
Interactive Exploration of Plan Spaces
Daniel Gnad1,2 , Markus Hecher3 , Sarah Alice Gaggl4 ,
Dominik Rusovac4 , David Speck5 , Johannes K. Fichte2

1Heidelberg University, Germany
2Linköping University, Sweden

3Université d’Artois, CRIL, CNRS, France
4TU Dresden, Germany

5University of Basel, Switzerland
firstname.lastname@{liu.se,tu-dresden.de}, hecher@cril.fr, davidjakob.speck@unibas.ch

Abstract

Many planning applications require not only a single solution
but benefit substantially from having a set of possible plans
from which users can select, for example, when explaining
plans. For decades, research in classical AI planning has pri-
marily focused on quickly finding single plans. Only recently
researchers have started to investigate preferences, enumerate
plans by top-k planning, or count plans to reason about the
plan space. Unfortunately, reasoning about the plan space
is computationally extremely hard and feeding many similar
plans to the user is hardly practical. To circumvent compu-
tational shortcomings while still being able to reason about
variability in plans, faceted actions have been introduced very
recently. These are meaningful actions that can be used by
some plan but are not required by all plans. Enforcing or
forbidding such facets allows for navigating even large plan
spaces while ensuring desired properties quickly and step by
step. In this paper, we illustrate an industrial challenge, the
Beluga logistics problem of Airbus, where reasoning with
facets enables targeted plan space navigation. We present an
approach to handle large plan spaces iteratively and interac-
tively and present a tool that we call PlanPilot.

1 Introduction
Classical planning aims at finding a sequence of actions that
transforms the initial state of a problem into a goal state (By-
lander 1994; McDermott et al. 1998; Ghallab, Nau, and
Traverso 2025). Since many planning applications call for
multiple high-quality plans, natural extensions of optimal
classical planning have been explored in the community. A
well-known technique is to find the k best plans by top-k plan-
ning (Katz et al. 2018; Speck, Mattmüller, and Nebel 2020;
Katz and Sohrabi 2020), enabling post hoc restrictions for var-
ious applications (Boddy et al. 2005; Sohrabi et al. 2018). But
enumeration results in major disadvantages due to extreme
computational costs and very similar plans. Additionally,
we need to define optimality properties beforehand, which
makes exploration entirely impractical. To this end, addi-
tional quantitative and qualitative reasoning techniques on
the plan space have very recently been introduced (Speck,
Mattmüller, and Nebel 2020).

In this paper, we go a step further and aim at navigating
plan spaces interactively to help users explore, understand,

s0 s1

s2

s3

s4

s5

unld-wing unld-flap

ld-aileron
ld-wing

ld-tip

Figure 1: State space of our running example task Π1. The initial
state is denoted by s0; the goal states are denoted by double corners.

and explain solutions. Our goal is motivated by a logistics
application in industry at Airbus SE, where parts are moved
between several factories by a sequence of super transporter
airplanes that received its nickname after the Beluga whale
due to their exceptional shape. Engineers assemble the air-
plane parts at different locations, move them, and finally build
an entire aircraft. Unsurprisingly, factories suffer from lim-
ited space and mobility resulting in numerous constraints, for
example, Belugas carry certain parts in a fixed order, only one
Beluga can be loaded at a time. As loading capacities need
to be used most efficiently, engineers originally spend hours
over hours to manually generate solutions for handling the
disposition of Belugas. Due to the Beluga Competition (Tu-
ples 2025) automated planning came into the picture reducing
the labor-intensive process, however, putting the need to ex-
plain solutions. Then, humans interact with the system, ask
questions about possible plan(s), generate answers to these,
try to explain initial solution(s), or modify certain aspects of
the solutions interactively.

Example 1. Consider a planning task Π1 consisting of a toy
logistics scenario where we have to (un)load wings, flaps,
ailerons, and wing tips. We illustrate the state space in
Figure 1. The initial state is s0 and we have multiple goal
states s2, s4, and s5. The edge labels identify the action
being applied. Depending on external factors, we have three
valid plans:

(i) unload-wing; unload-flap,
(ii) unload-wing; load-aileron; load-wing, and

(iii) unload-wing; load-aileron; load-tip.
Clearly, the action unload-wing has to occur every time mak-
ing it a so-called landmark action. Then, we have a certain
flexibility and may choose action unload-flap or load-aileron.
Also, the actions load-wing and load-tip are not involved with
all plans, but occur on some plan. Given this knowledge, we
may forbid certain actions after we found one plan to obtain
another plan or another direction.

While we can easily enumerate or count all solutions in
our example above, both are computationally extremely chal-
lenging when many solutions exist. Instead, when looking
for alternative solutions and many other cases, we can em-
ploy reasoning between decisions and counting. This enables
us to understand plans better while maintaining favorable
complexity. A central tool are facets, which are actions or
states that occur in some plan (relevant) but not all plans (dis-
pensable). Reasoning with facets yields a more fine-grained
understanding of variability and enables navigation.

Main Contribution.
1. We present a concrete use case where we aim to compre-

hend large solution spaces and make sense of alternative
solutions. The use case originates in the 2025 Beluga AI
Challenge.

2. We establish a practical approach to navigate plan spaces it-
eratively and interactively and make interactive plan space
exploration more precise.

3. We demonstrate a practical tool, PlanPilot, that builds
on multiple reasoning techniques allowing to interactively
output plans, filter plans, restrict plans, restrict flexibility
in plans, count plans, or count flexibility in actions, or
estimate effects.

Related Works. Imposing additional constraints on solu-
tions of planning tasks is a well-studied paradigm (Gerevini
and Long 2005; Edelkamp 2006). Tool support is quite
limited, though, and an interactive navigation of plans that
satisfy the constraints has not been suggested. Querying
planning spaces has been considered in the past, for exam-
ple, debugging for actions that unexpectedly never show
up (Lin, Grastien, and Bercher 2023; Gragera et al. 2023),
searching for sets of jointly achievable soft goals (Smith
2004), or asking for explanations of the absence of solutions
that achieve the desired set of such soft goals (Eifler et al.
2020). Planning systems that are based on answer-set pro-
gramming (ASP) have been developed (Dimopoulos et al.
2019). These systems immediately support bounded plan
enumeration (Gebser, Kaufmann, and Schaub 2009). In the
context of ASP, counting and facets have been considered
for navigating large solution spaces and the computational
complexity classified (Fichte, Gaggl, and Rusovac 2022;
Rusovac et al. 2024). Anytime and approximate counting
techniques for ASP exists (Kabir et al. 2022; Fichte et al.
2024), but are limited in scalability. Counting enables de-
tailed reasoning about the plan space without enumerating
solutions (Darwiche 2001) and more fine-grained conditional
reasoning (Fichte, Hecher, and Nadeem 2022). Knowledge

compilation has been applied to conformant planning for plan
validity checks (Palacios et al. 2005). Very recently, facets
have been introduced for planning as a tool to understand
the significance of an action in one step and the computa-
tional complexity classified (Speck et al. 2025). Fichte et
al. (2025) introduced facets to abstract argumentation. (Eiter
and Geibinger 2023) studied justifications for the presence,
or absence, of an atom in the context of answer-set program-
ming including so-called contrastive explanations. (Schmidt
et al. 2025) considered complexity of facets in propositional
abductive explanations.

