NU {oo} is the initial fuel function,

cap : M — N s the capacity function, and finally
road : M — P(V x V) is the roadmap function.

We require that V., M and P are disjoint, and that (V,road(m)) is an undi-
rected graph for all m € M (i.e., for all m € M, the relation road(m) is
symmetric and irreflezive).

The concepts of locations, mobiles and portables should be clear from the
preceding discussion. All mobiles and portables have a specified initial loca-
tion. Mobiles are initially unloaded and hence portables do not start within
mobiles. Some portables, i.e. the set of goal portables, have a specified final

10

location, given by the goal location function. The location of other portables
and of mobiles after the execution of a plan does not matter.

The fuel function bounds the number of times a given location can be left by
a mobile. Fuel is associated with locations rather than mobiles because this
is the way it is handled in MYSTERY and MYSTERY’. The carrying capacity
function bounds the number of portables a given mobile can carry at the
same time. The roadmap function specifies individual roads for each mobile.
For mobiles m, we will call (V, road(m)) the roadmap graph or simply roadmap
of that mobile. We only investigate undirected roadmap graphs because only
these occur in the benchmark domains.

That said, we can now define the TRANSPORT planning domain.
Definition 8 TRANSPORT domain

The TRANSPORT domain maps TRANSPORT tasks with locations V', mobiles
M and portables P to planning task state models as follows.

The set of states consists of all pairs (1, fuel) of current location functions [:
MUP — VUM and fuel reserve functions fuel : V- — {1, ..., fuel . }U{o0},
where fuel .. is the mazimum amount of initial fuel of any location with finite

fuel.

The initial state is given by the initial location and initial fuel functions. The
set of goal states consists of those states where the current location of all goal
portables matches their goal location.

The set of actions consists of movement actions move,,, which move mobile
m to location v, pickup actions pick,, ,, which cause mobile m to pick up
portable p, and drop actions drop,, causing portable p to be dropped by the
mobile currently carrying it.

The action move, , is defined in all states (1, fuel) where (I(m),v) is part of the
roadmap of m and the fuel reserve at l(m) is non-zero. Its application results
in state (1 (m,v), fuel ® (I(m), fuel(I(m)) — 1)), where we define oo —1 = oo.
The functional overloading notation f @ (a',b') denotes the function f' with

(@) =V and f'(a) = f(a) for all a # d'.

The action pick,, , is defined in all states (I, fuel) such that I[(m) = l(p) and
the number of portables p' with current location m is strictly less than the
capacity of m. It results in state (I ® (p, m), fuel).

The action drop,, is defined in all states (1, fuel) such that l(p) € M. It results
in state (1@ (p,1(I(p))), fuel).

11

1: capacity 1: one portable oo: unbounded | *: varies

j: fuel units || 1: one per location | co: unbounded | *: varies

k: mobiles 1: one mobile +: one roadmap | *: many roadmaps

Fig. 2. The TRANSPORT;;; domains.

As was seen in the description of the various transportation domains from the
planning competitions, we usually do not need all features of TRANSPORT.
Some benchmarks only feature a single agent (mobile). In others, there are
no fuel or capacity restrictions. For this reason, we will now define some spe-
cial cases of TRANSPORT that capture some of the most frequently occurring
restrictions of the general theme.

Definition 9 Special cases of TRANSPORT

Fori,j € {1,00,%} and k € {1,+,*}, the TRANSPORT;;;, domain is defined
as the restriction of TRANSPORT to the tasks which satisfy the following re-
quirements:

e Ifi =1, the capacity of all mobiles must be equal to one. The GRID domain
has this property.

e If i = o0, the capacity of all mobiles must be unbounded, i.e. equal to
the number of portables. Examples are the LOGISTICS and MICONIC-10
domains.

e Ifi = x, there are no restrictions on the capacity function. Mobiles can have
varying capacities, as in MYSTERY and MYSTERY’.

e Ifj =1, the initial fuel of all locations must be equal to one. Consequently,
each location can be left by a mobile at most once.

e If j = oo, the initial fuel of all locations must be infinite. There are no fuel
requirements, like in all benchmarks except MYSTERY and MYSTERY’.

e If j = x, there are no restrictions on the initial fuel function. Locations can
have varying amounts of fuel, as in MYSTERY and MYSTERY’.

e Ifk =1, there is only one mobile, as in GRID, GRIPPER and MICONIC-10.

o If k = +, there may be several mobiles, but they must all have the same
roadmap, as tn MYSTERY and MYSTERY’.

e Ifk = x, there are no restrictions on the roadmap function. Different mobiles
can use different roads, as in LOGISTICS.

Since there are three options for each of the three parameters that can be
combined in any way, there is a total of 27 planning domains which form the
TRANSPORT domain family. The definition is summarized in Figure 2.

Note that for all three parameters, * is a generalization of the other op-
tions, that £ = + generalizes £ = 1, and that apart from these, no option
supersedes another. These relationships, illustrated in Figure 3, imply that

12

Fig. 3. Generalization relationships for the TRANSPORT;;;, domains.

there is a single most general domain, TRANSPORT,., Which is identical to
TRANSPORT, and there are four domains having no proper specializations
in the family, namely TRANSPORT 11, TRANSPORT 1, T RANSPORT 11, and
TRANSPORT 1. This is formalized in the following corollary.

Corollary 10 Inclusion relationships

Fori,i,j,j' € {1,00,%} and k, k" € {1,+, x}, if the following three properties
are true:

or j =%, and

=k ork' =x or (k,k') = (1,+), then

PLANEX-TRANSPORT;;;, <, PLANEX-TRANSPORTy i and
PLANLEN-TRANSPORT;;;, <, PLANLEN-TRANSPORT /.

The following result shows that shortest solutions to TRANSPORT tasks only
consist of a polynomial number of steps, which is an important property of
the task family.

Theorem 11 Polynomial length plans for TRANSPORT

There is a polynomial p such that for all TRANSPORT tasks T that have a
solution, there is a solution of length at most p(||T||).

PROOF. Let T be a solvable TRANSPORT task with locations V, mobiles
M and portables P. Assume ||T|| = |V| + |M| + |P|, which is certainly an
underestimation.

Each portable only needs to be moved to each location at most once, which

bounds the number of pickup and drop actions required in a plan by |V|-|P]|,
or O(||T||?), each.

In between two pickup or drop actions (and before the first and after the last

13

such action), no mobile should visit a given location twice, which bounds the
number of movement actions by (2(|V|-|P|) + 1) - (V|- |M]), or O(||T|[*).
Adding the bounds together results in a total upper bound of O(||T||*). O

An immediate consequence of this polynomial solution length property is
that valid plans can be guessed and verified in polynomial time by a non-
deterministic algorithm, leading to the following corollary.

Corollary 12 Membership in NP for TRANSPORT planning

The plan existence and bounded plan existence problems for TRANSPORT;jj
are in NP for all values of i, j, k.

3.2 Plan FExistence

We will now discuss the different TRANSPORT planning problems in detail,
starting with plan existence. Our first result shows that the existence of many
mobiles with different roadmaps and different carrying capacities does not
make (non-optimal) transportation planning difficult.

Theorem 13 Complexity of PLANEX-TRANSPORT 00«

The plan existence problem for TRANSPORT 0« can be decided in polynomial
time.

PROOF. Let V be the set of locations of the given TRANSPORT task and
road be the roadmap function. For each mobile m with non-zero carrying ca-
pacity, we perform a breadth-first search on (V, road(m)), starting at the initial
location of m. All roads that are reached by one of these breadth-first explo-
rations can be used by a mobile carrying a portable. In the absence of fuel
constraints, all such roads can be used any number of times.

Consequently, the task can be solved if and only if for each portable, its goal
location can be reached from its initial location using only these roads. This
can easily be decided in polynomial time, and in fact the actual plans can easily
be generated. 0O

The previous result addresses the most general domain in the family which
features unrestricted fuel. The remaining domains, those involving fuel con-
straints, are all generalizations of TRANSPORT;1; or TRANSPORT »11. We will
now show that for these two, and consequently for all domains with restricted
fuel, deciding plan existence is NP-complete.

14

Fig. 4. Graph and corresponding TRANSPORT71; task.

Theorem 14 Complexity of PLANEX-TRANSPORT1;

The plan existence problem for TRANSPORT111 s NP-complete.

PROOF. Membership in NP was shown in Corollary 12. We prove NP-
hardness by reduction from the NP-complete problem of finding a Hamiltonian
path with a fized start vertex [11, Problem GT39).

Let (V,E) be a graph and vi € V. Then (V, E) contains a Hamiltonian path
starting at vy if and only if there is a solution for the TRANSPORTy; task
defined as follows: For each v € V, there are two distinct locations v (called
an entrance) and v* (called an exit), with one unit of fuel each. At each
entrance, there is a portable to be moved to the corresponding exit. There is
only one mobile, of capacity one, starting at the entrance vi. There are roads
between v and v* for allv € V' and between u* and v for all (u,v) € E.

This mapping s illustrated in Figure 4. Entrance locations are marked by black,
exits by white nodes, and gray nodes indicate the vertezx (and entrance location)
v1. Portables are pictured by dashed lines pointing from their respective initial
to their respective final locations.

Under this mapping, if there is a Hamiltonian path in (V, E) starting at v1, say
[V1,...,vn], then there is a solution for the planning task where the movement
path of the mobile is [v1,v5, . .., v,, v2] and portables are picked up and dropped
in the obvious way.

Now consider there is a solution to the planning task. Whenever a portable is
picked up (at an entrance), the only reasonable thing to do is to move to its
destination (the corresponding exit) and drop it, because there is no point in
deferring that movement when the carrying capacity is ezhausted. The mobile
must then proceed to the nmext entrance, which is only possible in the ways
defined by the edges in the original graph. Thus, the plan corresponds to a path
in the original graph that visits every vertex. To prove that this corresponds

15

Fig. 5. Graph and corresponding TRANSPORT 11 task.

to a Hamiltonian path, we need to check that no entrance location is ever
wisited twice. We can safely assume this: Whenever a location is visited for
the second time, it can never be left again because of fuel constraints. In a
successful plan, this can only happen after each portable has been dropped off
at its final destination, and hence that movement can safely be omitted. Thus,
if the planning task has a solution, there is a Hamiltonian path in the original
graph. O

The same reduction (except for the carrying capacity of the mobile) could be
used for proving NP-completeness of PLANEX-TRANSPORT,11. However, we
give another proof for this, which is more straight-forward and also shows that
the problem is already hard if the roadmap of the mobile is restricted to be a
planar graph.

Theorem 15 Complexity of PLANEX-TRANSPORT 11

The plan existence problem for TRANSPORTy11 s NP-complete, even if the
roadmap of the only mobile is restricted to be a planar graph.

