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Abstract

Planning domains are an important notion, e.g. when it comes
to restricting the input for generalized planning or learning
approaches. However, domains as specified in PDDL cannot
fully capture the intuitive understanding of a planning do-
main. We close this semantic gap and propose using PDDL
axioms to characterize the (typically infinite) set of legal tasks
of a domain. A minor extension makes it possible to express
all properties that can be determined in polynomial time. We
demonstrate the suitability of the approach on established do-
mains from the International Planning Competition.

Introduction
Intuitively, a planning domain consists of a typically infi-
nite set of related planning tasks. The concept is important
for different areas of classical planning, e.g. for generalized
planning, where a single generalized plan should solve all
tasks of a domain (Srivastava, Immerman, and Zilberstein
2011; Bonet and Geffner 2018; Francès et al. 2019; Illanes
and McIlraith 2019; Drexler, Seipp, and Geffner 2021) or
for learning-based approaches to domain-independent plan-
ning as in the learning track of the International Planning
Competition (IPC) (Fern, Khardon, and Tadepalli 2011).

Planning tasks expressed in the PDDL formalism consist
of a “domain description” and a “problem description”, and
tasks that belong to the same domain share a domain de-
scription. However, PDDL domain descriptions only over-
approximate planning domains: every task that belongs to
the same domain can use the same domain description, but
not every task that fits a PDDL domain description is part
of the (intuitive) domain that we intend to capture. For ex-
ample, legal tasks in the Blocksworld domain can never in-
clude cyclic stacks of blocks (e.g., block A resting on block
B resting on block A), but PDDL domain descriptions do
not include this information. Rather, they are conveyed in-
formally via natural-language descriptions of planning do-
mains (Helmert 2003; Hoffmann 2005; Drexler, Seipp, and
Geffner 2021) or implicitly by unspoken convention.

Where a formal notion is necessary, for example where
domains are inputs to an algorithm, domains are sometimes
defined as finite sets of tasks (Lotinac et al. 2016; Segovia,
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Jiménez, and Jonsson 2016; Jiménez, Segovia-Aguas, and
Jonsson 2019), but this is only suitable for certain contexts.
Theoretical results trivialize in this finite setting, and it is
unsuitable for stating algorithmic problems such as generat-
ing additional example tasks in a given domain. Closing the
semantic gap between a PDDL domain and the intuitive no-
tion of a domain with an exact formal characterization of all
tasks in the domain would open up many opportunities.

For example, we can envision a domain-independent in-
stance generator that algorithmically creates random tasks in
an arbitrary planning domain given as input. This would en-
able more diverse benchmarks, which is not only useful for
comparing planning systems but also for improving their ro-
bustness towards unexpected corner cases. Such a task gen-
erator would also be highly useful for many learning-based
approaches that rely on a high number of sample tasks.

The additional domain knowledge of the formal charac-
terization makes it possible to extract and prove invariants
such as mutexes already on the domain level. Such invari-
ants would also be highly interesting for generalized plan-
ning, where it might even be feasible to automatically verify
correctness of a generalized plan across an entire domain.

Formally defined planning domains might also enable
certain forms of model checking, answering questions like
whether the domain has unsolvable tasks or whether there
can be states with certain properties.

We propose a formalism for such a formal characteriza-
tion of planning domains that is based on PDDL axioms.
Such axioms are an established concept in planning and
a powerful language feature whose usefulness has already
been proven theoretically (Thiébaux, Hoffmann, and Nebel
2005) and practically (Ivankovic and Haslum 2015).

We first present the necessary background on classical
planning and Datalog with negation. We then introduce and
discuss a first formalism for characterizing planning do-
mains. A subsequent extension allows us to express all prop-
erties that can be decided in polynomial time. We conclude
with examples on established IPC domains that showcase
the suitability of our approach.

Background
We introduce the necessary background from classical plan-
ning and the logical query language Datalog¬, which can be
seen as a counterpart of PDDL axioms.



PDDL Axioms, Domains, and Tasks
We assume that the reader is familiar with first-order logic.

In PDDL, the task specification is separated into a PDDL
domain and a PDDL problem. The PDDL domain specifies
(parts of) the language as well as the dynamics of the task,
i.e., how the world states can get altered. The PDDL problem
defines additional constants, the initial state and the goal.
PDDL also supports typing (as in many-sorted logic), which
we omit to simplify the presentation.

The dynamics of the tasks are given by operators and ax-
ioms. Operators have a precondition that describes when
they are applicable and an effect that describes how they af-
fect the current world state.1 In contrast to operators, whose
application can be controlled, axioms must be evaluated af-
ter every operator application. We follow the definition of
PDDL axioms by Thiébaux, Hoffmann, and Nebel (2005):

Definition 1 ((Stratifiable) PDDL axioms). A PDDL axiom
is a pair ⟨ϕ, ψ⟩ such that ϕ is a first-order atom and ψ is a
first-order formula, where ψ and ϕ have the same set of free
variables. We write the axiom ⟨ϕ, ψ⟩ as ϕ ← ψ and call ϕ
the head and ψ the body of the axiom.

A set A of PDDL axioms is stratifiable iff there exists a
partition (stratification) P1, . . . ,Pn of the predicates such
that for every Pi ∈ Pi and Pi(x̄)← ψ(x̄) ∈ A
• if Pj ∈ Pj appears in ψ(x̄) then j ≤ i, and
• if Pj ∈ Pj appears negated in the translation of ψ(x̄) to

negation normal form then j < i.

The predicates can be distinguished into basic and derived
predicates, where the derived predicates are the ones occur-
ring in the head of an axiom. Operator effects may not (di-
rectly) modify derived predicates. For sets C of constants and
P of predicates, we write ΣC,P to refer to the (function-free)
first-order signature (C,P).