2 Background
We follow established definitions of classical planning
(Bäckström and Nebel 1995; Helmert 2006), which cap-
ture a common fragment of PDDL. Comprehensive intro-
ductions on ASP are available (Janhunen and Niemelä 2016;
Calimeri et al. 2020; Gebser et al. 2012).

Classical Planning. A planning task is a tuple Π =
⟨A,O, I,G⟩, where A is a finite set of propositional state
variables. A (partial) state s is a total (partial) mapping s :
A → {0, 1}. For a state s and a partial state p, we write
s |= p if s satisfies p, more formally, p−1(0) ⊆ s−1(0) and
p−1(1) ⊆ s−1(1). O is a finite set of actions, where each
action is a tuple o = ⟨preo, effo⟩ of partial states, called
preconditions and effects. An action o ∈ O is applica-
ble in a state s if s |= preo. Applying action o to state s,
sJoK for short, yields state s′, where s′(a) := effo(a), if
a ∈ dom(effo) and s′(a) := s(a), otherwise. Finally, I is
the initial state of Π and G a partial state called goal condi-
tion. A state s∗ is a goal state if s∗ |= G. Let Π be a planning
task. A plan π = ⟨o0, . . . , on−1⟩ is a sequence of applica-
ble actions that generates a sequence of states s0, . . . , sn,
where s0 = I, sn is a goal state, and si+1 = siJoiK for
every i ∈ [n − 1]. Furthermore, we let π(i) := oi and de-
note by |π| the length of a plan π. We denote the set of all
plans by Plans(Π) and the set of all plans of length at most ℓ
by Plansℓ(Π) and call it occasionally plan space as done in
the literature (Russell and Norvig 1995). A plan π is optimal
if there is no plan π′ ∈ Plans(Π) where |π′| < |π|. The
notion naturally extends to bounded-length plans. A brave
action by BCℓ(Π) :=

⋃
π∈Plansℓ(Π)

`
(π) and cautious ac-

tion by CCℓ(Π) :=
⋂

π∈Plansℓ(Π)

`
(π). The symbol

`
(·)

converts sequences into sets to drop time-points. Deciding
or counting plans is computationally hard. The problem that
asks to decide whether there exists a plan of length at most ℓ,
is PSPACE-complete (Bylander 1994). We say that a plan is
polynomially bounded if we restrict the length to be polyno-
mial in the instance size, i.e., the length ℓ of Π is bounded by
ℓ ≤ ∥Π∥c for some constant c, where ∥Π∥ is the encoding
size of Π. In that case, the complexity drops, namely, plan
existence is NP-complete (Bylander 1994).

Answer-Set Programming (ASP). We explain notions
only for ground answer-set programs due to tight space
constraints. Let m and n be non-negative integers and a,
b1, . . . , bm, c1, . . . , cn be distinct propositional atoms. A

{{uw, uf}, {uw, la, lw}, {uw, la, lt}}

{{uw, uf}}

uf

{{uw, uf}, {uw, la, lw}}

¬lt

¬la

¬lw

Figure 2: Navigating the plan space via selected navigation steps.

rule r is of the form a ← b1, . . . , bm,∼c1, . . . ,∼cn or
← b1, . . . , bm,∼c1, . . . ,∼cn. Intuitively, the former means
that a must be true if all atoms b1, . . . , bm are true and there
is no evidence that c1, . . ., or cn is true. The latter, called
constraint, enforces that one of the atoms b1, . . ., bm is false
or one of the atoms c1, . . ., cn is true. We let Hr := {a} or ∅,
respectively, B+

r := {b1, . . . , am}, and B−
r := {c1, . . . , cn}.

A program P consists of a set of rules. An interpretation
M ⊆ vars(P) satisfies a rule r if (Hr ∪ B−

r) ∩ M ̸= ∅
or B+

r ⊈ M . M is a model of P if M satisfies every rule
r ∈ P . The (GL) reduct of P with respect to M is defined
as PM := {Hr ← B+

r | B−
r ∩M = ∅}. Then, M is an

answer-set of P if M is a model of P such that no interpre-
tation N ⊊ M is a model of PM (Gelfond and Lifschitz
1988). A popular tool is clingo1, which allows to state
non-ground programs, ground them and compute ground
answer-sets (Gebser et al. 2019).

Solving Planning with ASP. We use the plasp tool in
version 3.1.12 (Dimopoulos et al. 2019) to translate planning
instances from PDDL to ASP. The tool implements a chain
comprising of parsers and a default translator that constructs
an ASP encoding of the planning task, which is then grounded
and used to compute answer sets. Since we are primarily
interested in the plan space on the ground level, we take
advantage of the grounded ASP encoding. The ASP encoding
is parameterized by a horizon H , which serves as a bound
of the plan length. With this, plasp constructs an encoding
which enables search for plans of exactly length H . We refer
to this as the exact encoding. While plasp can compute
plans itself as well, we employ it only to construct the ASP
encoding. This approach enables us to employ ASP facets
(encoding-dependent) to planning.

3 Navigating with Facets
We mainly employ facets to navigate solution spaces. Facets
are known in ASP (Fichte, Gaggl, and Rusovac 2022) and
have recently been introduced to classical planning (Speck et
al. 2025). In the usual definition, a facet is part of a solution,
but still enables freedom in the solution space and is therefore
not contained in all solutions. We extend and adapt this idea
to the plan space for a given planning task, as then we can

1https://github.com/potassco/clingo
2https://github.com/potassco/plasp

navigate through the plan space by adding or removing facets.
We formalize this concept below.

Definition 1. Let Π = ⟨A,O, I,G⟩ be a planning task. Then,
for any action a ∈ O and integer j, let a@j and ¬a@j be a
facet of Π if there is a witnessing plan where a is at the j-th
position and some plan where a is not at j, respectively. We
say a or ¬a, respectively, is a facet of Π if there is some plan
containing a and some plan without a.

Note that therefore facets are consequences of planning
tasks that appear in some (but not all) plans. Indeed, it ap-
pears useless to navigate along non-facets, as those do not
contribute to a better understanding of the plan space since
adding or removing non-facets either does not change solu-
tions or makes the instance unsatisfiable. To this end, we
require the notion of routes for plan navigation. A route is
a finite sequence of navigation steps, which keeps track of
how we move within the solution space. We use a sequence
instead of a set, as sequences preserve the order of steps, thus
allowing to trace back or undo navigation steps.