PROOF. Membership in NP was shown in Corollary 12. For hardness, we
reduce from the Hamiltonian Path problem with a fized start vertex in a pla-
nar graph [7]. Let (V,E) be the graph and v, € V. Then (V,E) contains
a Hamiltonian path starting at vy if and only if there is a solution for the
TRANSPORT 11 task defined as follows: The set of locations is V', and there
is a single mobile, of unlimited capacity, with roadmap (V, E) and initial loca-
tion v1. Each location provides one unit of fuel, and there is one portable to be
delivered from vy to each location from V' \ {v1}. This is illustrated in Figure
5, where again gray nodes stand for the start vertex and initial location of the
mobile and dashed arrows indicate portables.

Clearly, this problem s solvable if and only if there is a Hamiltonian Path
in (V, E) starting at vy, with Hamiltonian Paths corresponding to movement

16

paths of the mobile. O

This concludes our analysis of the PLANEX-TRANSPORT;;;, decision problems.
Putting the previous three results together, we conclude that they can be
solved in polynomial time if 7 = co and are NP-complete otherwise.

Corollary 16 Summary for PLANEX-TRANSPORT

The plan existence problem for TRANSPORT;j; can be decided in polynomial
time if j = 0o and is NP-complete otherwise.

3.8 Bounded Plan FExistence

In this section, we investigate the bounded plan existence problem for trans-
portation domains without fuel constraints. We do not have to discuss the
restricted fuel case: NP-completeness for these problems is already entailed
by the corresponding results for PLANEX, applying Corollaries 12 and 16.

In fact, the proofs of Theorems 14 and 15 can be adjusted to prove NP-
completeness of PLANLEN-TRANSPORT 41 and PLANLEN-TRANSPORT s 001
by removing the fuel restrictions and introducing plan length bounds of 4|V|—1
and 3|V|—3, respectively. However, these results require allowing for arbitrary
(or arbitrary planar) roadmaps, and thus do not apply to planning domains
such as LoGISTICS or GRID. For that reason, we will prove some stronger
results now.

Our first result applies to grid roadmaps, i. e. graphs with vertex set {0, ..., w—
1} x {0,...,h — 1} for some w,h € N (called width and height of the grid,
respectively), where vertices (a, b) and (@', ') are connected by an edge if and
only if |a — a'| + |b — 0’| = 1. Note that grids are always planar graphs. The
proof is based on the TRAVELING SALESMAN £; METRIC decision problem,
which is the special case of the TSP problem where all sites are points in
N? and the distance between sites (z,y) and (z',%') is given by their £; or
Manhattan distance di((z,v), (¢',y")) = |2’ — x| + |y’ — y|. This problem is
known to be NP-complete in the strong sense [11, Problem ND23]. We can
thus assume that encoding sizes of site coordinates are linear (rather than log-
arithmic) in their magnitudes; otherwise the following transformation would
not be polynomial.

Theorem 17 Complezity of PLANLEN-TRANSPORT o1 /0000l
The bounded plan existence problems for TRANSPORT 401 and TRANSPORT so001

are NP-complete, even if the roadmap of the only mobile is restricted to be a

17

Fig. 6. TRAVELING SALESMAN £; METRIC sites and corresponding TRANSPORT
task.

grid and all portables only need to be moved to adjacent locations.

PROOF. Membership in NP was shown in Corollary 12.

Assume we are given a TRAVELING SALESMAN £; METRIC instance with site
set S of cardinality n > 0 and tour length bound B. Let . and ymax be the
mazimum x and y coordinates in S, respectively, and let s* = (z*,y*) € S be
a site that mazimizes the y coordinate, i. e. a northmost site. Furthermore, we
set k =4n and D = kn - (Tmax + Ymax) + 47.

We map this TSP instance to a TRANSPORT task with the following properties:
There is a single mobile of capacity one (for obtaining @ TRANSPORT s task)
or unbounded capacity (for obtaining a TRANSPORT w01 task). Its roadmap is
a grid of width kxpax+2 and height kymax+D+1. There are no fuel restrictions.

For each site (z,y) € S\ {s*}, there is a portable which is initially located at
(kz, ky) and needs to be moved to (kz+1, ky). The mobile is initially located at
(kz*, ky*), and an additional portable, called the remote portable, is initially
located at (kx*,ky* + D) and needs to be moved to (kz* + 1,ky* + D). The
bound on plan length is defined as K = kB + D + 4n — 1.

We restate this transformation in words to make it more understandable. First,
we scale all site coordinates by a factor k. Then, we place a portable at each
site excluding the northmost one, where we place the mobile. We then place the
remote portable far up north (D units after scaling), on the same column as
the mobile. The goal is to move all the portables one unit to the right. Figure 6
gives an example of the mapping. For reasons of clearness, the figure is not to
the scale: The scaling factor k and the distance between the initial locations of
the mobile and the remote portable should be much higher. Again, the initial

18

location of the mobile is painted gray, and portables are depicted by dashed
arrows.

We will now argue that there is a traveling salesman tour of length at most
B in the original TSP instance if and only if the corresponding planning task
has a solution of length at most K. First assume that there is such a tour.
It is easy to see that there is a strong connection between L distances and
movements in the planning task: The shortest movement sequence to get from
p to q on a grid roadmap consists of di(p, q) steps.

Thus, taking the scaling constant k into account, there is a sequence of at most
kB movements that passes through the initial locations of all portables except
the remote one and then returns to the location of origin. With another D
movements, the mobile can then reach the remote portable. All that remains
to be done now is to insert four actions whenever a location containing a
portable is encountered: pick up that portable, move east, drop it, move west
again. The last movement is not needed for the remote portable. This leads to
a plan of length at most kB + D +4n — 1 = K, as required.

Now assume that there is no traveling salesman tour of length B or less, i. e.
the shortest tour has length B+1 or more. We will show that all plans consist
of more than K steps. First note that the distance between any two sites is at
MoSt Tmax + Ymax, where the mazimum s assumed in the most extreme case
of the sites being located in opposite corners of the grid. Because a tour is the
sum of n distances, there is always a traveling salesman tour of length at most
N(Tmax + Ymax), S0 B cannot be greater than this value. Using the definition of
D, this implies that D > kB + 4n.

First consider any plan where the remote portable is picked up for the first
time at some point before all the other portables have been moved to their goal
locations. In this case the mobile will at some point have to move from its
mnitial Tow KYymax to Tow kymax + D to pick up the remote portable and later
get back to row kymax or below to drop other portables. This will involve at
least 2D movements, thus plan length will be at least 2D > kB+ D +4n > K,
exceeding the boundary.

Therefore we only need to consider the case where the remote portable is picked
up for the first time after all the other portables have been dropped at their goal
location. We can safely assume that the movement between the last but one
portable to be dropped and the remote portable passes through the initial loca-
tion of the mobile. If it does not, the movement path can be adjusted to achieve
this without increasing plan length by first moving eastwards or westwards until
the column of the remote portable has been reached, then moving northwards.

For each portable, the mobile must at some point mowve to the initial location of
that portable, and we just arqued that it will return to its own initial location

19

at some point. The number of movement actions to achieve this cannot be
less than the length of the shortest traveling salesman tour for the set of sites
obtained by scaling each site in S by a factor of k. Thus, at least k(B + 1)
move actions will be needed for this, plus D move actions for getting from the
initial location to the location of the remote portable.

This adds up to a lower bound of k(B+1)+D = kB+k+D = kB+D+4n > K
actions. Thus, no plan of length at most K exists. O

For the unrestricted capacity case, there is another interesting special case,
relevant to the LOGISTICS domain, for which we can prove NP-completeness.
The proof utilizes the FEEDBACK VERTEX SET problem [11, Problem GT7],
which is defined as follows. Given a digraph G = (V, A) and a natural number
K, does G have a feedback vertex set of cardinality at most K7 A feedback
vertex set is a subset V' C V such that the subgraph induced by V \ V' is
acyclic (and hence, no longer contains any “feedback”).

Theorem 18 Complezity of PLANLEN-TRANSPORT 5001

The bounded plan existence problem for TRANSPORT 1 %S INP-complete,
even if the roadmap 1s restricted to be a complete graph.

PROOF. Membership in NP was shown in Corollary 12. For hardness, we
reduce from the Feedback Vertex Set problem [11, Problem GT7]. Let (V, A)
be a digraph and K be a natural number. Then (V, A) contains a feedback
vertex set of size at most K if and only if there is a solution of length at most
3|V|+ 2|A| + K for the TRANSPORT w01 task defined as follows. There is a
single mobile of unbounded capacity. Its roadmap is a complete graph over the
locations V' and an additional location vy, which is the initial location of the
mobile. There is one portable to be moved from vy to each other location and
one portable to be moved from u to v for each (u,v) € A. There are no fuel
constraints.

Figure 7 illustrates the reduction. As usual, the initial location is depicted in
gray and portables correspond to dashed arrows. A minimal feedback vertex set
(and the corresponding locations of the TRANSPORT task) are highlighted with
white nodes.

Note that if (V, A) contains an arc from some vertex u to a verter v, then
the mobile has to visit location u before location v at least once, to pick up a
portable that must be moved from u to v. This means that for each cycle in
the digraph, the mobile must visit some location that corresponds to a vertex
in the cycle at least twice.

20

Fig. 7. Directed graph and corresponding TRANSPORT 01 task.

We observe that for each feedback vertex set V! C 'V, the planning task can
be solved by moving the mobile to the vertices from V' in any order, then to
the vertices from V' \ V' in an order which corresponds to a topological sort of
the subgraph induced by V\'V' (which must be acyclic because V' is a feedback
vertex set), and finally to the vertices from V' again, in any order, picking
up and dropping portables in the obvious way. This requires |A| + |V| pickup
and drop actions each and |V|+ |V'| movements, totaling a number of actions
bounded by 3|V|+2|A| + K if |[V'| < K.

On the other hand, any plan must contain at least one pickup and drop action
for each portable and visit each location at least once, totaling 3|V| + 2|A|
actions. Consequently, if a plan does not exceed the given length bound, no
more than K locations can be visited more than once. These locations must
form a feedback vertex set: If there were cycles that touched no such location,
some other location would have to be revisited, too. O

The previous result shows that it is not (only) the route planning aspect of
the transportation tasks that makes them hard to solve optimally, as there is
no real route planning involved when the roadmap is a complete graph. The
source of difficulty rather seems to be the interaction between the individual
subgoals, i.e. goal portables.

We end the discussion of the bounded plan existence problem for the TRANS-
PORT domain family with the following summary.

Corollary 19 Summary for PLANLEN-TRANSPORT

The bounded plan existence problem for TRANSPORT;;; is NP-complete for
all values of 1, j, k.

21

3.4 Bounded Parallel Plan Existence

In AI planning, sequential length is not the only wide-spread quality criterion
for a plan. People are also interested in short parallel plans, where several
actions can be applied at the same time, provided they do not interfere. To
make this precise, we would need to formally define some notion of inter-
ference. Three different ways of approaching this task come to mind in the
TRANSPORT framework:

e Use Graphplan-style [12] parallelism.

e Different mobiles can act at the same time, but no two transitions that
affect the same mobile (picking up or dropping a portable or moving with
that mobile) can occur simultaneously.

e Different mobiles can act at the same time, and the same mobile can perform
multiple actions simultaneously if it does not move.