A state for ΣC,P is a Herbrand interpretation and can thus
also be specified as a truth assignment for the ground atoms
over the predicates and constants. A basic state only spec-
ifies the truth of the ground atoms over basic predicates: if
Pb ⊆ P are the basic predicates, then a basic state for ΣC,P
is a state for ΣC,Pb .

The axioms extend a basic state s to the extended state
JsK. For a set A of axioms, a stratification P1, . . . ,Pn in-
duces a partition A1, . . . ,An as Ai = {Pi(x̄) ← ψ(x̄) ∈
A | Pi ∈ Pi}. The extended state can be computed with a
sequence of least fixed point computations induced by this
axiom partition (Algorithm 1). It maintains a state. Initially
only the atoms that are true in basic state s are true. For ev-
ery stratum, it then successively “applies” instantiations of
the axioms in the stratum until a fixpoint is reached, mak-
ing the head of rules true for which the body is already true
in the current state. The result is independent of the stratifi-
cation and the order in which axioms within each block are
considered (Apt, Blair, and Walker 1988; Thiébaux, Hoff-
mann, and Nebel 2005). Stratifications can be determined
efficiently (Thiébaux, Hoffmann, and Nebel 2005).

1The details of the operator specification are not relevant for
this work.

Algorithm 1: Extension of a basic state
function EXTEND-STATE(Axiom partition A1, . . . ,An,

constants C, basic state s)
s′ := truth assignment to all ground atoms with

s′(a) :=

{
s(a) if the predicate of a is basic
false if the predicate of a is derived

for i ∈ {1, . . . , n} do
while there exists a rule ϕ← ψ ∈ Ai and a

substitution σ of the free variables of ψ with
constants such that s′ |= ψ{σ}∧¬ϕ{σ} do

Choose such a ϕ← ψ and σ.
s′(ϕ{σ}) := true

return s′

A PDDL task is given by a PDDL domain and a PDDL
problem for the domain with the following components:

Definition 2 (PDDL domain). A PDDL domain is a tuple
⟨P, C,O,A⟩, where P is a finite set of predicate symbols,
C is a finite set of constant symbols, O is a finite set of
PDDL operators over ΣC,P and A is a stratifiable finite set
of PDDL axioms over ΣC,P .

Definition 3 (PDDL problem). A PDDL problem is a tuple
⟨D, C, I,G⟩, where D = ⟨P, CD,O,A⟩ is a PDDL domain,
C is a finite set of constant symbols disjoint from CD, I is
a basic state (the initial state) and G a first-order sentence
over ΣC∪CD,P .

The aim is to find a sequence of operators that leads from
the initial state to one satisfying the goal. Operator precon-
ditions and the goal are evaluated on extended states, so the
initial state and the basic state after each operator application
must be extended to interpret the derived predicates.

Datalog with Negation
The semantics of PDDL axioms has a strong correspondence
to stratified Datalog¬. Datalog typically uses a slightly dif-
ferent notation for rules and the terminology from database
theory speaks of extensional instead of basic predicates
and intensional instead of derived predicates. Here we will
present the concepts using the terminology and notation we
used for PDDL axioms. Indeed, we can specify stratified
Datalog¬ as a syntactic restriction on PDDL axioms.

Definition 4. A Datalog¬ rule is a PDDL axiom ϕ(x̄) ←
∃ȳ ψ(x̄, ȳ), where x̄ are the variables mentioned in the head,
and the body ψ is a conjunction of literals that mentions
exactly the variables from x̄ and ȳ.

A set of Datalog¬ rules is semipositive if no derived pred-
icate occurs negated in the body of any rule.

Interestingly, first-order queries can be rewritten in lin-
ear space into nonrecursive Datalog with negation (Abite-
boul, Hull, and Vianu 1995), which is a subset of strati-
fied Datalog¬. Thus we can rewrite every stratifiable set
of PDDL axioms into a stratifiable set of Datalog¬ rules
(Thiébaux, Hoffmann, and Nebel 2005).



Formal Characterization of Planning Domains
Our aim is to introduce a formalism that enables us to ex-
actly express which tasks belong to a certain planning do-
main. A planning domain is a possibly infinite set of plan-
ning tasks that share some characteristics that make them
intuitively “belong together”, but it depends on the applica-
tion and context what this means exactly. Thus, the formal-
ism needs to be expressive enough to be useful for a wide
range of such intuitions, but at the same time it should be
sufficiently restrictive to meaningfully support it in domain-
independent algorithms, e.g., for learning, generalized plan-
ning, or task generation. We also require that the specifica-
tion of the legal tasks can be concisely expressed and that
we can efficiently test whether a given task belongs to the
domain.

For practical reasons, we also aim for a definition that is
compatible with existing PDDL domains, which specify the
dynamics of the domain but do not restrict the tasks beyond
the permitted predicates. This will allow us to augment ex-
isting benchmarks with an exact characterization.

In the following, we propose a first formalism based on
axioms and will argue that it already satisfies most of these
requirements. Later, we will add a minor extension (<)
known from database theory that allows us to specify any
property that can be tested in polynomial time.

For our definition, we build on the notion of a query from
database theory and apply it to PDDL axioms. For our pur-
pose, we only need queries without output parameters (0-ary
queries):

Definition 5 (Query). Let A be a finite stratifiable set of
PDDL axioms and let P be a 0-ary predicate symbol. The
query QA,P is the function

QA,P (C, s) =
{
⊤ if JsK |= P ()

⊥ otherwise,

where C is any set of constants, s is a basic state over the
predicates inA and constants from C, and s is extended wrt.
the axiom set A and constant set C.

