Efficient Evaluation of Large **Abstractions** for **Decoupled** Search: Merge-and-Shrink and Symbolic Pattern Databases

Daniel Gnad, Silvan Sievers, Álvaro Torralba Linköping University, Basel University, Aalborg University

Context

- Classical planning with finite-domain variables.
- Decoupled search compactly represents sets of states by **partitioning the state** variables into factors.
- Large abstraction heuristics (Merge&Shrink, symbolic PDBs) represent heuristic values of state sets compactly using **factored mappings** or **ADDs**.

How to evaluate a decoupled state on a large abstraction heuristic?

Decoupled State Representation

Represented state set: cross-product of reached leaf states.

Symbolic PDBs (ADDs) vs. M&Ss Factored Mappings

Represented state sets: All states that satisfy formula.

All states mapped to finite value set.

When are **BDDs** compatible with a decoupled state? When is a decoupled state compatible with a Merge&Shrink tree?

Theoretical Results

Theorem 1. Let A be an ADD of a PDB heuristic h, $s^{\mathcal{F}}$ a decoupled state, and $B \in \mathbb{R}^+ \cup \{\infty\}$. It is **NP**-complete to decide if $h_{\mathcal{F}}(s^{\mathcal{F}}) < B$.

Corollary 2. Let σ be an FM that represents a M&S heuristic h and $s^{\mathcal{F}}a$ decoupled state. It is **NP**-complete to decide if $h_{\mathcal{F}}(s^{\mathcal{F}}) < B$.

Compliance of Compact Data Structures

Compliant FM

Definition 3 (Covered Leaves by FMs, Nestedness). *Leaves covered by an FM:* $cov(\sigma) := \{L \in \mathcal{L} \mid L \cap vars(\sigma) \neq \emptyset\}.$ *Leaves fully covered by an FM:* $fc(\sigma) := \{L \in \mathcal{L} \mid L \subseteq vars(\sigma)\}.$ $pc(\sigma) := cov(\sigma) \setminus fc(\sigma).$ Leaves **partially covered** by an FM: Leaves exactly covered by an FM: $ec(\sigma) := fc(\sigma) \setminus (fc(\sigma_L) \cup fc(\sigma_R))$ if σ is a merge FM, and $ec(\sigma) := fc(\sigma)$ otherwise. **Nestedness** of an FM: $\mathcal{N}(\sigma) := 0$ for atomic FMs, otherwise $\mathcal{N}(\sigma) := max(\mathcal{N}(\sigma_L), \mathcal{N}(\sigma_R), |pc(\sigma_L) \cup pc(\sigma_R)|).$

Definition 4 (Compliant FMs). An FM is **compliant** with a factoring \mathcal{F} if $\mathcal{N}(\sigma) \leq 1$; it is **strongly compliant** with \mathcal{F} if for all $L \in \mathcal{L}$ there exists a descendant σ' of σ s.t. $cov(\sigma') = ec(\sigma') = \{L\}$.

Definition 5 (Compliant ADDs). A variable ordering is **compliant** with a factoring \mathcal{F} if:

 $\forall_{v < v' < v''} (\mathcal{F}(v) = \mathcal{F}(v'') \neq C) \implies \mathcal{F}(v') \in \{\mathcal{F}(v), C\}$

Runtime – General vs. Compliant Heuristic

