
Domain-Independent Instance Generation for Classical Planning

Claudia Grundke and Malte Helmert and Gabriele Röger
University of Basel
Basel, Switzerland

{claudia.grundke, malte.helmert, gabriele.roeger}@unibas.ch

Abstract

Learning-based planning systems learn domain-specific
knowledge that helps them to solve unseen tasks from the
same planning domain. For this purpose they require a di-
verse set of training instances. A recent proposal for formal
specifications of planning domains allows us to exactly char-
acterize which instances are legal for a domain. We automati-
cally generate planning tasks from such formal specifications
by means of a translation to answer set programming. We ex-
perimentally examine the scalability of the approach and the
suitability for learning-based planning, following the setup of
the learning track of the International Planning Competition.

1 Introduction
The Planning Domain Definition Language PDDL (McDer-
mott et al. 1998; Fox and Long 2003) separates the specifica-
tion of a planning task into a PDDL domain and an instance
description. The PDDL domain defines the vocabulary and
dynamics of the task, while the instance specifies the initial
state and the goal. The PDDL domain file is typically shared
among all tasks of an application domain.

As observed by Grundke, Röger, and Helmert (2024),
PDDL domains overapproximate the set of planning tasks
that a domain modeller intends to describe. For example,
in the Blocksworld domain (Slaney and Thiébaux 2001),
there are stacks of blocks encoded by a binary predicate on.
With the corresponding PDDL domain, it is possible to have
“cyclic” stacks of blocks (if the transitive closure of on is not
irreflexive), which is naturally not the case in the physical
world. In the same work Grundke et al. introduced a formal-
ism for exactly characterizing planning domains, augment-
ing the PDDL domain with a logic program that determines
whether a given initial state is legal for the domain.

Instance generation has always been important for the
International Planning Competitions (IPCs) and recently
gained further importance with the rise of learning-based
planning systems. Most instance generators are domain-
specific and create the tasks in a procedural manner, as
can be seen1 from the IPC 2023 learning track (Taitler et
al. 2024). Notable exceptions use machine learning and
an ad-hoc semi-declarative language for constraints (Núñez-
Molina, Mesejo, and Fernández-Olivares 2024) or constraint

1https://github.com/ipc2023-learning/benchmarks/

programming (CP), augmenting the PDDL domain with ad-
ditional CP constraints (Akgün et al. 2020). We build upon
the formalism by Grundke, Röger, and Helmert (2024), gen-
erating instances for the domain by means of a compilation
to answer set programming.

2 Background
Planning domains Due to the limited space, we do not
fully introduce PDDL planning tasks but focus on the as-
pects relevant to this work. We go beyond the work by
Grundke, Röger, and Helmert (2024) by extending their
specification to types. Types are syntactic sugar that re-
stricts action parameters, predicate parameters and the range
of quantifiers to objects of a certain type. They are typically
omitted in theoretical work but since we make a practical
contribution, we support them directly. From the theoretical
perspective, this means that we move from first-order logic
to order-sorted logic (Socher-Ambrosius and Johann 1997):
beyond the predicates and constant symbols there is a non-
empty finite set T of type symbols with a partial order ⊑ on
the types, specifying a type hierarchy. Following the prac-
tice in PDDL,2 we assume that⊑ is functional (each type has
at most one immediate supertype) and has a unique root type
OBJECT ∈ T that is a supertype of all types. The language
restricts the parameters of all predicates and all terms to one
of the types and each object o in the universe is assigned a
type type(o) ∈ T . Whenever the signature of the language
requires a term of a certain type T, an interpretation can map
the term to any object o with type(o) ⊑∗ T.

A planning task is defined over a function-free order-
sorted signature ⟨T ,⊑,ΣC,P⟩ with equality =, where C is
a finite set of constant symbols and P is a finite set of pred-
icate symbols P , each associated with a vector types(P) of
the same arity specifying the types of the arguments. A state
of a planning task is a Herbrand structure for this signature
and can alternatively be represented as a set of ground atoms.

The predicates are partitioned into a set B of basic pred-
icates and a set D of derived predicates. Only the interpre-
tation of the basic predicates may be affected by the action
applications, whereas the interpretation of the predicates in
D is derived by means of the axioms of the task:

2Unfortunately the formal semantics of PDDL types are not
fully defined and occasionally give rise to debate.