Definition 2. Let Π = ⟨A,O, I,G⟩ be a planning task.
A route δ is a finite sequence ⟨f1, . . . , fn⟩ consisting of
facets fi ∈ F(Π), which denote n ∈ N navigation steps
over Π. By ∆Π we denote all possible routes over Π. The set
Plans(Πδ) of plans for Π under δ contains only those plans
in Plans(Π) that are witnessing every fi in δ.

Navigation enables notions to select plans of a planning
task Π within the plan space. Facets restrict plan spaces
under meaningful assumptions, i.e., those belonging to some
but not to all plans. Indeed, facets are those consequences that
are brave but not cautious and are therefore in BC(Π)\CC(Π).
This retains planning flexibility, as we can find assumptions
that still preserve plan diversity.

Example 2. Consider Task Π1 from Example 1 and
recall that we had three solutions, namely: {⟨unload-
wing,unload-flaps⟩, ⟨unload-wing, load-aileron, load-wing⟩,
⟨unload-wing; load-aileron; load-tip⟩}. Due to space rea-
sons, we abbreviate the actions by underlined characters, e.g.,
uw instead of unload-wing. Observe that uw occurs on any
plan and is therefore not a facet. However, lt is a facet and
we can therefore navigate from the top to bottom right in
Figure 2. If we then add ¬lw, we end up with a single plan
(bottom left). Note that there is a faster route ⟨uf⟩ that is
equivalent by a direct transition from the top to bottom left.

3.1 A Practical Plan Navigation Tool
Our PlanPilot3 tool takes as input a PDDL (McDermott
2000) or a SAS+ description (Bäckström and Nebel 1995;
Helmert 2009) of a planning task and allows for interactive
navigation of the solution space by the user. Figure 3 illus-
trates the individual components of PlanPilot and their
interaction. First, we employ plasp to encode the planning
task in ASP. This encoding is parameterized by a horizon H ,
which restricts the plan length, and a parameter that allows
switching between the exact encoding of plasp and a new
bounded encoding. The latter enables plans of length up to

3https://github.com/abcorrea/planpilot

https://github.com/potassco/clingo
https://github.com/potassco/plasp
https://github.com/abcorrea/planpilot

plasp

fasbclingo

Interactive Mode
facet/plan enumeration and reasoning

querying using facets

PDDL/SAS+; horizon H

encoding type; plan π

ASP encoding

solve
queries

Figure 3: Illustration of PlanPilot’s components.

H , which is useful if the user does not have specific require-
ments on how long plans should be. The ASP encoding is
passed to fasb (and thereby to its internal solver clingo),
which enables interactive facet reasoning.

In interactive mode, the user can query PlanPilot for the
number of available facets or a list of these facets. In our
ASP encoding, facets are meaningful actions that occur in
some, but not all solutions. More specifically, the occurrence
of every action a ∈ A at a given time step 1 ≤ t ≤ H
is a possible facet occurs(a, t). These facets are enforc-
ing, which means that we restrict the plans by enforcing
them to have action a at step t. Additionally, there are pro-
hibiting facets, denoted ∼occurs(a, t), which forbids the
occurrence of action a at time step t. Both kinds of facets
can be activated, which enables the respective restriction,
and deactivated again, which removes the restriction. Using
both kinds of facets, the user can iteratively and interactively
refine the set of plans according to their requirements. At
every step, i.e., after (de)activating a facet, the user can query
PlanPilot for the number of remaining facets as well as
the number of remaining plans that satisfy the enabled facets.
Both, facets and plans, can also be enumerated at every step.

For use cases where the occurrence of an action is desired
at some point in the plan, we leverage the expressiveness of
ASP by adding the following rule to our encoding:

occurs sometime(a)← occurs(a, t), t > 0.

We refer to this variant as the abstract time steps en-
coding. If a facet occurs sometime(a) is activated, then
a must occur at some step in the plan, allowing for mul-
tiple occurrences of the same action. This is desirable
in scenarios where the user is not interested in having
a occur at a specific point, which could be beneficial
in, e.g., domain debugging (Lin, Grastien, and Bercher 2023;
Gragera et al. 2023).

Complexity. Reasoning over facets is significantly easier
than reasoning over solutions (Fichte, Gaggl, and Rusovac
2022). Therefore, it is advisable to opt for counting and
enumeration of facets, instead of plans, as the planning tasks
and horizons get larger. At the same time, enabling more
facets limits the solution space considered by fasb, making
reasoning on that space more efficient. Hence, the user can

activate facets that correspond to important plan constraints
to simplify the reasoning, such that plans can be counted and
enumerated efficiently. We next exemplify two navigation
modes that illustrate different strategies for interaction with
PlanPilot.

Navigation modes. Besides enumerating the available
facets, fasb can provide information on what it implies to
activate a facet. This is done by showing the reduction in the
number of facets as well as the number of remaining facets
after activation, which allows for a more targeted interaction.
If the user wants to find a small set of plans quickly, they can
activate facets that result in high reduction, which implies
that the set of remaining plans is maximally constrained. Al-
ternatively, if the user desires a large, diverse set of plans,
then selecting facets that lead to a low reduction in the re-
maining facet count are preferable. This gives high flexibility
to the user to navigate the plan space according to their needs.

Technical aspects. PlanPilot is implemented as a Python
script that controls all involved components, i.e., it creates
the ASP encoding of the input planning task using plasp
and passes it to fasb, which in turn solves the model using
clingo, and starts the interactive mode. PlanPilot inher-
its the PDDL language support of plasp, which includes
PDDL 3.1 without durative actions, numerical fluents, and
preferences. We refer to the plasp repository for a full list
of supported features.

Possible extensions. All parts of the ASP encoding can
be turned into facets in the same way as it is implemented
for actions, in particular, this holds for state atoms. Thereby,
the user can impose restrictions on the desired solutions not
only by enforcing, or prohibiting, certain actions to occur
on the plan, but also by requiring state atoms to be achieved
in some state along the plan. This could be used, e.g., in
oversubscription planning by encoding soft goals as facets,
using PlanPilot to enforce a desired (set of) soft goals to
be achieved in the goal or in some state along the plan.

4 Navigating the Beluga Challenge
We next introduce the specifics of the Beluga application
domain and describe important plan properties that are de-
sired by the engineers to optimize the on-site logistics and
robustness to unforeseen changes, for example in the flight
schedule. Several criteria can be captured exactly using facet
reasoning. We showcase how to employ facets to navigate
and understand the plan space and give concrete explanations
for a set of queries that address the most relevant properties.

