Formal Representations of Classical Planning Domains

Claudia Grundke Gabriele Röger Malte Helmert

University of Basel

June 4, 2024

Expressiveness

Blocksworld

Blocksworld?

Initial States & Goals

Expressiveness

C. Grundke, G. Röger, M. Helmert (Uni Basel)

Formal Representations of Domains

Who cares?

Domain Description + Task Description

- Generalized Planning (e. g. Srivastava et al., 2011)
- Automated Instance Generation
- Reasoning over Domains

Aims

We want

- a formalism to describe domains precisely,
- it to be based on PDDL,
- to efficiently check if a task belongs to a domain.

PDDL Axioms

$\textit{above}(x,y) \leftarrow \textit{on}(x,y) \lor \exists z \left(\textit{on}(x,z) \land \textit{above}(z,y)\right)$

PDDL Axioms

$$\textit{above}(x,y) \leftarrow \textit{on}(x,y) \lor \exists z \left(\textit{on}(x,z) \land \textit{above}(z,y)\right)$$

$$illegal() \leftarrow \exists x \text{ above}(x, x)$$
$$illegal() \leftarrow \dots$$

Fixed Goal Condition

All tasks of a domain share same first-order goal.

Example (full-ADL Miconic): $\forall p (passenger(p) \rightarrow served(p))$

Expressiveness

Moving Goal into Initial State

Goal: New static atoms:

 $\mathit{on}(A,B) \wedge \mathit{on}(B,C)$ $\mathit{on}^{\mathrm{g}}(A,B), \mathit{on}^{\mathrm{g}}(B,C)$ on(X,Y) $on^{\mathrm{g}}(X,Y)$

Expressiveness

Moving Goal into Initial State

Goal: New static atoms: $\begin{array}{l} & \textit{on}(A,B) \wedge \textit{on}(B,C) \\ & \textit{on}^{\mathrm{g}}(A,B),\textit{on}^{\mathrm{g}}(B,C) \end{array}$

 $\frac{on(X,Y)}{on^{\mathrm{g}}(X,Y)}$

 $\begin{array}{c} \text{Shared goal:} \\ \forall x, x'(\textit{on}^{\text{g}}(x, x') \rightarrow \textit{on}(x, x')) \end{array}$

Aims

We want

- a formalism to describe domains precisely,
- it to be based on PDDL,
- to efficiently check if a task belongs to a domain.

Aims

We want

- a formalism to describe domains precisely,
- it to be based on PDDL,
- to efficiently check if a task belongs to a domain.
- Maximal expressiveness.

Expressiveness

Linear Order

Even number of blocks?

Linear Order

Even number of blocks?

Linear Order

Even number of blocks?

illegal if largest block is odd

With linear orders our formalism (using PDDL axioms) can express any polynomial-time algorithm that can decide if a task is legal. (Immerman-Vardi Theorem)

Summary,

Link to our paper Formal Representations of Classical Planning Domains Using PDDL axioms we can restrict which states are legal initial states for tasks of a domain.

• Given a linear order our formalism captures polynomial-time decision algorithms.

All tasks of a domain share same first-order goal.

• Move conjunctive goals into initial state to preserve them.

Linear Order: Grid Graph

$$corner(x) \leftarrow degree_{>2}(x) \land \neg degree_{>3}(x)$$

$$TL(x) \leftarrow corner(x) \land \\ \neg \exists y \ (corner(y) \land y < x)$$