Definition 1 (PDDL axioms; adapted from Thiébaux, Hoff-
mann, and Nebel 2005). A PDDL axiom over order-sorted
signature ⟨T ,⊑,ΣC,P⟩ is a rule of the form H(x̄)← B(x̄),
where the head H(x̄) is a single atom over ⟨T ,⊑,ΣC,P⟩
with free variables x̄ and the body B(x̄) is a formula over
⟨T ,⊑,ΣC,P⟩ with the same free variables x̄.

A set A of PDDL axioms is stratifiable if there exists a
partition (stratification) P1, . . . ,Pn of the predicate set P
such that for each predicate Pi ∈ Pi and axiom Pi(x̄) ←
B(x̄) ∈ A:

• if Pj ∈ Pj appears in B(x̄), then j ≤ i, and
• if Pj ∈ Pj appears negated in the translation of B(x̄) to

negation normal form, then j < i.

A basic state only interprets the basic predicates. For the
computation of the extended state that interprets all predi-
cates, consider the set G of ground axioms obtained by re-
placing each free variable in an axiom with a constant of the
same type (or one of its subtypes). Let GPi

⊆ G be the
set of all such axioms where the head predicate is from Pi.
The extension starts from the basic state, setting all ground
atoms of derived predicates to false. For stratum P1, we
compute the final interpretation of the predicates in P1 as a
fixed point, making the head of an axiom in GP1

true when-
ever the body is true under the current interpretation. After-
wards we continue analogously with P2, . . . ,Pn.

A planning domain fixes the predicates and some con-
stants of its instances, as well as the axioms and actions (this
is already the case for a PDDL domain). For this work, it
is not necessary to further introduce PDDL actions because
they do not affect the legality of an instance for the domain.
Grundke, Röger, and Helmert (2024) augment PDDL do-
mains with a domain-wide first-order sentence that fixes the
goal for all instances and additional axioms Aq (with cor-
responding derived predicates Pq) that are used to assess
whether a basic state is permitted as an initial state in an in-
stance of the domain: it is legal iff a special predicate legal()
is true in the extended state (using the domain axioms as well
as the additional axioms).

To be able to express all properties that can be checked
in polynomial time, Grundke et al. also add a linear order
over the objects to the set of predicates. In their work, this
linear order is expressed in terms of a successor relation.
Our following definition deviates from their formalism in
two aspects: it incorporates types as a built-in feature and
represents the linear order directly with an ordering pred-
icate < rather than as a successor relation succ. The first
difference is just syntactic sugar, and the second is also un-
obtrusive because axioms can define succ in terms of < and
vice versa.
Definition 2 (Planning domain). A planning domain is a tu-
ple ⟨Pt,Pq, T , C,O,At,Aq, legal, <,G⟩, where

• Pt is a finite set of predicate symbols that can be parti-
tioned into a set of basic predicates Bt ⊇ {=} and a set
of derived predicates Dt,

• Pq with Pq ∩ Pt = ∅ is a finite set of predicate symbols
that can be partitioned into a set of derived predicatesDq
and {<},

• T ⊇ {OBJECT} is a finite set of (PDDL) types with par-
tial order ⊑,

• C is a finite set of constants,
• O is a finite set of PDDL operators (or actions) over
⟨T ,⊑,ΣC,Pt⟩,

• At andAq are stratifiable finite sets of PDDL axioms over
⟨T ,⊑,ΣC,Pt⟩ and ⟨T ,⊑,ΣC,Pt∪Pq⟩, respectively.

• legal is the 0-ary query predicate with legal ∈ Dq,
• < is a binary basic ordering predicate, and
• G is a first-order sentence over ⟨T ,⊑,ΣC,Pt⟩.

Since the goal is fixed, an instance ⟨C′, I⟩ of the do-
main is given by a set C′ of additional instance-specific con-
stants and the initial state I, which is a basic state over
⟨T ,⊑,ΣC∪C′,Pt⟩. Any such instance where legal() is true
in the extension of I with the axioms fromAt∪Aq is a legal
instance of the domain. In this work, we generate such legal
instances given a planning domain and the cardinality of C′.