A drawback of Graphplan-style parallelism is that it critically depends on the
way the planning problems are formalized in the PDDL language. This has the
peculiar effect that in some planning domains like LLOGISTICS and GRIPPER,
Graphplan allows for multiple portables to be picked up simultaneously by
the same mobile, whereas this is not possible in others, such as MYSTERY.
More severely, in the MYSTERY domain Graphplan does not even allow for
multiple mobiles to leave the same location simultaneously, which is hard to
justify.

Does this imply that in order to discuss the parallel planning problem in a
satisfying way, we need to conduct a separate analysis for all of the three
different kinds of parallelism we mentioned? Fortunately, this is not the case.
First of all, all our hardness results were obtained for special cases where there
is only one mobile, and with that restriction, Graphplan-style parallelism in
the competition domains is in all cases equivalent to one of the other two forms
of parallelism. What is more, in this case, with only one mobile, the second kind
of parallelism does not allow for any concurrent activity at all and hence the
hardness results for bounded (sequential) plan existence immediately apply.

Hence we only need to discuss the third notion of parallelism: Multiple mobiles
can act simultaneously, and the same mobile can pick up and/or drop multiple
portables at the same time. Fortunately, membership in NP can be established
just as easily in this case, and the previous proofs of hardness still apply with
some minor adjustments. The proof of Theorem 17 carries over verbatim,
and for Theorem 18, we only need to change the bound on plan length from
2|A|+3|V|+K to 2|V |+2K +1, counting |V|+ K plan steps for the movements
of the mobile and |V| 4+ K + 1 plan steps to do all the necessary pickup and
drop actions, one at the beginning and one after each movement.

22

Thus, similar to Corollary 19 we observe the following.
Remark 20 PLANLEN-TRANSPORT, parallel plans

The bounded parallel plan existence problem for TRANSPORT;, is NP-complete
for all values of i, j, k.

We call this a “remark” rather than a theorem because we have not formalized
a notion of “parallel plans”, but for all formalizations mentioned above, we
have argued that this is a valid theorem.

3.5 MYSTERY, MYSTERY’, LOGISTICS and GRIPPER

Having completed the analysis of the TRANSPORT domain family, we can now
apply the results to the transportation benchmarks from the AIPS compe-
titions, beginning with the MYSTERY and MYSTERY’ domains. All bounded
plan existence results for the transportation benchmarks extend to the parallel
case, for reasons detailed in the previous discussion.

Definition 21 MYSTERY domain and MYSTERY’ domain

The MYSTERY planning domain is the restriction of TRANSPORT,, to those
planning tasks where the roadmaps are planar graphs and the amount of fuel
at each location is finite.

The MYSTERY’ planning domain is identical to MYSTERY except that for all
locations v, v' such that v # v', it introduces an additional action squirt, .

Action squirt, ,» is defined in all states (1, fuel) with fuel(v) > 2, mapping the
state to (I, fuel & (v, fuel(v) — 1) & (v, fuel(v') + 1)).

According to this definition, MYSTERY is a planning domain that falls into the
TRANSPORT hierarchy, and MYSTERY’ is a closely related planning domain
with additional actions that move fuel between locations. Our previous results
can be applied to these two benchmarks immediately.

Theorem 22 Complexity of MYSTERY and MYSTERY’ planning
The plan existence and bounded plan exristence problems for MYSTERY and

MYSTERY’ are NP-complete, even if there is only a single mobile, there are
no capacity constraints, and there is exactly one unit of fuel at each location.

PROOF. For MYSTERY, hardness of plan ezistence (and thus also of bounded

23

plan ezistence) follows immediately from Theorem 15. Membership in NP fol-
lows from Corollary 12.

For MYSTERY’, the hardness results are equally applicable, because for the
restricted class of tasks considered (those with one unit of fuel per location),
the two planning domains are identical.

For membership in NP, we can again argue that there is a polynomial bound
on the length of shortest plans for solvable tasks: The bound for the number of
movements, pick-up and drop actions still holds, and minimal plans contain
no more movements of fuel (“squirt” actions) than movements of mobiles. O

Next, we discuss the well-known LOGISTICS domain, which featured promi-
nently in both AIPS competitions.

Definition 23 LOGISTICS domain

The LoOGISTICS planning domain is the restriction of TRANSPORTqoe0s 1O
those planning tasks where there erists a partition C of the location set (called
the set of cities) and a set of locations A (called airports), such that for
each mobile m, either road(m) = { (v,v) | v,v" € A,v #v" }, in which case
m is called an asrplane, or road(m) = Ugee{ (v,0") | v,v" € C,v #v' }, in
which case m s called a truck.

Again, the complexity of planning in the LoGIsTICS domain follows immedi-
ately from our previous results.

Theorem 24 Complexity of LOGISTICS planning

The plan existence problem for LLOGISTICS can be decided in polynomial time.
The bounded plan existence problem for LOGISTICS is NP-complete, even if
there is only a single city, a single truck, and no airplane (or equivalently, no
trucks and a single airplane).

PROOEF. The plan existence result follows from Theorem 13. The bounded
plan existence result follows from Corollary 12 and Theorem 18. O

The last benchmark that completely fits into the TRANSPORT framework,
GRIPPER, is somewhat simplistic, as the following definition shows.

Definition 25 GRIPPER domain
The GRIPPER planning domain is the restriction of TRANSPORT,w1 to those

planning tasks where there are exactly two locations a and b, the mobile and

24

all portables are initially located at a, all portables must be moved to b, and
the mobile has a carrying capacity of two.

For reasons of completeness, we record the following result.
Theorem 26 Complezity of GRIPPER planning

The plan existence and bounded plan existence problems for GRIPPER. can be
decided in polynomial time.

PROOF. Gripper tasks are always solvable, so deciding plan existence is
trivial. For deciding bounded plan existence, an optimal plan can be generated
to compare its length to the specified bound.

The following strategy generates a plan of minimal length: If there are at least
two portables at the initial location, choose any two of them and pick them up.
If there is only one portable, pick it up. If there is no portable, nothing needs
to be done. If it was necessary to pick something up, move to the other location
and drop the load. If this does not result in a goal state, move back and iterate.
Clearly this leads to an optimal plan and can be done in time polynomial in
the number of portables. O

Of course, it would also be easy (and faster) to solve the bounded plan exis-
tence problem for GRIPPER without actually generating a plan, but we prefer
to provide actual planning algorithms for the problems that we can decide in
polynomial time.

3.6 GRID

The next domain we want to discuss, called GRID, is different to the previously
discussed benchmarks in that it features a dynamic roadmap: Locations can be
initially locked (and hence inaccessible) and later become accessible through
the invocation of open actions, if the (single) mobile carries an appropriate
portable (key). Because of these additional properties, GRID tasks are not
identical to TRANSPORT tasks, and we first need to define them.

Definition 27 GRID task
A GRID task is a 3-tuple (T, L,U), where
e T is a TRANSPORT 4,1 task with a grid roadmap with location set V and

portable set P,

25

e [C V is the set of initially locked locations, not containing the initial
location of the mobile, and

e U C P x L is the unlock relation, satisfying the criterion that for any
two portables the sets of related locations are either equal or disjoint.

Portables in GRID are called keys.

The planning task state model that is obtained by applying the TRANSPORT
domain to T is called the TRANSPORT model of the task.

Effectively, a GRID task is a special TRANSPORT task with two additional
properties: There is a set of locations that are initially inaccessible, and there
is a relation that specifies which keys can be used to gain access to which
locations. The constraints on the unlock relation imply that two keys are
either functionally equivalent or open disjoint sets of locations. In the original
PDDL description, this is formalized with different “shapes” for keys and locks
such that each key and lock has a specific shape and keys only fit into locks
with matching shapes.

Because GRID tasks are extensions of TRANSPORT tasks, we define the GRID
domain by reusing the definition of TRANSPORT.

Definition 28 GRID domain

The GRID planning domain maps GRID tasks to planning task state models
as follows.

The set of states consists of all pairs (s, L) such that s is a state of the TRANS-
PORT model and L is a set of locations. We say that a location is locked in a
given state if it is an element of L.

The nitial state is defined by the initial state of the TRANSPORT model and
the set of initially locked locations. A state (s, L) is a goal state if and only if
s is a goal state of the TRANSPORT model.

The set of actions consists of the actions of the TRANSPORT model, which are
extended to GRID states as follows: Action a is defined in (s, L) if and only if
it is defined in s, in which case it maps (s, L) to (a(s), L). The only exception
to this is that movements to locked locations are not defined.

Additionally, there are swap actions swap,, ,» for all keys p,p’ such that p # p'
and unlock actions open,, for all locations v.

The additional swap actions are compositions of drop and pickup actions, 1. e.
swap,, , = pick, o drop,,.

The action open,, is defined in all states (s, L) where v is locked, the current

26

location of the mobile m is adjacent to v in the grid, and there is a key k
with current location m such that (k,v) is in the unlock relation. Applying the
action to the state results in (s, L\ {v}).

As seen in the definition, states in GRID consist of the usual parts of a TRANS-
PORT state as well as the set of locations that are currently locked. The only
adjustment to the usual actions of TRANSPORT task state models is the re-
striction of movement actions to only move to unlocked destinations. The new
“swap” action is a combined drop and pickup action, and the new “open” ac-
tions unlocks a locked location adjacent to the mobile, provided it is currently
carrying a matching key.

We will now discuss the complexity of planning in the GRID domain.
Theorem 29 Complexity of GRID planning

The plan existence problem for GRID can be decided in polynomial time. The
bounded plan existence problem for GRID is NP-complete, even if all locations
are initially unlocked and all keys only need to be moved to adjacent locations.

PROOF. For plan existence, we devise a polynomial algorithm that gener-
ates a plan if one exists or else reports that none exists. First, calculate the
reachable area, i. e. the set of locations that can be reached by the mobile from
the initial location by a sequence of movement actions (without opening loca-
tions). If any key located within the reachable area can open a locked location
adjacent to the reachable area, move to such a key, pick it up, move to some
location it can unlock, open that location, and drop the key. Recalculate the
reachable area and iterate until no further locations can be unlocked.

Because the number of locked locations and the number of actions required to
open a locked location are each bounded by a polynomaial in the input size, this
s a polynomial algorithm. The resulting situation can clearly be solved if and
only if the initial situation could be solved, and its solvability can be checked
with a decision procedure that decides plan existence for TRANSPORT o1 tasks,
such as the one from Theorem 183.

This also shows the existence of polynomial bounds on the length of shortest
plans in the GRID domain, implying membership in NP for the bounded plan
existence problem. Hardness, even under the restrictions cited above, follows
from Theorem 17. Although this result is not immediately applicable, because
TRANSPORT has no combined pickup and drop actions, the reasoning in the
proof is still valid. O

27

Bt -At-0+-At+-Bt-0ct-D
O A A B A B C D

Fig. 8. GRID task corresponding to (AV BV D)A(AV-AVC)A(BV-CV-D).

