
Delete Relaxations for Planning with State-Dependent Action Costs

Florian Geißer and Thomas Keller and Robert Mattmüller
University of Freiburg, Germany

{geisserf,tkeller,mattmuel}@informatik.uni-freiburg.de

Abstract

Most work in planning focuses on tasks with state-
independent or even uniform action costs. How-
ever, supporting state-dependent action costs ad-
mits a more compact representation of many tasks.
We investigate how to solve such tasks using
heuristic search, with a focus on delete-relaxation
heuristics. We first define a generalization of the
additive heuristic hadd to such tasks and then dis-
cuss different ways of computing it via compila-
tions to tasks with state-independent action costs
and more directly by modifying the relaxed plan-
ning graph. We evaluate these approaches theo-
retically and present an implementation of hadd for
planning with state-dependent action costs. To our
knowledge, this gives rise to the first approach able
to handle even the hardest instances of the combi-
natorial ACADEMIC ADVISING domain from the
International Probabilistic Planning Competition
(IPPC) 2014.

1 Introduction
Many extensions have been made to the Planning Domain
Definition Language (PDDL), not only to allow for more ex-
pressivity but also to achieve a modeling of domains which is
closer to the real world. Some of these extensions allow do-
mains with state-dependent action costs (SDAC) [Ivankovic
et al., 2014], for example unrestricted numeric PDDL [Fox
and Long, 2003] or PDDL3 [Gerevini et al., 2009]. E. g.,
SDAC allow representation of the fuel consumption of a car
that depends on its speed and its weight more compactly than
with state-independent costs. Ivankovic et al. [2014] analyze
the power supply restoration domain, where the objective is
to minimize the unsupplied load at each plan step and the
cost is modeled by a finite sum of conditional costs over the
state variables. They simplify the problem by assuming mini-
mal constant action costs and compute an optimal plan for the
simplified problem. If the assumed minimal cost is unattain-
able in the original problem, they split the action into two
copies and repeat the first step on the modified problem. Un-
fortunately, they report that the heuristic is not time-efficient,
and as a result blind search solves more problems than search

with their heuristic. Another class of problems exists in plan-
ning with Markov Decision Processes (MDPs), where costs
(or rewards) are associated to pairs of actions and states.

In this work we consider action cost functions, repre-
sentable by simple enumerations of their values, using func-
tion terms, or compactly by decision diagrams. For our pur-
poses so-called edge-valued multi-valued decision diagrams
(EVMDDs) [Lai et al., 1996; Ciardo and Siminiceanu, 2002]
are most convenient, because they allow us to detect, exhibit
and exploit structure in the cost function. After introducing
the formal background we propose a naı̈ve compilation into
tasks with state-independent action costs. This compilation is
infeasible, since it generates exponentially many actions, but
can serve as a baseline for more sophisticated approaches.
Based on the structure of the EVMDD we introduce a novel
compilation technique, which greatly reduces the number of
additional actions. Finally, we avoid compilation altogether
by integrating the structure of the EVMDD in the relaxed
planning graph (RPG), and show the correctness of this ap-
proach. We apply this procedure to the ACADEMIC ADVIS-
ING domain [Guerin et al., 2012] and compare the results
with the standard heuristic of the PROST planner [Keller and
Eyerich, 2012], a state-of-the-art planning system for MDPs.
We conclude with some remarks about future work.

2 Preliminaries
In this section, we introduce planning tasks with SDAC, recall
the definition of the additive heuristic in classical planning,
and extend it to tasks with SDAC.

2.1 Planning with State-Dependent Action Costs
We extend the definition of SAS+ planning
tasks [Bäckström and Nebel, 1995] to take SDAC into
account.
Definition 1. A planning task with SDAC is a tuple Π =
(V, A, s0, s?, (ca)a∈A) consisting of the following compo-
nents: V = {v1, . . . , vn} is a finite set of state variables, each
with an associated finite domain Dv = {0, . . . , |Dv| − 1}. A
fact is a pair (v, d), where v ∈ V and d ∈ Dv , and a par-
tial variable assignment s over V is a consistent set of facts.
If s assigns a value to each v ∈ V , s is called a state. Let
S denote the set of states of Π. A is a set of actions, where
an action is a pair a = 〈pre, eff〉 of partial variable assign-
ments, called preconditions and effects. The state s0 ∈ S is

called the initial state, and the partial state s? specifies the
goal condition. Each action a ∈ A has an associated cost
function ca : S → N that assigns the application cost of a
to all states where a is applicable, and arbitrary values to all
other states.

For propositional variables, i.e. variables v with Dv =
{0, 1}, we write v and ¬v for (v, 1) and (v, 0), respectively.
For states s, we use function notation s(v) = d and set nota-
tion (v, d) ∈ s interchangeably. Typically, each cost func-
tion ca will be specified as a function term that only de-
pends on a subset of the state variables, which we denote by
supp(a) = {va1 , . . . , vaka} ⊆ V .1 It will then be convenient to
think of ca as a function ca : D1 × · · · ×Dka → N where Dj
is the domain of vaj , j = 1, . . . , ka. Let Sa be the set of all
valuations of the variables occurring in ca, i.e., the set of all
possible argument tuples of ca, let Fa =

⋃
ŝ∈Sa

ŝ be the set
of all facts (v, d) for v ∈ Sa and d ∈ Dv , and let pvars(a) be
the set of variables mentioned in the precondition of action a.
Throughout the paper, we assume without loss of generality
that supp(a) ∩ pvars(a) = ∅. This assumption is warranted
since, whenever a variable v occurs in the precondition of a,
its value d is fixed in every application of a and the value
d can be plugged into the cost function ca, thus making ca
independent of v.