For simplifying the presentation, we will mostly use the
same predicate legal for the query predicate, but this is not a
requirement of the definition:

Definition 6 (Planning domain (without order)). A planning
domain is a tuple ⟨P, C,O,A,L,G⟩, where

• P is a finite set of predicate symbols that can be parti-
tioned into two sets, the set of basic predicates B and the
set of derived predicates D,

• C is a finite set of constant symbols,
• O is a finite set of PDDL operators over ΣC,P ,
• A is a stratifiable finite set of PDDL axioms over ΣC,P .
• L is the 0-ary query predicate, with L ∈ D, and
• G is a first-order sentence over ΣC,P .

The major differences to PDDL domains are the existence
of the query predicate and the domain-wide specification of
the goal. We will later discuss this decision. Although the
definition of a planning domain and a PDDL domain are
very similar, in practice it will not be just an existing PDDL

domain plus L and G, but the axioms and derived predicates
will contain additional elements that are not relevant for the
operators but are important for deciding the legality of a task.

Since the goal has already been fixed, a specific problem
only specifies additional objects and the initial state. It is
legal if the query predicate can be derived from the initial
state by means of the axioms.

Definition 7 (Legal Problem (without order)). A problem
for a planning domain D = ⟨P, C,O,A,L,G⟩ is a tuple
⟨C′, I⟩, where C′ is a finite set of constant symbols disjoint
from C and the initial state I is a basic state over ΣC∪C′,P .

The problem is legal for D if QA,L(C ∪ C′, I) = ⊤.

For the representation size ∥P∥ of problem P, we assume
that the initial state is specified by an explicit representation
of all true ground atoms (as it is the case for states in PDDL).
Then testing legality is efficient for a fixed planning domain.

Theorem 1. Let D be a fixed planning domain. For a given
problem P for D, we can decide whether P is legal for D in
polynomial time in ∥P∥.

Proof. Helmert (2009) describes how PDDL axioms can
efficiently be rewritten as stratified Datalog¬ rules, intro-
ducing derived predicates for some subformulas of the ax-
iom body. This is independent of a specific state. Stratified
Datalog¬ is data-complete for P (Apt, Blair, and Walker
1988; Dantsin et al. 2001). This means that for a fixed set
of rules and query, the result of the query for a specific ba-
sic state (an input database in the database context) can be
determined in polynomial time in the size of the state.

We relate problems for planning domains to the known
concept of PDDL problems in the obvious way:

Definition 8 (Induced PDDL problem). A problem ⟨C′, I⟩
for planning domain ⟨P, C,O,A,L,G⟩ induces the PDDL
problem ⟨⟨P, C,O,A⟩, C′, I,G⟩.

Note that in the induced task we did not remove the predi-
cates and axioms that are only relevant for the query. In prac-
tice, we would either separate them in the definition of the
planning domain or filter them by means of a simple back-
wards reachability analysis from the predicates mentioned in
operators and the goal on the syntactic level of the axioms.

We can now define the typically infinite set of PDDL
problems that is characterized by a planning domain.

Definition 9 (PDDL problems of a Planning domain). A
planning domain D characterizes the set of all PDDL prob-
lems that are induced by some legal problem for D.

On the level of an individual planning task, it is irrelevant
how we distribute the different components to the problem
and domain specification, but for characterizing a domain,
it becomes a relevant aspect. Fixing the set of (schematic)
operators on the domain level is in line with the definition of
PDDL domains. Fixing also the goal formula deviates from
the established standard in PDDL, where the goal is only a
part of the problem specification on top of the domain.



Goal Specification
In the following, we will argue that our definition of the goal
specification is powerful enough to express existing bench-
marks domains and that leaving the entire goal specification
to the task would require an additional undesirable mecha-
nism to establish relevant restrictions.

In some IPC benchmark domains, all problems already
share the same first-order goal specification. For example,
in the full-ADL variant of Miconic (Koehler and Schuster
2000), where a number of passengers needs to be brought to
their destination floors with an elevator, there is a joint goal
∀p(passenger(p)→ served(p)). As not all planning systems
support the full ADL fragment, IPC domains are often ex-
pressed in the STRIPS fragment of PDDL, which requires
the goal to be a conjunction of atoms, and thus goals differ
between problems. In many cases, the STRIPS goal is al-
ready the result of a compilation from a common first-order
goal, or the domain designer has an informal common goal
in mind (such as “deliver all packages”). With our proposed
formalism, it is not necessary to reconstruct a common first-
order formula, but instead we can directly cover any con-
junction of ground atoms for the individual problems.

Consider, for example, the Logistics domain from IPC
1998 (McDermott 2000), where the task is to transport
packages to their destination location. Within cities, trucks
can transport the packages between locations, and airplanes
can transport packages between the airports of different
cities. Predicates at(p, l) and in(p, v) express that a pack-
age/truck is at a location or a package is in a vehicle.
An example goal of such an IPC problem is at(p1, l1) ∧
at(p2, l1) ∧ at(p3, l3). We can cover any such conjunction
by means of a new binary predicate atg and a first-order goal
∀p, l(atg(p, l)→ at(p, l)), moving the exact requirements of
the problem into the initial state specification. In the exam-
ple, we would extend the original initial state to interpret atg
as {(p1, l1), (p2, l2), (p3, l1)}.

This way, we can on the problem side support arbi-
trary conjunctions of ground atoms as goals. Let P =
{P1, . . . , Pn} be the set of predicates we want to sup-
port. Then we would add a new predicate P g for every
P ∈ P with the same arity as P and use the goal formula∧

i=1,...,n ∀x̄i(P g(x̄i) → P (x̄i)), where x̄i is a vector of
variables with the arity of Pi.

We can extend the idea to conjunctions of literals by in-
troducing additional goal predicates for the negative literals.