4.1 The Beluga Problem
First, we summarize the planning encoding of the Beluga
problem as required to follow our contribution. For full
details, we refer to the competition description (Tuples 2025).

An instance of the Beluga problem consists of a series of
Beluga cargo airplanes ⟨B1, . . . , Bn⟩ that arrive at the facility
in the given order. Every Beluga delivers a (possibly empty)

Beluga
Arrival/Departure

Racks with jigs
containing plane

parts
Hangars

� � P1 P2 P3

P4

E1 P5

rr

�
� �
Beluga-side

trailers

�
� �
Hangar-side

trailers

Figure 4: Visualization of the Beluga domain, where incoming and
outgoing Beluga planes are loaded with airplane parts. These parts
are moved around on jigs, which can be transported by trailers to
the storage racks or to the production lines in the hangars. Only the
outermost jigs on the left or right side of a rack can be accessed. In
the example shown, the jig with part P4 on the middle rack can be
accessed from both sides. However, to access the jig with part P2

on the upper rack, one must first remove the jig with part P1 or the
jig with part P3 from the rack.

set of airplane parts that are needed at the production lines in
which airplanes are assembled. Every part is placed on a jig
J that has a size |J |. The jigs delivered by a Beluga B have
to be unloaded in a specific order ⟨JB

1 , . . . , JB
k ⟩ into trailers

that transport the jigs to a set of storage racks {R1, . . . , Rm}.
Each rack R has a fixed capacity |R| to fit a number of jigs,
such that at every point

∑
J∈R |J | ≤ |R|. The content of

a rack can be accessed from both sides, but only the two
outermost jigs can be taken out. Jigs that have just been
unloaded from a Beluga are placed on the Beluga side of a
rack. On the other side, the factory side, jigs are transported
by trailers to the production lines that are located in several
hangars {H1, . . . ,Ho}. Jigs that have been emptied in a
hangar are transported back to the racks and eventually loaded
into a Beluga that ships them to another facility. The planning
encoding distinguishes trailers on the Beluga side from those
on the factory side and trailers cannot switch sides.

We illustrate a Beluga problem in Figure 4, with the se-
quence of Beluga flights on the left, the racks in the middle,
and the hangars with the production lines on the right. We
distinguish full jigs Px and empty jigs Ex. An important
observation is that every jig arrives non-empty with a Beluga,
is transported to a hangar, where it is emptied. Afterwards,
the empty jig is transported back to a Beluga and leaves the
site. So the shortest path for individual jigs moves full ones
exclusively from left to right in the illustration, and empty
ones from right to left. In an ideal scenario, these shortest
path for every jig are combined into an optimal plan. Due
to space restrictions and depending on the order of arrival of
jigs, this ideal scenario might not be feasible.

The on-site logistics are constrained by the capacity of
the racks and the number of trailers on each side of the
racks. Since jigs are transported in both directions, and
jigs in the racks can only be taken from either end of a
rack, it is essential to place the jigs appropriately to prevent
unnecessary swaps, where a jig is temporarily taken out of

a rack and put back into the same or another rack on the
same side, to free space or gain access to otherwise blocked
jigs. Every swap increases the plan length from the optimum,
where all jigs are moved on shortest paths, by two. For
enhancing the robustness in case the flight schedule changes
unexpectedly, it is desirable to keep one rack empty at all
times. Moreover, a rack R might be inaccessible due to
maintenance operations, in which case the remaining jigs
J ∈ R can be taken out of the rack, but no new jigs can be
placed in it. Some soft constraints that engineers have on the
plans are that smaller jigs are to be put into smaller racks,
empty jigs are placed on the Beluga side of a rack and full
jigs on the factory side, which facilitates logistics.

4.2 Beluga Explanation Challenge
With the tight space constraints at the assembly facilities and
limited mobility of the jigs, plans obtained from an auto-
mated planning system are unlikely to be robust enough to
ensure executability under uncertain flight schedules. Fully
representating the above constraints in the planning model is
not feasible, either. Thus, the practical approach is to gener-
ate a solution with a planner, ask for explanations for certain
decisions, i.e., actions taken in the plan or the implications
of alternatives, and possibly refine the plan accordingly.

We adopt the setting from the Beluga challenge where a
solution has been computed by an automated planner and is
passed to the plan explanation tool (explainer) along with a
query that should be answered by the system. The following
queries have been identified as relevant for the application,
which we adopt from the challenge as well:

Q1 Why is jig x loaded on rack A instead of another rack B?

Q2 Why load jig B on rack D instead of loading jig C on rack
A?

Q3 Why not load jig C on rack A before loading jig B on rack
D?

Q4 How can we reduce the number of swaps?

Q5 What is the impact of removing rack A for maintenance?

Q6 How can we keep one rack empty all the time?

The task of the explainer is to (1) determine the feasibil-
ity of the alternative solution, (2) give an insight into the
consequences that the alternative solution would entail, and
(3) present a comparison of the chosen plan with alternative
scenarios that were considered but not selected.

We group the queries into three sets, where Queries 1–3
ask about concrete changes in the given plan, Query 4 is
specific to swaps, and Queries 5–6 deal with rack removal.

4.3 Q1–Q3: Feasibility of Alternative Solutions
We start by our approach to deal with Queries 1–3. Along
with the query, we get a concrete plan π = ⟨a1, . . . , an⟩ that
allows us to identify the action(s) in question. For Query 1,
for example, it is an action that loads jig x into rack A on one
side of the rack. This can be ambiguous in case of swaps or
if the jig is placed on rack A in both its full and empty state.
Since the challenge instructions do not provide any further
details, we opt for the first such load action that occurs on the

plan. Queries 2–3 ask for a change in order of two occurring
actions. Again, we resolve potential ambiguities by choosing
the first time the respective actions occur on the plan.

To answer the query, we enforce the plan prefix πp =
⟨a1, . . . , ai−1⟩ up to (excluding) the first action ai in question
by navigating along the route δp = ⟨a1@1, . . . , ai−1@i− 1⟩.
Then, we check if the alternative action a′ for step i is a facet,
i.e., if δip = δp ◦ a′@i is a route. If that is the case, then
taking the alternative action is possible and we obtain a new
solution by completing the navigation until a plan is found.
To analyze the resulting solution space, we can also count
the number of plans |Plans(Πδip)|, which provides insights
in the flexibility for re-planning due to unforeseen events.

To stick as close to the original plan as possible, we can,
before performing navigation step a′@i, do steps ak@k for
all k > i where ak does not directly conflict with ai or a′.
Here, conflicting actions are those that operate on the same
racks and can no longer be applied in their original step. For
Q1, for example, this is an action unloading jig x from rack
A on the opposite size, as the jig is now on rack B.