The semantics of planning tasks are as usual: An action a
is applicable in state s iff pre ⊆ s. Applying action a to s
yields the state s′ with s′(v) = eff(v) where eff(v) is defined
and s′(v) = s(v) otherwise. We write s[a] for s′. A state s
is a goal state if s? ⊆ s. We denote the set of goal states by
S?. Let π = 〈a0, . . . , an−1〉 be a sequence of actions from
A. We call π applicable in s0 if there exist states s1, . . . , sn
such that ai is applicable in si and si+1 = si[ai] for all i =
0, . . . , n − 1. We call π a plan for Π if it is applicable in s0
and if sn ∈ S?. The cost of plan π is the sum of action costs
along the induced state sequence, i.e., cost(π) = ca0(s0) +
· · ·+ can−1

(sn−1).
Dealing with SDAC in an explicit-state forward search is

straightforward, since upon expansion of a state s, determin-
ing the relevant action cost values amounts to a simple func-
tion evaluation. However, if the search is guided by a domain-
independent distance heuristic h, the action costs should also
be correctly reflected by the h values assigned to states. This
is where complications arise, at least for delete-relaxation
heuristics [Bonet et al., 1997; Bonet and Geffner, 1999;
2001] such as the additive heuristic hadd.

2.2 Delete-Relaxation Heuristics
A delete-relaxation of a planning task ignores delete effects,
which translates to allowing state variables to hold several
values simultaneously. Thus, in the relaxed version of an
SAS+ planning task, state variables accumulate their values
rather than switching between them.

1There can also be variables within supp(a) that have no influ-
ence on the cost of a. E.g., for ca = B+A−A2 andDA = {0, 1},
A ∈ supp(a), although A and A2 cancel out and ca is in fact inde-
pendent of the value of A. We accept this since a more “semantic”
definition of the support easily becomes computationally intractable.

Formally, a relaxed planning task with SDAC Π+ consists
of the same variables V , the same actions A, and the same
goal condition s? as the unrelaxed task Π. A relaxed state s+
now assigns to each v ∈ V a non-empty subset s+(v) ⊆ Dv .
The set S+ is the set of all relaxed states, and for s ∈ S,
s+ ∈ S+ we say that s+ subsumes s iff for all v ∈ V ,
s(v) ∈ s+(v). An action a = 〈pre, eff〉 is relaxed applica-
ble in s+ iff pre(v) ∈ s+(v). Applying a in s+ results in
s+′ with s+′(v) = s+(v) ∪ {eff(v)} if eff(v) is defined and
s+′(v) = s+(v) otherwise. The initial state s+0 assigns to
each variable v the singleton set {s0(v)}. Relaxed plans are
then defined in the obvious way. What is still missing from
this definition is the extension of the action cost function to
relaxed states. Here, we define the cost of a in s+, ca(s+),
in a natural way as the minimal cost ca(s) for any unrelaxed
state s that is subsumed by s+. The problem with this defini-
tion is not that much a conceptual, but rather a computational
one. With n state variables, there can be exponentially many
unrelaxed states s subsumed by s+. In this paper we present
a representation of cost functions that is typically (although
not always) compact and that allows a simple computation of
ca(s+) and a simple integration into the RPG.

Delete-relaxation heuristics can be generalized to tasks
with SDAC: For h+, generalization is straightforward: h+(s)
is the cost of a cost-minimal relaxed plan starting in s+.
However, the computation of the generalized h+ heuristic
is still NP-hard, as it is already for classical planning [By-
lander, 1994]. Thus, we also want to generalize approxi-
mations to h+, such as hadd and hmax, to tasks with SDAC.
In the following, we discuss hadd and leave a detailed dis-
cussion of hmax for future work. For a fact f = (v, d),
let A(f) be the set of achievers of f , i.e., the set of ac-
tions a = 〈pre, eff〉 ∈ A with f ∈ eff. Then for classi-
cal planning, hadd is defined as follows [Bonet et al., 1997;
Bonet and Geffner, 1999]:

hadd(s) = hadd
s (s?) (1)

hadd
s (sp) =

∑
f∈sp

hadd
s (f) and (2)

hadd
s (f) =

{
0 if f ∈ s
min
a∈A(f)

[
hadd
s (pre(a)) + ca

]
otherwise, (3)

where sp stands for a partial state, f for a fact, pre(a) for the
precondition of a, and ca is the state-independent cost of a.
A natural generalization to SDAC should, in case (3), mini-
mize over all achievers a of f and over all possible situations
where a is applicable.2 Thus, cases (1) and (2) remain un-
changed, and case (3) is replaced by case (3′) below. Then:

Cas = min
ŝ∈Sa

[ca(ŝ) + hadd
s (ŝ)] in the recursive call

hadd
s (f) =

{
0 if f ∈ s
min
a∈A(f)

[
hadd
s (pre(a)) + Cas

]
otherwise. (3′)

2Consider state s with s(A) = s(B) = 0, actions a1 = 〈∅, B〉
with ca1 = 2 − 2 · A and a2 = 〈∅, A〉 with ca2 = 1. We can
achieve B at cost 2 in one step, or at cost 0 + 1 = 1 in two steps if
hadd
s (A) = 1 and we take this hadd value into account.