Answer Set Programming An answer set program (Baral
2010) is a set of logic programming rules similar to PDDL
axioms.

Definition 3 (Answer set program). An answer set program
(ASP program) for a relational first-order signature ΣC,P is
a finite set of rules of the form H(x̄)← ∃ȳB(x̄, ȳ), where

• the head H(x̄) is a disjunction of atoms over ΣC,P with x̄
containing the free variables of all its atoms, and

• the body B(x̄, ȳ) is a conjunction of literals over ΣC,P
which use variables only from x̄ and ȳ, and where each
variable of x̄ is mentioned in at least one positive literal.

A rule is ground if x̄ and ȳ are empty, which we will write
as H ← B.

A rule with an empty head (and no free variables) is an
integrity constraint. Such a rule means that the body must
not evaluate to true. A rule with an empty body is a fact and
expresses that the head must always be true.

ASP program P induces the ground ASP program
ground(P) as the set of all (ground) rules that can be con-
structed by substituting every variable in a rule r ∈ P with a
constant from C.

A Herbrand interpretation I for ΣC,P satisfies a ground
rule H ← B if I |= B implies I |= H . The reduct PI

of a ground answer set program P for interpretation I is the
ground program {H ← B+ | I |= B−, H ← B ∈ P},
where B+ is the conjunction of the positive literals of B and
B− is the conjunction of the negative literals of B.

Definition 4 (Answer set). An interpretation I is a stable
model (or answer set) of ASP program P if it satisfies every
rule in ground(P)I and is subset-minimal among the models
of ground(P)I (viewed as sets of true ground atoms).

ASP programs can also include choice rules of the form
{P (x̄)} ← B(x̄, ȳ), where P is a predicate and B(x̄, ȳ) is
a body as in Def. 3. If the body is true then P (x̄) may be
added to the answer set.

3 Instance Generation
Given planning domain ⟨Pt,Pq, T , C,O,At,Aq, legal, <,G⟩
and a number n that specifies how many objects the gen-
erated instances should have (in addition to the ones
already defined in the domain), we create an ASP pro-
gram P such that the set of answer sets corresponds to
the set of legal instances for the domain with constants
Casp = C ∪ {c1, . . . , cn}.

In a preprocessing phase, we compute an equivalent strat-
ifiable set A of PDDL axioms from At and Aq such that
every axiom in A has the form H(x̄) ← ∃ȳB(x̄, ȳ), where
B(x̄, ȳ) is a conjunction of literals with free variables from
x̄ and ȳ. We use the translator (Helmert 2009) of the Fast
Downward planning system (Helmert 2006) for this pur-
pose. While this transformation is not always possible in
theory (Röger and Grundke 2024), this has never been a lim-
itation in practice.

We use the ASP solver clingo (Gebser et al. 2019) to de-
termine answer sets for P. It treats < as a built-in predicate
(just as =), fixing some total order over all objects. Since the
legality test in planning domains must be order-invariant, we
can directly use this built-in predicate for the ordering pred-
icate of the domain without any additional treatment.

For each TYPE ∈ T , we use a fresh unary predicate type
in P. Program P contains the following rules:

Translated axioms Each axiom inA is already in the syn-
tactic form H(x1, . . . , xr) ← ∃xr+1, . . . , xsB(x1, . . . , xs)
but each variable xi is associated with a type Ti that restricts
the underlying domain. To enforce these types in the answer
set program, we translate the axiom to

H(x1, . . . , xr)← ∃xr+1, . . . , xs(B(x1, . . . , xs) ∧
t1(x1) ∧ · · · ∧ ts(xs)).

Type rules For each c ∈ Casp, there is a fact

object(c)← (1)

introducing all constants and making sure that they will be
associated with type OBJECT.

