
Domain-Independent Instance Generation
for Classical Planning

Claudia Grundke Gabriele Röger Malte Helmert

University of Basel

KR, November 15, 2025



PDDL Domains Instance Generation Axioms and ASP Experiments

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 1



PDDL Domains Instance Generation Axioms and ASP Experiments

PDDL Axioms and Polynomial-Time Computations

Grundke et al. (ICAPS 2024)

With a small (but important) language extension,
PDDL axioms can describe exactly those properties
that can be computed in polynomial time (in task size).

⇝ Use PDDL axioms to determine if a given set of objects

⇝

and initial state defines a legal instance of the domain.

⇝ declarative definition of what constitutes a classical planning domain

⇝

that is accessible to algorithms

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 2



PDDL Domains Instance Generation Axioms and ASP Experiments

Adding Legality Constraints to PDDL Domains

An instance is legal for a domain if the PDDL axioms yield legal()
when evaluated on the initial state.

illegal()← ∃b on(b, b)

illegal()←∃b1∃b2∃b3 (on(b1, b2) ∧ on(b1, b3) ∧ b2 ̸= b3)

illegal()← ∃b1(¬ontable(b1) ∧ ¬∃b2 on(b1, b2))
illegal()← . . .

. . .

legal()←¬illegal()

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 3



PDDL Domains Instance Generation Axioms and ASP Experiments

Domain-Specific vs. Domain-Independent

Blocksworld
domain

Blocksworld
generator

Blocksworld
instance

Blocksworld
domain

domain-independent
generator

Blocksworld
instance

Transport
domain

Transport
generator

Transport
instance

Transport
domain

domain-independent
generator

Transport
instance

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 4



PDDL Domains Instance Generation Axioms and ASP Experiments

Domain-Specific vs. Domain-Independent

Blocksworld
domain

Blocksworld
generator

Blocksworld
instance

Blocksworld
domain

domain-independent
generator

Blocksworld
instance

Transport
domain

Transport
generator

Transport
instance

Transport
domain

domain-independent
generator

Transport
instance

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 4



PDDL Domains Instance Generation Axioms and ASP Experiments

Instance Generation using ASP

domain file + #objects

translate
to ASP

generate
answer set(s)1

translate
back

instance file(s)

instance generator

1Gebser, Kaminski, Kaufmann, Schaub, Multi-shot ASP solving with clingo (TPLP 2019)
C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 5



PDDL Domains Instance Generation Axioms and ASP Experiments

PDDL Axioms are almost ASP Rules

PDDL Axioms ASP Rules

rule bodies are rule bodies are

first-order
logic formulas

existentially quantified
conjunctions of literals

Conversion is easy except when it isn’t (Röger & Grundke, PuK 2024).

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 6



PDDL Domains Instance Generation Axioms and ASP Experiments

Instance Generation as ASP Solving

Take number of objects as input
(optionally: number of objects per PDDL type).

Use ASP choice rules to “guess” an arbitrary initial state
using these objects.

Use legality predicate to validate that the initial state is legal.
← ¬legal()

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 7



PDDL Domains Instance Generation Axioms and ASP Experiments

Translating Type Information

For each object we set a type predicate.

We replicate the type hierarchy.

We ensure that each predicate is instantiated
only with objects of appropriate types.

truck(t1).

vehicle(x)← truck(x)
object(x)← vehicle(x)

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 8



PDDL Domains Instance Generation Axioms and ASP Experiments

Translating Type Information

For each object we set a type predicate.

We replicate the type hierarchy.

We ensure that each predicate is instantiated
only with objects of appropriate types.

truck(t1).

vehicle(x)← truck(x)
object(x)← vehicle(x)

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 8



PDDL Domains Instance Generation Axioms and ASP Experiments

Diversity

ASP solver clingo returns all answer sets
or a fixed number of (often similar) answer sets.

But we want a diverse subset of all answer sets.

Böhl, Gaggl, Rusovac: collection of answer sets with explicit diversification

Böhl, Gaggl, Rusovac, Representative Answer Sets: Collecting Something of Everything (ECAI 2023)
C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 9



PDDL Domains Instance Generation Axioms and ASP Experiments

Case Study: Reproduce IPC Learning Competition

Augment PDDL domains with legality constraints.

Generate training and testing instances
following the spread of IPC 2023 learning track1.

For each domain and instance size, run instance generator
with 30 minute time limit, 4 GiB memory limit.

1Taitler, Alford, Espasa, Behnke, Fǐser, Gimelfarb, Pommerening, Sanner, Scala, Schreiber, Segovia-Aguas,
Seipp, The 2023 International Planning Competition (AI Magazine 2024)

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 10



PDDL Domains Instance Generation Axioms and ASP Experiments

Results: Instance Generation

More than enough instances for small numbers of objects
We needed 6 of 1057 generated Blocksworld instances with 26 objects.

No instances for large (out of time) and very large (out of memory) numbers of objects.
IPC had Blocksworld instances with up to 500 objects.

training instances testing instances

per domain 99 / 99 (two exceptions) ≪ 90 / 90

total 805 / 891 ≪340 / 810

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 11



PDDL Domains Instance Generation Axioms and ASP Experiments

Setup: Cross-Validation

Train each planner on the generated and on the IPC learning track1 instances.

Test each planner variant on both kinds of instances.

IPC planners on IPC instances ASP planners on IPC instances

IPC planners on ASP instances ASP planners on ASP instances

1Taitler, Alford, Espasa, Behnke, Fǐser, Gimelfarb, Pommerening, Sanner, Scala, Schreiber, Segovia-Aguas,
Seipp, The 2023 International Planning Competition (AI Magazine 2024)

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 12



PDDL Domains Instance Generation Axioms and ASP Experiments

Results: Cross-Validation

mean coverage

IPC-IPC ASP-IPC

368.7 / 810 354.2 / 810

203.2 / 340 208.7 / 340

IPC-ASP ASP-ASP

strictly better
domain coverage

IPC-IPC ASP-IPC

23 cases 10 cases

8 cases 9 cases

IPC-ASP ASP-ASP

IPC-IPC = IPC planners on IPC instances ASP-IPC = ASP planners on IPC instances

IPC-ASP = IPC planners on ASP instances ASP-ASP = ASP planners on ASP instances

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 13



PDDL Domains Instance Generation Axioms and ASP Experiments

Summary

Translation from PDDL axioms to ASP is reasonably easy.

ASP allows us to guess and verify legal initial states
and has approaches for creating diverse answer sets.

Scaling not as good as that of domain-specific generators
but still suitable for training learning-based planners.

C. Grundke, G. Röger, M. Helmert (Uni Basel) Domain-Independent Instance Generation 14


	PDDL Domains
	Instance Generation
	Axioms and ASP
	Experiments
	

