
Generalized Potential Heuristics for Classical Planning
Guillem Francès, Augusto B. Corrêa, Cedric Geissmann, and Florian Pommerening

University of Basel, Switzerland

Generalized Planning

I Classical planners compute plans that work for a single instance.
I Generalized planning aims instead at policies that solve entire
classes of instances that share an underlying structure.

Objective of this work
I Learn interpretable generalized policies from small instances.
I The target policies solve any instance in time linear in
problem size.

Running Example: Blocksworld

Initial state Goal

Description Logics for Planning
(SOI with equality role-value-maps)

Primitive Concepts & Roles
I ontable = { , }
I on = {(,)}
I holding = ∅
I clear = { , }

Goal Concepts & Roles
I onG = {(,), (,)}

Complex Concepts & Roles
I C1: Blocks that are correctly placed on the table

ontableG u ontable = ∅
I C2: Blocks that are placed on their target block

(∃onG.>) u (on = onG) = { }
I C3: Blocks with no target in the goal

¬(ontableG t ∃onG.>) = { }
I C4: Blocks on object consistent with the goal

C1 t C2 t C3 = { , }
I C5: Blocks where the block above is consistent with the goal

∀on−1G .(on = onG) = { , }
I C6: Blocks that are well-placed

C4 u ∀on+.(C4 u C5) = { }
I C7: Blocks held while their target block is clear and well-placed

holding u ∃onG.(clear u C6) = ∅

Generalized Potential Heuristics

Generalized potential heuristics are linear combinations of
first-order features well defined over all instances:

h(s) =
∑
f ∈F

wf f (s)

I Two types of features:
I cardinality features |C |
I distance features dist(C ,R ,C ′)

I Blocksworld example:
hbw(s) = −4|C6| − |holding| − 2|ontable| − 2|C7|

Good Heuristic Properties for Satisficing Greedy Search

I descending: all alive (reachable, solvable and non-goal) states
have an improving successor.

I dead-end avoiding: all improving successors of alive states are
solvable.

h = −8

h = −7 h = −9

h = −8h = −10

h = −11h = −9

h = −12 h = −8

h = −13

h = −14

I Key property: Hill climbing with a descending, dead-end
avoiding heuristic solves a problem in a linear number of steps.

Theoretical Results

We show that descending, dead-end avoiding generalized heuristics
exist for a number of standard domains:
I Blocksworld, Gripper, Spanner, Miconic, Logistics.

Learning a Generalized Heuristic from Examples

1. Fully expand a set of small instances
2. Generate a pool of features F
3. Synthesize weights for a descending and dead-end avoiding

heuristic using features from F
→ if not possible: add features to F and continue with (3)

4. Test on unseen instances
→ if not solved: add refinement constraint and continue with (3)

Synthesizing Weights

Synthesizing weights for fully expanded state spaces
MIP Model

minw
∑
f ∈F

[wf 6= 0]K(f) subject to∨
s ′∈succ(s)

h(s ′) + 1 ≤ h(s) for s ∈ SA

h(s ′) ≥ h(s) for (s, s ′) ∈ T , s ′ unsolvable,

Search fails on unseen instance
I heuristic is either not descending or not dead-end avoiding
Refinement Constraintn−1∨

i=0
h(si) ≤ h(si+1)

 ∨
 ∨
s ′∈succ(s)

h(s ′) + 1 ≤ h(s)

Empirical Results
Gripper Miconic Spanner VisitAll

of training instances 8 12 11 9
|F| 469 2105 904 330
Complexity of h 8 (18) 6 (14) 8 (20) 5 (8)
of features in h 5 4 5 3
Total time 8h 32m 178s 87s
Total MIP time 7.4h 26m 6.8s 2.1s

Conclusions & Future Work

I We can learn interpretable, linear solving mechanisms that work
for infinite classes of problems from small instances.

I First-order theorem proving could be used to prove deductively
the correctness of the learned heuristics.