For each domain constant c ∈ Cdom associated with a type
T ̸= OBJECTS, the answer set should preserve this type but
not assign a more specific subtype, which is ensured by the
following rules:

t(c)← (2)
← type(c) for all TYPE ⊑ T (3)

Type hierarchy rules To ensure that the assigned types
will be propagated to all supertypes wrt. ordering relation
⊑, we have for each SUBTYPE ⊑ SUPERTYPE a rule:

supertype(x)← subtype(x) (4)

In addition, we ensure that the planning instance assigns
a single type to each object (from which it then inherits all
supertypes). In combination with the other rules, this is
achieved by requiring the following integrity constraint for
any two immediate subtypes of the same type, i.e., T ⊑ S
and U ⊑ S with T ̸= U:

← ∃x(t(x) ∧ u(x)) (5)

training easy medium hard

Blocksworld 93 28 0 0
Childsnack 99 29 1 0
Ferry 99 30 27 0
Floortile 19 3 0 0
Miconic 99 30 20 0
Rovers 99 30 3 0
Satellite 99 30 20 0
Spanner 99 30 0 0
Transport 99 30 26 0

Table 1: Number of instances from our instance generator that we
use for each category of the IPC. The IPC used 99 training in-
stances and 30 instances in each of the three testing categories.

Argument type rules To enforce the types for the basic
predicates, we add the following integrity constraints for
each P ∈ Bt with types(P) = (T1, . . . , Tn)

← ∃x1, . . . , xn (P (x1, . . . , xn) ∧ ¬t1(x1))

. . .

← ∃x1, . . . , xn (P (x1, . . . , xn) ∧ ¬tn(xn)).

(6)

Legality rule To enforce that answer sets correspond to
legal instances, we require the legality predicate to be true.

← ¬legal() (7)

Choice rules for basic predicates and types The answer
set should be able to contain any subset of ground atoms
over the basic predicates (respecting the other rules, but not
requiring subset minimality). Moreover, the program should
be able to assign types for the additional objects. We achieve
this by the following two choice rules.

{P (x1, . . . , xr)} ← object(x1) ∧ · · · ∧ object(xr) (8)
for each basic predicate P (with arity r), and

{type(x)} ← object(x) for each TYPE ∈ T (9)

Due to the type rules, the body is true for any substitu-
tion of the variables xi with constants from Casp, so that any
ground atom can be made true based on these rules.

The set of ground basic atoms in an answer set defines
the initial state of the generated instance. Each of the new
objects o ∈ {o1, . . . , on} is associated with the most specific
(wrt. ⊑) type TYPE such that type(o) is in the answer set.

4 Experiments
We follow the setup of the IPC 2023 learning track (Taitler
et al. 2024) to generate a benchmark set of formal PDDL
instances for the instance generator and to analyse how
learning-based planners perform on the generated instances
(for code and data cf. Grundke, Helmert, and Röger 2025).

We augmented all but one PDDL domain from the track
with legality tests and a domain goal, replicating implicit
legality constraints and the goals from the domain-specific
instance generators (Grundke and Röger 2025). This is im-
possible for Sokoban, where the IPC instance generator only
creates solvable instances: deciding solvability is PSPACE-
complete for Sokoban (Culberson 1997) but the formalism
in Definition 1 captures only P.

Coverage ASNetsG ASNetsC SMACG SMACC GOFAIG GOFAIC VanirG VanirC HUZARG HUZARC MuninnG MuninnC

BlocksworldC (90) 31 12 60 58 63 None 60 60 57 61 11 37
ChildsnackC (90) None 12 29 32 35 None 35 35 35 36 7 6
FerryC (90) 19 20 65 65 62 62 77 77 68 64 23 24
FloortileC (90) 0 0 None 16 36 35 11 11 14 14 0 0
MiconicC (90) 10 29 0 0 90 90 90 90 90 90 30 30
RoversC (90) 4 7 50 66 56 56 68 68 67 66 9 8
SatelliteC (90) 40 40 84 90 78 77 89 89 66 88 9 14
SpannerC (90) 27 12 30 None 30 30 30 30 30 30 30 30
TransportC (90) 10 31 67 67 71 71 66 66 66 66 12 12
Sum 141 163 385 394 521 421 526 526 493 515 131 161