The only difference between Equations (3) and (3′) is the re-
placement of the constant ca by the term Cas . Obviously,
if ca is a constant function, as in classical planning, Cas =
ca(∅) + hadd

s (∅) = ca, and for classical tasks, our general-
ized definition of hadd becomes the standard definition again.
The central new challenge is the efficient computation of Cas .
Unfortunately, the number of states in Sa is exponential in
the number of variables in supp(a), and in general, Cas can-
not be additively decomposed by the variables in supp(a).
However, we can represent ca and Cas with the help of edge-
valued decision diagrams such that ca and Cas are efficiently
computable in the size of the decision-diagram representation
and that the size of the representation itself is, although expo-
nentiality in the size of supp(a) cannot be avoided in general,
compact in many “typical”, well-behaved cases.

2.3 Edge-Valued Decision Diagrams
Each action cost function ca : D1× · · · ×Dn → N over vari-
ables V = {v1, . . . , vn} with domains Dv = {0, . . . , |Dv| −
1} can be encoded as an edge-valued multi-valued decision
diagram (EVMDD) [Ciardo and Siminiceanu, 2002]. For-
mally, we use a definition of EVMDDs similar to the EVBDD
definition by Lai et al. [Lai et al., 1996].

Definition 2. An EVMDD over V is a tuple E = 〈κ, f〉 where
κ ∈ Z is a constant value and f is a directed acyclic graph
consisting of two types of nodes:

1. There is a single terminal node denoted by 0.
2. A nonterminal node v is a tuple (v, χ0, . . . , χk, w0, . . . ,
wk) where v ∈ V is a variable, k = |Dv| − 1, children
χ0, . . . , χk are terminal or nonterminal nodes of E and
w1, . . . , wk ∈ Z, w0 = 0.

We refer to the components of v as v(v), χi(v) and wi(v).
Edges of E between parent and child nodes are implicit in
the definition of the nonterminal nodes of E . The weight of
an edge from v to χi(v) is wi(v). The following definition
specifies the arithmetic function denoted by a given EVMDD.

Definition 3. An EVMDD E = 〈κ, f〉 denotes the arith-
metic function κ + f where f is the function denoted by f .
The terminal node 0 denotes the constant function 0, and
(v, χ0, . . . , χk, w0, . . . , wk) denotes the arithmetic function
over S given by (I) f(s) = fs(v)(s) + ws(v), where fs(v) is
the arithmetic function denoted by child χs(v). We write E(s)
for κ+ f(s).

In the graphical representation of an EVMDD E = 〈κ, f〉,
f is represented by a rooted directed acyclic graph and κ by
a dangling incoming edge to the root node of f . The terminal
node is depicted by a rectangular node labeled 0. A nonter-
minal node is a tuple (v, χ0, . . . , χk, w0, . . . , wk), where v
is the node label, χ0, . . . , χk are the subgraphs rooted at v,
and w0, . . . , wk are the weights assigned to the edges of v.
Edge labels d are written next to the edges, edge weights wd
in boxes on the edges, d = 0, . . . , k. For fixed variable or-
ders, reduced and ordered EVMDDs are unique [Ciardo and
Siminiceanu, 2002]. However, in our application, we do not
care about uniqueness, and we can even use different, appro-
priate variable orderings for different cost functions. Notice
that, for appropriate variable orders, the encoding size of an

EVMDD Ea for cost function ca is polynomial in the number
of variables in supp(a) for many types of cost functions: For∑n
j=1 κjvj with natural coefficients κj it is linear, and for

general multivariate polynomials over supp(a), it is still only
exponential in the size of the largest cluster of variables from
supp(a) that are interdependent in ca.
Example 1. Consider the action cost function ca = AB2 +
C + 2 with DA = DC = {0, 1}, and DB = {0, 1, 2}.

A

B

C

0

2

0

0
0

1

4

2

1

1

0

0

1

1

0

0

Depicted is an EVMDD for ca and
the variable ordering A,B,C. To
see how the EVMDD encodes the
cost function ca, consider the val-
uation s with s(A) = 1, s(B) =
2 and s(C) = 0. Traversing the
corresponding edges in the EVMDD
from top to bottom and adding up
the edge weights, we arrive at the
resulting value 6, which is exactly
ca(s).