Since the truth of the P g atoms is defined in the initial
state, they can also be analyzed by the query for the legality
of the task. As an example, consider a variant of the Logis-
tics domain where trucks can only travel on a road network
(encoded by edges E between locations) and there are also
goal locations specified for a subset of the trucks. As PDDL
axioms can compute transitive closures, we can require that
every truck can reach its goal location:

reach(t, l)← at(t, l) ∨ ∃l′(reach(t, l′) ∧ E(l′, l))

illegal()← ∃t, l(truck(t) ∧ atg(t, l) ∧ ¬reach(t, l))
legal()← ¬illegal()

We have seen that with a joint goal formula, we can still
leave some aspects of the goal to the individual problems.

For many applications, e.g. generalized planning where
the same general plan must work for all problems of the do-
main, it is essential that the domain specification can enforce
some uniformity of the goals. So if we did not use a common
goal, we would need some other mechanism for constraining
the legal goals. One could consider to specify a first-order
formula ϕ in the domain to constrain the problem-specific
goal γ, but it is not even clear what this constraint could
look like. Requiring that γ |= ϕ means that in every task
we need to achieve ϕ but there can be arbitrary additional
requirements. Requiring ϕ |= γ means that achieving ϕ is
definitively sufficient, but on a domain-specific level there
is no information what kind of relaxation γ permits, so it is
unclear how this can be exploited. Since deciding such logi-
cal consequences is a hard problem even for a fixed planning
domain, we did not further pursue these ideas.

Adding Order
In general, semipositive Datalog¬ is strictly less expressive
than stratified Datalog¬, which in turn is strictly less expres-
sive than fixpoint queries (Abiteboul, Hull, and Vianu 1995).
Interestingly, on certain finite structures the difference disap-
pears: If there are predicates succ(x.y), min(x) and max(x)
that are always interpreted such that succ is a successor rela-
tion of a linear order on the finite universe, and min and max
determine the minimal and maximal element in this order,
then semipositive Datalog¬ is equivalent to fixpoint queries
and both capture P (Papadimitriou 1985; Abiteboul, Hull,
and Vianu 1995). The same is true for stratified Datalog¬,
where we do not even need min and max as basic predicates
(Abiteboul, Hull, and Vianu 1995).2

Let us briefly clarify what it means in our context that a
formalism captures P. The following definition is based on
the general definition by Libkin (2004) for arbitrary com-
plexity classes, logics and classes of finite structures.
Definition 10. Let L be a logic query language. Then L
captures P if both of the following hold:
• For a fixed set of rules and query predicate in L, test-

ing whether the query is true for a finite structure S is
possible in polynomial time in the size of S.

• For every property P of finite structures that can be de-
cided in polynomial time, there is a fixed set of rules and
query predicate such that for every finite structure S the
query is true iff S has property P .

Applied to our context, the finite structures are the basic
states and the first condition expresses that we can decide in
polynomial time whether the given problem is legal. As we
have discussed before, this is already the case for the con-
sidered formalisms if we do not require order. The second
property is much more interesting: Every property of basic
states that can (by any mechanism) be tested in polynomial
time, can be phrased as a query in stratified Datalog¬ if there
is a successor relation!

Since this is clearly a desirable property for formal rep-
resentations of planning domains, we will in the following
extend the previous definition accordingly.

2We can derive them from succ, e.g. with min(x) ←
¬∃ysucc(y, x).



We do not want to require a successor relation to be ex-
plicitly defined in the initial state, but instead the result
should be equivalent for arbitrary such orders.

For this purpose, we will borrow another concept from
Datalog (with or without negation), namely the concept of
an order-invariant query (Rudolph and Thomazo 2016).

We first define (slightly abusing notation) the union of
states over the same set of constants but disjoint predicates.

Definition 11 (Union of states). Let s be a state over ΣC,P
and s′ be a state over ΣC,P′ , where P ∩P ′ = ∅. State s∪ s′
is the state over ΣC,P∪P′ that interprets all predicates from
P like s and all predicates from P ′ like s′.

A query that uses order is order-invariant if the result is
independent of the chosen order.

Definition 12 (Order-invariant query). Let A be a finite set
of stratifiable PDDL axioms with basic predicates B and de-
rived predicates D and let P ∈ D be a 0-ary predicate. Let
further succ be a binary predicate in B.

Query QA,P is order-invariant wrt. succ if for every finite
set C of constants and state s over ΣC,B\{succ}, it holds that
if ssucc and s′succ are states over ΣC,{succ} that define a linear
order for C, then QA,P (C, s ∪ ssucc) = QA,P (C, s ∪ s′succ).

A planning domain with order is defined analogously to
our previous notion of planning domains, only that there is
now a binary basic predicate succ that may be used in the
axioms for testing legality but not be relevant for the seman-
tics of the induced problems. We thus need to adapt our ear-
lier definition. In particular, we now need to be more precise
about what axioms can be used for which purpose. For clar-
ity, we also partition the set of predicates accordingly. Sub-
script t refers to components that may be used everywhere,
while subscript q refers to components that are only used for
the legality query.

Definition 13 (Order-supported planning domain).
An order-supported planning domain is a tuple
⟨Pt,Pq, C,O,At,Aq,L, succ,G⟩, where

• Pt is a finite set of predicate symbols that can be parti-
tioned into a set of basic predicates Bt and a set of de-
rived predicates Dt,

• Pq with Pq ∩ Pt = ∅ is a finite set of predicate symbols
that can be partitioned into a set of derived predicates
Dq and {succ},

• C is a finite set of constant symbols,
• O is a finite set of PDDL operators over ΣC,Pt ,
• At is a stratifiable finite set of PDDL axioms over ΣC,Pt .
• Aq is a stratifiable finite set of PDDL axioms over
ΣC,Pt∪Pq .

• L is the 0-ary query predicate with L ∈ Dq,
• succ is a binary basic successor predicate,
• QAt∪Aq,L is order-invariant wrt. succ, and
• G is a first-order sentence over ΣC,Pt .