BlocksworldG (28) 18 1 28 28 28 None 28 28 28 28 11 25
ChildsnackG (30) None 12 28 28 27 None 27 27 27 28 4 9
FerryG (57) 44 39 57 57 57 57 57 57 57 57 21 19
FloortileG (3) 0 0 None 3 3 3 3 3 3 3 1 0
MiconicG (50) 15 44 0 0 50 50 50 50 50 49 29 29
RoversG (33) 14 16 23 23 24 24 33 33 33 33 20 19
SatelliteG (50) 17 17 17 17 17 17 17 17 17 17 17 17
SpannerG (30) 7 5 24 None 24 24 24 24 24 24 24 24
TransportG (56) 11 17 56 56 56 56 56 56 56 54 10 11
Sum 126 151 233 212 286 231 295 295 295 293 137 153

Table 2: Number of solved instances for each domain and planner variant. Bold numbers mark the highest coverage among the two variants
of the same planner. “None” indicates that a planner did not learn domain knowledge for this domain and thus did not solve any tasks.

To generate instances of different sizes, the IPC instance
generators use parameters specifying the number of objects
of certain types. We thus support this by means of additional
type rules. Additionally, one can specify cardinality con-
straints for the predicates, which for example is needed for
the Childsnack domain where the predicate allergic gluten
must be true for a certain number of children.

To get diverse instances we use the S-Greedy approach
(Böhl, Gaggl, and Rusovac 2023) for diverse answer sets.

Instance Generation Like the IPC we generate testing in-
stances of three difficulty levels and training instances. For
each run of the instance generator (given a domain and size
parameters), we use a 30 minute time limit and 4 GiB mem-
ory limit. If our generator produces more instances than
used in the IPC, we sample uniformly from the generated
instances. Table 1 shows how many instances we generated
for the subsequent planner experiment.

In most successful runs (99 training instances or 30 for
a certain difficulty level) the instance generator produces
many more instances than needed. Thus, of all generated
instances we use only a small fraction because we aimed for
the same spread of numbers of objects as the IPC instances.
For example, we generated 1057 Blocksworld instances with
25 blocks, of which we only use 6 instances.

The IPC mostly scaled “difficulty” by adding more ob-
jects, e.g. up to 500 blocks in the hard Blocksworld in-
stances. We observe that our approach does not scale well
with the number of objects. For all domains but Spanner, at
a certain number of objects the instance generator starts run-
ning out of time. For Blocksworld, this first happens with 27
blocks. With even more objects, we tend to run out of mem-
ory before running out of time (mostly during the grounding
process of clingo). Spanner has no time-outs, but the gener-
ator runs out of memory with more than 60 objects.

Planner Results In the IPC 2023, the planners (Drexler
2023; Gzubicki, Lachowicz, and Torralba 2023; Hao et al.
2023; Seipp, Sievers, and Hutter 2023; Ståhlberg, Bonet,
and Geffner 2023; Torralba and Gnad 2023) had 24 hours
and 32 GiB of memory to learn domain knowledge from the
training instances in each domain. Afterwards they had to
solve the testing instances with a time limit of 30 minutes
and a memory limit of 8 GiB per task.

We used the same setup to train each planner once on the
IPC training instances (plannerC) and once on our generated
training instances (plannerG). Afterwards we tested each
planner on both the testing instances of the IPC (DomainC)
and our generated instances (DomainG).

Table 2 shows the number of solved instances for each
combination. We observe that the planners trained on the
IPC instances tend to solve more instances than the ones
that learned from our generated training set. This is more
pronounced on the IPC test benchmarks but also the case for
our generated test instances. If we look at the per-domain
results, we see that there are nevertheless cases in which the
plannerG variant is strictly better than plannerC. On the
IPC instances, this is the case for 12 planner/domain combi-
nations compared to 15 for which it is worse. On the gener-
ated instances, this changes: The plannerG variant is better
than plannerC in 11 cases and worse in only 9 cases.

5 Conclusion
We demonstrated that domain-independent instance gener-
ation for planning tasks with declarative problem solvers is
feasible. Our approach cannot match the scalability of ex-
isting domain-specific generators, but for a first effort in this
direction using off-the-shelf diverse ASP solvers this is not
surprising. We believe that the instance generator we pre-
sented can reduce the knowledge engineering efforts for fu-
ture work on planning and learning and also serves as a use-
ful challenge for future work on diverse ASP solving.

Acknowledgements
We have received funding for this work from the Swiss
National Science Foundation (SNSF) as part of the project
“Lifted and Generalized Representations for Classical Plan-
ning” (LGR-Plan).