EVMDDs are suitable for the encoding of ca since the eval-
uation of an EVMDD is straightforward both in unrelaxed
and in relaxed states. Let Ea be an EVMDD encoding ca.
For an unrelaxed state s, ca(s) can be read from Ea as the
path cost of the unique EVMDD path corresponding to s,
Ea(s). For a relaxed state s+, ca(s+) can be determined
by traversing Ea in a topological order, only following edges
“subsumed” by s+, and minimizing over accumulated costs
of multiple incoming arcs of the same decision node:
Definition 4. Similar to Definition 3, we can define the arith-
metic function denoted by E for relaxed state s+ by replacing
Equation (I) with (II) f(s+) = mind∈s+(v)(fd(s

+) + wd).
We write E(s+) for κ+ f(s+).
Theorem 1. Ea(s+) = ca(s+) for action cost function ca,
EVMDD Ea for ca, and relaxed state s+ over supp(a).

Proof sketch. States subsumed by s+ correspond to paths in
Ea minimized over in the definition of Ea(s+).

This shows that EVMDDs allow an efficient computation
of ca values of unrelaxed and relaxed states. In order to show
that EVMDDs can also be used to compute Cas , we need to
incorporate hadd

s values into Ea. To do this correctly, it is nec-
essary that on each path through Ea, each variable in supp(a)
is tested, since otherwise the hadd

s values of facts for variables
skipped on some branch would not be included there. Hence,
in the following we assume that Ea includes branches over all
variables on all paths, even if this does not affect the value of
Ea. In the EVMDD from Example 1, this means that there
is also a test branching over variable B instead of the edge
from A immediately to C, where all three B branches have
weight 0. We call such an Ea quasi-reduced and note that
turning a given reduced EVMDD into this form only leads to
a polynomial blowup in the worst case.

3 Action Compilations
A simple way of getting rid of SDAC in a principled manner
is by translating Π into an equivalent task where action costs

are state independent, and then to evaluate h on the compiled
task. In this section, we discuss two such compilations.

3.1 Basic Action Compilation
In the basic compilation, each action a is transformed into
multiple actions aŝ, corresponding to the valuations ŝ of the
variables occurring in ca, such that aŝ is only applicable in
ŝ. Formally, for every assignment ŝ ∈ Sa, an action aŝ =
〈pre(a) ∧

∧
f∈ŝ f, eff〉 with cost c(aŝ) = ca(ŝ) is added to

the compiled task, where pre(a) is the precondition of a. We
call this the basic compilation scheme (BC). It is not hard to
see that this leads to an exponential blowup in the number of
variables in supp(a), as discussed by Ivankovic et al. [2014].

Example 2. Consider again action a with ca = AB2+C+2
as defined in Example 1. Applying BC on a results in

a¬A,B=0,¬C = 〈pre ∧ ¬A ∧B = 0 ∧ ¬C, eff〉, cost : 2
a¬A,B=0,C = 〈pre ∧ ¬A ∧B = 0 ∧ C, eff〉, cost : 3
a¬A,B=1,¬C = 〈pre ∧ ¬A ∧B = 1 ∧ ¬C, eff〉, cost : 2

. . .
aA,B=2,¬C = 〈pre ∧A ∧B = 2 ∧ ¬C, eff〉, cost : 6
aA,B=2,C = 〈pre ∧A ∧B = 2 ∧ C, eff〉, cost : 7

On the other hand, the basic compilation scheme produces
the desired hadd values.

Theorem 2. Let Π be a task with SDAC and Π′ its BC com-
pilation. Let s be a state of Π and hadd and hadd

orig the gen-
eralized and original additive heuristics for tasks Π and Π′,
respectively. Then hadd(s) = hadd

orig(s).

Proof sketch. Follows from the original and generalized def-
initions of hadd and of the BC compilation, as states ŝ corre-
spond uniquely to actions â in the basic compilation.

Instead of further studying BC, we only treat it as a base-
line approach and define a more compact EVMDD-based
compilation instead.

3.2 EVMDD-Based Action Compilation
To compute the cost of a state in the EVMDD, one has to
sum up the costs of the edges on the path from the root node
to the terminal node. The key insight is that the edges in the
EVMDD can be thought of as auxiliary actions with state-
independent constant costs that are only allowed to be applied
if the tested state variable has the value corresponding to the
edge. Based on this observation we compile the structure of
the EVMDD into auxiliary actions. To that end, we intro-
duce an additional auxiliary variable auxa for each original
action a that keeps track of where we currently stand in the
evaluation of the corresponding EVMDD. Let Ea = 〈κ, f〉 be
a quasi-reduced EVMDD for some cost function ca, |f | the
number of nodes of Ea, and let idx (v) ∈ {1, . . . , |f |} be a
topological ordering of Ea, i.e., a bijective function number-
ing the nodes of Ea such that for every non-terminal node v
and each child χi(v), idx (v) < idx (χi(v)). If v is the termi-
nal node 0, then idx (v) = |f |. The domain of auxa has one
value for each node in the EVMDD (plus one start value),
i.e., Daux = {0, . . . , |f |}. For each non-terminal node v =
(v, χ0, . . . , χk, w0, . . . , wk) of Ea and each i = 0, . . . , k,

we create an action av=i,idx(v) = 〈auxa = idx (v) ∧ v =
i, auxa = idx (χi(v))〉 with cav=i,idx(v) = wi. Additionally,
we need two actions corresponding to the precondition and
the effect: A start action apre = 〈pre ∧ auxa = 0, auxa = 1〉
with cost capre = κ and a stop action aeff = 〈auxa =
|f |, eff ∧ auxa = 0〉 with caeff = 0.3

