
Generalized Potential Heuristics for Classical Planning: Additional Material

Guillem Francès , Augusto B. Corrêa , Cedric Geissmann and Florian Pommerening
University of Basel, Basel, Switzerland

{guillem.frances,augusto.blaascorrea,cedric.geissmann,florian.pommerening}@unibas.ch
Technical Report CS-2019-003

This technical report contains proofs and a detailed version
of the mixed integer program of the paper Generalized Poten-
tial Heuristics for Classical Planning [Francès et al., 2019].

We start by proving that the functions we define in in Sec-
tion 4 of the paper are indeed descending and dead-end avoid-
ing. To show that a function is descending, we have to show
that each alive state s has a successor s′ with h(s′)+1 ≤ h(s).
We do this in all cases below by a case distinction over the
structure of the state s. To show that a function is dead-end
avoiding, we have to show that all possible transitions from
an alive state s to an unsolvable state s′ satisfy h(s′) ≥ h(s).
The domain Spanner is the only of our example domains that
has reachable unsolvable states. In the domain VisitAll, visit-
ing a place never hurts and in all domains other than Spanner
and VisitAll the actions are invertible so the reachable part of
the state space is a strongly connected component.

1 Spanner
The heuristic function we consider for the domain Spanner is

|S1|+ |S2|+ dist(S3, link, S4) + 2|S5|

with the following interpretation of the features:

• |S1|: number of spanners which have not been picked up

• |S2|: number of untightened nuts

• dist(S3, link, S4): distance between the location of the
agent and the location of the gate

• |S5|: number of spanners in a cell no longer reachable
by any agent

Since the domain Spanner has reachable unsolvable states,
we must prove that it is descending in alive states and dead-
end avoiding. We first show that the heuristic is descending
for every alive state in a case-by-case analysis. We consider
the version of the domain where there is a unique gate and
distinguish the following cases for an alive state s.

1. The agent is at location l which is not the gate location:

(a) There is a spanner at l:
In this case, picking up the spanner will always re-
duce the heuristic value. |S1| will decrease by 1,
while all other features remain constant. Thus, the
heuristic value changes by −1.

(b) There is no spanner at l:
Moving towards the gate reduces the heuristic esti-
mate. Since there is no spanners at l, |S1| and |S5|
do not change. Similarly, we do not tighten any nut
and hence |S2| remains constant. Since we can only
move in one direction in this domain (which is to-
wards the gate), the distance feature will decrease
by 1. Hence the heuristic value changes by −1.

2. The agent is at the gate:
(a) There is an untightened nut at the gate:

Tightening a nut leads to a descending transition.
Since the agent is already at the gate and the do-
main forbids spanners at the gate, the distance fea-
ture and |S1| remain unchanged. |S5| also stays
constant if we tighten a nut. The feature |S2| de-
creases by 1 since we have one more nut tightened
after this action. The total heuristic change is −1.
(This state might also be unsolvable, see the case
w.r.t. dead-end avoidance below.)

(b) There is no untightened nut at the gate:
Then s is a goal state and thus not alive.

Now we show that the function is also dead-end avoiding.
We have to consider all transitions from alive to unsolvable
states. These are all movements away from a location that
still has a spanner. Not all of them lead to an unsolvable state,
e.g., if there are more spanners available than nuts to tighten.
However, proving that none of these transitions is descending
is sufficient to prove dead-end avoidance.

Consider a move from a location l that still contains span-
ners. The number of spanners which have not been picked
up and the number of untightened nuts does not change and
hence |S1| and |S2| remain constant. The agent gets one step
closer to the gate and thus the distance feature value decreases
by 1. However, |S5| increases by at least 1, because the agent
cannot reach l after the move to pick up the spanner that it left
there. Since the weight for |S5| is 2, the total heuristic change
for this transition would be at least −1 + 2 > 0, which is al-
ways non-descending.

2 Gripper
The heuristic function we consider for the domain Gripper is

8|G1|+ 4|G2| − 2|G3| − 1|G4|

with the following interpretation of features (assuming the
target room is X)

• |G1|: the number of balls in a room other than X

• |G2|: the number of carried balls

• |G3|: the number of balls carried by robots in room X

• |G4|: the number of robots in non-empty rooms other
than X

As mentioned in the paper, we consider the generalization
of the domain with an arbitrary number of robots, rooms and
grippers. Gripper does not have reachable unsolvable states,
so we just have to prove that every state s has a descending
successor. We distinguish the following cases for state s.