References
Akgün, Ö.; Dang, N.; Espasa, J.; Miguel, I.; Salamon, A.;
and Stone, C. 2020. Exploring instance generation for auto-
mated planning. In CP 2020 Workshop on Constraint Mod-
elling and Reformulation.
Baral, C. 2010. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Böhl, E.; Gaggl, S. A.; and Rusovac, D. 2023. Representa-
tive answer sets: Collecting something of everything. In Gal,
K.; Nowé, A.; Nalepa, G. J.; Fairstein, R.; and Rădulescu,
R., eds., Proceedings of the 26th European Conference on
Artificial Intelligence (ECAI 2023), 271–278. IOS Press.
Culberson, J. C. 1997. Sokoban is PSPACE-complete. Tech-
nical Report TR 97-02, Department of Computing Science,
The University of Alberta, Edmonton, Alberta, Canada.
Drexler, D. 2023. Vanir: Learning and executing width-
based hierarchical policies. In Learning Track of the Inter-
national Planning Competition 2023: Planner Abstracts.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming 19(1):27–82.
Grundke, C., and Röger, G. 2025. Formally represented
PDDL planning domains. https://doi.org/10.5281/zenodo.
16875437.
Grundke, C.; Helmert, M.; and Röger, G. 2025. Code,
benchmarks and experiment data for the KR 2025 pa-
per “Domain-Independent Instance Generation for Classical
Planning”. https://doi.org/10.5281/zenodo.16875683.
Grundke, C.; Röger, G.; and Helmert, M. 2024. Formal rep-
resentations of classical planning domains. In Bernardini, S.,
and Muise, C., eds., Proceedings of the Thirty-Fourth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2024), 239–248. AAAI Press.
Gzubicki, P. R.; Lachowicz, B. P.; and Torralba, Á. 2023.
HUZAR: Predicting useful actions with graph neural net-
works. In Learning Track of the International Planning
Competition 2023: Planner Abstracts.
Hao, M.; Toyer, S.; Wang, R.; Thiébaux, S.; and Trevizan,
F. 2023. Action schema networks – IPC version. In Learn-
ing Track of the International Planning Competition 2023:
Planner Abstracts.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL – The Planning Domain Definition Language – Ver-
sion 1.2. Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, Yale
University.
Núñez-Molina, C.; Mesejo, P.; and Fernández-Olivares, J.
2024. NeSIG: A neuro-symbolic method for learning to gen-
erate planning problems. In Endriss, U., and Melo, F. S.,
eds., Proceedings of the 27th European Conference on Arti-
ficial Intelligence (ECAI 2024), 4084–4091. IOS Press.
Röger, G., and Grundke, C. 2024. Negated occurrences of
predicates in PDDL axiom bodies. In Proceedings of the KI
2024 Workshop on Planning, Scheduling and Design (PuK
2024).
Seipp, J.; Sievers, S.; and Hutter, F. 2023. Fast Downward
SMAC. In Learning Track of the International Planning
Competition 2023: Planner Abstracts.
Slaney, J., and Thiébaux, S. 2001. Blocks World revisited.
Artificial Intelligence 125(1–2):119–153.
Socher-Ambrosius, R., and Johann, P. 1997. Deduction
systems. Graduate Texts in Computer Science. Springer.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2023. Muninn. In
Learning Track of the International Planning Competition
2023: Planner Abstracts.
Taitler, A.; Alford, R.; Espasa, J.; Behnke, G.; Fišer, D.;
Gimelfarb, M.; Pommerening, F.; Sanner, S.; Scala, E.;
Schreiber, D.; Segovia-Aguas, J.; and Seipp, J. 2024.
The 2023 International Planning Competition. AI Magazine
45(2):280–296.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1–2):38–69.
Torralba, Á., and Gnad, D. 2023. GOFAI. In Learning Track
of the International Planning Competition 2023: Planner
Abstracts.

https://doi.org/10.5281/zenodo.16875437
https://doi.org/10.5281/zenodo.16875437
https://doi.org/10.5281/zenodo.16875683

	Introduction
	Background
	Instance Generation
	Experiments
	Conclusion