Concluding our discussion of GRID, we give another proof of NP-hardness
for the bounded plan existence problem. Unlike the previous result, this proof
does not emphasize the difficulty of goal ordering. We prove NP-completeness
for the case of a single goal key. The hardness of the generated tasks lies in
deciding which locations to open in order to get access to other parts of the
map, and the decision problem used in the transformation is not related to
“route planning” in any obvious way. In fact, the route planning part of the
generated planning tasks is trivial.

Theorem 30 Complezity of GRID planning with one goal key

The bounded plan existence problem for GRID is NP-complete, even if there
18 only one goal key, all keys and the mobile start at the same location and the
hewght of the grid graph is fized to three.

PROOF. Membership in NP follows from the previous theorem. Proof of
hardness is by reduction from 3SAT. Let (V,C) be a 3SAT instance, where
V = {v1,...,v,} is a set of variables, and C is a set of m clauses over V,
each clause consisting of exactly three literals.

Let W = (2n+1)(2m+2n)+4(n+m)?+11(n+m)+6 and w = W +2m+2n.
The roadmap grid of the corresponding GRID task has width w+ 1 and height
3, and the initial location of the mobile and all keys is (0,0). For each literal
over V, there is a corresponding key. Additionally, there is a single goal key,
to be moved to (w,0).

For i € {0,...,w}, we call the set of locations {(i,0), (3,1), (¢,2)} the i-th
column of the grid. The set of initially locked locations consists of the columns
{W+1,W+3,...,W+2m —1}, called the clause barriers, and the columns
{W+2m+1,W+2m+3,...,W+2m+2n — 1, called the variable barriers.

Each clause barrier corresponds to a different clause of the 3SAT instance,
and each location of the barrier corresponds to a different literal of that clause:
It can only be opened by the corresponding key.

Similarly, each variable barrier corresponds to a different variable v of the
3SAT instance. One of its locations can only be opened by the key correspond-

28

ing to v, one only by the key corresponding to —v, and one has no matching
key.

For an example, see Figure 8, where the gray node indicates the initial location
of the mobile and keys and the black node indicates the destination of the goal
key. Locked locations are marked as bozes labeled with the corresponding key.
The empty corridor to the left of the clause barriers in the figure is not to the
scale and should be far wider.

Clearly, this mapping can be performed in time which is polynomial in the size
of a unary encoding of the TRAVELING SALESMAN L; METRIC instance and
results in a valid GRID task. We claim that the task has a solution of length
at most (2n + 2)W if and only if the 3SAT instance has a solution.

The intuition behind the mapping is the following: Because the mobile can only
carry one key at a given time, and because there is a wide corridor to bridge
between the initial location and the locked locations, only a limited number
of keys can be used for opening the various locks. We say that o literal is
“selected” if the corresponding key 1s used for opening a location.

Specifically, assume that a plan of length at most (2n + 2)W exists. In such
a plan, at most n+ 1 keys can be carried across the empty corridor, as using
n+ 2 keys would require at least (2n + 3)W movements. Because one of those
keys must be the goal key, at most n literals are selected. Because of the way
the variable barriers are organized, this tmplies that exactly one literal for
each variable is selected, and hence the selection of literals defines a truth
assignment. It is a satisfying assignment, because it contains at least one literal
from each clause — otherwise the mobile could not get past the clause barriers.

Now assume there is a satisfying truth assignment for the propositional for-
mula. We must show that there is a plan of length at most (2n+2)W. We mark
the keys that correspond to true literals of the truth assignment as “selected “
and adopt the following strategy:

(1) For each of the n + m barriers, from left to right:
(a) Randomly choose a selected key that can open one of the locations of
the barrier.
(b) Mowe to the current location of that key on a shortest path.
(c) Pick up the key, move to the location left of the one to be opened on
a shortest path, open the location and drop the key.
(2) Move to location (0,0), pick up the goal key, move to (w,0) and drop the
key.

This clearly solves the task. We now have to bound the number of actions
required. There are exactly n+m+1 pickup and drop actions each, and n+m
open actions, totaling 3(n + m) + 2 non-movement actions.

29

The mobile never mowes to the left while carrying something and always carries
a key while moving to the right. However, each key can be moved to the right
at most w times. Hence, the mobile moves to the right at most (n + 1) - w
times. As its final destination is w units to the right of its start destination,
we can deduce that it performs at most n - w movements to the left. The
total number of horizontal movements is therefore bounded by (2n + 1)w =
2n+1)W + (2n+1)(2m + 2n).

Vertical moves are only necessary before passing barriers (n+m barriers times
2(n + m) + 2 planned paths), for accessing the correct location to be opened
(n +m times) and immediately before picking up a key or dropping the goal
key (n+m+2 times). In each of these cases, no more than two moves upwards
or downwards are needed. This leads to an upper bound on the total number of
vertical movements equal to 2((n+m)(2(n+m)+2)+ (n+m)+(n+m+2)) =
4(n+m)*+8(n+m)+4.

The total number of actions is thus no bigger than the sum of these three
bounds, which is 3(n+m)+2+ 2n+1)W+ (2n+1)(2m+2n) +4(n+m)*+
8(n+m)+4=(2n+2)W, as required. O

This concludes our discussion of the GRID domain.

3.7 MICONIC-10

For the last transportation benchmark, the MicoNIC-10 elevator domain,
introduced by Kéhler and Schuster [13], nomenclature is a bit complicated.
The AIPS 2000 competition actually featured three different domains under
that name, so it is more appropriate to speak of the MiCONIC-10 domain
family. However, we will shortly see that only the “full” MicoNic-10 domain
needs in-depth discussion. The simplest variant, called MicoNic-10-STRIPS,
defines tasks very similar to LOGISTICS with one mobile, or TRANSPORT 5001
with complete graph roadmaps.

Definition 31 MicoNIc-10-STRIPS task

A MiconNIic-10-STRIPS task is a TRANSPORT w01 task with a complete
graph roadmap such that all portables are goal portables and for each portable,
wnitial and goal location are different.

The mobile of a M1CONIC-10-STRIPS task is called the elevator, the porta-
bles are called passengers, and the locations are called floors.

30

The only difference between plans in the MicoNic-10-STRIPS domain and
plans in TRANSPORT lies in the restriction that passengers can only be dropped
off at their destination floor, not at other floors, and cannot be picked up by
the elevator again, once they have been moved to their destination. This is
formalized in the following domain definition.

Definition 32 MIcoNIc-10-STRIPS domain

The M1coNIC-10-STRIPS planning domain is equal to the restriction of the
TRANSPORT domain to the set of MICONIC-10-STRIPS planning tasks, ex-
cept for the following differences.

For all passengers p, the action pick,,, is only defined in states where the
current location of m equals the initial location of p.

For all passengers p, the action drop, is only defined in states where the current
location of m equals the goal location of p.

This definition is not completely in accordance with the PDDL definition
that was used in the AIPS 2000 competition: In the competition version, it is
possible to pick up the same passenger multiple times at his initial location,
even if he is already inside the elevator or at his goal location. In the latter
case, he can also be dropped there another time. This is a harmless modeling
flaw, which does not affect the following complexity result.

Theorem 33 Complexity of MiCcONIC-10-STRIPS planning

The plan existence problem for MI1CONIC-10-STRIPS can be decided in poly-
nomaial time, and the bounded plan existence problem for M1CcONIC-10-STRIPS
1s NP-complete.

PROOF. For plan existence, the algorithm from Theorem 13 can be used.

For bounded plan existence, Theorem 18 applies. It is easy to verify that the
minor differences between MI1CONIC-10-STRIPS and TRANSPORT w001 With
complete graph roadmaps does not invalidate the proof of that theorem. O

The real MicoNIiCc-10 domain, however, is somewhat more complicated, intro-
ducing many additional constraints on elevator movement caused by special
service requirements. MICONIC-10 tasks are defined as follows; we refer to the
literature [13] for a motivation of the different features.

Definition 34 MicoNIic-10 task

31

A Miconic-10 task is a 14—tuple (F, =, fo, P, lo, lg,A, Pv, PN; PD; Ps, PA, Pl; PQ),
where

e F' s a finite set of floors with a total order < and initial elevator floor

JoEF,

P is a finite set of passengers,

e ly,lg : P — F are the tnitial floor and destination floor functions,
respectively, satisfying ly(p) # la(p) for all passengers p,

e A C P x F is the access relation, where we say that passenger p has
access to floor f if and only if (p, f) € A, and

e Py, Py, Pp, Ps, Py, P, P, C P are the sets of VIP, non-stop, direct travel,
supervised, attendant, group one and group two passengers, respec-
tively.

A MICONIC-10 task is called simple if all passengers have access to all floors
and all special passenger sets (Py, Px, Pp, Ps, Px, Py, P») are empty.

Compared to the STRIPS variant, MicoNIic-10 replaces individual pickup or
drop actions for passengers by a single “stop” action which causes all pas-
sengers that have reached their destination floor to debark and all passengers
waiting at that floor to enter automatically.

It also introduces passengers that impose movement restrictions on the eleva-
tor. The elevator may only stop at floors to which all passengers inside the
elevator have access. VIP passengers must be served first, and if a non-stop
passenger is inside the cabin, the elevator may only stop at his destination
floor. If a direct travel passenger wants to travel up, the elevator must not
move down, and vice versa. Supervised passengers may only be in the cabin
while attendants are also present, and passengers from the two groups may
not travel together. The following definition formalizes these constraints.

Definition 35 MICONIC-10 domain

The MICONIC-10 planning domain maps MICONIC-10 tasks with passenger
set P and floor set F, ordered by <, to planning task state models as follows.

The set of states consists of all triples (fg, Pu, Ps), where fg € F and Py, Ps C
P. The location of the elevator is denoted by fr, called the current floor. A
passenger is called moving (in the elevator) if he is in Py, served if he is in
Ps and waiting if he is neither moving nor served.

The initial state is (fo,D,0), where fy is the initial elevator floor. A state is a
goal state if all passengers in P are served.

The set of actions consists of a movement action movey for each floor f and
a single stop action.

32

The movement action movey is defined in all states (fg, Pu, Ps) such that
fe # [and for all destination floors fg of moving direct travel passengers,
either fru < f <X fa or fa 2 f = fu. The resulting state is then (f, Py, Ps).

If the stop action stop is defined in a state (fr, Pu, Ps), then the resulting
state s (fr, Pu \ Paebark U Penter, PsU Pebark), Where Paepark contains all moving
passengers with destination floor fg, and Peyger contains all waiting passengers
with wnitial floor fg.

