
On an Attempt at Casting Orbit Search as a Task Transformation

Daniel Gnad1, David Speck1,2

1Linköping University, Sweden
2University of Basel, Switzerland
⟨daniel.gnad, david.speck⟩@liu.se

Abstract
State-space reduction techniques are a powerful means to en-
hancing the performance of search-based planners. Recent
work has shown that decoupled search, which compactly rep-
resents sets of states, can be cast as a task reformulation. Con-
cretely, it is possible to exactly simulate the behavior and
reduction of (non-optimal) decoupled search by applying a
transformation to the input task and running regular search
on the transformed task. In this work, we investigate if the
same approach is feasible for symmetry breaking, in partic-
ular orbit space search (OSS). One of the challenges in this
endeavor is that OSS dynamically computes a canonical rep-
resentative of every state generated during search. To repre-
sent this computation as a task transformation, however, we
need to fix the procedure at transformation time. This leads
to reduced pruning potential, which we discuss in detail and
verify empirically. We also discuss an approach that can fully
simulate OSS, at the cost of vastly blowing-up the task size.

Introduction
Classical planning involves finding a path between states in a
compactly described state-space. State-space reduction tech-
niques are powerful tools for improving the performance of
planners by addressing issues such as accidental complexity
that may arise from task modeling (Haslum 2007). Estab-
lished reduction techniques can be broadly divided into two
groups: pruning methods remove states or transitions, such
as symmetry breaking or partial order reduction, while com-
pression techniques, such as symbolic or decoupled search,
represent the state space more compactly.

In domain-specific settings, state-space reduction tech-
niques are often realized by reformulating the task at hand;
prominent examples are solving the Rubik’s Cube (Korf
1997) or finding algorithms for matrix multiplication (Fawzi
et al. 2022; Speck et al. 2023). In domain-independent set-
tings, however, the most common approach to realize pow-
erful state-space reduction techniques is through special-
ized algorithms and implementations (Gnad and Hoffmann
2018; Torralba et al. 2017; Torralba and Sievers 2019; Speck
2022), which often limits the transfer of other planning tech-
niques or novel advances to these specialized approaches.
Therefore, a natural question arises: Can modern domain-
independent state-space reduction techniques be described
by means of task reformulation? A recent successful exam-
ple of this is the work of Speck and Gnad (2024), which

showed that decoupled search can be embodied by searching
on a transformed task, allowing the full toolbox of planning
techniques to be used along with decoupled search.

In this paper, we analyze the possibility and demonstrate
methods for implementing symmetry breaking through task
reformulation. That is, given a planning task, we create
a new task such that standard search algorithms on the
new task mimic specialized symmetry-breaking algorithms,
such as orbit space search (Domshlak, Katz, and Shleyf-
man 2015), applied to the original task. While symmetry-
breaking methods can theoretically and practically reduce
the state space of forward search exponentially (Pochter, Zo-
har, and Rosenschein 2011; Domshlak, Katz, and Shleyfman
2012), and this theoretical guarantee carries over to our task
reformulation, certain properties of the transformation we
present seem to hinder the practical ability to achieve the
pruning power of specialized algorithms. We believe that
these observations, combined with insights into why this
pruning power is not effectively translated by the current
method of encoding symmetry breaking in a planning task,
can inspire new ideas and help overcome the identified ob-
stacles.

Background
In this section, we introduce the necessary background for
our work by defining classical planning and orbit space
search.

Classical Planning
We adopt a common definition of planning in finite-domain
representation (FDR) (Bäckström and Nebel 1995; Helmert
2009) without axioms and derived variables. A FDR plan-
ning task is a tuple Π = ⟨V,O, I,G⟩, where V denotes a
set of variables, O denotes a set of operators, I denotes the
initial state, and G denotes the partial goal state. Each vari-
able v ∈ V has a finite domain Dv , an assignment ⟨v, d⟩
to a variable is called a fact. A partial state is a consistent
assignment to some variables in V . A state is a complete
and consistent assignment to all variables in V . For a par-
tial state p we denote the subset of variables defined in p by
V (p) ⊆ V . Furthermore, we write s(v) = x for the assign-
ment of v to x made in a (partial) state s. By S we refer to
the set of all states.

l1 l2 l34t p2 p1

p1 p2

Figure 1: Illustration of the initial state (solid packages) and
goal (dashed packages) of the running example.

