Generalized Potential Heuristics for Classical Planning

Guillem Francès, Augusto B. Corrêa, Cedric Geissmann, Florian Pommerening

University of Basel, Switzerland

August 15, 2019

Introduction •00	Background 0000		Conclusion 000

Introduction

Introduction ○●○	Background 0000		
Mativat	tion		

- Problems of a classical planning domain share a common structure
- Generalized planning tries to find a solution for a whole domain

Introduction	Background 0000		
In this '	Work		

- For some domains a solution that solves the whole domain can be described easily
- We try to learn these solutions from small instances

Introduction 000	Background ●000	Generalized Potential Heuristics	Learning the Heuristic 0000	Conclusion 000

Background

Generalized Potential Heuristics

Learning the Heuristic

Conclusion

Representing Progress with Heuristic Functions

Descending & dead-end avoiding heuristics (Seipp et al., 2016)

• descending:

all alive states have an improving successor

• dead-end avoiding:

all improving successors of alive states are solvable

A state is *alive* if it is reachable, solvable and not a goal.

Descending, dead-end avoiding heuristics

- guide greedy search to a goal
- use at most $h(s_0) h(s_g)$ steps
- encode a *measure of progress* (Parmar, 2002)

	Background 00●0		
Descrip	tion Logic	S	

Description Logic \mathcal{SOI} with Role Value Maps

- Primitive concepts
 - represent set of objects with some property
- Primitive roles
 - represent relation between objects

Complex concepts

- ⊥,⊤
- ¬*C*
- $C_1 \sqcup C_2$, $C_1 \sqcap C_2$
- ∀*R*.*C*, ∃*R*.*C*
- $R_1 = R_2$
- $\{a_1,\ldots,a_n\}$

Complex roles

- R⁻¹
- R⁺
- $R_1 \circ R_2$

Generalized Potential Heuristics

Learning the Heuristic

Conclusion

Description Logic for Planning Domain

Description logic for a planning domain

• Interpretation for every state of any instance

Concepts and roles

- Primitive concept for each unary predicate
 - Example: *clear*
- Primitive role for each binary predicate
 - Example: on
- Primitive concepts and roles for predicates in the goal
 - Example: on_G

Background 0000	Generalized Potential Heuristics ●000	

Generalized Potential Heuristics

	Background 0000	Generalized Potential Heuristics 0●00	
Generali	zed Poter	ntial Heuristics	

Definition (Generalized Potential Heuristic)

Linear combination of features well-defined over all instances:

$$h(s) = \sum_{f \in \mathcal{F}} w(f) \cdot f(s)$$

- We use two types of features based on description logics:
 - cardinality features |C|
 - distance features (see paper)

	Background 0000	Generalized Potential Heuristics	
Exampl	e: Clearing	g a Block	

• Consider the subset of Blocksworld problems where the goal is to clear a given subset of blocks

Descending and Dead-end Avoiding Generalized Potential Heuristic

$$h(s) = 2 \cdot |C_1| + |C_2|$$

- C₁ ≡ ∃on⁺.clear_G:
 "Set of blocks above some block that needs to be cleared"
- C₂ ≡ holding:
 "Set of blocks being held"

Existence of Descending and Dead-End Avoiding Heuristics

- We prove that descending, dead-end avoiding generalized heuristics exist for a number of standard domains:
 - Blocksworld
 - Gripper
 - Spanner
 - Miconic
 - Logistics
- Greedy search solves all instances in linear time
- ightarrow The challenge: can we obtain these heuristics automatically?