The action is defined in all states satisfying the following conditions:

o Access: All moving passengers have access to the current floor.

o VIP: The current floor is the initial floor of a waiting VIP passenger or
the destination floor of a moving VIP passenger, or all VIP passengers are
served.

e Non-stop: The current floor is the destination floor of a moving non-stop
passenger, or there are no moving non-stop passengers.

o Supervising: If the resulting state contains a supervised moving passenger,
then it also contains a moving attendant.

o Groups: The resulting state does not both contain moving passengers of
groups one and two.

The MICONIC-10-SIMPLE domain is the restriction of MICONIC-10 to the
set of simple MICONIC-10 tasks.

This definition is in accordance with the original description of the M1CONIC-
10 domain by Koéhler and Schuster. It repairs two flaws of the PDDL defi-
nition, which does not implement the VIP service and non-stop travel con-
straints correctly. In the original definition, the elevator is allowed to travel
to the initial or destination floor of a VIP passenger even if the passenger
has boarded /debarked already and other VIP passengers should take priority.
Additionally, the elevator cannot stop at any floor if several non-stop travel
passengers with conflicting destinations have boarded. Both differences to the
PDDL specification are harmless regarding our results, however. We will not
make use of nonstop passengers in our proofs, and there will only be one VIP
passenger per task, in which case the problem does not arise. Before proving
results for the full MicoNi1C-10 domain, we briefly discuss the simple variant.

Theorem 36 Complexity of MICONIC-10-SIMPLE planning

The plan existence problem for MICONIC-10-SIMPLE can be decided in polyno-
mial time, and the bounded plan existence problem for MI1CONIC-10-SIMPLE
1s NP-complete.

PROOF. Plan ezistence is trivial, since plans always exist. A trivial plan

33

that solves a MICONIC-10-SIMPLE task stops at each floor in some arbitrary
order, after which no more passengers are waiting, then stops at each floor a
second time, at which point all passengers have been served.

For bounded plan existence, note that this is equivalent to bounded parallel plan
ezxistence in TRANSPORT w001 With complete graphs for the variant of parallel
planning where multiple portables can be picked up and dropped at the same
time. As discussed in Section 3.4, this is an NP-complete problem. O

Of course, this result implies that bounded plan existence in the full MicoNiC-
10 domain is also NP-hard. However, the following result shows that the
additional constraints do lead to different complexity results.

Note that the previous proof of hardness critically relies on the fact that
the roadmap of a MicoNic-10 task is a complete graph, which is a somewhat
unreasonable assumption. In order to take into account the real costs of moving
elevators between distant floors, it would also be interesting to investigate a
variant of the MICONIC-10 domain where floors are only connected to the
floors directly above and below. For the following result these different ways
of modelling do not make a difference, because in the full MicoNIC-10 domain,
plan existence is already NP-complete.

Theorem 37 Complexity of MICONIC-10 planning

The plan existence and bounded plan existence problems for MI1CONIC-10 are
NP-complete, even if the only special passengers are attendants, supervised
passengers and a single VIP passenger.

PROOF. Membership in NP for both problems follows from a polynomial
plan length arqgument: The number of stop actions in a reasonable plan can
be bounded by twice the total number of passengers because a stop action can
be omitted if no passenger enters or leaves the elevator. The number of move
actions can be bounded by the number of stop actions, one movement before
each stop.

Hardness for the bounded plan existence problem follows from the previous
result. For plan existence, we reduce from the problem of finding a Hamiltonian
path with a fized start vertex vy in a digraph (V, A) [11, Problem GT39].

The corresponding MICONIC-10 task has the following floors: the initial ele-
vator floor fy, a final floor f,,, for each vertex u a vertex start floor f, and
vertex end floor f, and for each arc (u,v) an arc floor f,,. F is the set of
all these floors. For each vertex u, F, is the set containing f,, fr and the

34

arc floors for outgoing arcs of u. Because we do not make use of direct travel
passengers, the total order on the floors is irrelevant.

These are the passengers to be served:

Passenger From | To | Access to. .. Special
Do fo | fu {fo, fu. } VIP, attendant
Yu € V:p, fo fu F\{fs} supervised
YueV:p fu | fi| FuU{fx} attendant
VaeVip2 | fi | S| F\{f) none
V(u,0) € A: puy | fuw | fo | o Fi o} | attendant

Assume that it is possible to solve the task. Because py is a VIP, the first stops
must be at fo and f,,, picking up all the supervised passengers and p;, . Because
of the access restrictions of that passenger, the journey can only proceed to
floors from F,,, and f; 1is not an option because going there would lead to the
only attendant leaving. Thus, the elevator must go to f,, ., (for some vertex vq
that is adjacent to v1) and can then only proceed to fy and then f,,, picking
up py; and p;, .

We are now in a similar situation as upon arrival at f, , and again, the
elevator will eventually go to some floor f,,, then f,,, following the arcs of the
digraph (V, A) in a path [vq,...,v,] until all vertices have been visited once.
No vertex can be visited twice because of the access restrictions for passengers
of type p°. So plan ezistence implies a Hamiltonian path starting at vy in the
digraph.

On the other hand, the previous discussion shows that if a Hamiltonian path
erists, there is a sequence of elevator movements and stops such that all su-
pervised passengers have been served and the elevator is located at some floor
fu for u € V. No longer requiring attendants, it can then immediately proceed
to fx, then fo and finally serve the remaining passengers of type fu ., (for arcs
(u,v) not part of the Hamiltonian path), one after the other, completing the
plan. 0O

3.8 Summary

This concludes our analysis of transportation planning. For a fairly general
family of transportation domains, we have shown NP-completeness of non-
optimal planning in the restricted fuel case and NP-completeness of optimal
planning in all cases. Just finding some plan in tasks where fuel is abundant

35

TRANSPORT 4 4 %
Corollary 12

MYSTERY’
Theorem 22

MYSTERY
Theorem 22

TRANSPORT 4 00
Theorem 13

GRID
Theorem 29

TRANSPORT 4 1 4+ MICONIC-10 LOGISTICS Tl‘g’;]:’ipgf;;fl nOG;;I;rS
planar graph Theorem 37 Theorem 24 Theorem 17 Theorem 29
TRANSPORT o 11 Miconic-10 TRANSPORT o5 001 Miconic-10

planar graph simple ADL compl. graph STRIPS

Theorem 15 Theorem 36 Theorem 18 Theorem 33

Fig. 9. Complexity of plan existence for transportation benchmarks.

was shown to be a polynomial problem in the TRANSPORT hierarchy.

These results extend to the transportation benchmarks from the AIPS com-
petitions: Where fuel constraints were present, namely in the MYSTERY and
MYSTERY’ domains, both decision problems under investigation are INP-
complete. Without fuel constraints, such as in the domains Locistics, GRID,
MiconNic-10-STRIPS and MIcONIC-10-SIMPLE, non-optimal plans can be
generated in polynomial time, but bounded plan existence is still NP-complete.
Two domains exhibit slightly different behavior: In the full Miconic-10 do-
main, despite unlimited fuel, plan existence is already NP-complete because
of the variety of different constraints on the movement of the elevator, and
in the GRIPPER domain, planning is so easy that even optimal plans can be
generated in polynomial time by a trivial algorithm.

The results were obtained by exploiting the generalization /specialization hier-
archy of the planning domains under investigation. The hierarchy is illustrated
in Figure 9. Black lines indicate special cases, gray lines strong similarities of
domains. Deciding plan existence is NP-complete for domains with gray boxes,
and plans can be generated in polynomial time for domains in white boxes.
The bounded plan existence problem is NP-complete for all domains in the
figure; the trivial GRIPPER domain is not shown.

Some benchmarks are still NP-hard if some severe restrictions are made. For
instance, in the GRID domain, no locked locations are needed for proving
NP-hardness. All hard multi-agent benchmarks are already hard if there is
only a single agent. Mainly for this reason, we could also show that for all
transportation domains investigated, sequential and parallel planning are of
identical complexity.

36

4 Non-transportation domains

In this section, we will discuss the remaining benchmark domains from the
ATPS 1998 and ATPS 2000 planning competitions, namely MOVIE, ASSEMBLY,
BLockswORLD, SCHEDULE and FREECELL. For the first three, our discussion
will be brief.

4.1 MOVIE, ASSEMBLY and BLOCKSWORLD

McDermott described the MOVIE domain as follows [8]:

MoviE: In this domain, the goal is always the same (to have lots of snacks
to watch a movie). There are seven actions, including rewind-movie and
get-chips, but the number of constants increases with the problem number.

The purpose of the MOVIE domain in the 1998 competition was to check if the
performance of the competing planning systems degrades in the face of many
objects in the task definitions. It was found that this was not the case, as all
planners could quickly solve all MOVIE tasks. From a complexity point of view,
this benchmark is not interesting. All tasks are solved by the same plan, and
hence non-optimal, optimal sequential and optimal parallel planning are all
constant time problems in this domain. Therefore, we restrict our discussion
of MOVIE to the following remark.

Remark 38 Complexity of MOVIE planning

The plan existence and bounded plan existence problems for MOVIE can be
decided in polynomial time.

The next benchmark under discussion, ASSEMBLY, was introduced by McDer-
mott as follows [8]:

AsseEMBLY: The goal is to assemble a complex object made of subassemblies.
There are four actions: (1) commit resource assembly, (2) release resource
assembly, (3) assemble part assembly, and (4) remove part assembly. The
sequence of steps must obey a given partial order. In addition, through
poor engineering design, many subassemblies must be installed temporarily
in one assembly, then removed and given a permanent home in another.

A discussion of the complexity of ASSEMBLY faces some problems. First of
all, although the domain was part of the ADL track of the 1998 competition,
neither of the two participating ADL planning systems was able to solve a sin-
gle competition task, so results we could provide for this domain are probably

37

less valuable because of the lack of empirical data for comparison.

More importantly, some of the competition tasks are specified in incorrect
PDDL, making it impossible to feed them to current ADL-capable planners
such as FF [14], which can solve all remaining ASSEMBLY tasks. Specifically,
the competition tasks 7, 12, 13, 14, 19 and 27 are flawed.

Last and most importantly, there seem to be some severe errors in the PDDL
definition of the domain itself, namely in the remove operator, which in its cur-
rent state allows completely disassembling a composite object into its atomic
parts without making it unavailable or incomplete. For example, consider the
(impossible) task of creating a rectangular table and an oval table out of four
legs, a rectangular board and an oval board. In the domain as specified for the
competition, it is possible to build the rectangular table out of the board and
the legs, remove the legs (which leaves the rectangular table in its complete
state) and then use the legs and the oval board to build the oval table, creating
two tables.

There is another minor oddity with regard to resource allocation, which allows
to allocate resources such as a voltmeter to an object, incorporate this object
into other objects while the resource stays allocated and then deallocate the
resource although the object it has been allocated to is buried deep inside
another object.

