

Generalized Planning

- Classical planners compute plans that work for a single instance.
- Generalized planning aims instead at policies that solve entire classes of instances that share an underlying structure.

Objective of this work

- Learn interpretable generalized policies from small instances.
- ► The target policies solve any instance in time linear in problem size.

Running Example: Blocksworld

Description Logics for Planning (SOI with equality role-value-maps)

Primitive Concepts &	<u>R</u>	Role
----------------------	----------	------

- \blacktriangleright ontable = { \blacksquare , \blacksquare }
- $on = \{(\blacksquare, \blacksquare)\}$
- holding = \emptyset
- \blacktriangleright clear = { \blacksquare , \blacksquare }

Complex Concepts & Roles

- \triangleright C_1 : Blocks that are correctly placed on the table $ontable_G \sqcap ontable = \emptyset$
- C_2 : Blocks that are placed on their target block $(\exists on_G.\top) \sqcap (on = on_G) = \{\blacksquare\}$
- \triangleright C₃: Blocks with no target in the goal \neg (*ontable*_G $\sqcup \exists on_G . \top$) = {
- \triangleright C₄: Blocks on object consistent with the goal $C_1 \sqcup C_2 \sqcup C_3 = \{\blacksquare, \blacksquare\}$
- \triangleright C₅: Blocks where the block above is consistent with the goal $\forall on_G^{-1}.(on = on_G) = \{\blacksquare, \blacksquare\}$
- \triangleright C₆: Blocks that are well-placed $C_4 \sqcap \forall on^+.(C_4 \sqcap C_5) = \{\square\}$
- \sim C₇: Blocks held while their target block is clear and well-placed holding $\sqcap \exists on_G.(clear \sqcap C_6) = \emptyset$

Generalized Potential Heuristics for Classical Planning

Guillem Francès, Augusto B. Corrêa, Cedric Geissmann, and Florian Pommerening University of Basel, Switzerland

Goal Concepts & Roles $\blacktriangleright on_G = \{ (\blacksquare, \blacksquare), (\blacksquare, \blacksquare) \}$

Generalized Potential Heuristics

Generalized potential heuristics are linear combinations of first-order features well defined over all instances:

$$h(s) = \sum_{f \in \mathcal{F}} w_f f(s)$$

- ► Two types of *features*:
- cardinality features |C|
- distance features dist(C, R, C')
- Blocksworld example:

$$h_{\mathsf{bw}}(s) = -4|C_6| - |\mathit{holding}| -$$

Good Heuristic Properties for Satisficing Greedy Search

- descending: all alive (reachable, solvable and non-goal) states have an improving successor.
- dead-end avoiding: all improving successors of alive states are solvable.

Key property: Hill climbing with a descending, dead-end avoiding heuristic solves a problem in a *linear number of steps*.

Theoretical Results

We show that descending, dead-end avoiding generalized heuristics exist for a number of standard domains: Blocksworld, Gripper, Spanner, Miconic, Logistics.

- $2|ontable| 2|C_7|$

Learning a Generalized Heuristic from Examples

- 1. Fully expand a set of small instances
- 2. Generate a pool of features \mathcal{F}
- heuristic using features from ${\cal F}$
- 4. Test on unseen instances

Synthesizing Weights

Synthesizing weights for fully expanded state spaces

MIP Model

$$egin{aligned} & \min_{w} \sum\limits_{f \in \mathcal{F}} [w_f
eq 0] \mathcal{K}(f) & ext{subject to} \ & \bigvee_{f \in \mathcal{F}} h(s') + 1 \leq h(s) & ext{for } s \in \mathcal{S}_A \ & s' \in ext{succ}(s) \ & h(s') \geq h(s) & ext{for } (s,s') \in \mathcal{T}, s' ext{ unsolvable} \end{aligned}$$

Search fails on unseen instance heuristic is either not descending or not dead-end avoiding

Refinement Constraint

$$\left(igvee_{i=0}^{n-1} h(s_i) \leq h(s_{i+1})
ight)$$

Empirical Results

of training instances Complexity of *h* # of features in hTotal time Total MIP time

Conclusions & Future Work

- the correctness of the learned heuristics.

3. Synthesize weights for a descending and dead-end avoiding

 \rightarrow if not possible: add features to \mathcal{F} and continue with (3)

 \rightarrow if not solved: add *refinement constraint* and continue with (3)

$$\bigvee \left(igvee_{s' \in succ(s)} h(s') + 1 \leq h(s)
ight)$$

Gripper	Miconic	Spanner	VisitAll	
8	12	11	9	
469	2105	904	330	
8 (18)	6 (14)	8 (20)	5 (8)	
5	4	5	3	
8h	32m	178s	87s	
7.4h	26m	6.8s	2.1s	

We can learn interpretable, linear solving mechanisms that work for infinite classes of problems from small instances. First-order theorem proving could be used to prove deductively