Generalized Potential Heuristics for Classical Planning

Guillem Francès, Augusto B. Corrêa, Cedric Geissmann, Florian Pommerening

University of Basel, Switzerland

February 7, 2020

Originally presented at IJCAI'19

In this Work

- Context: classical planning using heuristic search
- Some domains can be solved in linear time
- Hill-climbing + heuristic leading direct to the goal
- We want to learn these heuristics automatically

Learning the Heuristic 0000 Conclusion 00

Generalized Potential Heuristics

Definition (Generalized Potential Heuristic)

Linear combination of features well-defined over all tasks:

$$h(s) = \sum_{f \in \mathcal{F}} w(f) \cdot f(s)$$

Learning the Heuristic

Conclusion 00

Description Logics for Planning

Primitive Concepts & Roles

- ontable = $\{\blacksquare, \blacksquare\}$
- $on = \{(\blacksquare, \blacksquare)\}$
- holding $= \emptyset$
- $clear = \{\blacksquare, \blacksquare\}$
- $clear_G = \{\blacksquare\}$

Description Logic

Description Logic \mathcal{SOI} with Role Value Maps				
Complex concepts	Complex roles			
● ⊥, ⊤	• R ⁻¹			
• ¬ <i>C</i>	• R ⁺			
• $C_1 \sqcup C_2$, $C_1 \sqcap C_2$	• $R_1 \circ R_2$			
 ∀R.C, ∃R.C 				
• $R_1 = R_2$				
• { <i>a</i> ₁ ,, <i>a</i> _n }				

Complex Concepts & Roles

• "Set of blocks above some block that needs to be cleared" $\exists on^+.clear_G = \{\blacksquare\}$

earning the Heuristic

Conclusion 00

Example: Clearing a Block

Generalized Potential Heuristic for Blocksworld

ightarrow Blocksworld tasks where the goal is to clear a set of blocks

$$h(s) = 2 \cdot |C_1| + |C_2|$$

• $C_1 \equiv \exists on^+.clear_G$:

"Set of blocks above some block that needs to be cleared"

• $C_2 \equiv holding$:

"Set of blocks being held"

Existence

- We prove that generalized heuristics leading directly to a goal state exist for a number of standard domains:
 - Blocksworld
 - Gripper
 - Spanner
 - Logistics
 - ...
- Greedy search solves any task in time O(|Objects|)

Existence

- We prove that generalized heuristics leading directly to a goal state exist for a number of standard domains:
 - Blocksworld
 - Gripper
 - Spanner
 - Logistics
 - ...
- Greedy search solves any task in time O(|Objects|)

Can we obtain these heuristics automatically?

Learning the Heuristic $0 \bullet 00$

Learning the Heuristic

Overview of our inductive approach:

• Fully expand small tasks to generate training set S.

Overview of our inductive approach:

- Fully expand small tasks to generate training set S.
- Generate set of generalized features *F* with all features under a certain syntactic complexity.

Overview of our inductive approach:

- Fully expand small tasks to generate training set S.
- Generate set of generalized features *F* with all features under a certain syntactic complexity.
- Ompute simplest potential heuristic on *F* leading states from *S* directly to the goal.
 - If no such h exists, augment \mathcal{F} .
 - If it does exist, test *h* on unseen tasks.

Conclusion 00

Computing the Weights

Mixed Integer Linear Program

$$egin{aligned} & \min_w \sum_{f \in \mathcal{F}} [w_f
eq 0] \mathcal{K}(f) \ & \bigvee_{s' \in \textit{succ}(s)} h(s') + 1 \leq h(s) \ & h(s') \geq h(s) \end{aligned}$$

subject to

for alive states s

for transitions (s, s')where s is alive and s' is unsolvable

Results

- Learn: Generalized heuristics on standard domains
 - Gripper, Miconic, Spanner, VisitAll.
- Prove: Heuristics generalize all possible tasks.
 - Except VisitAll: No linear solution possible
- Solve: Steepest-ascent hill-climbing in linear time.
- In some domains, such heuristics exist but we cannot scale.

Conclusion •0

Conclusion

Contributions

- Generalized descending and dead-end avoiding heuristics exist for several planning domains.
- Heuristics learned can be intepreted.
- Solve any task in linear time.
- We can learn them automatically from a suitable logical model and small tasks.
 - Heuristic refinement procedure in the paper

Bonus Slides

Semantics – Examples

Concepts:

$$(\exists R.C)^{\mathcal{M}} = \{ a \mid \exists b : (a, b) \in R^{\mathcal{M}} \land b \in C^{\mathcal{M}} \},\ (R = R')^{\mathcal{M}} = \{ a \mid \forall b : (a, b) \in R^{\mathcal{M}} \leftrightarrow (a, b) \in {R'}^{\mathcal{M}} \}.$$

Roles:

$$(R^{-1})^{\mathcal{M}} = \{(b, a) \mid (a, b) \in R^{\mathcal{M}}\},\ (R \circ R')^{\mathcal{M}} = \{(a, c) \mid \exists b : (a, b) \in R^{\mathcal{M}} \land (b, c) \in {R'}^{\mathcal{M}}\}$$

Example: unrestricted Blocksworld tasks

$$h_{\mathsf{bw}}(s) = -4|C_6| - |\mathit{holding}| - 2|\mathit{ontable}| - 2|C_7|,$$

- C₁: ontable_G □ ontable
 Blocks that are correctly placed on the table
- C₂: (∃on_G.⊤) ⊓ (on = on_G)
 Blocks that are placed on their target block
- C₃: ¬(ontable_G ⊔ ∃on_G.⊤) Blocks that are not mentioned in the goal
- C_4 : $C_1 \sqcup C_2 \sqcup C_3$ Blocks where block (or table) below is consistent with the goal
- C₅: ∀on⁻¹_G.(on = on_G)
 Blocks where the block above is consistent with the goal
- C₆: C₄ □ ∀on⁺.(C₄ □ C₅) Blocks that are well-placed.
- C₇: holding □ ∃on_G.(clear □ C₆)
 Blocks held while their target block is clear and well-placed.

	G	М	S	V
# of training instances	8	12	11	9
# of iterations	2.0	2.7	1.0	1.7
$ \mathcal{F} $	469	2105	904	330
# of MIP variables	2017	7273	3381	1039
# of MIP constraints	2238	7331	3370	1190
Complexity of <i>h</i>	8 (18)	6 (14)	8 (20)	5 (8)
# of features in h	5	4	5	3
Total time	8h	32m	178s	87s
Total MIP time	7.4h	26m	6.8s	2.1s