
Effective Planning with
Expressive Languages

Guillem Francès Medina

TESI DOCTORAL UPF / 2017

Director de la tesi

Prof. Héctor Geffner
Department of Information and Communication Technologies

By Guillem Francès Medina, licensed under
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported

You are free to Share – to copy, distribute and transmit the work Under the following
conditions:

• Attribution – You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

• Noncommercial – You may not use this work for commercial purposes.

• No Derivative Works – You may not alter, transform, or build upon this
work.

With the understanding that:

Waiver – Any of the above conditions can be waived if you get permission from the
copyright holder.

Public Domain – Where the work or any of its elements is in the public domain
under applicable law, that status is in no way affected by the license.

Other Rights – In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations;

• The author’s moral rights;

• Rights other persons may have either in the work itself or in how the work
is used, such as publicity or privacy rights.

Notice – For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

The court’s PhD was appointed by the rector of the Universitat Pompeu Fabra on
.., 2017.

Chairman

Member

Member

Member

Secretary

The doctoral defense was held on ..., 2017, at the
Universitat Pompeu Fabra and scored as ...

PRESIDENT MEMBERS

SECRETARY

To my family, in the broadest possible sense.

En aquel Imperio, el Arte de la Cartograf́ıa logró tal Perfección que el
mapa de una sola Provincia ocupaba toda una Ciudad, y el mapa del
Imperio, toda una Provincia. Con el tiempo, estos Mapas Desmesurados
no satisficieron y los Colegios de Cartógrafos levantaron un Mapa del
Imperio, que teńıa el tamaño del Imperio y coincid́ıa puntualmente con
él.

Menos Adictas al Estudio de la Cartograf́ıa, las Generaciones Siguientes
entendieron que ese dilatado Mapa era Inútil y no sin Impiedad lo en-
tregaron a las Inclemencias del Sol y los Inviernos. En los desiertos del
Oeste perduran despedazadas Ruinas del Mapa, habitadas por Animales
y por Mendigos; en todo el Páıs no hay otra reliquia de las Disciplinas
Geográficas.

Suárez Miranda, Viajes de Varones Prudentes, Libro Cuarto, Cap. XLV,
Lérida, 1658.

? ? ?

Jorge Luis Borges, Del Rigor en la Ciencia.

In that Empire, the Art of Cartography attained such Perfection that the
map of a single Province occupied the entirety of a City, and the map
of the Empire, the entirety of a Province. In time, those Unconscionable
Maps no longer satisfied, and the Cartographers Guilds struck a Map of
the Empire whose size was that of the Empire, and which coincided point
for point with it.

The following Generations, who were not so fond of the Study of Cartog-
raphy as their Forebears had been, saw that that vast map was Useless,
and not without some Pitilessness was it, that they delivered it up to the
Inclemencies of Sun and Winters. In the Deserts of the West, still today,
there are Tattered Ruins of that Map, inhabited by Animals and Beggars;
in all the Land there is no other Relic of the Disciplines of Geography.

Suárez Miranda, Travels of Prudent Men, Book Four, Ch. XLV, Lérida,
1658.

? ? ?

Jorge Luis Borges, On Rigor in Science.

Acknowledgements

This thesis is the result of four years of challenging work, which would no doubt
have been way more challenging, if not hopeless, without the help and support of
many people. Let me start by acknowledging all of the scientific support. I am hugely
indebted to my advisor and friend Héctor Geffner for being an inspiration and a model
during all of these years. I am indebted too to each of my other coauthors, whose
work and collaboration has had a direct impact on this thesis: Jonathan Ferrer, Nir
Lipovetzky and Miquel Ramı́rez. I have also been lucky enough to share the time and
knowledge of many of the researchers which have worked in the Artificial Intelligence
group here at the Universitat Pompeu Fabra, in Barcelona, during these years. This
includes Alex Albore, Héctor Palacios, Anders Jonsson, Blai Bonet, Jorge Lobo,
Vı́ctor Dalmau, Vicenç Gómez, Gergely Neu, Sergio Jiménez and Dimitri Ognibene
plus, of course, my fellow PhD students: Jonathan Ferrer, Filippos Kominis, Damir
Lotinac, Javi Segovia, Oussam Larkem and Miquel Junyent. The endless support
from Lydia Garćıa and her coworkers at the Department Administration has been
invaluable for the successful completion of my PhD.

I would also like to acknowledge the collaborative and truly positive environment
made possible by everyone at the Simulpast research project, particularly Marco
Madella, Carla Lancelotti and Xavi Rubio. I am also grateful to my Master thesis
advisor, Carme Àlvarez, for her support and teachings, which I fondly remember in
spite of all the years since. Special thanks go to everyone that made my research
stay in Melbourne possible, particularly to Peter Stuckey and Adrian Pearce, and
of course to Nir, Miquel, Sergio and Angela, who not only made it possible but also
extremely enjoyable.