We need to adapt the definition of legal problems in the
obvious way: The initial state only interprets the predicates
from Bt and the legality test uses all axioms.

Definition 14 (Legal Problem (with order)). A prob-
lem for an order-supported planning domain D =
⟨Pt,Pq, C,O,At,Aq,L, succ,G⟩ is a tuple P = ⟨C′, I⟩,
where C′ is a finite set of constant symbols disjoint from C
and the initial state I is a basic state over ΣC∪C′,Pt .

P is legal for D if QAt∪Aq,L(C ∪ C′, I ∪ ssucc) = ⊤ for
some (or equivalently every) state ssucc over ΣC,{succ} that
defines a linear order for C.

The requirement that there must be an interpretation of
succ such that the query is true is easy to test in practice:
since the query is order-invariant, all orders will lead to the
same result and we can use an arbitrary order of the objects
to define ssucc.

A natural question is, whether requiring order invariance
is harmful for the theoretical properties of the approach,
which is not the case:
Theorem 2. Order-invariant PDDL axiom queries capture
P.

Proof sketch. The result that semipositive Datalog¬ on or-
dered databases with min and max can express all P queries
is based on its equivalence to fixpoint queries. The corre-
sponding proof creates for a fixpoint query an equivalent
order-invariant semipositive Datalog¬ program that uses the
order to “iterate” over all objects in the universe (Abiteboul,
Hull, and Vianu 1995, Lemma 15.4.7).

The last definition we need to adapt is the one for the in-
duced PDDL problem, that does not include the predicates
and axioms for the legality test:
Definition 15 (Induced PDDL problem (with order)).
Problem ⟨C′, I⟩ for order-supported planning domain
⟨Pt,Pq, C,O,At,Aq,L, succ,G⟩ induces the PDDL prob-
lem ⟨⟨Pt, C,O,At⟩, C′, I,G⟩.

In a later example we exploit order support to verify that
a relation encoding edges defines a rectangular grid graph.

Example Domains
We now provide examples on how our approach can be
useful to constrain legal tasks beyond the possibilities of a
PDDL domain. In all examples, we use the original PDDL
domain and initial states from the IPC and only move some
information from the problem goals into the initial state.

Blocksworld
As a first example, we consider the well-studied
Blocksworld domain (Gupta and Nau 1992; Slaney
and Thiébaux 2001). In contrast to an earlier logic ax-
iomatization (Cook and Liu 2003), we use the variant and
encoding used in the IPC 2000 (Bacchus 2001). The objects
in Blocksworld are blocks. Atom on(a, b) encodes that
block a is on top of block b and ontable(a) that block a
is on the table. Atom clear(b) indicates that no block lies
on b. There is a hand that can be used to move blocks
around, where holding(b) expresses that the hand holds b
and handempty() that it does not hold any block. The goal
of all Blocksworld tasks from the IPC is to stack the blocks
into a single, fully specified tower.



The initial state always describes a physically meaning-
ful configuration of the blocks with an empty hand. With the
given predicates, we can easily specify impossible configu-
rations, e.g. where block b is on itself, block a is on c and
c on a, or where d is at the same time on the table and on
several other blocks.

In all examples, we will use legal as the query predicate,
but the axioms will first derive predicate illegal and establish
legal with the axiom legal()← ¬illegal().

The following axioms are based on the ones by Cook and
Liu (2003) for a Blocksworld encoding without a hand and
a single predicate above.

We define the derived predicate above to be the transitive
closure of on and use it to forbid cyclic towers, i.e., towers
where a block is above itself.

above(x, y)← on(x, y) ∨ ∃z (on(x, z) ∧ above(z, y))
illegal()← ∃x above(x, x)

In the Blocksworld domain, blocks can only be stacked
to build simple towers, i.e., there is at most one block under
each block and there is at most one block on each block.

illegal()← ∃x, y, z (on(x, y) ∧ on(x, z) ∧ y ̸= z)

illegal()← ∃x, y, z (on(y, x) ∧ on(z, x) ∧ y ̸= z)

In the initial state, no block may be held.

illegal()← ¬handempty() ∨ ∃x holding(x)

Furthermore, the position of each block must be unam-
biguously identified. With the previous two rules preventing
blocks to be in the hand, we can define the position of each
block to be unique with the following axioms.

illegal()← ¬∀x(ontable(x) ∨ ∃y on(x, y))
illegal()← ∃x(ontable(x) ∧ ∃y on(x, y))
illegal()← ¬∀x(clear(x) ∨ ∃y on(y, x))
illegal()← ∃x(clear(x) ∧ ∃y on(y, x))

The IPC problem goals are conjunctions of atoms
on(x, y) that define a single tower. To encode them,
we use a new predicate ong and the domain-wide goal
∀x, y(ong(x, y) → on(x, y)). To require a single tower, we
use analogous axioms as above to ensure simple, non-cyclic
towers (with ong instead of on, and new derived predicate
aboveg). We identify the bottom block, make sure that there
is exactly one such block and require that all other blocks
are above the bottom block:

bot(x)← ¬∃y ong(x, y)

illegal()← ∃x, x′(x ̸= x′ ∧ bot(x) ∧ bot(x′))
illegal()← ¬∃x bot(x)

illegal()← ∃x(bot(x) ∧ ∃x′(x ̸= x′ ∧ ¬aboveg(x′, x)))

Floortile
In the Floortile domain (Linares López, Celorrio, and Olaya
2015) there is a number of robots that should paint the
tiles in a rectangular grid. The domain uses unary predi-
cates tile, robot, and color to distinguish the objects into

three types. Binary predicates up, down, right, and left spec-
ify the relative location of adjacent tiles, e.g. right(t, t′) ex-
presses that tile t is right of t′. Moreover, there are predi-
cates robot-at(r, t) to express that robot r is on tile t and
painted(t, c) to specify that tile t has been colored with color
c. Atom clear(t) indicates that there is no robot on tile t and
that t is not colored.