In case the alternative action or order is not feasible, we can
increase the horizon beyond the length of the given solution to
see if a longer plan exists that satisfies the requested change.
This is for example the case if the change implies more swaps,
which introduces redundant actions that move a jig around.
To avoid re-computation, we can increase the horizon for the
facet reasoning right away by 2x the number of swaps we are
willing to sacrifice for the alternative plan.

The main property that captures solution quality is the
number of swaps. Like just described, we can impose a hard
limit on the number of swaps an alternative action introduces
using the horizon. We describe a more fine-grained approach
in Section 4.4. When the aim is to keep a rack free at all
time, we can identify an initially free rack R and perform
navigation steps ¬a for all actions a that load a jig into R.
Denote the set of these action by OlR. We select the smallest
initially empty rack Rmin and check during navigation if one
such action becomes cautious, i.e., CCℓ(Π) ∩ OlR ̸= ∅. If
that is the case, then no solution is feasible (with the given
horizon l) that keeps any rack empty at all times. The case
of rack maintenance, as well as placing only jigs of a certain
size on a rack, can be analyzed analogously.

All proposed reasoning steps are efficiently solvable with
a single execution of fasb and a series of navigation steps.

4.4 Q4: Minimizing the Number of Swaps
A swap is a sequence of actions, possibly interleaved by other
actions, that takes a jig out of a rack to make another jig ac-
cessible and either puts it back into the same rack afterwards
or places it in another rack on the same side. This adds re-
dundant actions to a plan, which are expensive to execute on
site and should be avoided if possible. Swaps can be detected
effectively by checking for the occurrence of specific actions
in the plan. If a full jig is taken out of a rack on the Beluga
side, then this implies a swap because such jigs will have to
be transported to a hangar at some point, taking them out on
the Beluga side is only required to make another jig acces-
sible. The second type of action that implies a swap is an

empty jig being taken out of a rack on the hangar side, for
analogue reasons. In general, every swap can be detected by
the occurrence of a single action in the plan. We denote the
set of these actions that imply a swap by Oswap.

With single actions identifying swaps, we can employ
facet reasoning to check if swaps can be prevented, or are
implied by some actions taken in a plan. In the last section
we explained an approach that reasons about the minimum
number of swaps by checking if the planning task is solvable
with different horizons. While this is a viable approach, it
involves solving several planning tasks. We suggest to use
facet reasoning instead, using a slightly higher horizon than
necessary to fit the given plan. This can not only be more
efficient, but also provides the flexibility to stay close to the
given plan and explore alternatives via navigation.

Given the original plan π, we can either fix the actions up to
the first swap action, as described before, or start from scratch
without keeping actions from π. In both cases, we navigate
the plan space systematically by performing navigation steps
¬a for the actions a ∈ Oswap. Once a swap action becomes
cautious, i.e., CCℓ(Π) ∩ Oswap ̸= ∅, we know that a swap
is required for the current route. This search over routes
can be performed in a branch-and-bound style, where we
check for the number of swaps B in plans iteratively and skip
completing routes when more than B are already implied.
With this, we can stop the search once we found a plan
without swaps, and still analyze other plan properties or give
preference to desired actions during navigation.

4.5 Q5/Q6: Handling Rack Removal
We approach the increase of redundancy in plans by rack
removal similar to before by a pre-processing step that iden-
tifies the actions that put some jig into one of the respective
racks. Then, we forbid these actions using facets.

As before, in every navigation step, we check if such an
action becomes a cautious consequence. If this is the case,
we know that at least one action is needed that puts a jig
into that rack. Then, we do not need to search over facets.
Thereby, we can answer the question on impact of removing
rack as well as how to keep one rack empty all the time. This
is more flexible than, for example, removing the rack from
the task description and checking if a plan exists.

5 Experiments
We considered the 48 solvable instances of the Beluga ex-
plainability challenges. In line with the challenge, we tested
the interaction and explainability based on a given plan. To
do this, we used an optimal planner to determine an optimal
plan for each instance. More precisely, we ran symbolic
bidirectional search (Torralba et al. 2017) with the SymK plan-
ner (Speck, Seipp, and Torralba 2025). We also tried other
search algorithms, such as A⋆ (Hart, Nilsson, and Raphael
1968) with the landmark cut (LM-Cut) heuristic (Helmert
and Domshlak 2009) using FastDownward (Helmert 2006).
However, these alternatives performed worse than symbolic
search for finding a single optimal plan. In total, we managed
to find an optimal plan for 31 instances, which, together with
the induced plan and cost bound, formed our benchmark set.

10−1 100 101 102 103
0

10

20

30

Time in seconds

#
So

lv
ed

R
ea

so
ni

ng
Ta

sk
s

SymK (single plan) SymK (enum plans)
OK⋆ LM-Cut (enum plans) Planalyst (count plans)
PlanPilot (count plans) PlanPilot 70% (count plans)
PlanPilot (reason facets) PlanPilot 70% (reason facets)
PlanPilot (enum facets) PlanPilot 70% (enum facets)

Figure 5: Inverted cactus plot showing the runtime necessary to
solve or reason over a given number of instances. The x-axis shows
runtime in seconds on a log scale. The number of solved instances
is on the y-axis. Planners and configurations are coded by color.

For all experiments, we used a memory and time limit of 3.5
GB and 30 min per instance. Source code, benchmarks, and
data are available online (Gnad et al. 2025).

To test PlanPilot, we invoked it with a query to count
the plans, enumerate the facets, and report the significance
of the facets. As the input model for PlanPilot, we used
the ground SAS+ model produced by the FastDownward
translator (Helmert 2009). Furthermore, for each instance,
we ran all modes of PlanPilot with a different degree of
freedom in the plan space. This was achieved by enforcing
in the model that some actions of the known optimal plan
had already been selected by a user. In other words, the
configurations PlanPilot X% indicated that X percent of
the time steps had no assigned action. These configurations
simulate a user interacting and navigating in the plan space to
study the practical reasoning capabilities of PlanPilot on
the Beluga domain. For comparison, we considered two top-
k planners in their default and recommended configurations:
Symk (Speck, Mattmüller, and Nebel 2020) and OK⋆ (Katz
et al. 2018), which enumerate all solutions, and Planalyst
(Speck et al. 2025), which generates a d-DNNF (Darwiche
and Marquis 2002) representing the plan space, allowing
for subsequent reasoning, such as counting. However, both
existing paradigms, top-k planning and d-DNNF compilation,
require a costly precomputation phase before any reasoning
over the plan space becomes feasible.

5.1 Overall Performance
Figure 5 shows the number of problems solved over time. At
one extreme, we see that finding a single optimal solution
SymK (single plan) is empirically the most performant, which
is not surprising. At the other extreme, enumerating all op-
timal plans is extremely challenging for the Beluga domain.
SymK (enum plans) fails to enumerate all optimal plans for
any of the problems, and OK⋆ with the LM-Cut heuristic only
succeeds in two. This is due to the vast number of optimal
plans in the Beluga domain, which we discuss in Section 5.2.