Background	Generalized Potential Heuristics	Learning the Heuristic	Conclusion
		0000	

Learning the Heuristic

	Background 0000		Learning the Heuristic 0●00	
Learnin	g the Heu			

Overview of our inductive approach:

- **(**) Fully expand small instances to generate training set S.
- Generate set of generalized features *F* with all features under a certain syntactic complexity.
- Compute simplest potential heuristic on *F* that is descending and dead-end avoiding on states in *S*.
 - If no such h exists, try with larger set \mathcal{F} .
 - If it does exist, test *h* on unseen instances.

	uction Backgr 0000			s Learning 00●0	the Heuristic	
С	omputing t	he Weig	hts			
	Mixed Intege	r Linear Pr	rogram			
		$\min_{w} \sum_{f \in \mathcal{F}} [v]$	$w_f eq 0] \mathcal{K}(f)$	subject t	0	
	$\bigvee_{s' \in succ(s)}$	$h(s') + 1 \le 1$	$\leq h(s)$	for alive	states <i>s</i>	
		$h(s') \ge$	$\geq h(s)$	where s	itions (<i>s</i> , <i>s</i> ′) is alive unsolvable	

 \bullet Solutions map to heuristics that are descending and dead-end avoiding on all states in $\mathcal{S}...$

Introd 000	uction Backs 0000	ground	Generalized Potential Heur	ristics	Learning the Heuristic	Concl 000	usior
С	omputing	the We	ights				
	Mixed Integ	er Linear	Program				
		$\min_{w} \sum_{f \in .}$	$\sum_{\mathcal{F}} [w_f \neq 0] \mathcal{K}(f)$	su	bject to		
	$\bigvee_{s'\in succ(s)}$		$1 \leq h(s)$	fo	r alive states <i>s</i>		
		h(s'	$h') \geq h(s)$	wł	r transitions (<i>s</i> nere <i>s</i> is alive nd <i>s</i> ′ is unsolva		

- \bullet Solutions map to heuristics that are descending and dead-end avoiding on all states in $\mathcal{S}...$
- ... and have minimum complexity.

	Background 0000	Learning the Heuristic	
Results			

- Our approach learns generalized heuristics on standard domains such as Gripper, Miconic, Spanner, VisitAll.
- We have (manually) checked that they are descending and dead-end avoiding on all instances of the domain.
 - Exception VisitAll: No linear solution possible
- Steepest-ascent hill-climbing with these heuristics solves any instances of these domains in linear time.
- Other domains such as Blocksworld appear to need better feature exploration strategies.

	Background 0000		Conclusion ●00
_			

Conclusion

	Background 0000		Conclusion ○●○
Contrib	utions		

- General descending and dead-end avoiding heuristics exist for several planning domains.
- These solve any instance in linear time.
- We can learn them automatically from a suitable logical model and small instances.

Discussion and Future Work

- The learned heuristic can be easily interpreted.
- The learned heuristic has only inductive guarantees, but
 - We have shown how it can be refined in an online fashion whenever it doesn't generalize correctly.
 - One could attempt to prove the correctness of the heuristic deductively with an automatic theorem prover.
- Better feature generation methods are necessary to scale up to more complex problems.

Bonus Slides

Example: unrestricted Blocksworld instances

$$h_{\mathsf{bw}}(s) = -4|C_6| - |\textit{holding}| - 2|\textit{ontable}| - 2|C_7|,$$

- C₁: ontable_G □ ontable
 Blocks that are correctly placed on the table
- C₂: (∃on_G.⊤) ⊓ (on = on_G)
 Blocks that are placed on their target block
- C₃: ¬(ontable_G ⊔ ∃on_G.⊤) Blocks that are not mentioned in the goal
- C_4 : $C_1 \sqcup C_2 \sqcup C_3$ Blocks where block (or table) below is consistent with the goal
- C₅: ∀on⁻¹_G.(on = on_G)
 Blocks where the block above is consistent with the goal
- C₆: C₄ □ ∀on⁺.(C₄ □ C₅) Blocks that are well-placed.
- C₇: holding □ ∃on_G.(clear □ C₆)
 Blocks held while their target block is clear and well-placed.

	G	М	S	v
# of training instances	8	12	11	9
# of iterations	2.0	2.7	1.0	1.7
$ \mathcal{F} $	469	2105	904	330
# of MIP variables	2017	7273	3381	1039
# of MIP constraints	2238	7331	3370	1190
Complexity of h	8 (18)	6 (14)	8 (20)	5 (8)
# of features in h	5	4	5	3
Total time	8h	32m	178s	87s
Total MIP time	7.4h	26m	6.8s	2.1s