An in-depth treatment of the ASSEMBLY domain would require us to look both
at the domain “as is”, in its flawed state, to be able to judge the performance
of planning systems that solve ASSEMBLY tasks, and to look at the corrected
version. We have performed this analysis [7] and do not want to repeat the
whole discussion here, as we consider it of little significance considering the
amount of space it would require. It turns out that in the “corrected” ASSEM-
BLY domain, there is an infinite sequence of scaling tasks for which shortest
plan lengths grow exponentially in the problem size, whereas plan lengths in
the competition version are polynomially bounded and plans can be gener-
ated in polynomial time. We will quote the first result here and point at the
reference for the proof [7].

Theorem 39 Complexity of ASSEMBLY planning

Shortest plan sizes in the (corrected) ASSEMBLY domain can grow erponen-
tially in the encoding length of the task, and hence optimal and non-optimal
planning require exponential time.

Of course, it is possible that the decision problems corresponding to optimal
and non-optimal plan generation are polynomial-time problems despite the
fact that plan lengths cannot be polynomially bounded. This is the case for
the towers of Hanoi problem, which is not entirely unrelated to ASSEMBLY.

38

However, since our motivation for analyzing PLANEX and PLANLEN ulti-
mately lies in obtaining insights into the complexity of plan generation, we
consider such results less useful and do not analyze the ASSEMBLY domain
further.

Instead, we turn to BLOCKSWORLD, probably the best-known planning do-
main. It was part of the ATPS 2000 planning competition and probably needs
no further explanation. The complexity of BLOCKSWORLD planning has been
investigated by a number of researchers. The following result [4] is well-known.

Theorem 40 Complezity of BLOCKSWORLD planning

The plan existence problem for BLOCKSWORLD can be decided in polyno-
mial time. The bounded plan existence problem for BLOCKSWORLD is NP-
complete.

For a proof of this theorem, we refer to the work by Gupta and Nau [4].
Other interesting results for BLOCKSWORLD, including optimal planning al-
gorithms and near-optimal planning algorithms that run in linear time have
been detailed by Slaney and Thiébaux [6].

Considering the as of yet unaddressed problem of optimal parallel planning in
the BLOCKSWORLD domain, where multiple blocks can be moved simultane-
ously as long as all movement involves different towers, it is not hard to see
that plans with a minimal number of time steps can be found in polynomial
time. It is sufficient to replace the choice point in the optimal planning al-
gorithm by Slaney and Thiébaux with a planning step that performs all the
considered moves simultaneously. Building on the existing results, it is easy
to verify that this does not lead to multiple moves affecting the same tower,
and that the resulting parallel plan is of minimal length.

4.2 SCHEDULE

We now turn our attention to the SCHEDULE domain from the AIPS 2000
competition, which can be described as follows:

SCHEDULE: A set of physical objects must be processed by various machines
to change their physical properties, such as color, shape and surface condi-
tion to match the goal requirements. The available equipment consists of a
polisher, a roller, a lathe, a grinder, a punch, a drill press, a spray painter
and an immersion painter.

In order to prove complexity results, we have to formalize this description. The
following definition of SCHEDULE tasks is motivated by the PDDL definitions

39

used in the planning competition.
Definition 41 SCHEDULE task

The sets of SCHEDULE temperatures, surface conditions, shapes, col-
ors and holes and the set of SCHEDULE object states are defined as follows:

O1 = {cold, hot}

Osc = {rough, smooth, polished, none}

Os = {cylindrical, circular, oblong}

Oc = {blue, yellow, red, black, none}

Oy = {front1, front2, front3, back1, back2, back3}
O = Or X Osc X Og x O¢ x P(Oy)

A SCHEDULE task is a finite sequence of pairs from O x P(O).

According to this definition, an object in the SCHEDULE domain is charac-
terized by its temperature, surface condition, shape, color and set of holes,
for each of which there is a finite range of possible values. A SCHEDULE task
specifies a sequence of such object states, describing the initial states of a set
of objects, each coupled with a set of object states that specify possible goal
states for these objects. In the SCHEDULE domain as used in the competition,
there are some further restrictions on these sets. For example, specifications
like “This object must become smooth and oblong” are allowed, but specifi-
cations like “This object must become red and hot or green and smooth” are
not. By allowing more complex goal specifications, it seems that we make the
planning problem harder, but we will shortly see that this does not affect our
results. We can now define the SCHEDULE domain.

Definition 42 SCHEDULE domain

The set of SCHEDULE machinery is defined as
M = {roller, lathe, grinder, polisher, punch, drill, spray, immersion}.

FEach machine m € M has an associated transformation t,,, which is a
partial function on object states. The exact definition of these transformations
18 not important to our analysis.

The SCHEDULE planning domain maps SCHEDULE tasks ((i1,G1), - - -, (in, Gn))
to planning task state models M as follows.

The set of states is O"xP(M)xP({1,...,n}). For a state ((o1, ..., 0,), Mg, Og),
0; 18 called the current state of the i-th object, a machine is said to be busy

40

iof it is in Mgy, and the i-th object is said to be busy if i € Og.

The initial state is ((i1,. ..,), 0,0), and the set of goal states consists of those
states where for all i, the current state of the i-th object is in Gj.

The set of actions is { process,,; | m € M,i € {1,...,n} } U {timestep}.

The action process,, ; is defined in all states ((o1,...,0,), Ms,Og) such that
t., 1s defined for o; and neither m nor the i-th object are busy. The resulting
state is then ((o1,...,0i-1,tm(0i), 0it1, - .., 0n,), Mg U {m}, Op U {i}).

The action timestep is defined in all states ((o1,...,04), Mg, Og) where at
least one machine is busy and leads to state ((o1,...,0n),0,0).

Plans in the SCHEDULE domain naturally fall into parts, separated by timestep
actions. During each of these parts, each machine can only be used at most
once, and hence each part consists of at most |M| = 8 actions. In this domain,
it is more natural to optimize the number of parts than the number of actions.
Therefore, our analysis addresses both optimization criteria.

Theorem 43 Complexity of SCHEDULE planning

The plan existence and bounded plan existence problems for SCHEDULE can
be decided in polynomial time. The latter result also holds if only the number
of timestep actions, not the total number of actions, is taken into account for
calculating plan length.

PROOF. We only prove the bounded plan existence results, which imply the
plan existence result. To do so, we first devise an optimal planning algorithm
for the “usual” bounded plan existence case and then show how it can be mod-
ified if only the number of timestep actions shall be counted.

First, observe that objects with the same current state and goal specification
need not be distinguished. As there is only a fired number K of possible com-
binations of current state and goal specification for an object, a SCHEDULE
state (apart from the sets of busy machines and objects) can be described in an
abstract way by a K-tuple of natural numbers, specifying how many objects of
each kind are present. This will be called an abstract state of the task. Abstract
states where each entry greater than zero relates to a state/goal pair where the
state matches the goal description are called abstract goal states.

The same applies to process actions: Rather than specifying that the i-th ob-
ject is being processed by machine m, it suffices to say that some object which
matches the current state and goal description of the i-th object is being trans-
formed by m. Thus, the process actions can be reformulated to work on ab-

41

stract states. Converting an abstract plan of that kind into an actual plan is
sufficiently easy to not require further discussion.

To avoid having to worry about busy machines and objects, the abstract ac-
tions can be replaced by abstract macro actions, sequences of abstract actions
containing exactly one timestep action, which is the last one in the sequence.
Each plan can be partitioned into macro actions of that kind, assuming that
it ends in a timestep action (which does not make sense for shortest plans,
but we can require this property and then remove the last action after the plan
has been generated). The advantage of this view is that before and after each
abstract macro action, no machine and no object are busy.

Because there are only eight machines, each abstract macro action can consist
of no more than nine actions, including the terminating timestep. Thus, the
number of possible macro actions is constant.

What is gained by recasting the problem in that way? As was said before,
abstract states can be represented by a K-tuple of natural numbers, where
K = |0 xP(0)| is fized, and each natural number in this tuple can be bounded
by the total number of objects in the task, which is its encoding length. Thus,
the number of abstract states s polynomial in the encoding length.

This means that explicit graph-search techniques can be used to find a short-
est plan consisting of abstract macro actions. Because different macro actions
can comprise a different number of actions (between one and nine), the cor-
responding arcs must be weighted by that number. Still, the one-to-all shortest
path problem in a weighted digraph can be solved in polynomial time, and it is
then easy to pick the abstract goal state with shortest weighted distance from
the abstract initial state (if any reachable goal state exists), extract the ab-
stract plan, expand the macro actions and assign actual objects to the abstract
actions to compute an optimal sequential plan in polynomial time.

If only timestep actions are to be counted, a non-weighted digraph should be
used, because then all macro actions have a uniform cost of one. O

The polynomial time property of the algorithm critically relies on the fact that
the number of machines and object states is constant. If the object states,
machines and transformations are given as part of the individual planning
tasks, then the bounded plan existence becomes NP-complete, at least in the
more realistic case where only timestep actions are counted. This is already
true if there are only three machines [11, Problem SS18]. Of course, the plan
existence problem stays easy because objects can still be dealt with one at a
time, by searching the transition graph that is defined by the set of object
transformations.

42

Note that the execution time of the described algorithm, depending on the
graph search algorithm used, grows at least as quickly as n, where n is the
input size and K = |O x P(O)| = 7680 - 27589 which means that this is not a
practical algorithm. As was mentioned earlier, the real AIPS domain does not
allow for arbitrary goal descriptions, which reduces the 27589 factor to 80. Still,
an O(n7%808%) = O(nb1440%) algorithm is not tractable in practice. Although
further optimizations can be used to decrease the complexity significantly, it
is not obvious what a really tractable algorithm could look like.

4.3 FREECELL

The final benchmark we want to discuss is the FREECELL domain, based on
the popular solitaire card game. The original card game can be described as
follows:

FrREECELL: The game is played with a standard deck of 52 cards, initially

arranged into eight tableau piles of six or seven cards each. Cards can be

moved between these eight tableau piles, four free cells and four foundation
piles according to the following rules:

e Cards may only be picked up if they occupy a free cell or if they are the
top card of a tableau pile. No more than one card can be picked up at the
same time.

e Cards may only be dropped in a free cell if it does not currently hold any
other card.

e Cards may only be added to a tableau pile (as its new top card) if that
pile is empty, or the value of the card is one less than the value of the top
card of the pile and it is of a different color (e.g., the four of spades can
only be added to tableau piles with the five of diamonds or hearts as their
top card).

e Aces may be added to an empty foundation pile. Other cards may only
be added to a foundation pile if their value is one higher than the value
of the top card of the pile and they are of the same suit.

The objective of the game is to move all cards to foundations.

Using a fixed deck size, the standard FREECELL game only allows for a con-
stant number of different initial configurations. This is not very interesting
from a complexity theory point of view, because problems with a finite number
of instances can trivially be decided in polynomial time. Thus, it is necessary
to allow varying deck sizes, either by adding new suits or by adding cards to
the existing suits.

Of these, we choose the latter, because it seems the more natural choice.
In fact, the AIPS 2000 competition tasks use the same scaling parameter,

43

although for these, deck sizes never exceed 52 cards and in most cases, less
cards are used. We also allow for a varying number of tableau piles and free
cells, but we will see that our hardness results already hold if the number of
free cells is a fixed constant.