Example 3. Consider again action a with ca = AB2 +C +
2 encoded in the quasi-reduced form E ′a of the EVMDD Ea
from Example 1 with an extra test forB on the (A, 0) branch.
Applying the EVMDD compilation to a leads, among others,
to the following actions (we write aux for auxa):

apre = 〈pre ∧ aux = 0, aux = 1〉, cost : 2
aA,[1] = 〈aux = 1 ∧A, aux = 3〉, cost : 0

. . .
aB=0,[3] = 〈aux = 3 ∧B = 0, aux = 4〉, cost : 0
aB=1,[3] = 〈aux = 3 ∧B = 1, aux = 4〉, cost : 1
aB=2,[3] = 〈aux = 3 ∧B = 2, aux = 4〉, cost : 4

. . .
aeff = 〈aux = 5, eff ∧ aux = 0〉, cost : 0

The size of the resulting task depends on the number of
edges in the EVMDD. This can lead to a much smaller num-
ber of new actions than in the BC compilation. For exam-
ple, to transform an action with cost function ca =

∑n
j=1 vj

for propositional variables vj , j = 1, . . . , n, we only need
2n+2 actions, whereas the BC compilation produces 2n new
actions. Furthermore, hadd applied on an EVMDD-compiled
planning task still results in the desired value:
Theorem 3. Let Π be a task with SDAC and Π′ its EVMDD
compilation. Let s be a state of Π and s′ = s ∪⋃
a∈A{(auxa, 0)} be the corresponding state in Π′, and let

hadd and hadd
orig be the generalized and original additive heuris-

tics. Then hadd(s) = hadd
orig(s′).

Proof sketch. We only need to show that Equations (3) and
(3′) are equal for s and s′. By construction, we get one
aeff ∈ A′(f) for each a ∈ A(f). During computation of
hadd

orig(pre(aeff)) we minimize over all paths from the root to 0
in the EVMDD. Since each path corresponds to one ŝ ∈ Sa
we get hadd

orig(pre(aeff)) = hadd
s (pre(a)) + Cas . Then we get

hadd
orig(f) = minaeff∈A′(f)[h

add
s (pre(a)) + Cas]. Since aeff cor-

responds to a ∈ A(f) we get hadd(s) = hadd
orig(s′).

4 EVMDD-Based RPG Compilation
In the following, we will show that we can also use
EVMDDs to compute Cas directly, essentially by compiling
the EVMDDs as sub-graphs into the RPG. In principle, com-
putation of Cas is easy given a quasi-reduced EVMDD Ea:
One can construct from Ea an EVMDD Gas for ca + hadd

s by
retaining the graph structure of Ea and incorporating hadd val-
ues into the edge weights, and use Gas for minimization over
s+-viable paths. Such a transformation from Ea to Gas has
one drawback: It assumes that, when generating Gas , all nec-
essary hadd

s ((v, d)) values to be hard-coded in Gas are already

3In an unrelaxed setting, introduction of an additional semaphore
variable can help reducing the branching factor of the search.

known. However, due to the recursive nature of the hadd
s com-

putation, this is not the case. This problem can be avoided
by adding “input nodes” for all relevant hadd

s ((v, d)) values
to the EVMDD. Since we will use the resulting “input-node
augmented EVMDD” (INADD) as a portion of an RPG later,
we do not treat it as an EVMDD any more, but rather as an
AND/OR DAG.
Definition 5. Let Ea = 〈κ, f〉 be a quasi-reduced EVMDD
for some cost function ca with support supp(a) and Fa the set
of facts over supp(a). Then the input-node augmented deci-
sion diagram (INADD) for Ea is the directed acyclic AND/OR
graph Ia = (N∧, N∨, E,W) with AND nodesN∧, OR nodes
N∨, edges E, and node weight function W : N∧ → Z with
the following components:
• Input nodes: For each fact f ∈ Fa, there is an input

node nf ∈ N∨.
• Variable nodes: For each node v of Ea, there is a node
nv ∈ N∨. This includes a node n0 for the terminal node
0 of Ea.
• Fact nodes: For each non-terminal node v =

(v, χ0, . . . , χk, w0, . . . , wk) of Ea and each i =
0, . . . , k, there is a node n(v,χi,wi) ∈ N∧ with weight
W (n(v,χi,wi)) = wi. There is a node nκ ∈ N∧ for the
additive constant κ with weight W (nκ) = κ.
• AND edges from variable nodes: For each vari-

able node nv ∈ N∨ for non-terminal v =
(v, χ0, . . . , χk, w0, . . . , wk) and each i = 0, . . . , k,
there is an edge from nv to n(v,χi,wi).
• AND edges from input nodes: For each input node nf

for fact f = (v, d) and each fact node n(v,χd,wd) where
v(v) = v, there is an edge from nf to n(v,χd,wd).
• OR edges: For each fact node n(v,χi,wi) ∈ N∧ for
v = (v, χ0, . . . , χk, w0, . . . , wk), there is an edge from
n(v,χi,wi) to nχi

. There is an edge from nκ to nf , where
f denotes the root node of Ea.