Planning operators encode the transitions between states.
Each operator o ∈ O is a triplet ⟨pre(o), eff (o), ceff (o)⟩.
The precondition pre(o) and effect eff (o) are partial states,
and ceff (o) is a set of conditional effects (cond ▷ ⟨v, x⟩),
where cond is a partial state and ⟨v, x⟩ is a fact.1 Every
operator o ∈ O is associated with a non-negative cost,
cost : O → R+

0 .
An operator o ∈ O is applicable in a state s ∈ S if

pre(o) ⊆ s. The result of applying the operator o to a state
s is a state t = sJoK, where t(v) = x for all ⟨v, x⟩ ∈ eff (o),
t(v) = x for all (cond ▷ ⟨v, x⟩) ∈ ceff (o) with cond ⊆ s,
and t(v) = s(v) for all variables that do not have such ef-
fects.

The solution to a FDR task is a plan, i.e., a sequence of op-
erators π iteratively applicable in I and ending in a goal state
sG such that G ⊆ sG. The plan is optimal if its summed-up
cost, denoted by cost(π), is minimal.

A SAS+ planning task is a simplified version of a
FDR planning task that does not include conditional effects
(Bäckström and Nebel 1995). Formally, a SAS+ planning
task is a FDR planning task Π = ⟨V, I,G,O⟩ where for
each operator o = ⟨pre(o), eff (o), ceff (o)⟩ ∈ O, it holds
that ceff (o) = ∅. To simplify the notation, we sometimes
exclude the empty components of a SAS+ operator by rep-
resenting it as o = ⟨pre(o), eff (o)⟩.

Moreover, we say that such an operator o ∈ O affects
a variable v ∈ V if it has an effect on it, formally v ∈
V (eff (a)). Furthermore, by post(o) = eff (o) ∪ {⟨v, d⟩ ∈
pre(o) | v ̸∈ V (eff (o))}, we refer to the partial state, called
the postcondition, that is always true after applying a SAS+

operator o ∈ O. Finally, V (o) = V (post(o)) refers to the
variables of the postcondition of a SAS+ operator o, which
are also the variables of the precondition and effect of o.

In the remainder of this paper, we will use the following
running example in the form of a SAS+ planning task.

Example 1 (Running Example). Let us consider a simple
logistics scenario with three locations connected in a line,
l1, l2, l3, along with two packages, p1 and p2, and one truck
t. These are represented by the variables V = {t, p1, p2},
with domains: Dt = {l1, l2, l3} and Dp1 = Dp2 =
{t, l1, l2, l3}. Initially, the truck and the package p2 are at
position l1, modeled as I(t) = I(p2) = l1, while the pack-
age p1 is initially at l3, i.e., I(p1) = l3. The goal is to trans-
port both packages to l2, formally G = {⟨p1, l2⟩, ⟨p2, l2⟩}.
Both the initial and goal states are illustrated in Figure 1.

1We assume well-formed effects, meaning that multiple condi-
tional effects assigning different values to the same variable cannot
trigger in the same state, and unconditional effects do not assign
different values to variables than the conditional ones.