Definition 44 FREECELL task

For a natural number n € N, C, = {{,0, &%, 8} x {1,...,n} is called the
n-deck. Its elements are called cards. For a card (s,v), s is called its suit
and v is called its value. A card is called red if its suit is & or Q, and black
otherwise.

An n-w-tableau is a set of at most w non-empty sequences over C, such
that each card appears in at most one such sequence. The individual sequences
are called tableau piles. The last card of the sequence is called its top card,
the subsequence that is obtained by removing the top card is called the buried
part of the pile. A card ¢ matches a tableau pile if and only if ¢ and the top
card of the pile are of different color and the value of ¢ is one less than the
value of the top card.

A FREECELL task is a 4-tuple (n,w,c,T), where

n € N is called the suit length,

w € N s called the tableau width,

c € N is called the free cell count, and

T is an n-w-tableau such that each card in C,, appears in exactly one tableau
pile. It is called the initial tableau.

To readers acquainted with FREECELL, the previous definition should go with-
out much explanation. One thing we would like to point out, however, is that
FREECELL tasks as defined above do not necessarily contain tableau piles of
(roughly) equal size, as is usually assumed. This is not an overgeneralization,
because the height of tableau piles can be equalized by adding additional cards
of lowest value to the smaller piles. These will be moved to foundations imme-
diately in any reasonable plan, resulting in the original uneven tableau. Moves
of this kind are never bad and are hence performed automatically by many
FREECELL computer programs.

We can now formally define the semantics of legal FREECELL moves by defin-
ing the domain.

Definition 45 FREECELL domain

The FREECELL planning domain maps FREECELL tasks of suit length n and
tableau width w to planning task state models as follows.

44

The set of states consists of all pairs (T, F) such that T is an n-w-tableau
and F is a set of cards which are not part of any tableau pile such that |F|
15 bounded by the free cell count of the task. T and F are called the current
tableau and free cell cards, respectively. In any state, it s assumed that cards
that are neither in T nor in F' have been moved to foundations.

In the initial state, the current tableau s the initial tableau and the set of free
cell cards 1s empty. There is a single goal state, where both the current tableau
and set of free cell cards are empty.

To define the set of actions, we introduce pickup and drop activities, which
are partial functions on the state set that are not themselves actions of the
planing task state model but helpful for defining them.

There are three kinds of pickup activities for a card c. The first, pickup from
free cell, is defined in all states (T, F') in which c is a free cell card. It maps
to the state (T, F \ {c}). The second, pickup from tableau, is defined in all
states (T, F) where c is the only card of some tableau pile p € T and maps to
(T'\{p}, F). The last, pickup from tableau pile, is defined in all states (T, F')
containing some tableau pile p with top card ¢ and non-empty buried part p'

and maps to (T \ {p}U{p'}, F).

Additionally, there are four kinds of drop activities for card c. Drop in free cell
and drop on tableau are the inverse functions of the first two kinds of pickup
activities just described. Note that the definition of the state space ensures
that the mazimum number of free cells and tableau piles is never exceeded.
The third, drop on tableau pile is the inverse function of drop from tableau
pile, but with the additional restriction that the dropped card must match the
pile it is dropped on. The last, drop at foundations, is defined in states where
no tableau or free cell card of the same suit as ¢ has a lower value. Dropping
at foundations leaves tableau and free cell cards unchanged.

Having defined pickup and drop activities, the set of actions of the planning
task state models consists of all compositions dropopick, where pick is a pickup
activity and drop is a drop activity for the same card.

The following theorem contains our last technical result.
Theorem 46 Complexity of FREECELL planning

The plan existence and bounded plan existence problems for FREECELL are
NP-complete, even for an arbitrary fized number of free cells.

PROOF. Membership in NP for both problems follows from a polynomial
plan length argument. This part of the proof is quite technical and we will not

45

provide it in full detail.

Note that the only kinds of actions that cannot be undone immediately (by
applying an inverse action) are movements to foundations and movements of
cards from tableau piles where the top card does not match the buried part of
the pile.

Cards in foundations are out of play, so the number of actions of the first kind
in any plan is bounded by the total number of cards. As no new mismatch in
tableau piles is ever introduced in the course of plan execution, the number
of actions of the second kind is bounded by the number of mismatches in the
initial tableau.

Hence, there is a polynomial bound on the number of non-undoable movements,
and it suffices to argue that in between non-undoable movements, the number
of actions in shortest plans are polynomially bounded. This part of the proof
is spelled out in the reference [7].

For hardness, we only need to discuss the plan existence problem; bounded plan
ezistence follows.

The proof is by reduction from 3SAT. Let (V,C) be a 3SAT instance, where
V =A{vi,...,vn} is a set of variables and C is a set of clauses over V' con-
taining exactly three literals each. We write l; ; for the j-th literal of the i-th
clause. The corresponding FREECELL task is rather intricate and we encour-
age the reader to look at Figure 10 during the following discussion to get some
intuttion of how propositional formula and planning task are interrelated.

We need some ordering for the literals over V', so we call v; the (2i — 1)-th
literal and —w; the 2i—th literal and write ly, for the k-th literal. We define the
number of occurrences of I as the number of pairs (i,7) such that l; j = I,
and the corresponding pairs are called the first, second, ...occurrence of l. In
which order the occurrences are numbered is of no importance. Additionally,
we define o, the cumulated number of occurrences up to l;, as the sum of the
number of occurrences of l for all k' < k.

Furthermore, we define the selection value valg as |C| + 2n + 2, the literal
value of Iy as valy = vals + 2k + 20, the clause value valc as vals, + 2 and
the bottom value valg as valc + 6|C|. In the example of Figure 10, vals = 11,
valy = 15 (for literal vy), valy = 21 (for —wy), valy = 27 (for ve), valy = 31
(for —wy), vals = 37 (for vy), valg = 41 (for —vs), valc = 43 and valg = 61.

The FREECELL task has a suit length of valg + 4|C| — 2, a tableau width of

6|C| + 2|V| + 2 and a free cell count of 0. The initial tableau is arranged as
follows.

46

Fig. 10. FREECELL task corresponding to (v1VvaVuz) A(—v1VoeVug)A(—v1 VvV —vs).

The piles of the initial tableau, depicted in Figure 10, fall into three groups.
The first 2|V | + 1 piles are called the literal selection piles, depicted at the
top of the figure. The next 6|C| piles are called the clause piles, organized into
subgroups of siz piles that each relate to a specific clause, called clause groups.
The last pile, holding most of the cards, is called the big pile, at the bottom
of the figure. Note that cards at the top of a pile are shown near the bottom
of the picture, following the usual convention of FREECELL implementations

on computers.

47

1 -1 V9 —9 V3 U3
Ml M15 21 N27 A3l A37 [Y8l
A9 &9 N7 &7 A5 &5
¢10 Q10 o8 8 O6 06
1 V V2 V U3

$61 061 &61 $63 Q63 &63

$d4 044 M4 QAT Q47 &l

a13 Aa25 A35 43 [X5 M6

014 {26 {36

-1 V V2 V U3

{65 Q65 &65 67 Q67 &67

$50 50 A50 b3 053 &2

a9 23 A33 49 49 A52

$20 $24 $34

w1 V vy Vv

$69 Q69 %69 Ol or1 &7l

{56 056 A56 Y 59 &3

a7 A29 A39 b M55 A58

$18 $30 $40

&4

Literal selection piles: The first of these only contains the card (#, vals).
The other piles contain three cards each. Fach of them corresponds to a literal,
the pile for l, being defined as (M, valy) (M, vals — k — 1)($, vals — k) if k is
odd and as (M, valg)(d, vals — k)(Q,vals — k + 1) if k is even.

Clause groups: Fach group is organized as follows. There are six piles corre-
sponding to the i-th clause. We set the bottom value for the group as bottom =
valg + 4(i — 1) and the base value for the group as base = valc + 6(i — 1).

The first three piles contain four cards each. The first and second of these are
of value bottom and base+1, respectively, suit does not matter. The remaining
cards depend on the literals in the clause: For 1 < j < 3, the third and fourth
cards of the j-th pile are (M, valy — 2m) and (O, valy, — 2m + 1), where k and
m are calculated such that (i,7) is the m-th occurrence of ly.

The other three piles contain three cards each.

The fourth pile is defined as (<, bottom + 2)(<$, base + 4) (<, base).
The fifth pile is defined as (9, bottom + 2)(Q, base + 4) (M, base).
The sizth pile is defined as (&, bottom + 2)(&, i) (M, base + 3).

Big pile: The top card of this pile is (&, |C| + 1), and below this are all
remaining cards, ordered such that cards of lower value are closer to the top.

We now show that this FREECELL task can be solved if and only if there is
a satisfying assignment to the variables of the logical formula. First assume
there is such a satisfying assignment oo : V- — {T, L}. The following strategy
solves the task:

For eachi € {1,...,n}, move the top two cards from the literal selection piles
that correspond to literals which are true under o to the first literal selection
pile. This releases the bottom cards of some literal selection piles, spades cards
which can then be used to move cards from the clause piles. In the example
of Figure 10, for the assignment {(vy, T), (ve, T), (vs, L)} these are the 15, 27
and 41 of spades. These are called the literal choice cards.

The first three piles of each clause group relate to the literals in that clause.
The top two cards of such a pile can be moved to the literal selection piles if
and only if the literal choice card of the corresponding literal has been revealed.

Because we have a satisfying truth assignment, a literal is satisfied in each
clause, and thus it is possible to remove the top two cards of one of the first
three piles of each clause group. If the new top card is black, the top card of
the fourth pile of the clause group can be moved on top of it; if it is red, the
top card of the fifth pile can be moved. Thus a red card is revealed in the fourth
or fifth pile, and the top card of the sizth pile can be moved on top of that.

48

After this has been done for all clauses, the first |C| cards of clubs are available
in the sixth piles of the clause groups and can be moved to foundations, allowing
to mowve the top card of the big pile to foundations. This reveals many low-
valued cards, and it is not hard to see that all cards of values up to valg can be
moved to foundations immediately. This reveals the literal choice cards of all
literals that are false under the chosen assignment, allowing to move the top
two cards of the clause group piles relating to unsatisfied literals to the literal
selection piles as well.

After this has been done, all piles are ordered by value, with cards of lower
value closer to the top, allowing to move all remaining cards to foundations,
solving the task.

Now assume that the FREECELL task is solvable. It is not possible to move the
bottom card of any tableau pile within the tableau before the top card of the big
pile is moved, because all cards that they could be moved on top of are buried
in the big pile. Before the top card of the big pile is mowved, it is not possible to
move the bottom card of any pile to foundations either. This implies that the
first movement of the top card of the big pile cannot go to an empty tableau
position.