Drexler, Seipp, and Geffner (2021) require for the domain
that there is at most one robot on each tile3 and otherwise the
tile is clear. Initially, the tiles are unpainted and “the goal is
to paint a rectangular subset of the grid in chessboard style.”.
The goal in the PDDL problem specifies for a subset of the
tiles the exact color they should be painted.

There are two very interesting aspects in this do-
main that we will discuss: the requirement that predicates
up, down, . . . encode a rectangular grid and that the goal en-
code a chessboard-kind pattern.

In PDDL, typing already enforces that the parameters of
each true predicate are of the correct types. Since we did not
introduce typing, we show exemplarily how we can ensure
that the first parameter of robot-at is a robot and the second
one a tile, and in the following assume that there are ana-
logue axioms for the other predicates as well:

illegal()← ∃r, t(robot-at(r, t) ∧ (¬robot(r) ∨ ¬tile(t)))

The following axioms enforce that there is at most one
robot on each tile and that a tile is clear iff it is not colored
and there is no robot on it:

illegal()← ∃t, r, r′(r ̸= r′ ∧ robot-at(r, t) ∧
robot-at(r′, t))

illegal()← ∃t(tile(t) ∧ clear(t)∧
(∃r robot-at(r, t) ∨ ∃c painted(t, c)))

illegal()← ∃t(tile(t) ∧ ¬clear(t) ∧ ¬∃r robot-at(r, t)∧
¬∃c painted(t, c))

Rectangular Grid We ensure that up is the inverse of
down and both are irreflexive (analogously for left and
right). We then make sure that every tile has at most one
adjacent tile in every cardinal direction (exemplarily shown
for left).

illegal()← ∃t, t′(up(t, t′) ∧ ¬down(t′, t))

illegal()← ∃t, t′(down(t, t′) ∧ ¬up(t′, t))
illegal()← ∃t up(t, t)
illegal()← ∃t down(t, t)

illegal()← ∃t, t′, t′′(left(t, t′) ∧ left(t, t′′) ∧ t′ ̸= t′′)

The verification that the predicates encode a grid is based on
a bijection that assigns every tile a coordinate in the form
of a row and a column. The challenge is that we cannot use
additional objects to represent rows and columns. Instead,
we will use the tiles on the top fringe to represent the corre-
sponding columns and those on the left fringe for the rows.

The top left corner will thus identify the first column and
row. We first identify all tiles that have no tile to the left or

3They do not require that every robot is on exactly one tile but
this would be equally easy to formulate.



top and verify that there is only one such top left (TL) tile.
We can analogously verify that there is exactly one tile for
the other three corners.

TL(t)← ¬∃t′(left(t′, t) ∨ up(t′, t))
illegal()← ¬∃tTL(t)

illegal()← ∃t, t′(TL(t) ∧ TL(t′) ∧ t ̸= t′)

From the top left tile, we identify all tiles that are right of
it as column-defining (col) tiles (and all tiles below it analo-
gously as row tiles).

col(t)← TL(t)

col(t)← ∃t′(col(t′) ∧ right(t, t′))

Predicate colOf(t, c) represents that tile t is in column c
(predicate rowOf analogously for rows):

colOf(t, t)← col(t)

colOf(t, c)← ∃t′(colOf(t′, c) ∧ down(t, t′))

We will now ensure that the mapping from row/column pairs
to vertices is a bijection.

The mapping induced by colOf and rowOf is a function if
for every row/column pair there is exactly one tile.

illegal()← ∃r, c(row(r) ∧ col(c)∧
¬∃t(rowOf(t, r) ∧ colOf(t, c)))

illegal()← ∃r, c, t, t′(t ̸= t′ ∧
rowOf(t, r) ∧ colOf(t, r) ∧
rowOf(t′, r) ∧ colOf(t′, r))

It is surjective if for every tile there is a row and column.

illegal()← ∃t(¬∃r rowOf(t, r) ∨ ¬∃c colOf(t, c))

It is injective if no tile is in two columns or rows.

illegal()← ∃r, r′, t(r ̸= r′ ∧ rowOf(t, r) ∧ rowOf(t, r′))

illegal()← ∃c, c′, t(c ̸= c′ ∧ colOf(t, c) ∧ colOf(t, c′))

Since columns were purely based on right and rows on
down, we still need to ensure that these describe a grid. We
can do this by verifying that moving right and down leads
to the same tile as moving down and right and vice versa
(analogously for other directions).

illegal()← ∃t, t′, t′′(right(t′, t) ∧ down(t′′, t′) ∧
¬∃t′′′(down(t′′′, t) ∧ right(t′′, t′′′)))

illegal()← ∃t, t′, t′′(down(t′, t) ∧ right(t′′, t′) ∧
¬∃t′′′(right(t′′′, t) ∧ down(t′′, t′′′)))

In addition, we will have axioms that verify that for all
tiles there exist exactly the expected neighbors, e.g. that all
non-corner tiles below the top left tile have no left tile but
one up, right, and down.

Goal The PDDL goal of the Floortile tasks is a conjunc-
tion of painted atoms. In the domain specification, we use
additional predicates painted g for encoding exactly these
goal atoms already in the initial state in conjunction with
the domain-wide goal ∀t, c(painted g(t, c)→ painted(t, c)).