There are three types of operators in this example: drive
operators that drive the truck between locations, load oper-
ators responsible for loading a package onto the truck, and
unload operators for unloading a package from the truck.
All operators have unit cost of 1. Formally, we have a drive
operator for any i, j ∈ {1, 2, 3} with |i− j| = 1:

• drive(li, lj) = ⟨{⟨t, li⟩}, {⟨t, lj⟩}⟩
And we have the following load and unload operators for
any p ∈ {p1, p2} and l ∈ {l1, l2, l3}:

• load(p, l) = ⟨{⟨t, l⟩, ⟨p, l⟩}, {⟨p, t⟩}⟩
• unload(p, l) = ⟨{⟨t, l⟩, ⟨p, t⟩}, {⟨p, l⟩}⟩

In Example 1, the number of states grows exponentially
with the number of packages. Symmetry breaking in the
form of orbit space search can significantly reduce this blow-
up of the search.

Orbit Space Search
Symmetry breaking considers equivalence classes of sym-
metrical states in the search space, and allows for using
representative states of each equivalence class. Shleyfman
et al. (2015) introduced the notion of structural symme-
tries, which capture previously proposed concepts of sym-
metry breaking for classical planning. These symmetries re-
label the factored representation of a given SAS+ planning
task. Operators are mapped to operators, variables to vari-
ables, and values to values (preserving the variable/value
pairs structure). This relabeling induces an automorphism of
the state space. We follow the definition of structural sym-
metries from Wehrle et al. (2015).
Definition 1 (Structural Symmetry). For a SAS+ task Π =
⟨V,O, I, G⟩, let P denote the set of all its facts. A structural
symmetry is a permutation σ : P ∪ O → P ∪ O such that:

1. σ(P) = P , where P := {{⟨v, d⟩ | d ∈ Dv} | v ∈ V}.
2. σ(O) = O, and, for all o ∈ O, σ(pre(o)) = pre(σ(o)),

σ(eff (o)) = eff (σ(o)), and cost(σ(o)) = cost(o).
3. σ(G) = G.

Here, for a set X we define σ(X) := {σ(x) | x ∈ X}.

A set of structural symmetries Σ for a planning task Π in-
duces a subgroup Γ of the automorphism group of the state
space of Π. This, in turn defines an equivalence relation over
the states S of Π, where we say that a state s is symmetric
to another state s′ iff there exists an automorphism σ ∈ Γ
such that σ(s) = s′. The composition of two structural sym-
metries of Π is again a structural symmetry for Π. Simi-
lar to operators, we say that a structural symmetry affects
a variable v ∈ V if there exists a value d ∈ Dv such that
σ(⟨v, d⟩) ̸= ⟨v, d⟩. If a variable v is not affected by a struc-
tural symmetry σ, then σ is the identity mapping over the
domain Dv . By V (σ) we denote the set of variables affected
by σ. For details on how the structural symmetries of a plan-
ning planning task are computed we refer the reader to the
literature (Pochter, Zohar, and Rosenschein 2011).

Forward search algorithms with symmetry elimination in
their purest form aim to not consider all states s ∈ S, but
only a single representative state from the equivalence class
of s. These equivalence classes are called orbits and are

I
p1 l3
p2 l1
t l1

Cσ1
(I)

p1 l1
p2 l3
t l3

apply σ1

s

p1 l1
p2 t
t l3

Cσ2
(s)

p1 t
p2 l1
t l3

apply σ2load(p2, l3)

Figure 2: Illustration of a transition of orbit space search for
the running example.

usually represented by one of its member states which is
called the canonical state. A∗ with symmetry elimination,
for example, is similar to its vanilla version without sym-
metry elimination (Hart, Nilsson, and Raphael 1968). How-
ever, it explores all applicable operators given a canonical
state s and prunes the resulting successor states if another
representative of their orbit has already been encountered
during the search. Due to the properties of structural sym-
metries, this reduced state transition graph is guaranteed
to still contain a shortest path from s to a goal state. Un-
fortunately, determining if two states are symmetric is NP-
hard (Luks 1993). To overcome this, one can perform sym-
metry elimination by computing an approximated canonical
representative with an incomplete ad-hoc procedure that is
not guaranteed to detect all symmetries (Pochter, Zohar, and
Rosenschein 2011). In this work, we consider the orbit space
search (OSS) algorithm introduced by Domshlak, Katz, and
Shleyfman (2015). The idea of OSS is to replace each state
by its approximated canonical representative, resulting in a
search over the state transition graph induced by the (ap-
proximated) canonical states.