On the other hand, it can not be moved on top of any other card as its first
movement, because all possible destination cards are buried under it. Together,
this implies that its first (and thus only) movement must be directly to foun-
dations.

This in turn requires all lower-valued clubs cards to be moved to foundations
first, requiring movements within the clause piles. For each clause group, the
top card of the sizth pile must be moved, and it can only be moved to the second
card of the fourth or fifth pile, requiring the top card of either of these piles
to be moved. These in turn can only be moved on top of the second (counting
from the bottom) card from any of the first three piles of that clause group.
Thus, in each clause group, the top two cards of one of the first three piles
must be moved somewhere else for the task to be solvable.

The only way this can be done is by uncovering the literal choice cards of
corresponding literals in the way explained in the other direction of the proof.
As it is not possible to uncover the literal choice card for v; and —w; at the
same time (for any i), this requires the existence of a satisfying assignments
to the truth variables, completing the proof. 0O

If there are more than zero free cells, a very similar reduction can be used
by ensuring that all free cells must become occupied right at the start of any
plan and cannot be cleared before the top card of the big pile is moved to
foundations. Again, we refer to the literature for details [7].

49

This result concludes our discussion of FREECELL. As the proof shows, the
hardness of planning in this domain is not (or at least not exclusively) due
to the difficulty in allocating free cells or empty tableau positions, but rather
due to the choice of which card to move on top of a tableau pile when there
are two possible choices.

5 Discussion

In this article, we analyzed the computational complexity of deciding plan
existence and bounded plan existence for the planning domains used in the
ATPS 1998 and 2000 competitions.

We discovered that the majority of benchmarks fits into a hierarchy of trans-
portation domains, which we introduced and analyzed. One of our intentions
in looking at a hierarchy of planning domains rather than isolated decision
problems was to find the boundary between easy and hard problems within
the general domains. For TRANSPORT, this boundary is clearly defined: For
domains with restricted fuel, it is hard to generate plans, whereas for domains
with unlimited fuel, solving this task is easy. One possible explanation why
fuel restrictions make these problems harder is that, by bounding the number
of movements that can be performed, they effectively limit the length of the
generated plans, and hence the problem of just finding any plan becomes akin
to the problem of finding an optimal plan.

This latter problem is hard to solve for all but the most trivial transportation
domains we investigated (i.e., for all except GRIPPER). The main source of
hardness that we could identify is a difficulty in ordering: While it is usually
evident how individual portables should be transported to their destinations,
the interactions between different portables make optimally solving the overall
task a hard problem.

The MicoONIC-10 elevator domain, which is the only transportation domain
we analyzed where fuel is not restricted and yet generating plans is hard, shows
how side effects of actions can make a greedy planning strategy inappropriate.
Specifically, the idea of picking up one person after the other and moving
them to their destination floor does not work because it is not possible to
keep other people (who we do not intend to move to their destination yet)
from boarding the elevator, and their boarding can render the task of moving
the other passengers to their destinations more difficult or impossible because
of access restrictions or required attendance.

For three of the non-transportation benchmarks, we did not go into detail.
Planning in MOVIE is trivial, planning in BLOCKSWORLD is a well-studied

20

problem, and the ASSEMBLY domain contains several flaws. In the two re-
maining planning domains, we found no difference in complexity between op-
timal and non-optimal planning. In SCHEDULE, both problems can be solved
in polynomial time, and in FREECELL, the corresponding decision problems
are both NP-complete. However, it should be noted that for SCHEDULE, our
optimal planning algorithm is of very high complexity (though still polyno-
mial), whereas it is not hard to devise linear-time algorithms for non-optimal
SCHEDULE planning.

It is interesting to observe that in many benchmark domains, there is a com-
plexity gap between plan existence and bounded plan existence. This is a point
which must not be neglected when evaluating planning algorithms. Optimal
and non-optimal planning systems cannot be easily compared to one another
in terms of performance in a meaningful way, because they are solving differ-
ent problems. While this fact is by no means new, it is interesting to note that
it actually applies to many of the benchmark domains that are routinely used
for evaluating planning systems. There has been significant recent progress
on non-optimal planning, but in our opinion, optimal planners tend to get
less attention than they deserve, maybe due to the fact that they are often
compared to their non-optimal counterparts in terms of the size of problems
they can handle. This kind of comparison is hardly fair.

The higher complexity of optimal planning helps explain why planning systems
based on local search, most notably the FF system, have lately performed
so much better than ones based on Graphplan or satisfiability techniques.
Because our hardness proofs carry over to bounded parallel plan existence,
they imply that in these domains planners like Graphplan [12] or IPP [15]
try to solve provably hard subproblems that local search planners do not
have to care about. When optimal plans are not required, local search has a
conceptual advantage, and we cannot hope for similar performance from any
planner striving for optimality.

A common criticism of complexity results is that they do not apply to “real”
problem instances because these typically do not exhibit the arcane features of
the instances used for reductions. Addressing this point, it is worth pointing
out that our plan existence results coincide well with results by Hoffmann,
who has investigated the search space topologies of the various benchmark
domains [16].

Using a heuristic similar to the one of FF as the foundation of the analysis,
Hoffmann defined a taxonomy of planning domains, distinguishing different
kinds of dead-ends and local minima in the search space. The set of domains
for which we proved plan existence to be NP-complete is precisely the one
that forms the hardest category under Hoffmann’s taxonomy (“unrecognized
dead ends”, top right in Figure 4 of the reference). Because Hoffmann’s re-

ol

sults were obtained in an empirical analysis, investigating randomly generated
planning tasks, this shows that hard planning tasks in these domains do occur
in practice.

A last result we want to point out is that all discussed decision problems are
in NP, although PSPACE-complete planning domains can be expressed in
the underlying representation language. While it might be interesting to have
a greater variety in the hardness of benchmarks, it is evident that membership
in NP is guaranteed as soon as there are polynomial bounds on plan lengths,
which is a reasonable requirement from a plan execution point of view.

With this remark, we want to conclude our discussion of results. Of course,
open issues remain. For the NP-complete decision problems, it would be good
to be able to characterize “hard” tasks by identifying a phase transition be-
tween (usually easy) under-constrained and (usually easy) over-constrained
tasks. This would greatly increase the benefit of those domains for bench-
marking purposes.

As another issue, the distinction between non-optimal and optimal planning
is quite coarse, and for those domains which exhibit differences in complexity
for these problems, the question arises if it is possible to find good (if not
optimal) plans in polynomial time, for example plans that are guaranteed not
to exceed the length of optimal ones by more than a constant factor. It is
evident that such performance guarantees are not hard to give in LOGISTICS
or BLOCKSWORLD, but what about GRID?

We close with the following brief summary of results, ordered alphabetically
by domain name.

e ASSEMBLY: The domain definition has several flaws. In the corrected ver-
sion, shortest plan sizes can grow exponentially with the input size and
hence plan generation needs exponential time.

e BLOCKSWORLD: Plans can be generated in low-order polynomial time. Bounded
plan existence is NP-complete.

e FREECELL: Plan existence and bounded plan existence are NP-complete,
even if the number of free cells is fixed to an arbitrary natural number.

e GRID: Plans can be generated in low-order polynomial time. Bounded plan
existence is NP-complete, even if there are no locked locations, or if there
is only one key to be moved to some goal location.

e GRIPPER: Optimal plans can be generated in low-order polynomial time.

e LocisTics: Plans can be generated in low-order polynomial time. Bounded
plan existence is NP-complete, even if there is only a single truck and no
airplane, or vice versa.

e MicoNIc-10: In the two easier versions, plans can be generated in low-order
polynomial time, and bounded plan existence is NP-complete. In the full

92

version, plan existence and bounded plan existence are NP-complete, even
if the only special passengers are attendants, supervised passengers and a
single VIP.

e MovIE: Optimal plans can be generated in low-order polynomial time.
e MYSTERY and MYSTERY’: Plan existence and bounded plan existence are

NP-complete, even if there is only a single mobile, there are no capacity
constraints, and there is exactly one unit of fuel at each location.

e SCHEDULE: Optimal plans can be generated in polynomial time. However,
the running time of our algorithm is O(n%'4400).

References

[1] T. Bylander, The computational complexity of propositional STRIPS planning,
Artificial Intelligence 69 (1-2) (1994) 165-204.

[2] K. Erol, D. S. Nau, V. S. Subrahmanian, Complexity, decidability and
undecidability results for domain-independent planning., Artificial Intelligence
76 (1-2) (1995) 65-88.

[3] C. Backstrom, B. Nebel, Complexity results for SAS™ planning, Computational
Intelligence 11 (4) (1995) 625-655.

[4] N. Gupta, D. S. Nau, On the complexity of blocks-world planning, Artificial
Intelligence 56 (2-3) (1992) 223-254.

[6] B. Selman, Near-optimal plans, tractability, and reactivity, in: J. Doyle,
E. Sandewall, P. Torasso (Eds.), Principles of Knowledge Representation
and Reasoning: Proceedings of the Fourth International Conference (KR’94),
Morgan Kaufmann, 1994, pp. 521-529.

[6] J. Slaney, S. Thiébaux, Blocks world revisited, Artificial Intelligence 125 (2001)
119-153.

[7] M. Helmert, On the complexity of planning in transportation and manipulation
domains, Master’s thesis, Albert-Ludwigs-Universitat Freiburg, postscript
available at http://www.informatik.uni-freiburg.de/~ki/theses.html (2001).

[8] D. McDermott, The 1998 AT Planning Systems competition, Al Magazine 21 (2)
(2000) 35-55.

[9] F. Bacchus, The AIPS’00 planning competition, Al Magazine 22 (3) (2001)

47-56.

[10] D. Long, M. Fox, Automatic synthesis and use of generic types in planning, in:

Chien et al. [17], pp. 196-205.

[11] M. R. Garey, D. S. Johnson, Computers and Intractability — A Guide to the

Theory of NP-Completeness, Freeman, 1979.

23

[12] A. Blum, M. Furst, Fast planning through planning graph analysis, Artificial
Intelligence 90 (1-2) (1997) 281-300.

[13] J. K&hler, K. Schuster, Elevator control as a planning problem, in: Chien et al.
[17], pp. 331-338.

[14] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation through
heuristic search, Journal of Artificial Intelligence Research 14 (2001) 253-302.

[15] J. Kohler, B. Nebel, J. Hoffmann, Y. Dimopoulos, Extending planning graphs to
an ADL subset, in: S. Steel, R. Alami (Eds.), Recent Advances in AI Planning.
4th European Conference on Planning (ECP’97), Vol. 1348 of Lecture Notes in
Artifical Intelligence, Springer-Verlag, New York, 1997, pp. 273-285.

[16] J. Hoffmann, Local search topology in planning benchmarks: An empirical
analysis, in: Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI’01), 2001.

[17] S. Chien, S. Kambhampati, C. A. Knoblock (Eds.), Proceedings of the Fifth
International Conference on Artificial Intelligence Planning and Scheduling
(AIPS 2000), Breckenridge, 2000.

o4