Even more important than scientific support is however love and friendship, as there
is more to life than work, and work is meaningless without that other life — or, para-
phrasing Kundera, life is elsewhere. I shall of course begin by thanking my parents,
who have done so much for me over the years, for their love and encouragement,
a gratitude which extends to my grandparents and the rest of my family. All of
these years have been extremely enjoyable, in spite of clichés, thanks to all of them,
and to all of the people with whom I have had the chance to live and to share my
life. This includes an extraordinary (and extraordinarily large!) group of flatmates:

ix

x

Sandra, Virgi, Jose, Diana, Marise, Giorgio, Sara, Cris, Shere, and Maŕıa as well
as the amazing network of people (or should I call them family?) that has grown
around that place we have called our home for all of these years, which is definitely
too large to enumerate, but of which I have to mention Jordi, Gael, Joana, Pol, Nati,
Anuar, Montse, Carlitos, Jota and Ceci. Besides them, thanks go to so many friends
over the years for their love and support: to Mireia, Xiana, Clarissa, Marion, Sylvie,
David, Cris, Marc, Miriam, Jordi, Clara, Bea, Milaine and, last but not least, to
Guillermo, Sandra and Shere, for all the things we have lived together, for all the
ones yet to be lived. To all of them goes my gratitude. We carry a new world here
in our hearts.

Abstract

Classical planning is concerned with finding sequences of actions that achieve a cer-
tain goal from an initial state of the world, assuming that actions are deterministic,
states are fully known, and both are described in some modeling language. This work
develops effective means of dealing with expressive modeling languages for classical
planning. First, we show that expressive languages not only allow simpler problem
representations, but also capture additional problem structure that can be leveraged
by heuristic solution methods. We develop heuristics that support functions and
existential quantification in the problem definition, and show empirically that they
can be more informed and cost-effective. Second, we develop a novel width-based
algorithm that matches state-of-the-art performance without looking at the declara-
tive representation of actions. This is a significant departure from previous research,
and advances the use of expressive modeling languages in planning and the scope
and effectiveness of classical planners.

xi

Resum

La planificació clàssica consisteix en trobar una seqüència d’accions que meni d’un
cert estat inicial fins a un estat desitjat, on les accions són deterministes, els estats
perfectament coneguts, i ambdós elements són descrits en algun llenguatge formal.
En aquest treball desenvolupem mitjans efectius de tractar amb llenguatges expres-
sius de planificació clàssica. Primer, mostrem que un llenguatge més expressiu no
només permet obtenir representacions compactes, sinó que permet capturar també
estructura del problema aprofitable mitjançant mètodes heuristics, desenvolupem
heuŕıstiques que suporten funcions i quantificació existencial en la definició del prob-
lema, i demostrem emṕıricament que poden ser més informades i efectives. En segon
lloc, desenvolupem un nou algorisme que ofereix rendiment similar a l’estat de l’art
sense necessitat de cap representació declarativa de les accions. Això suposa una
innovació significativa respecte a la recerca anterior, i un avenç en l’ús de llenguatges
expressius i en l’abast i efectivitat dels planificadors clàssics.

xiii

Preface

All models are wrong, but some are useful.

George Box

One of the foundational cornerstones of Artificial Intelligence, planning is the model-
based approach to intelligent behavior, where a model of the world and of possible
actions to be taken is used to decide on a course of action that brings the world
to some desired state. Such a model of world and actions needs to be represented
in some modeling language. Modeling languages aim at satisfying two conflicting
goals: on the one hand, they need to be expressive enough so that compact and
natural problem representations are possible; on the other hand, they need to be
simple enough so that general computational methods can be developed to solve in an
efficient manner any problem that can be represented in the language. Unfortunately,
no modeling language is known in classical planning which can represent a wide range
of interesting problems and is computationally tractable at the same time, something
which is not exclusive of planning and is more generally referred to as the tradeoff
between expressiveness and tractability. Yet the existence of this tradeoff does not
mean that progress on developing methods that can deal effectively with at least
some of the interesting problems that can be represented in an expressive modeling
language is not possible and necessary. This is indeed the main concern of our work.

There are several types of planning models, emphasizing different aspects of reality
that might be of interest. We will be concerned with the simplest of such models,
the classical planning model, where actions are assumed to be deterministic, knowl-
edge is assumed to be perfect, and a single agent is assumed to be acting in the
world. We focus on mechanisms that are able to plan effectively with high-level
expressive modeling languages for classical planning, and this will shed light on the
relation between representation and computation, i.e. on the way in which an expres-
sive language might be able to capture relevant structure of the problem that can
be exploited to computational benefit, and which can otherwise become lost or con-
cealed if the problem is represented using a lower-level language. For it seems to be
the case that in a much-necessary quest for efficiency, research in planning has been
shifting away from expressive but undecidable formalisms such as McCarthy’s Sit-
uation Calculus towards lower-level but computationally convenient languages such
as the STRIPS family. On the way there, we have perhaps become too accustomed
to languages where the representation of even the simplest of concepts (a number,

xv

xvi preface

a function) requires some involved workaround. It is not hard, however, at least for
the author of this thesis, to recall the perplexity produced by the first encounter
with these limitations. This perplexity provided no doubt some of the impetus that
originally motivated the work on this thesis.