The procedure that computes the canonical representative
of a state minimizes the lexicographic representation of the
state. For this, we assume an order on the variables, as well
as on their domains. With this, a hill-climbing search is in-
voked that applies a structural symmetry to a state s when-
ever the output state is lexicographically smaller than s. The
search stops once it hits a local minimum. For a state s, we
denote its canonical state by C(s) or Cσ(s) to indicate the
structural symmetry σ used to permute s into Cσ(s), i.e., the
composition of structural symmetries used during the hill-
climbing process to obtain the canonical form.

Example 2. We illustrate a transition of orbit space search
for our running example in Figure 2. There are several struc-
tural symmetries in our running example. For example, we
can swap the positions l1 and l3 for all variables, but this
operation must be applied to all of them simultaneously. We
denote this symmetry by σ1. Another structural symmetry
σ2 swaps the positions of the two packages. Let us consider
⟨p1, p2, t⟩ as the order of the variables, ⟨t, l1, l2, l3⟩ as the
order of the domains of the packages, and ⟨l1, l2, l3⟩ as the
order of the domain of the truck. More precisely, p1 is our
most significant variable, and t is the lowest value in its do-
main. In other words, we prioritize the value t over l1, l2,
and l3 for variable p1 when determining a canonical state.

Starting a search on our running example, first we com-

pute the canonical representative Cσ1(I) of the initial state.
The canonical Cσ1(I) of the initial state is shown in the left
of Figure 2. Cσ1

(I) results from I by swapping the values l1
and l3 for all variables, and is considered lexicographically
smaller than I, since the value of the most significant vari-
able p1 is lower. In the canonical state, suppose we apply
operator load(p2, l3). The resulting state s and its canoni-
cal Cσ2

(s) are shown in the right of the figure. Here, σ2 was
applied, swapping the position of the two packages without
touching the truck.

Note that neither I nor s are ever considered for expan-
sion by orbit space search. The initial state is permuted be-
fore starting the search, and for the newly generated state s
only the canonical state Cσ(s) is further considered.

Orbit Search as a Task Transformation
In this section, we describe and exemplify our task transfor-
mation. It takes as input a SAS+ planning task and a set of
structural symmetries and generates a FDR task in which the
symmetries are directly encoded in the effects of its opera-
tors. We then discuss the strengths but also the weaknesses
of our transformation and possible ways to overcome them,
which may result in a significant increase in task size.

Task Transformation
We define a task transformation called oss that transforms
a given SAS+ planning task Π and a set of structural sym-
metries Σ of Π into a FDR planning task Πoss . Running
a vanilla search algorithm on Πoss will then correspond to
running the equivalent orbit space search algorithm on the
original task Π.

Our main observation is that we can model the standard
two-step approach of orbit space search, i. e., (1) apply op-
erator o to a state s, then (2) find a structural symmetry σ
that transforms s′ = sJoK into its canonical Cσ(s′), directly
as conditional effects of a transformed operator ooss.

Assume an easy case where V (o) = V for an operator
o ∈ O. Here, no matter in which state s the operator o is ap-
plied, we know exactly what the successor state s′ will look
like, namely s′ = post(o) = eff (o)∪{⟨v, d⟩ ∈ pre(o) | v ̸∈
V (eff (o))}. We can now precompute the structural symme-
try that permutes s′ to its canonical C(s′) = C(post(o)),
and adapt o’s effects to be exactly C(s′). Thereby, we merge
the two aforementioned steps into one, by applying o, we
directly compute the canonical successor state.