1. There is a robot carrying a ball in room X:
dropping the ball reduces |G2| and |G3| by 1 while leav-
ing |G1| and |G4| constant. The heuristic value thus
changes by
−4 + 2 = −2.

2. There is a robot carrying a ball in a room A 6= X:
moving the robot from A to X does not affect |G1| or
|G2| but will increase |G3| by the number of carried balls
b > 0 and might decrease |G4| by 1 if there are no balls
in A. The heuristic value changes by
−2b+ 1[if A is empty] < 0.

3. All robots carry nothing and there is a ball in a room
A 6= X:

(a) There is a robot in a room A:
picking up a ball in room A increases |G1| by 1

and increases |G2| by 1 and might decrease |G4| by
1 if this was the last ball in A. The heuristic value
changes by
−8 + 4 + 1[if this was the last ball in A] < 0

(b) There is a robot in a room X:
moving the robot from X to A does not affect |G1|,
|G2|, or |G3| but increases |G4| by 1. The heuristic
value thus changes by −1.

(c) There is a robot in a room B /∈ {A,X}:
We can assume that B is empty (otherwise, case 3a
defines a descending action). When moving from B
to A the features |G1|, |G2|, and |G3| remain con-
stant and |G4| increases by 1. The heuristic value
thus changes by −1.

4. All robots carry nothing and there are no balls in rooms
A 6= X: In this case all balls must be in room X and the
state s is a goal state (and thus not alive).

3 Blocksworld
The heuristic function we consider for the domain
Blocksworld is

−4|B6| − |holding| − 2|ontable| − 2|B7|

with the following interpretation of the features:

• |B6|: number of well-placed blocks

• |holding|: number of blocks currently held

• |ontable|: number of blocks currently on the table
• |B7|: number of blocks currently held while their target

block is well-placed and clear
Blocksworld does not have reachable unsolvable states, so

we just have to prove that every state s has a descending suc-
cessor. We distinguish the following cases for state s.

1. We are currently holding a block b:
(a) Block b has no target (is not mentioned in the goal):

blocks that are not mentioned in the goal are well-
placed by definition even if they are held, so when
putting b on the table |B6| does not change. How-
ever, |holding| is reduced by 1 and |ontable| is in-
creased by 1. Since b has no target, |B7| also does
not change. The heuristic value changes by:
+1− 2 < 0.

(b) The target of block b is the table:
block b cannot be well-placed while holding it and
is well-placed on the table, so putting b on the ta-
ble increases |B6| and |ontable| while it decreases
|holding|. Since b should not be on a block in
the goal, |B7| stays constant. The heuristic value
changes by: −4 + 1− 2 < 0.

(c) The target of block b is block c which is misplaced
or not clear:
putting b on the table increases |ontable| by 1 and
decreases |holding| by 1. |B6| remains constant be-
cause b is misplaced before and after the action and
|B7| remains constant because c is misplaced or not
clear. The heuristic value changes by: +1− 2 < 0.

(d) The target of block b is block c which is well-placed
and clear:
stacking b on c increases |B6| by 1 but decreases
|holding| and |B7| by 1. The number of blocks
on the table does not change. The heuristic value
changes by: −4 + 1 + 2 < 0.

2. We are not holding a block but there is a misplaced block
b (since blocks above misplaced blocks are also mis-
placed, we can assume that b is on top of a stack):
(a) Block b is clear and on another block:

unstacking b increases |holding| by 1 and does
not affect |ontable|. It might also increase |B7|
if b target is clear and well-placed. If b is
not mentioned in the goal then it counts as mis-
placed before but counts as well-placed while it
is held, so |B6| can increase as well. The heuris-
tic value changes by: −4[if b has no target] − 1 −
2[if target of b is clear and well-placed] < 0

(b) Block b is clear and on the table but its target is
well-placed and clear:
picking up block b increases |holding| and |B7| by 1
and decreases |ontable| by 1. Since b is misplaced
before and after the action, |B6| does not change.
The heuristic changes by: −1 + 2− 2 < 0.

(c) Block b is clear and on the table but its target is mis-
placed or not clear:
this cannot be the case for all misplaced blocks,

otherwise all misplaced blocks would be clear and
on the table and the target of at least one block
would be available. Thus there is at least one block
that falls in one of the previous two cases, showing
the existence of a descending action.