The axioms need to ensure that painted g defines a rectan-
gular subset of the tiles painted with two colors like a chess-
board. We leave the aspect of the rectangular subset to the
reader, building on the ideas elaborated above for verifying
the grid property. For the remaining properties, we need to
ensure that the coloring uses exactly two colors, and that ad-
jacent tiles in the rectangular area are colored differently.

gcolor(x)← ∃t painted g(t, x)

illegal()← ¬∃x, y(gcolor(x) ∧ gcolor(y) ∧ x ̸= y)

illegal()← ∃x, y, z(x ̸= y ∧ x ̸= z ∧ y ̸= z ∧
gcolor(x) ∧ gcolor(y) ∧ gcolor(z))

illegal()← ∃t, t′, c(painted g(t, c) ∧ painted g(t′, c) ∧
(right(t, t′) ∨ down(t, t′)))

Grids Defined by Edge Relation
Many domains have a concept of an underlying grid graph
that is represented by a binary predicate E that represents
the existence of an edge between two vertices. In contrast to
the Floortile domain, there is no notion of cardinal directions
in the edge predicates. One such example is the Grid domain
from IPC 1998 (McDermott 2000), where an agent must use
keys located on the grid to make further locations accessible
to eventually reach a specific vertex on the grid. Other exam-
ples are Visitall from IPC 2011 (Coles et al. 2012), Termes
from IPC 2018,4 or Folding from IPC 2023.5

Here we focus on the question how we can use order sup-
port to verify that the interpretation of E in the initial state
corresponds to a grid graph. The encoding builds on the gen-
eral idea we also used in Floortile. The crucial aspect is that
we will use the order to select one corner as the top left one
and one of the adjacent fringes as the top fringe.

We assume wlog. that all objects refer to vertices. Other-
wise, we can identify them with a given predicate (e.g. place
in the IPC Grid domain) or derive such a predicate from E.
With this predicate, it is then easy to restrict the following
rules to vertices only. The following rules can identify all
edge relations that represent an n×m grid with m,n ≥ 2.

We verify that relation E is symmetric and irreflexive:

illegal()← ∃x, y(E(x, y) ∧ ¬E(y, x))

illegal()← ∃xE(x, x)

Instead of the successor predicate succ, we will in the fol-
lowing use the corresponding linear order < on the objects
as predicate. This is always possible, because we can derive
it from succ with the transitive closure:

x < y ← succ(x, y) ∨ ∃z(x < z ∧ succ(z, y)).

We will exploit that a grid graph has corner vertices,
which are the vertices with exactly two neighbors. We will

4https://ipc2018-classical.bitbucket.io/
5https://ipc2023-classical.github.io/



use the smallest of them (with respect to the arbitrary or-
der) to be used as the top left corner. This is always possible
because the grid graph property is invariant under rotation.
For this purpose, we introduce for k ∈ {1, . . . , 5} a predi-
cate n≥k(x) to express that vertex x has at least k neighbors.

n≥k(x)← ∃x1, . . . , xk
k∧

i=1

E(x, xi) ∧
k∧

j=i+1

xi ̸= xj


A corner has exactly two neighbors and we mark the

smallest corner as the top left corner, also requiring that there
actually is such a vertex.

corner(x)← n≥2(x) ∧ ¬n≥3(x)

TL(x)← corner(x) ∧ ¬∃y(corner(y) ∧ y < x)

illegal()← ¬∃xTL(x)

To help with the further steps, we use a predicate
betw(x, y, z) to express that vertex x is directly between ver-
tices y and z on a “straight line”. In grid graphs this is the
case iff the only path of length 2 from y to z goes through x.
Furthermore, we enforce that z is unique (if it exists).

betw(x, y, z)← y ̸= z ∧ ¬E(y, z) ∧
E(y, x) ∧ E(x, z) ∧
∀x′ (E(y, x′) ∧ E(x′, z)→ x = x′)

illegal()← ∃x, y, z, z′(z ̸= z′ ∧ betw(x, y, z) ∧
betw(x, y, z′))

As in Floortile, we want to associate each vertex with a
row and column, using the vertices on the top and left fringe
to identify columns and rows. We thus need to identify the
other nodes on these fringes. As the grid property is invariant
to mirroring on the diagonals, we can select the top fringe to
be the one with the smaller neighbor of the top left vertex.

nextCol(x, y)← ∃z(TL(x) ∧ E(x, y) ∧ E(x, z) ∧ y < z)

nextCol(x, y)← ∃z(betw(x, z, y) ∧ nextCol(z, x))
col(x)← TL(x) ∨ ∃y nextCol(y, x)

nextRow(x, y)← ∃z(TL(x) ∧ E(x, y) ∧ E(x, z) ∧ z < y)

nextRow(x, y)← ∃z(betw(x, z, y) ∧ nextRow(z, x))
row(x)← TL(x) ∨ ∃y nextRow(y, x)

Predicate colOf(x, y) again represents that vertex x is in col-
umn y. For the vertices in the top fringe, this is the vertex it-
self. In a grid, all these vertices v have exactly one neighbor
that does not represent a column itself, namely the vertex
below v. We use this property to define the predicate for the
columns of the vertices in the second row. The remaining
rows can then be resolved by means of betw.

colOf(x, x)← col(x)
colOf(x, c)← col(c) ∧ E(x, c) ∧ ¬col(x)
colOf(x, c)← ∃y, z(colOf(y, c) ∧ colOf(z, c) ∧

betw(y, z, x))

Predicate rowOf(x, y) is defined analogously. Predicates
right (and down) can now be derived from the coordinates:

right(x, y)← ∃c, c′, r(colOf(x, c) ∧ colOf(y, c′) ∧
rowOf(x, r) ∧ rowOf(y, r) ∧
nextCol(c′, c))

Predicates up and left can be defined as the inverse of
down and right. The following axioms ensure that there is
an edge between x and y iff x and y are adjacent with re-
spect to left, right, up or down.

illegal()← ∃x, y(E(x, y) ∧ ¬right(x, y) ∧ ¬left(x, y) ∧
¬up(x, y) ∧ ¬down(x, y))

illegal()← ∃x, y(¬E(x, y) ∧ (right(x, y) ∨ left(x, y) ∨
up(x, y) ∨ down(x, y)))

We are now set to verify as in Floortile that the coordinate
embedding is a bijection and that up, left, down, right have
the right properties wrt. the existence of neighbors and cor-
ners.