The same is possible also if V (o) ⊂ V if we simply
skip variables that are not touched by the operator. More
formally, we compute the canonical of the postcondition
post(o) by the same hill-climbing process as before, but if a
structural symmetry σ permutes a fact ⟨v, d⟩ to another one
⟨v′, d′⟩ where v ̸∈ V (o), then we ignore this when checking
if σ(post(o)) is lexicographically smaller than post(o). We
must not, however, ignore such variables when adapting o’s
effects, because if we commit to the symmetry that obtains
the canonical, then we have to apply it fully to all variables
it affects. For these variables, we encode the application of
σ as conditional effects. Formally, our transformation is de-
fined as follows.

Definition 2 (Symmetry Transformation). Let Π =
⟨V,O, I,G⟩ be SAS+ planning task and Σ be a set of struc-
tural symmetries for Π. We define the symmetry transforma-
tion oss as a function that produces a new FDR planning
task oss(Π,Σ) = Πoss = ⟨V,Ooss, C(I),G⟩, where C(I)
is the canonical initial state, and the permuted operators are
Ooss := {ooss | o ∈ O}, where:

• pre(ooss) = pre(o),
• cost(ooss) = cost(o),
• eff (ooss) = σ(eff (o)), and
• ceff (ooss) =

⋃
v∈V (σ)\V (o),d∈Dv

{({⟨v, d⟩}▷σ(⟨v, d⟩))},

where the structural symmetry σ is obtained by computing
the canonical state Cσ(post(o)).

In words, the initial state of the transformed task is the
canonical of the initial state of Π. For every operator o ∈ O,
we compute the structural symmetry σ that produces the
canonical partial state of o’s postcondition post(o). The
transformation keeps the original preconditions and cost,
permutes the effects according to σ, and adds conditional
effects that properly permute the variables affected by σ, but
not by o.

For a transition s →o s′ in the original task and a struc-
tural symmetry σ obtained by computing Cσ(post(o)), it is
possible to see that first applying the operator o to s and
then transforming the successor state s′ with σ to its canon-
ical form results in the same state as applying the operator
ooss to the state s. In other words, σ(sJoK) = sJoossK. Thus,
this task transformation is equivalent to a particular instance
of orbit space search, where the canonical state of successor
states is computed based on the partial state post(o) of the
applied operator o.

Discussion
Like described in the previous section, our symmetry task
transformation indeed instantiates a form of orbit space
search. This means that no specialized algorithms, or adap-
tations to existing search implementations, are needed to
for symmetry breaking in classical planning. Instead, a task
formulation performed as a preprocessing step is sufficient.
This not only simplifies the application of orbit search, but
also makes it more efficient, as the hill-climbing search that
computes the canonical is no longer needed. In our evalua-
tion, we will show that there are domains in which this run-
time advantage is significant. This comes with the drawback
of a more complex task with a potentially large number of
conditional effects. Although the number of conditional ef-
fects is only linear in the number of variables in V (σ)\V (o)
and their domain size, the size of the task representation can
grow significantly, by up to several orders of magnitude, be-
cause very likely all operators will have such effects.

The main issue of our transformation, however, is that in
most planning tasks it will only be able to approximate the
state-pruning capabilities of orbit search. That is because our
transformation is static, fixed at transformation time, while
orbit search dynamically computes the minimal representa-
tive of an orbit. On tasks where every operator affects all

variables, our transformation does exactly the same as or-
bit search. On most planning domains, this is not the case,
though. Suppose an operator o is applicable in two differ-
ent states s and s′, yielding two different successor states t
and t′, respectively. Then our transformation will apply the
same structural symmetry σ, determined by the postcondi-
tion post(o) of the operator o, to both successor states t and
t′. That is, t is mapped to σ(t) and t′ is mapped to σ(t′),
where the hill-climbing procedure of orbit space search may
find another structural symmetry or even two different struc-
tural symmetries for the two successor states t and t′, re-
spectively, yielding lexicographically smaller states of the
respective orbits. The higher the number of variables that
are affected by some structural symmetry, but not by an op-
erator, the higher the loss in potential pruning power of our
transformation.