This definition is best illustrated with the running example.
Example 4. Consider the EVMDD Ea from Example 1 in its
quasi-reduced form E ′a. The INADD Ia for E ′a is depicted in
Figure 1. OR nodes are shown as ellipses, AND nodes as rect-
angles, input nodes are labeled with the input facts, arcs from
input nodes are thin, arcs corresponding to EVMDD arcs are
solid, and node weights are given as annotations next to the
corresponding nodes. The gray portion results from the exten-
sion of Ea to E ′a. The red node labels and other red markings
will only be of interest in Example 5.

We can now define the evaluation of an INADD for a given
input valuation as follows:
Definition 6. Let Ia = (N∧, N∨, E,W) be the INADD for
some EVMDD Ea and let ι be a function assigning natural
numbers or infinity to input nodes of Ia. Then the node valu-
ation ι̂ of all nodes of Ia is recursively defined as follows:
• For input node n ∈ N∨, ι̂(n) = ι(n).
• For variable node n ∈ N∨, ι̂(n) = min(n′,n)∈E ι̂(n

′).
• For fact node n ∈ N∧, ι̂(n) =

∑
(n′,n)∈E ι̂(n

′)+W (n).
The value of Ia for ι, denoted as Ia(ι), is then the value ι̂(n0)
of the INADD node corresponding to the terminal node 0 of
Ea. Since Ia is acyclic, this is well-defined.

Input

κ

A

B

C

0, Output

(A, 0)

10

(A, 1)

0

(B, 0)

6

(B, 1)

∞
(B, 2)

1

(C, 0)

2

(C, 1)

2

∨
2

∨2∨12

∨
7

∨
9

∧ +22

∧ +012 ∧ +0
2

∧+0

8

∧+1

∞
∧ +4

7

∧+0

18

∧+0

∞
∧+0

13

∧+0

9

∧+1

10

Figure 1: The INADD Ia for E ′a

Example 5. Consider the INADD from Example 4. The red
input node labels denote ι(n) for some input valuation ι, and
the red interior node labels denote the corresponding valua-
tion ι̂. The highlighted red path of interior nodes is the min-
imizing path determining Ia, with inputs used on that path
also highlighted in red. As we will see formally below, the
value Ia = 9 is the same as Cas = minŝ∈Sa [ca(ŝ) + hadd

s (ŝ)]
if the ι values are interpreted as hadd

s values: The highlighted
path corresponds to the minimizing ŝ, ca(ŝ) is the sum of the
node weights 2 + 0 + 4 + 0 = 6 along the path, and hadd

s (ŝ)
is the sum of used input node costs, 0 + 1 + 2 = 3.

We can now use Ia to compute Cas by initializing the valu-
ation of input nodes with the hadd values of the corresponding
facts. Efficient computability in the size of Ia is obvious.

Lemma 1. Let Ia = (N∧, N∨, E,W) be the INADD for a
quasi-reduced EVMDD Ea encoding the action cost function
ca of action a, and let v1 ≺ · · · ≺ vk be the variable order of
Ea. Let Cas be the function over the variable nodes n = nv in
N∨ defined recursively as follows:
• Base case for v(v) = v1 or k = 0 and v = 0: Cas (n) =

min(n′,n)∈EW (n′).
• Inductive case for v(v) = vj , j > 1, or k > 0 and v =
0: Cas (n) = min(n′,n)∈E [Cas (n′∨) + hadd

s (f) + W (n′)],
where n′∨ ∈ N∨ is the unique OR parent of n′ and f is
the fact represented by the input node connected to n′.

Then we get the following result:
1. Cas (n) = minŝ∈Sn

[ĉa(ŝ) + hadd
s (ŝ)], where Sn is the set

of partial states corresponding to paths incoming in n
and where ĉa(ŝ) is ca applied to ŝ ∪ {(vi, 0) | vi ∈
supp(a) not occurring in ŝ}.

2. Cas (n0) = Cas .

Proof sketch. 1. Induction over recursive definition of
Cas (n). In the base case, both sides evaluate to κ. For the
inductive case, we can apply the induction hypothesis to

Instance 1 2 3 4 5 6 7 8 9 10

Variables 20 20 30 30 40 40 50 50 60 60

Actions 11 11 16 16 21 21 26 26 31 31

Variables in ca 4 8 5 8 9 11 9 10 12 12

Size of compilation 168 2 688 496 3 968 10 496 41 984 13 056 26 112 124 928 124 928

Size of Ia 14 + 17 26 + 33 17 + 21 26 + 33 29 + 37 35 + 45 29 + 37 32 + 41 38 + 49 38 + 49

baseline 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00

IDS 40.71 46.24 39.88 202.19 202.07 202.90 201.65 201.67 201.28 201.51

hadd 40.71 45.80 40.60 63.41 130.11 76.15 105.37 109.02 180.41 125.52

Table 1: Statistics and results of the ACADEMIC ADVISING domain.

Cas (n′∨), use the independence of hadd
s (f) and W (n′) of

the choice of ŝ ∈ Sn′∨ , construct ŝf (n′) = ŝ ∪ {f},
use ĉa(ŝf (n′)) = ĉa(ŝ) + W (n′) and hadd

s (ŝf (n′)) =
hadd
s (ŝ) + hadd

s (f), and simplify.