Square Grids The tasks of the Grid domain from the IPC
always have square n × n grids (for different values of n).
We can extend our axioms to this additional requirement.

We use the insight that the grid is square iff for each vertex
on the left fringe there is a vertex on the top fringe with
the same distance to the top left vertex, and vice versa. We
cannot represent the distances explicitly but we can define a
predicate eqDist(x, y) to express that fringe vertices x and y
have equal distance to the top left corner.

eqDist(x, y)← TL(x) ∧ TL(y)
eqDist(x, y)← ∃v(TL(v) ∧ E(x, v) ∧ E(y, v))

eqDist(x, y)← ∃v, v′, w, w′(eqDist(v, w) ∧
eqDist(v′, w′) ∧
betw(v′, v, x) ∧ betw(w′, w, y))

illegal()← ∃r(row(r) ∧ ¬∃c(col(c) ∧ eqDist(r, c)))
illegal()← ∃c(col(c) ∧ ¬∃r(row(r) ∧ eqDist(r, c)))

Solvability of Transport
For domains where deciding solvability is in P, the planning
domain can require all tasks to be solvable. We showcase
this for the Transport domain,6 where the goal is to deliver
packages from their initial location to some destination loca-
tion. Locations are connected by a symmetric road network,
which can be used by trucks. Each truck can load packages
up to its capacity to transport them between locations. Dif-
ferent capacities are represented by objects together with a
capacity-predecessor relation. Here we focus on the solv-
ability aspect and assume that there are additional axioms
e.g. for ensuring the symmetry of the road relation and that
there is a predicate atg for the destination of each package.

6https://ipc08.icaps-conference.org/deterministic/
HomePage.html



There is never the need to transport a package with multi-
ple trucks, so a task is solvable if for each package there is a
truck with a non-zero capacity (a capacity with a predeces-
sor) that can reach its initial and goal location.
reach(t, l)← at(t, l) ∨ ∃l′(reach(t, l′) ∧ road(l′, l))

good(t)← truck(t) ∧ ∃c, c′(capacity(t, c′) ∧
capacity-predecessor(c, c′))

illegal()← ∃p, l, l′(at(p, l) ∧ atg(p, l′) ∧ l ̸= l′ ∧
¬∃t(good(t) ∧ reach(t, l) ∧ reach(t, l′)))

Related Work
Using formal specifications for planning domains is also
a topic in validation as part of the knowledge acquisition
process, where the objective is to substantiate that an in-
put model for the planner adequately reflects the intended
dynamics of the real-world domain. For example, West,
Kitchin, and McCluskey (2002) use the state-based for-
mal specification language B-AMN, and Ammar and Bhiri
(2021) rely on Event-B for the formal modeling of planning
tasks and a subsequent compilation to PDDL.

Knowledge engineering tools such as GIPO (Simpson,
Kitchin, and McCluskey 2007) or itSimple (Vaquero et al.
2009) also use different formalisms for specifying (aspects
of) planning domains, with the focus on supporting the user
in the modeling process. They do not pursue an exact charac-
terization of the domain, e.g., in terms of legal initial states,
and use less expressive formalisms. For instance, the state-
machine-based internal representations of GIPO can only
express (higher-order) mutex-style restrictions, which is too
limited for concepts such as connectedness. UML is used in
itSimple for some modeling aspects, but similarly to existing
PDDL models, this is not sufficient to clearly delineate tasks
that are intended to belong to the modeled domain from ones
that do not.

Planning as satisfiability formalisms based on predicate
logic like Kautz and Selman’s (1992) can be viewed as more
restricted cases of the formalism we propose, as sufficiently
rich logic programming languages like Datalog¬ can ex-
press everything expressible in predicate logic, but not vice
versa. The main practical drawback of such formalisms is
that they cannot express a notion of recursion or transitive
closure, a known fundamental limitation of predicate logic
(Fagin 1974).

Srivastava, Immerman, and Zilberstein (2011) use a for-
malism very similar to ours for generalized planning. In par-
ticular, they also require a joint goal formula and define
the legal initial states by means of logic. In contrast to us,
they use first-order logic with transitive closure, which is
strictly less expressive than stratified Datalog¬ (Grädel and
McColm 1996) and thus also PDDL axioms. In contrast to
our work, their formalism also permits integrity constraints
that can restrict the set of valid states beyond just the initial
state.

Conclusion
We built on insights from database theory to propose a for-
malism for defining planning domains. Unlike PDDL mod-

els, which usually overapproximate the set of planning tasks
that form part of a domain, our formalism allows us to ex-
press exactly which tasks are valid for a given domain in all
cases where testing if a task is part of the domain admits a
polynomial-time algorithm.

The formalism builds on existing PDDL models, leverag-
ing the existing semantics of PDDL axioms with a small but
crucial extension. This makes it easy to add exact domain
characterizations to existing PDDL models. We demon-
strated that this is not just theoretically possible but prac-
tically feasible in a number of case studies.

Having formal models that exactly characterize planning
domains facilitates and in some case is a prerequisite for
many algorithmic problems that operate at the level of an
entire planning domain, including generalized planning, au-
tomated generation of planning tasks in a given domain, do-
main validation and model checking, domain-level invariant
synthesis, and the learning of domain knowledge.

In future work, we plan to explore some of these possi-
bilities, starting with instance generation, which has an im-
mediate use in learning-based approaches to planning and
could be helpful for future planning competitions. In most
domains, it is highly unlikely that a randomly guessed in-
terpretation of the predicates corresponds to a legal initial
state, so the problem is algorithmically challenging. We will
therefore look into approaches based on satisfiability or an-
swer set programming for this purpose.
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