This hints at a potential fix. If the variables that are not
part of the postcondition of an operator are problematic, then
one could introduce a form of context splitting that uses a
different structural symmetry depending on the partial state
p ⊂ s induced by V ′ = V \ V (o) in which an operator o is
applied. This context splitting can be encoded as conditional
effects of o, with conditions that take the different assign-
ments to V ′. While this will allow to exactly capture the
dynamic nature of orbit search, it will lead to an increase in
the transformed task size that is exponential in |V ′|. We do
not pursue the idea of context splitting further in this work,
but consider it an interesting direction for future work.

Experiments
We implemented our symmetry task transformation in the
Fast Downward 23.06 framework (FD) (Helmert 2006). Our
experiments were conducted on a cluster of Intel Xeon Gold
6130 CPUs using Downward Lab 8.0 (Seipp et al. 2017),
with runtime and memory limits of 5 min and 3 GiB, on
all STRIPS instances from the optimal sequential tracks
of the International Planning Competitions 1998–2023. For
our own configurations, we impose the 5-min runtime limit
on the entire process, i. e., transformation and search. We
adopted the task transformation interface of Speck and Gnad
(2024) for our own transformation, such that we can (1) run
a search directly on the transformed task, or (2) write the
transformed task to disk in (grounded) PDDL or FD’s own
*.sas format.

In the following, we evaluate our approach by performing
search directly on the transformed task with blind search,
i. e., FD’s A∗ search with the blind heuristic, to focus on
the state-space pruning capabilities of our transformation in
comparison to orbit space search. Working on the original
task, we denote default explicit search by ES and orbit space
search by OSS.

We compare three different variants of our encoding, at-
tempting to address the issue of variables not defined by an
operator when computing its structural symmetry. The sym-
metry transformation described in Definition 2, which ig-
nores variables not affected by an operator is called STn (no
replacement for missing values). We also test two variants in
which, when computing the structural symmetry of an oper-
ator o, we extend the postcondition post(o) to a full state by

102 104 106

102

104

106

108

Original Task

Tr
an

sf
or

m
ed

Ta
sk

(S
T

n)

Figure 3: The plot shows a per-instance comparison of the
original task size (x-axis) and the size of the transformed
task (y-axis) of our STn variant.

100 102 104 106 108
100

102

104

106

108

ES

ST
n

100 102 104 106 108
100

102

104

106

108

ES

O
SS

Figure 4: The plots show a per-instance comparison of the
number of expanded states until the last f-layer for regular
search (ES) vs. our task transformation (STn) on the left and
orbit search (OSS) on the right.

setting the values of variables not in V (o) to those of the ini-
tial state, denoted by STi, or to those of a random state, de-
noted by STr, using the same state for all operators. In other
words, we determine the structural symmetry with respect
to the successor state resulting from applying o to either the
initial state or a specific randomly chosen state.

Transformation statistics. The transformation takes neg-
ligible time in most cases, with a maximum runtime of 23
seconds; the arithmetic mean is 0.4 seconds. In Figure 3
we compare the size of the original task to the size after
the transformation (STn). The size of a task is measured as
the encoding size in the same way as this is done by FD’s
translator component (Helmert 2009). The transformation
can lead to a significant increase in the encoding size, up to
more than one order of magnitude. The majority of instances
only sees a moderate increase, though.