2. By part 1 of this lemma, using Sn0 = Sa, which holds
since Ea is quasi-reduced.

Theorem 4. Let Ia be the INADD for a quasi-reduced
EVMDD Ea encoding the action cost function ca of action a.
Let ι(nf) = hadd

s (f) for all facts f ∈ Fa. Then Ia(ι) = Cas .

Proof sketch. For non-input OR nodes n, we show by in-
duction over the distance from n to nκ that ι̂(n) = Cas (n)
(with Cas recursively defined as in Lemma 1). Then the claim
follows for n = n0 using the definition of Ia(ι) (left-hand
side) and part 2 of Lemma 1 (right-hand side). In the base
case, again both sides evaluate to κ. In the inductive case, let
n ∈ N∨ be a node with distance d. Then ι̂(n) = ι̂(n′) where
n′ ∈ N∧ is a ι̂-minimizing fact node with (n, n′) ∈ E. Now,
n′ has two parents, one variable node n′∨ with strictly smaller
distance, and one input node nf . Thus, by definition, ι̂(n′) =
ι̂(n′∨)+ ι̂(nf)+W (n′). By induction hypothesis and the defi-
nition of ι̂ for input nodes, this is Cas (n′∨)+hadd

s (f)+W (n′).
Thus, ι̂(n) = min(n′,n)∈E [Cas (n′∨) + hadd

s (f) + W (n′)] =
Cas (n) by the choice of n′ and recursive definition of Cas .

We can now use the construction of Ia as a portion of the
RPG for Π as follows: In each RPG layer, instead of having a
single action node for action a, we have an action sub-graph
for a that is the “conjunction” of Ia with the precondition
facts of a. The input nodes of Ia are the corresponding fact
nodes from the previous layer, and the “output” node n0 of
Ia is linked to the effect literals of a on the current layer.

5 Experimental Evaluation
To evaluate hadd on planning tasks with SDAC, we have im-
plemented the heuristic in the 2014 version of the PROST
planner and compared it against the standard heuristic of
PROST on the ACADEMIC ADVISING domain. The reason
we chose the probabilistic setting is that planners already
have to be able to deal with SDAC, which are part of the
last two IPPCs’ benchmark sets. ACADEMIC ADVISING is
not the only goal-oriented domain, but the others are either
very small, based on constant action costs, or require a trans-
formation to positive action costs. Furthermore, it was by
far the most challenging domain of the last IPPC, with no

participant able to generate a good policy for more than the
first four instances. PROST 2014 is based on the UCT? al-
gorithm [Keller and Helmert, 2013], a Trial-Based Heuris-
tic Tree Search algorithm using UCB1 [Auer et al., 2002]
action selection, Monte-Carlo simulation of stochastic out-
comes, and a partial Bellman backup function to propagate
collected information in the search tree. The standard heuris-
tic (IDS) performs a lookahead based on a sequence of itera-
tive deepening searches on the most-likely determinization of
the given MDP. If the search uses too much time, it is stopped
prematurely. The challenging part for the ACADEMIC AD-
VISING domain is that the application of good actions only
pays off when the goal is reached, which is why it is costly
to gain informative goal distance heuristic values. Table 1
shows statistics for different instances of ACADEMIC ADVIS-
ING. The first two rows denote the number of variables and
the number of actions, while the third row shows the num-
ber of variables occurring in the cost function of each action.
Note that this number is identical for all actions except for the
no-op action. Next we denote the number of actions in the
BC compilation, showing clearly that BC is infeasible. Row
five denotes the number of nodes plus the number of edges of
the resulting INADD4. The last three rows show the average
results of PROST across 100 runs for each instance, based on
different heuristics, with a 1-second timeout for each plan-
ning step. Best results (up to insignificant differences) are
bold. baseline is based on a policy which always performs
the no-op action, IDS is the standard heuristic used by PROST
as described by Keller and Eyerich [2012], and hadd is the ad-
ditive heuristic using the EVMDD-based RPG compilation of
Section 4. Both IDS and hadd are applied to the most-likely
determinization. For small problems, IDS performs reason-
ably well, but suffers from uninformative heuristic values as
soon as the problem size increases, which leads to results
worse than those of the baseline policy, whereas hadd yields
good results, even for the most complex instances.

We briefly want to mention some implementation details.
Since IPPC domains are modeled in RDDL [Sanner, 2010],
we transformed grounded actions of the most-likely deter-
minization into precondition-effect pairs. This transforma-
tion leads to more actions (roughly 5 times more), but the
generated actions are only used for the computation of the

4Note that (i) input nodes are not counted, as they are already
part of the RPG anyway, and (ii) the used EVMDDs are not quasi-
reduced. We internally transform them from reduced to quasi-
reduced on the fly.

heuristic values. EVMDDs are created by the open source
MDD library MEDDLY [Badar and Miner, 2011]. Finally
we want to mention that even-numbered instances allow con-
current actions. In this case, PROST generates additional ac-
tions for all possible combination of actions. During the com-
putation of hadd, however, we only reason about the original
actions, which leads to a small underestimation of the true
hadd values but largely reduces the size of the RPG.