Counting the number of optimal plans is more feasible, as
shown by the “(count plan)” configurations. Here, we can see
that the d-DNNF transformation of Planalyst performs fa-
vorably over our PlanPilot approach based on ASP overall.
However, when considering the Planalyst configurations
(enum facets/reason facets), we can see that the proposed
approach enables interaction with the plan space for more
problems than enumerating or counting all optimal plans.
Furthermore, when a partial plan is present and fixed, interac-
tion with the plan space via facets becomes feasible in many
more instances, as shown by the Planpilot 70% configuration
(here, 30% of the time steps have determined actions, and
70% of the time steps can be determined by a user). Count-
ing the remaining plans while taking the partial plans into
account also becomes more feasible.

Interestingly, in some instances, it is possible to count
the plans and enumerate the facets, but reasoning about the
significance of the facets is not feasible within the set re-
source limits. This performance difference occurs because
determining the significance of a particular facet f requires
counting the facets in the current situation and then counting
them again after fixing facet f . Consequently, computing
the significance of all facets can incur notable overhead com-
pared to merely enumerating them. Furthermore, counting
the number of optimal plans is more efficient in scenarios
with a small number of remaining plans. Figure 6a provides
a more detailed picture of this behavior by visualizing the
number of problems for which Planpilot can count plans,
enumerate facets, or reason about the significance of facets
for different degrees of freedom in the plan space.

5.2 Number of Facets and Plans
Figure 6b shows the average, median, maximum, and mini-
mum number of facets and plans across the Beluga instances
for different degrees of freedom (i.e., X% of time steps with-
out assigned action), as found by PlanPilot (and, for X
= 100%, by all planners). Note that the number of solved
tasks increases as the degrees of freedom decrease, which
explains the non-monotonic behavior of the curves. Overall,
we can see that the number of plans is vast for high degrees of
freedom. However, this number decreases significantly once
actions are scheduled at certain time points. By comparison,
the number of facets is multiple orders of magnitude lower
because they do not represent optimal plans, i.e., sequences
of actions. They indicate whether, for a particular position in
the plan, there exists at least one plan that includes a given
action at that position and at least one plan that does not. The
significance value of a facet indicates how much flexibility

20406080100
0

10

20

30

Degree of Freedom (% steps without action)

#
So

lv
ed

R
ea

so
ni

ng
Ta

sk
s

PlanPilot X% (count plans)
PlanPilot X% (enum facets)
PlanPilot X% (reason Facets)

(a) The number of instances (y-axis) for which PlanPilot was
able to count plans, list facets, or reason about the facet

significance.

20406080100

101

103

105

107

109

Degree of Freedom (% steps without action)

#
Pl

an
(s

ol
id

lin
es

)

Average
Median
Maximum
Minimum

0

500

1,000

1,500

#
Fa

ce
ts

(d
as

he
d

lin
es

)

(b) The number of plans (left y-axis) and facets (right y-axis) as determined
by our experiments.

Figure 6: Visualization of the performance of PlanPilot (left) and the number of plans and facets (right) for a decreasing degree of freedom
on the x-axis.

remains in subsequent choices once that particular facet (i.e.,
whether to take a specific action at a specific time) is selected.
The comparatively small number of facets makes interacting
with and navigating in the plan space more accessible and
understandable than if users were overwhelmed with millions
or even billions of plans. Furthermore, the enumeration of
those large numbers of plans is challenging, as shown above.

6 Conclusion
We present a solution to the 2025 Beluga AI Explainabil-
ity Challenge. This concrete planning-in-the-wild use case,
illustrates a successful deployment of KR techniques to a
practical AI planning application. Our PlanPilot tool ad-
vances the state-of-the-art solving systems to comprehend
large plan spaces allowing to make sense of alternative solu-
tions or ensuring alternative solutions to increase resilience.
PlanPilot builds on multiple reasoning techniques allow-
ing to interactively output plans, filter plans, restrict plans,
restrict flexibility in plans. Moreover, PlanPilot also sup-
ports counting plans, counting flexibility in actions, and es-
timate effects iteratively. In our system, we take advantage
of the underlying ground-ASP encoding, which enables us
to consider restrictions on actions and specific times of these
restrictions. We can, step by step, enforce or prohibit mean-
ingful actions (facets) that are present or absent in a specific,
or any step in the plan. Thereby, we establish a practical
approach to navigate plan spaces iteratively and interactively
and make interactive plan space exploration more precise.

In the Beluga use case, we primarily rely on facets. How-
ever, PlanPilot supports additional techniques to under-
stand the plan space, which we believe will be useful for
other settings. In more detail, we can combine facets and
counting plans. This allows us to construct reasoning modes
that allow for navigating plan spaces in multiple ways: ex-
ploring and targeting. When exploring, we select facets that
constrain the plan space the least. Whereas, when aiming

for a particular target, we take facets that maximally con-
strain the plan space. Thereby, users can either obtain large
sets of diverse plans, or quickly converge to very few plans,
depending on application needs.

We believe that beyond the time-stamped or global action
facets, it is interesting to consider partial-order planning in
the navigation, i.e., obtaining (minimal) partially ordered
plans natively without adding implications to simulate all
steps. We expect support for loopless plans to be beneficial
for many applications, too. Both of these plan types are
non-trivial to integrate, as it is unclear how to represent them
on the ASP level. We are interested in evaluating our tool
on a larger set of practical instances and investigate limita-
tions of facet-based reasoning as well as constructing visual
navigation tools that take advantage of PlanPilot.

A Blocks World Demo
We show an interactive run of PlanPilot, using an in-
stance of the Blocksworld domain. Blocksworld (Slaney
and Thiébaux 2001) is a well-known toy problem in the plan-
ning community. It asks to arrange blocks in towers on a
table, no block may be on top of itself or on/under two blocks,
as illustrated in Figure 7. The example has 4 blocks and an
optimal plan with 6 actions. PlanPilot takes as input a
PDDL task together with the horizon H (the bound on the
plan length), and the type of encoding (exact or bounded).
In our example we use H = 12 with the bounded encoding,
which allows all plans up to twice the optimal plan length:
In: ./planpilot.py -d domain.pddl

-i probBLOCKS-4-0.pddl
--horizon 12
--plasp-translate
--encoding bounded

Once the interactive mode is started, we can run a series of
queries or commands. For example, the commands #! and
#? ask for the number of plans, respectively facets:

Optimal Plan:





1. pick-up B

2. stack B A

3. pick-up C

4. stack C B

5. pick-up D

6. stack D C

A B C D

(a) Initial state.

D

C

B

A

(b) Goal.

Figure 7: Blocksworld task.