Planning performance. In Figure 4 we show the search-
space size reduction achieved by our approach (left) and or-

Domain # ES OSS STn STi STr

agricola 20 0 5 0 5 1
airport 42 13 13 13 12 12
barman-11 20 4 8 4 4 4
barman-14 14 0 3 0 0 0
childsnack-14 20 0 6 0 4 0
depot 22 4 5 4 4 4
driverlog 20 7 7 7 6 7
elevators-08 20 7 7 6 7 7
elevators-11 13 6 6 5 6 5
gripper 20 8 20 8 9 7
hiking-14 20 11 14 11 11 10
miconic 141 41 41 45 45 44
mprime 35 19 20 19 14 14
mystery 28 15 15 15 10 10
nomystery-11 20 8 9 8 8 8
openstacks-08 30 22 25 22 25 23
openstacks-11 20 17 19 17 19 18
openstacks-14 14 2 4 2 4 2
organic-split 20 10 11 10 10 9
pegsol-08 30 27 28 27 28 28
pegsol-11 20 17 18 17 18 17
petri-net 20 4 2 4 4 3
pipesworld-noT 50 16 20 16 11 11
pipesworld-T 50 12 17 10 9 8
psr-small 32 31 32 32 32 31
satellite 36 5 5 6 5 5
scanalyzer-08 26 8 10 7 8 7
scanalyzer-11 18 7 9 6 7 6
sokoban-08 27 19 23 19 16 17
sokoban-11 19 18 18 18 15 15
storage 29 13 15 13 13 13
tetris-14 17 9 9 8 5 5
tidybot-11 7 6 6 6 5 5
tidybot-14 3 2 2 2 1 2
transport-14 20 7 7 7 6 4
trucks-strips 29 5 5 5 4 5
woodworking-08 22 2 2 2 3 2
woodworking-11 16 1 1 1 2 1
zenotravel 19 7 7 6 6 6
others 397 107 107 107 107 107
Sum 1426 517 581 515 508 483

Table 1: Coverage results of our approach (rightmost three
columns) vs. the baseline (leftmost two columns).

bit space search (right). Quite obviously, our transformation
does not achieve a significant reduction on the benchmark
set. Where OSS reduces the search space by up to six or-
ders of magnitude, the reduction achieved by our transfor-
mation is never larger than one order of magnitude, and there
are more instances (compared to OSS), in which the search-
space size increases.

In Table 1 we show coverage results (number of solved
instances). OSS has a significant advantage over stan-
dard explicit-state search, gaining 64 instances overall, dis-
tributed over many domains. Comparing the variants of our

transformation, we observe quite large differences, overall
and on a per-domain basis. We remind the reader that the
only difference between the variants is which structural sym-
metry is encoded in the operator effects. The variant that
simply ignores variables not affected by the operator does
best overall, but does still worse than the ES baseline. Look-
ing at individual domains, we see, though, that our variants
sometimes achieve the same gains over ES as OSS does.
This effect is visible for STi, for example, in agricola, open-
stacks, and pegsol.

In miconic, satellite, and woodworking, the results are
actually encouraging. Here, STn and STi outperform both
baselines, especially in miconic. In that latter domain, a
closer look reveals that OSS does not achieve a strong
search-space reduction. While the reduction of our transfor-
mation is even smaller, we see a clear runtime advantage.
This indicates that if we can keep the increase in task size
at bay when applying the idea of context splitting described
earlier, we may be able to make search on the transformed
task competitive with OSS.

Conclusion
We introduced a novel task transformation that can sim-
ulate specific forms of orbit space search, a state-of-the-
art approach to symmetry breaking in classical planning.
The transformation can be performed very efficiently, but
can lead to a significant increase in the task representation
size. Nevertheless, we observe empirically that, on domains
where our transformation achieves a roughly similar reduc-
tion as native orbit space search, our approach has a clear
runtime advantage. More concretely, it looks like the state-
generation time during search can be accelerated when en-
coding orbit search as a transformation instead of computing
canonical states dynamically during search.

A major drawback of our transformation is that, on most
domains, it does not even get close to the search-space
reduction achieved by the native implementation of orbit
search. However, since the presented task transformation ap-
proach is more efficient during search, it may be possible
in the future to achieve performance competitive with na-
tive orbit space search if one can improve the pruning power
while keeping the increase in task size in check.