3. We are not holding a block and there is no misplaced
block:
In this case all blocks are well-placed and the state s is a
goal state (and thus not alive).

4 VisitAll
The heuristic function considered for the domain VisitAll is

k|V1|+ dist(at-robot, connected, V1)

with the following interpretation of features:
• |V1|: places not yet visited.
• dist(at-robot, connected, V1): distance between the lo-

cation of the robot and the closest unvisited location.
VisitAll has no reachable unsolvable state, thus we just

need to prove that every alive state s has a descending suc-
cessor. The function will only generalize to graphs with a
diameter up to k so for the proof we assume the diameter is
less than or equal to k. We distinguish the following cases for
state s.

1. The robot is at location l, there is at least one unvisited
location but all locations connected to l are already vis-
ited:
Let l′ be one of the unvisited locations closest to
l. There is at least one movement which will
move the robot closer to l′, decreasing the value of
dist(at-robot, connected, V1) by 1. The number of vis-
ited places does not change because all neighbors of l
were already visited and hence |V1| remains constant.
The heuristic value change is: 0− 1 < 0.

2. The robot is at location l and there is at least one unvis-
ited location l′ which is connected to l:
Moving the robot from l to l′ turns l′ visited and
hence decreases |V1| by 1. Since l′ was pre-
viously unvisited and connected to l, the feature
dist(at-robot, connected, V1) has value 1 in s. After
moving to l′, the value of this feature can increase up
to k − 1, since the graph has diameter k and the previ-
ous value of the feature was 1. If l′ is the last unvisited
location in the graph then, accordingly to our definition,
dist(at-robot, connected, V1) = 0 after moving the robot
to l′. Hence, the minimum heuristic change possible is:
−k + k − 1 < 0.

3. The robot is at location l and all other locations in the
graph are visited:
In this case, s is a goal state (and thus not alive).

5 Logistics
The heuristic function we consider for the domain Logistics
is

12∑
i=1

i|Pi|

with the following interpretation of features

• |P1|: the number of packages in a truck at the right loca-
tion for that package

• |P2|: the number of packages in a truck in the right city
but wrong location

• |P3|: the number of packages on the ground in the right
city with an available truck

• |P4|: the number of packages on the ground in the right
city without an available truck

• |P5|: the number of packages in an airplane in the right
city

• |P6|: the number of packages in an airplane in the wrong
city

• |P7|: the number of packages on the ground in an airport
of the wrong city with an available plane

• |P8|: the number of packages on the ground in an airport
of the wrong city without an available plane

• |P9|: the number of packages in a truck at the airport of
the wrong city

• |P10|: the number of packages in a truck at a non-airport
location of the wrong city

• |P11|: the number of packages on the ground of a non-
airport location of the wrong city with an available truck

• |P12|: the number of packages on the ground of a non-
airport location of the wrong city without an available
truck

It is easy to see that the concepts all describe sets of pack-
ages, that no package can be in two of these sets at the same
time and that packages that are in none of the sets are deliv-
ered. We can thus show that the function is descending if in
every state s there is an action that only moves packages from
concepts Pi to concepts Pj with j ≤ i. We do this by a case
distinction over the state s.

We first consider states where there is at least one package
in one of the odd-numbered sets. In those situations a package
can be loaded or unloaded which only affects the concepts
where this package is before and after the action application.

1. |P1| > 0:
unloading one of the packages in P1 moves it from the
truck to the correct location, so it leaves P1 without en-
tering any other set.

2. |P3| > 0:
loading one of the packages in P3 moves them from P3

to P2.

3. |P5| > 0:
unloading one of the packages in P5 moves them from
P5 either to P4 or to P3 depending on whether there is
an available truck at this airport.

4. |P7| > 0:
loading one of the packages in P7 moves them from P7

to P6.

5. |P9| > 0:
unloading one of the packages in P9 moves them from
P9 either to P8 or to P7 depending on whether there is
an available airplane at this airport.

6. |P11| > 0:
loading one of the packages in P11 moves them from
P11 to P10.

We now assume that all odd-numbered concepts are empty
and distinguish cases where one of the concepts P2, P6, and
P10 is non-empty. In these situations the descending action is
moving a vehicle and multiple packages can be affected.

