Formal Representations of Classical Planning Domains

Claudia Grundke, Gabriele Röger, Malte Helmert

PDDL domain descriptions overapproximate domains. This is fine for solving individual tasks but it is a problem e.g. for generalized planning or automated instance generation.

We want to

- describe domains precisely,
- stay compatible with existing **PDDL** benchmarks,
- efficiently check if a task belongs to the domain.

Basic Idea

- All tasks of a domain share same firstorder goal and only differ in the set of objects and the initial state.
- Task belongs to a domain if **derived** query predicate legal() is true in the initial state.
- PDDL axioms characterize legal tasks:

 $above(x, y) \leftarrow on(x, y) \lor \exists z(on(x, z))$ \wedge above(z, y)) $illegal() \leftarrow \exists x above(x, x)$ $illegal() \leftarrow \dots$ $legal() \leftarrow \neg illegal()$

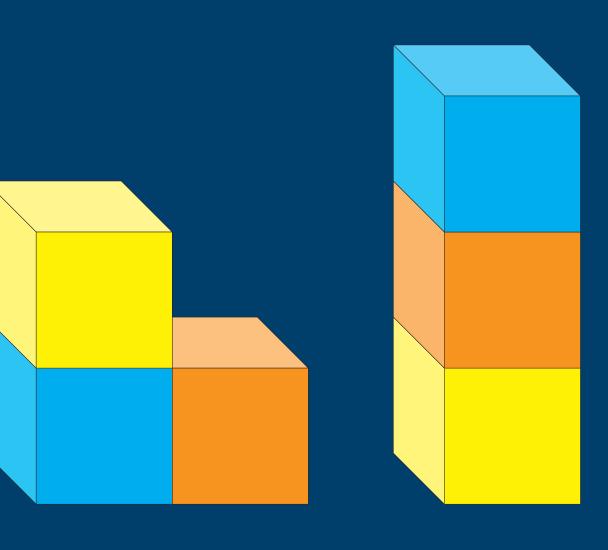
Paper contains examples suitably augmenting existing IPC benchmarks.

Domain-wide Goal

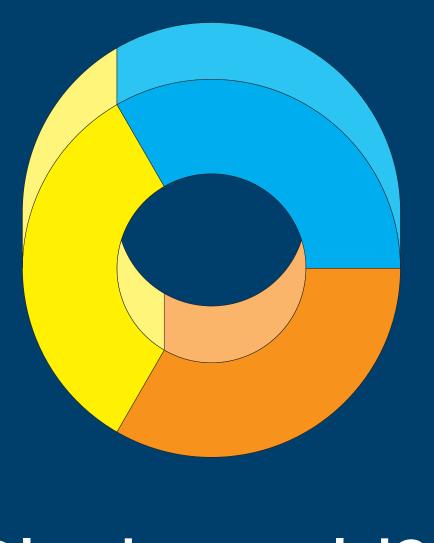
- Shared goal ensures **desirable conformity** of tasks.
- Not too restrictive because we can **move STRIPS goal into initial state:**
- For STRIPS goal $on(A, B) \land on(B, C) \land on(C, D)$
- Add to initial state: $on^{\mathrm{g}}(A, B)$, $on^{\mathrm{g}}(B, C)$, $on^{\mathrm{g}}(C, D)$
- Goal of all Blocksworld tasks then is $\forall x, x'(on^{g}(x, x') \rightarrow on(x, x'))$

University of Basel

Which tasks belong to a planning domain?



Blocksworld



Blocksworld?

If there exists a polynomial-time decision algorithm, we can capture it using an extended form of PDDL axioms.

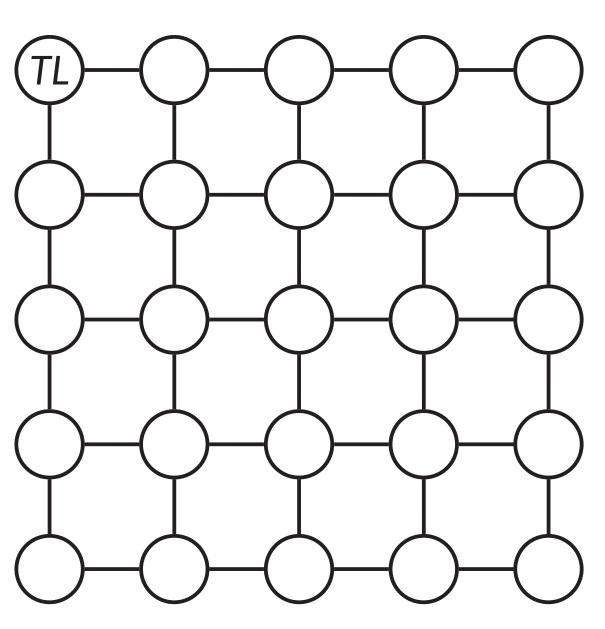
Take a picture to download the full paper.

Adding Order

- Extension to PDDL: Axioms may exploit an arbitrary linear **order** < over all objects.
- Set of axioms must be **order-invariant**, i. e. the evaluation result of the axioms may not depend on the exact order.

Example:

Characterize grids based on edge relation E.



• Use linear order to distinguish one corner.

 $corner(x) \leftarrow degree_{>2}(x) \land \neg degree_{>3}(x)$ $TL(x) \leftarrow corner(x) \land$ $\neg \exists y \ (corner(y) \land y < x)$

• Smaller neighbor lies to the right, larger neighbor below.

$$\begin{aligned} \textit{rightOfTL}(x) \leftarrow \exists c, y \ (\textit{TL}(c) \land \\ & E(x, c) \land E(y, c) \\ & \land x < y) \end{aligned}$$
$$\begin{aligned} \textit{belowOfTL}(x) \leftarrow \exists c, y \ (\textit{TL}(c) \land \\ & E(x, c) \land E(y, c) \\ & \land y < x) \end{aligned}$$

Complexity & Expressiveness

- Complexity: Legality can be decided in polynomial time (in the size of the task description) for a fixed domain.
- Expressiveness: Our formalism captures P (Immerman-Vardi Theorem), i. e. if any polynomial-time algorithm can decide if a task is legal, we can express it.