Acknowledgements
This work was partially supported by TAILOR, a project
funded by the EU Horizon 2020 research and innovation
programme under grant agreement no. 952215, and by the
Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg
Foundation. The computations were enabled by resources
provided by the National Academic Infrastructure for Super-
computing in Sweden (NAISS) at the National Supercom-
puter Centre at Linköping University partially funded by
the Swedish Research Council through grant agreement no.
2022-06725. David Speck was funded by the Swiss National
Science Foundation (SNSF) as part of the project “Unifying
the Theory and Algorithms of Factored State-Space Search”
(UTA).

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. Enhanced
Symmetry Breaking in Cost-Optimal Planning as Forward
Search. In McCluskey, L.; Williams, B.; Silva, J. R.; and
Bonet, B., eds., Proceedings of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2012), 343–347. AAAI Press.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2015. Symme-
try Breaking in Deterministic Planning as Forward Search:
Orbit Space Search Algorithm. Technical Report IS/IE-
2015-03, Technion.
Fawzi, A.; Balog, M.; Huang, A.; Hubert, T.; Romera-
Paredes, B.; Barekatain, M.; Novikov, A.; Ruiz, F. J. R.;
Schrittwieser, J.; Swirszcz, G.; Silver, D.; Hassabis, D.; and
Kohli, P. 2022. Discovering faster matrix multiplication al-
gorithms with reinforcement learning. Nature, 610(7930):
47–53.
Gnad, D.; and Hoffmann, J. 2018. Star-Topology Decoupled
State Space Search. Artificial Intelligence, 257: 24–60.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Haslum, P. 2007. Reducing Accidental Complexity in Plan-
ning Problems. In Veloso, M. M., ed., Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence (IJCAI 2007), 1898–1903.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.
Korf, R. E. 1997. Finding Optimal Solutions to Rubik’s
Cube Using Pattern Databases. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence (AAAI
1997), 700–705. AAAI Press.
Luks, E. M. 1993. Permutation Groups and Polynomial-
Time Computation. In Groups and Computation, volume 11
of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 139–175. American Mathematical Soci-
ety.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing Problem Symmetries in State-Based Planners. In Bur-
gard, W.; and Roth, D., eds., Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI 2011),
1004–1009. AAAI Press.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and Symmetries in Classical
Planning. In Bonet, B.; and Koenig, S., eds., Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI 2015), 3371–3377. AAAI Press.

Speck, D. 2022. Symbolic Search for Optimal Planning with
Expressive Extensions. Ph.D. thesis, University of Freiburg.
Speck, D.; and Gnad, D. 2024. Decoupled Search for the
Masses: A Novel Task Transformation for Classical Plan-
ning. In Bernardini, S.; and Muise, C., eds., Proceedings
of the Thirty-Fourth International Conference on Automated
Planning and Scheduling (ICAPS 2024). AAAI Press.
Speck, D.; Höft, P.; Gnad, D.; and Seipp, J. 2023. Finding
Matrix Multiplication Algorithms with Classical Planning.
In Koenig, S.; Stern, R.; and Vallati, M., eds., Proceedings
of the Thirty-Third International Conference on Automated
Planning and Scheduling (ICAPS 2023), 411–416. AAAI
Press.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient Symbolic Search for Cost-optimal Planning.
Artificial Intelligence, 242: 52–79.
Torralba, Á.; and Sievers, S. 2019. Merge-and-Shrink Task
Reformulation for Classical Planning. In Kraus, S., ed., Pro-
ceedings of the 28th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2019), 5644–5652. IJCAI.
Wehrle, M.; Helmert, M.; Shleyfman, A.; and Katz, M.
2015. Integrating Partial Order Reduction and Symmetry
Elimination for Cost-Optimal Classical Planning. In Yang,
Q.; and Wooldridge, M., eds., Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2015), 1712–1718. AAAI Press.