In: #!
18697
In: #?
360

We can also ask for a list of all facets using ?:
In: ?
occurs(action(("pick-up",constant("a"))),1)
occurs(action(("put-down",constant("c"))),7)

...

This list can be augmented by information on how much
the activation of each facet restricts the remaining facets, e.g.,
this shows a reduction of 32.78% and 242 remaining facets
when activating the first listed facet:
In: #??
0.3278 242

occurs(action(("pick-up",constant("a"))),1)
0.0444 344

∼occurs(action(("pick-up",constant("a"))),1)
0.6667 120

occurs(action(("put-down",constant("c"))),7)
0.0056 358

∼occurs(action(("put-down",constant("c"))),7)
...

The command #!! behaves similarly, but shows the re-
duction in the number of remaining plans for each facet.

Alternatively, we can also iteratively query how many
facets and how many plans remain, after activating a facet. A
facet is activated via + FACET-NAME:
In: + occurs(action(("pick-up",constant("a"))),1)
In: + occurs(action(("put-down",constant("c"))),7)
In: #?
32
In: #!
25

Finally, with the command ! we can output all plans that
remain, analyze them and select from them.
In: !
solution 1:
occurs(action(("pick-up",constant("a"))),1)
occurs(action(("put-down",constant("a"))),2)
occurs(action(("pick-up",constant("b"))),3)
occurs(

action(("stack",constant("b"),constant("a"))),4)
occurs(action(("pick-up",constant("c"))),6)

occurs(action(("put-down",constant("c"))),7)
occurs(action(("pick-up",constant("c"))),8)
occurs(

action(("stack",constant("c"),constant("b"))),9)
occurs(action(("pick-up",constant("d"))),10)
occurs(

action(("stack",constant("d"),constant("c"))),11)
solution 2:
...

After activating the two facets above, all resulting plans
will have action pick-up(a) as their first step and action
put-down(c) as their seventh step. We can continue to en-
force (or prohibit) more facets to further condition the set
of plans. Note that in some plans time steps are skipped to
allow for plans shorter than the bound. For example, the plan
shown has only ten actions and time step 5 is empty.

Overall, all queries and facet (de)activations are fast. In our
example, all operations only take split seconds. The runtime
of our tool is usually dominated by the time it takes clingo
to compute the requested plans. For some domains this can
be a challenge (Dimopoulos et al. 2019).

In particular, clingo may need much more time if we ask
it to enumerate all plans up to a given bound.

If we add an additional command line argument, we can
utilize the abstract time steps encoding:
In: ./planpilot.py -d domain.pddl

-i probBLOCKS-4-0.pddl
--horizon 12
--plasp-translate
--encoding bounded
--abstract-time-steps

It turns out that if the first action is pick-up(a) and some
action of the plan is stack(d, a), there is only a single plan
left. This can be easily discovered by our tool:
In: + occurs(action(("pick-up",constant("a"))),1)
In: #!
1469
In: #??
1.0000 0 occurs_sometime(action(("stack",constant("

d"),constant("a"))))
...

We show the remaining plan after requiring that the plan
stacks d on a, which concludes our use case:
In: + occurs_sometime(action(("stack",constant("d"

),constant("a"))))
In: #!
1
In: !
!
solution 1:
occurs(action(("pick-up",constant("a"))),1) occurs(

action(("put-down",constant("a"))),2) occurs(
action(("pick-up",constant("d"))),3) occurs(
action(("stack",constant("d"),constant("a")))
,4) occurs(action(("unstack",constant("d"),
constant("a"))),5) occurs(action(("put-down",
constant("d"))),6) occurs(action(("pick-up",
constant("b"))),7) occurs(action(("stack",
constant("b"),constant("a"))),8) occurs(action
(("pick-up",constant("c"))),9) occurs(action((
"stack",constant("c"),constant("b"))),10)
occurs(action(("pick-up",constant("d"))),11)
occurs(action(("stack",constant("d"),constant(
"c"))),12) ...

found 1

Acknowledgments
This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation, and by TAILOR,
a project funded by the EU Horizon 2020 research and innova-
tion programme under grant agreement no. 952215. The work
has received funding from the Swiss National Science Foun-
dation (SNSF) as part of the project “Unifying the Theory and
Algorithms of Factored State-Space Search” (UTA), the Aus-
trian Science Fund (FWF), grants 10.55776/J4656, and EL-
LIIT funded by the Swedish government. The computations
were enabled by resources provided by the National Aca-
demic Infrastructure for Supercomputing in Sweden (NAISS),
partially funded by the Swedish Research Council through
grant agreement no. 2022-06725.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–655.
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of action generation for cyber security using classical plan-
ning. In Biundo, S.; Myers, K.; and Rajan, K., eds., Proceed-
ings of the Fifteenth International Conference on Automated
Planning and Scheduling (ICAPS 2005), 12–21. AAAI Press.
Bylander, T. 1994. The computational complexity of proposi-
tional STRIPS planning. Artificial Intelligence 69(1–2):165–
204.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski, R.;
Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.; and
Schaub, T. 2020. ASP-Core-2 input language format. Theory
Pract. Log. Program. 20(2):294–309.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
Darwiche, A. 2001. Decomposable negation normal form.
Journal of the ACM 48(4):608–647.
Dimopoulos, Y.; Gebser, M.; Lühne, P.; Romero, J.; and
Schaub, T. 2019. plasp 3: Towards effective ASP planning.
Theory and Practice of Logic Programming 19(3):477–504.
Edelkamp, S. 2006. On the compilation of plan constraints
and preferences. In Long, D.; Smith, S. F.; Borrajo, D.; and
McCluskey, L., eds., Proceedings of the Sixteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2006), 374–377. AAAI Press.
Eifler, R.; Cashmore, M.; Hoffmann, J.; Magazzeni, D.; and
Steinmetz, M. 2020. A new approach to plan-space explana-
tion: Analyzing plan-property dependencies in oversubscrip-
tion planning. In Conitzer, V., and Sha, F., eds., Proceedings
of the Thirty-Fourth AAAI Conference on Artificial Intelli-
gence (AAAI 2020), 9818–9826. AAAI Press.
Eiter, T., and Geibinger, T. 2023. Explaining answer-set
programs with abstract constraint atoms. In Elkind, E., ed.,
Proceedings of the 32nd International Joint Conference on
Artificial Intelligence (IJCAI 2023), 3193–3202.
Fichte, J. K.; Gaggl, S. A.; Hecher, M.; and Rusovac, D.