In all cases below let src and dst be the source and des-
tination of the move in each case. Let Psrc be the undeliv-
ered packages on the ground at src, let Pdst be the undelivered
packages on the ground at dst, and let Pv be the packages in
the moved vehicle. All packages that are in other vehicles or
at locations other than src and dst are unaffected.

When moving a truck, packages in Psrc have to be from
the concept P8 because P3, P7, and P11 are empty by as-
sumption, packages in P4 and P12 cannot have a truck next
to them, and all other packages on the ground are delivered.
When moving a plane, they have to be in P4 or P12 for the
same reasons. We use Psrc,4, Psrc,8 and Psrc,12 to describe the
relevant parts of Psrc.

Packages in Pdst have to be from one of the concepts P4, P8

or P12 for the same reasons. We use Pdst,4, Pdst,8 and Pdst,12
to describe the relevant parts of Pdst.

Likewise, packages in a truck can only be in the concepts
P2 or P10, and packages in an airplane can only be in P6. We
define Pv,2, Pv,10, and Pv,6 to describe the relevant parts of
Pv .

1. |P2| > 0:
driving a truck with a loaded package from P2 to the
target of that package is a descending action.
First consider the packages in Pv = Pv,2 ∪ Pv,10. Some
packages in Pv,2 (at least 1) move from P2 to P1, while
the others remain in P2. All packages in Pv,10 move
from P10 to P9 if dst is an airport and otherwise stay in
P10.
The packages in Psrc = Psrc,8 are and remain in P8.
Finally, consider the packages in Pdst = Pdst,4 ∪ Pdst,8 ∪
Pdst,12. Packages from Pdst,4 move from P4 to P3 and
packages from Pdst,12 move from P12 to P11 by moving
a truck next to them. Packages in Pdst,8 remain in P8.

2. |P6| > 0:
flying an airplane with a loaded package from P6 to the
the target city of that package is a descending action.
First consider the packages in Pv = Pv,6. Some of them
(at least 1) move from P6 to P5, the others remain in P6.
The packages in Psrc = Psrc,4 ∪Psrc,12 are unaffected by
moving an airplane.
Finally, consider the packages in Pdst = Pdst,4 ∪ Pdst,8 ∪
Pdst,12. Packages from Pdst,4 and Pdst,12 remain in P4

and P12 respectively because no truck moved. Packages
in Pdst,8 change from P8 to P7.

3. |P10| > 0:
driving a truck with a loaded package from P10 to the
airport is a descending action.
First consider the packages in Pv = Pv,2 ∪ Pv,10. Some
packages from Pv,2 move from P2 to P1 while the others
remain in P2. All packages (at least 1) in Pv,10 move
from P10 to P9.
There are no packages in Psrc = Psrc,8 because src is not
an airport.
Finally, consider the packages in Pdst = Pdst,4 ∪ Pdst,8 ∪
Pdst,12. Packages from Pdst,4 move from P4 to P3, pack-
ages in Pdst,8 remain in P8, and Pdst,12 = ∅ because dst
is an airport.

We can now assume that all concepts except P4, P8, and
P12 are empty and deal with the remaining cases. We use
the same notation as the previous case. Let src and dst be
the source and destination of the move in each case. In par-
ticular, all cases below will contain at least one package on
the ground of dst. The descending action for these cases is to
move a vehicle next to the package location. When moving a
vehicle we know Pv = Pv,2∪P6∪Pv,10 = ∅ by assumption.

1. |P4| > 0:
driving a truck from src to dst is a descending action.
For packages in Psrc = Psrc,8 all packages remain in P8.
For packages in Pdst = Pdst,4 ∪Pdst,8 ∪Pdst,12. Packages
from Pdst,4 (at least 1) move from P4 to P3, packages in
Pdst,8 remain in P8, and packages in Pdst,12 move from
P12 to P11 if dst is not an airport and stay in P12 other-
wise.

2. |P8| > 0:
flying an airplane from src to dst is a descending action.
The packages in Psrc = Psrc,4 ∪Psrc,12 are unaffected by
moving an airplane.
Finally, consider the packages in Pdst = Pdst,4 ∪ Pdst,8 ∪
Pdst,12. Packages from Pdst,4 and Pdst,12 remain in P4

and P12 respectively because no truck moved. Packages
in Pdst,8 (at least 1) change from P8 to P7.