6 Conclusion and Future Work
We have shown how action cost functions in planning with
SDAC can be compactly encoded using EVMDDs and how
a compact compilation to tasks with state-independent action
costs can be derived from such an encoding. Moreover, we
have introduced a natural extension of the definition of the
hadd heuristic to tasks with SDAC, which can be efficiently
computed, again using the EVMDD structures of the action
cost functions. Finally, we have presented an implementation
of the generalized hadd heuristic in the context of probabilis-
tic planning, where SDAC are common. This heuristic gives
rise to the first approach able to handle even the hardest in-
stances of the combinatorial ACADEMIC ADVISING domain.
For future work, we plan to extend the empirical evaluation
to a broader range of benchmark problems, from probabilis-
tic planning as well as from classical planning with SDAC.
Furthermore, we will study the usefulness of the EVMDD
encoding for other relaxation heuristics such as hmax (which
is not as straightforward as it may seem) as well as to other
types of heuristics, such as abstractions, and integrate them in
the framework of the PROST planner. Finally, we will inves-
tigate how to automatically derive suitable EVMDD variable
orderings for given cost functions.

Acknowledgements. This work was partly supported by
the DFG as part of the SFB/TR 14 AVACS and by BMBF
grant 02PJ2667 as part of the KARIS PRO project. We thank
the anonymous reviewers for their insightful comments.

References
[Auer et al., 2002] Peter Auer, Nicolò Cesa-Bianchi, and

Paul Fischer. Finite-time Analysis of the Multiarmed
Bandit Problem. Journal of Machine Learning Research,
47:235–256, May 2002.

[Bäckström and Nebel, 1995] Christer Bäckström and Bern-
hard Nebel. Complexity Results for SAS+ Planning. Com-
putational Intelligence, 11:625–656, 1995.

[Badar and Miner, 2011] Junaid Badar and Andrew Miner.
MEDDLY: Multi-terminal and Edge-valued Decision Di-
agram LibrarY. http://meddly.sourceforge.
net/, 2011. Accessed: 2015-03-27.

[Bonet and Geffner, 1999] Blai Bonet and Hector Geffner.
Planning as heuristic search: New results. In Proceedings
of the 5th European Conference on Planning (ECP 1999),
pages 359–371, 1999.

[Bonet and Geffner, 2001] Blai Bonet and Hector Geffner.
Planning as heuristic search. Artificial Intelligence (AIJ),
129:5–33, 2001.

[Bonet et al., 1997] Blai Bonet, Gábor Loerincs, and Hector
Geffner. A robust and fast action selection mechanism
for planning. In Proceedings of the 14th National Con-
ference on Artificial Intelligence (AAAI 1997), pages 714–
719, 1997.

[Bylander, 1994] Tom Bylander. The Computational Com-
plexity of Propositional STRIPS Planning. Artificial Intel-
ligence (AIJ), 69:165–204, 1994.

[Ciardo and Siminiceanu, 2002] Gianfranco Ciardo and
Radu Siminiceanu. Using edge-valued decision diagrams
for symbolic generation of shortest paths. In Proceedings
of the 4th International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2002), pages 256–273,
2002.

[Fox and Long, 2003] Maria Fox and Derek Long.
PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence
Research (JAIR), 20:61–124, 2003.

[Gerevini et al., 2009] Alfonso E. Gerevini, Patrik Haslum,
Derek Long, Alessandro Saetti, and Yannis Dimopoulos.
Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the
planners. Artificial Intelligence Journal (AIJ), 173(5–
6):619–668, 2009.

[Guerin et al., 2012] Joshua T. Guerin, Josiah P. Hanna,
Libby Ferland, Nicholas Mattei, and Judy Goldsmith. The
academic advising planning domain. In Proceedings of the
3rd Workshop on the International Planning Competition
at ICAPS, pages 1–5, 2012.

[Ivankovic et al., 2014] Franc Ivankovic, Patrik Haslum,
Sylvie Thiébaux, Vikas Shivashankar, and Dana S. Nau.
Optimal planning with global numerical state constraints.
In Proceedings of the Twenty-Fourth International Con-
ference on Automated Planning and Scheduling (ICAPS
2014), 2014.

[Keller and Eyerich, 2012] Thomas Keller and Patrick Eye-
rich. PROST: Probabilistic Planning Based on UCT. In
Proceedings of the 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS), pages 119–
127. AAAI Press, June 2012.

[Keller and Helmert, 2013] Thomas Keller and Malte
Helmert. Trial-based Heuristic Tree Search for Finite
Horizon MDPs. In Proceedings of the 23rd International
Conference on Automated Planning and Scheduling
(ICAPS), pages 135–143, 2013.

[Lai et al., 1996] Yung-Te Lai, Massoud Pedram, and Sarma
B. K. Vrudhula. Formal verification using edge-valued bi-
nary decision diagrams. IEEE Transactions on Computers,
45(2):247–255, 1996.

[Sanner, 2010] Scott Sanner. Relational Dynamic Influence
Diagram Language (RDDL): Language Description. 2010.