2024. IASCAR: incremental answer set counting by anytime
refinement. Theory Pract. Log. Program. 24(3):505–532.
Fichte, J. K.; Fröhlich, N.; Hecher, M.; Lagerkvist, V.; Mah-
mood, Y.; Meier, A.; and Persson, J. 2025. Facets in argu-
mentation: A formal approach to argument significance. In
Kwok, J., ed., Proceedings of the 34th International Joint
Conference on Artificial Intelligence (IJCAI 2025).
Fichte, J. K.; Gaggl, S. A.; and Rusovac, D. 2022. Rushing
and strolling among answer sets – navigation made easy. In
Honavar, V., and Spaan, M., eds., Proceedings of the Thirty-
Sixth AAAI Conference on Artificial Intelligence (AAAI 2022),
5651–5659. AAAI Press.
Fichte, J. K.; Hecher, M.; and Nadeem, M. A. 2022. Plausi-
bility reasoning via projected answer set counting - A hybrid
approach. In Raedt, L. D., ed., Proceedings of the 31st Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2022), 2620–2626. ijcai.org.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer set solving in practice. Morgan & Claypool
Publishers.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming 19(1):27–82.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2009. Solution
enumeration for projected boolean search problems. In van
Hoeve, W. J., and Hooker, J. N., eds., Proceedings of the
6th International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2009), 71–86. Springer-
Verlag.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Kowalski, R., and Bowen,
K., eds., Proceedings of International Logic Programming
Conference and Symposium (ICLP/SLP 1988), 1070–1080.
MIT Press.
Gerevini, A. E., and Long, D. 2005. Plan constraints and
preferences in PDDL3. Technical Report R. T. 2005-08-
47, University of Brescia, Department of Electronics for
Automation.
Ghallab, M.; Nau, D.; and Traverso, P. 2025. Acting, Plan-
ning, and Learning. Cambridge University Press. To appear.
Gnad, D.; Hecher, M.; Gaggl, S.; Rusovac, D.; Speck, D.;
and Fichte, J. K. 2025. Code, benchmarks and data for
the KR 2025 paper “Interactive Exploration of Plan Spaces”.
https://doi.org/10.5281/zenodo.16563394.

Gragera, A.; Fuentetaja, R.; Olaya, Á. G.; and Fernández,
F. 2023. A planning approach to repair domains with in-
complete action effects. In Koenig, S.; Stern, R.; and Vallati,
M., eds., Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS 2023), 153–161.
AAAI Press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cybernet-
ics 4(2):100–107.

https://doi.org/10.5281/zenodo.16563394

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–169.
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence 173:503–535.
Janhunen, T., and Niemelä, I. 2016. The answer set program-
ming paradigm. AI Magazine 37(3):13–24.
Kabir, M.; Everardo, F. O.; Shukla, A. K.; Hecher, M.; Fichte,
J. K.; and Meel, K. S. 2022. ApproxASP – a scalable ap-
proximate answer set counter. In Honavar, V., and Spaan, M.,
eds., Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI 2022), 5755–5764.
Katz, M., and Sohrabi, S. 2020. Reshaping diverse planning.
In Conitzer, V., and Sha, F., eds., Proceedings of the Thirty-
Fourth AAAI Conference on Artificial Intelligence (AAAI
2020), 9892–9899. AAAI Press.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A
novel iterative approach to top-k planning. In de Weerdt, M.;
Koenig, S.; Röger, G.; and Spaan, M., eds., Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS 2018), 132–140. AAAI
Press.
Lin, S.; Grastien, A.; and Bercher, P. 2023. Towards au-
tomated modeling assistance: An efficient approach for re-
pairing flawed planning domains. In Chen, Y., and Neville,
J., eds., Proceedings of the Thirty-Seventh AAAI Conference
on Artificial Intelligence (AAAI 2023), 12022–12031. AAAI
Press.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL – The
Planning Domain Definition Language – Version 1.2. Techni-
cal Report CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control, Yale University.
McDermott, D. 2000. The 1998 AI Planning Systems com-
petition. AI Magazine 21(2):35–55.
Palacios, H.; Bonet, B.; Darwiche, A.; and Geffner, H. 2005.
Pruning conformant plans by counting models on compiled
d-DNNF representations. In Biundo, S.; Myers, K. L.; and
Rajan, K., eds., Proceedings of the 15th International Confer-
ence on Automated Planning and Scheduling (ICAPS 2005),
141–150. AAAI Press.
Rusovac, D.; Hecher, M.; Gebser, M.; Gaggl, S. A.; and
Fichte, J. K. 2024. Navigating and Querying Answer Sets:
How Hard Is It Really and Why? In Marquis, P.; Ortiz, M.;
and Pagnucco, M., eds., Proceedings of the 21st International
Conference on Principles of Knowledge Representation and
Reasoning (KR 2024), 642–653.
Russell, S., and Norvig, P. 1995. Artificial Intelligence — A
Modern Approach. Prentice Hall.
Schmidt, J.; Maizia, M.; Lagerkvist, V.; and Fichte, J. K.

2025. Complexity of faceted explanations in propositional
abduction. Theory Pract. Log. Program. In press.
Slaney, J., and Thiébaux, S. 2001. Blocks World revisited.
Artificial Intelligence 125(1–2):119–153.
Smith, D. E. 2004. Choosing objectives in over-subscription
planning. In Zilberstein, S.; Koehler, J.; and Koenig, S., eds.,
Proceedings of the Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS 2004), 393–401.
AAAI Press.
Sohrabi, S.; Riabov, A. V.; Katz, M.; and Udrea, O. 2018.
An AI planning solution to scenario generation for enterprise
risk management. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI 2018), 160–167.
AAAI Press.
Speck, D.; Hecher, M.; Gnad, D.; Fichte, J. K.; and Corrêa,
A. B. 2025. Counting and reasoning with plans. In Walsh, T.;
Shah, J.; and Kolter, Z., eds., Proceedings of the 39th AAAI
Conference on Artificial Intelligence (AAAI 2023), 26688–
26696.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic top-
k planning. In Conitzer, V., and Sha, F., eds., Proceedings of
the Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI 2020), 9967–9974. AAAI Press.
Speck, D.; Seipp, J.; and Torralba, Á. 2025. Symbolic search
for cost-optimal planning with expressive model extensions.
Journal of Artificial Intelligence Research 82:1349–1405.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient symbolic search for cost-optimal planning.
Artificial Intelligence 242:52–79.
Tuples. 2025. Beluga™ ai challenge. https://tuples.ai/
competition-challenge/.

https://tuples.ai/competition-challenge/
https://tuples.ai/competition-challenge/

	Introduction
	Background
	Navigating with Facets
	A Practical Plan Navigation Tool

	Navigating the Beluga Challenge
	The Beluga Problem
	Beluga Explanation Challenge
	Q1–Q3: Feasibility of Alternative Solutions
	Q4: Minimizing the Number of Swaps
	Q5/Q6: Handling Rack Removal

	Experiments
	Overall Performance
	Number of Facets and Plans

	Conclusion
	Blocks World Demo

