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Motivation

Problems of a classical planning domain
share a common structure

Generalized planning tries to find a solution
for a whole domain
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In this Work

For some domains a solution that solves the whole domain
can be described easily

We try to learn these solutions from small instances
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Background
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Representing Progress with Heuristic Functions

Descending & dead-end avoiding heuristics (Seipp et al., 2016)

descending:
all alive states have an improving successor

dead-end avoiding:
all improving successors of alive states are solvable

A state is alive if it is reachable, solvable and not a goal.

Descending, dead-end avoiding heuristics

guide greedy search to a goal

use at most h(s0)− h(sg ) steps

encode a measure of progress (Parmar, 2002)
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Description Logics

Description Logic SOI with Role Value Maps

Primitive concepts

represent set of objects with some property

Primitive roles

represent relation between objects

Complex concepts

⊥, >
¬C
C1 t C2, C1 u C2

∀R.C , ∃R.C
R1 = R2

{a1, . . . , an}

Complex roles

R−1

R+

R1 ◦ R2
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Description Logic for Planning Domain

Description logic for a planning domain

Interpretation for every state of any instance

Concepts and roles

Primitive concept for each unary predicate

Example: clear

Primitive role for each binary predicate

Example: on

Primitive concepts and roles for predicates in the goal

Example: onG



Introduction Background Generalized Potential Heuristics Learning the Heuristic Conclusion

Generalized Potential Heuristics
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Generalized Potential Heuristics

Definition (Generalized Potential Heuristic)

Linear combination of features well-defined over all instances:

h(s) =
∑
f ∈F

w(f ) · f (s)

We use two types of features based on description logics:

cardinality features |C |
distance features (see paper)
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Example: Clearing a Block

Consider the subset of Blocksworld problems where the goal is
to clear a given subset of blocks

Descending and Dead-end Avoiding Generalized Potential Heuristic

h(s) = 2 · |C1|+ |C2|

C1 ≡ ∃on+.clearG :
“Set of blocks above some block that needs to be cleared”

C2 ≡ holding :
“Set of blocks being held”
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Existence of Descending and Dead-End Avoiding Heuristics

We prove that descending, dead-end avoiding generalized
heuristics exist for a number of standard domains:

Blocksworld
Gripper
Spanner
Miconic
Logistics

Greedy search solves all instances in linear time

→ The challenge: can we obtain these heuristics automatically?
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Learning the Heuristic
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Learning the Heuristic

Overview of our inductive approach:

1 Fully expand small instances to generate training set S.

2 Generate set of generalized features F with all features
under a certain syntactic complexity.

3 Compute simplest potential heuristic on F that is
descending and dead-end avoiding on states in S.

If no such h exists, try with larger set F .
If it does exist, test h on unseen instances.
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Computing the Weights

Mixed Integer Linear Program

min
w

∑
f ∈F

[wf 6= 0]K(f ) subject to∨
s′∈succ(s)

h(s ′) + 1 ≤ h(s) for alive states s

h(s ′) ≥ h(s) for transitions (s, s ′)

where s is alive

and s ′ is unsolvable

Solutions map to heuristics that are descending and dead-end
avoiding on all states in S...

... and have minimum complexity.
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Results

Our approach learns generalized heuristics on standard
domains such as Gripper, Miconic, Spanner, VisitAll.

We have (manually) checked that they are descending
and dead-end avoiding on all instances of the domain.

Exception VisitAll: No linear solution possible

Steepest-ascent hill-climbing with these heuristics solves
any instances of these domains in linear time.

Other domains such as Blocksworld appear to need
better feature exploration strategies.
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Conclusion
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Contributions

General descending and dead-end avoiding heuristics
exist for several planning domains.

These solve any instance in linear time.

We can learn them automatically from a suitable
logical model and small instances.
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Discussion and Future Work

The learned heuristic can be easily interpreted.

The learned heuristic has only inductive guarantees, but

We have shown how it can be refined in an online fashion
whenever it doesn’t generalize correctly.
One could attempt to prove the correctness of the heuristic
deductively with an automatic theorem prover.

Better feature generation methods are necessary to
scale up to more complex problems.
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Example: unrestricted Blocksworld instances

hbw(s) = −4|C6| − |holding | − 2|ontable| − 2|C7|,

C1 : ontableG u ontable
Blocks that are correctly placed on the table

C2: (∃onG .>) u (on = onG )
Blocks that are placed on their target block

C3: ¬(ontableG t ∃onG .>)
Blocks that are not mentioned in the goal

C4: C1 t C2 t C3

Blocks where block (or table) below is consistent with the goal

C5: ∀on−1
G .(on = onG )

Blocks where the block above is consistent with the goal

C6: C4 u ∀on+.(C4 u C5)
Blocks that are well-placed.

C7: holding u ∃onG .(clear u C6)
Blocks held while their target block is clear and well-placed.
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G M S V

# of training instances 8 12 11 9
# of iterations 2.0 2.7 1.0 1.7
|F| 469 2105 904 330
# of MIP variables 2017 7273 3381 1039
# of MIP constraints 2238 7331 3370 1190
Complexity of h 8 (18) 6 (14) 8 (20) 5 (8)
# of features in h 5 4 5 3
Total time 8h 32m 178s 87s
Total MIP time 7.4h 26m 6.8s 2.1s
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