3. |P12| > 0:
driving a truck from src to dst is a descending action.
For packages in Psrc = Psrc,8 all packages remain in P8.
For packages in Pdst = Pdst,4 ∪ Pdst,8 ∪ Pdst,12. Pack-
ages from Pdst,4 move from P4 to P3, packages in Pdst,8
remain in P8. There are packages in Pdst,12 (at least 1),
which means that dst is not an airport. They move from
P12 to P11.

We now discussed all cases where at least one concept is
non-empty. In case all concepts are empty all packages are
delivered and s is a goal state (and thus not alive).

6 MIP Model
Let S be a set of states and F be a set of features. As in the
paper we define SA as the subset of alive states in S and T as
the set of transitions starting in an alive state. We additionally
define TD as the subset of T of transitions from an alive state
to an unsolvable state. The MIPM(S,F) is:

min
w

∑
f∈F

[wf 6= 0]K(f) subject to

∨
s′∈succ(s)

h(s′) + 1 ≤ h(s) for s ∈ SA (1)

h(s′) ≥ h(s) for (s, s′) ∈ TD (2)

The heuristic value of a state is a linear combination of
weights multiplied with (known) constant feature values:
h(s) =

∑
f∈F wf · f(s), so constraint (2) is linear. How-

ever, the disjunctions in constraints (1) and the condition in
the objective function are nonlinear.

Modern MIP solvers support indicator constraints that are
enabled only if a given binary variable has the value 1. We
use such constraints to encode the disjunction in constraint
(1). For each transition (s, s′) ∈ T , we add the binary vari-
able ys>s′ that indicates that the disjunction of s is satisfied
for s′. We then replace constraint (1) with the following two
constraints:

[ys>s′ = 1]→ (h(s′) + 1 ≤ h(s)) for (s, s′) ∈ T (3)∑
s′∈succ(s)

ys>s′ ≥ 1 for s ∈ SA (4)

Constraint (3) enforces the semantics of ys>s′ and constraint
(4) ensures that at least one part of the disjunction holds.

To encode the objective function, we add two binary vari-
ables x+

f , x
−
f and the constraints

Mw · x+
f ≥ wf (5)

Mw · x−f ≥ −wf (6)

−Mw ≤ wf ≤Mw (7)

for each feature f ∈ F . Since weights are bounded (7), all
solutions satisfy (x+

f + x−f) = 1 iff they satisfy wf 6= 0

and we can rewrite the objective as
∑

f∈F K(f)(x
+
f + x−f).

Bounding the weights limits the set of potential functions that
we can synthesize but since the examples we have seen in
Section 4 of the main paper all used relatively low weights,
we think this is an acceptable price to pay for being able to
reduce the number of used features.

The resulting MIP consists of

• |F| continuous variables wf for weights,

• 2|F| binary variables x+
f , x

−
f for the objective function,

• |T | binary variables y<s,s′ for the indicator constraints,

• |SA| constraints of type (2)

• |T | constraints of type (3),

• |SA| constraints of type (4), and

• 2|F| constraints of type (5) and (6).

The full MIP can be simplified a bit by replacing h(s) with

its definition:

min
w,x

∑
f∈F

(x+
f + x−f)K(f) subject to

[ys>s′ = 1]→

∑
f∈F

wf · (f(s)− f(s′)) ≥ 1

 for (s, s′) ∈ T

∑
s′∈succ(s)

ys>s′ ≥ 1 for s ∈ SA

∑
f∈F

wf · (f(s)− f(s′)) ≤ 0 for (s, s′) ∈ TD

Mw · x+
f ≥ wf for f ∈ F

Mw · x−f ≥ −wf for f ∈ F
x+
f , x

−
f , ys>s′ ∈ {0, 1} for (s, s′) ∈ TD

−Mw ≤ wf ≤Mw, and f ∈ F

References
[Francès et al., 2019] Guillem Francès, Augusto B. Corrêa,

Cedric Geissmann, and Florian Pommerening. General-
ized potential heuristics for classical planning. In Pro-
ceedings of the 28th International Joint Conference on Ar-
tificial Intelligence (IJCAI 2019). AAAI Press, 2019. To
appear.

	Spanner
	Gripper
	Blocksworld
	VisitAll
	Logistics
	MIP Model