Our contribution in this thesis can be broadly split up in two parts. On the first, we
build on a previously existing (but somewhat ignored) classical planning language,
Functional STRIPS, a first-order formalism with support for function symbols. We
show that not only function symbols allow more compact encodings, as was previously
known, but that they can also allow more effective computations. To do so, we
take existing heuristics based on the relaxed planning graph and extend them to
deal with this language, and we show how they capture certain constraints that
can render them more informative than their standard counterparts. In an analog
development, we take yet another first-order feature, existential quantification, whose
presence in standard modeling languages had been so far somewhat neglected, and
make a similar case. We extend our heuristics to support existential quantification
and show that this is advantageous on at least two accounts. From the modeling
standpoint, formulas with existential variables are the natural way of modeling many
common situations, including, for instance, situations where some choices can be left
open for the solver to make them. Existential quantification additionally exposes an
intimate connection between planning and the field of constraint satisfaction. From
the computational standpoint, we empirically show that our heuristics can be more
performant than previous approaches, because of their use of constraint satisfaction
techniques specifically geared towards dealing with existential quantification.

On the second part of the thesis, we present a novel algorithm that builds on recently-
developed notions of width and novelty in planning to perform an extremely effective
exploration of the state space that completely ignores the declarative representation
of actions, i.e. uses them as black boxes. The fact that such an algorithm is able to
match state-of-the-art planning performance with such a big handicap, we argue, is a
striking departure from classical planning research in the last decades. This handicap
is however not a frivolous choice, but instead perfectly fits with the leitmotiv of
the thesis: if we can plan effectively without looking at the representation of the
actions, then we can define those actions with the mechanisms that best suit the
problem at hand, including for instance expressive declarative modeling features, or
non-declarative (i.e. procedural) definitions for actions with complex dynamics. Our
algorithm hence advances the cause of expressive modeling languages in planning
and the scope and effectiveness of classical planners.

Most of the results discussed in this thesis are the product of the work carried out by
its author during the last four years, and have been previously published in a number
of conference articles (Francès and Geffner, 2015; Ferrer-Mestres et al., 2015; Francès
and Geffner, 2016a,b; Francès et al., 2017). The full reference for every article follows,
together with the chapters where the results from that article are discussed:

• G. Francès and H. Geffner. Modeling and computation in planning: Better
heuristics from more expressive languages. In Proceedings of the 25th Interna-
tional Conference on Automated Planning and Scheduling, pages 70-78, 2015.
[Chapters 3 and 6]

• J. Ferrer-Mestres, G. Francès, and H. Geffner. Planning with state constraints
and its application to combined task and motion planning. In PlanRob, Work-

preface xvii

shop on Planning and Robotics, 25th International Conference on Automated
Planning and Scheduling, pages 13-22, 2015. [Chapters 3 and 6]

• G. Francès and H. Geffner. Effective planning with more expressive languages.
In Proceedings of the 25th International Joint Conference on Artificial Intelli-
gence, pages 4155–4159, 2016. [Chapters 3 and 6]

• G. Francès and H. Geffner. E-STRIPS: Existential quantification in planning
and constraint satisfaction. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence, pages 3082–3088, 2016. [Chapters 4 and 6]

• G. Francès, M. Ramı́rez, N. Lipovetzky and H. Geffner. Purely Declarative
Action Representations are Overrated: Classical Planning with Simulators. In
Proceedings of the 26th International Joint Conference on Artificial Intelli-
gence, pages 4294–4301, 2017. [Chapters 5 and 6]

Contents

Abstract xi

Resum xiii

Preface xv

Contents xix

List of Figures xxii

List of Tables xxiii

1 Introduction 1

1.1 Planning and Artificial Intelligence . 1

1.2 Contributions . 5

1.3 Thesis Outline . 6

2 Background 7

2.1 Introduction . 7

2.2 The Classical Planning Model . 8

2.3 Classical Planning Languages . 9

2.3.1 The Situation Calculus . 9

2.3.2 STRIPS . 10

2.3.3 Action Languages and ADL . 12

2.3.4 SAS+ . 13

2.3.5 PDDL . 13

2.3.6 Functional STRIPS . 15

2.4 Computation . 21

2.4.1 The Complexity of Planning 21

2.4.2 Computational Paradigms in Planning 23

2.4.3 Planning as Search . 25

2.4.4 Classical Planning Heuristics 27

2.4.5 Informed Search Algorithms for Classical Planning 31

2.4.6 Width-Based Search Algorithms 33

2.5 State of the Art in Classical Planning 36

2.6 Constraint Satisfaction and Satisfiability 38

xix

xx contents

3 Planning with Function Symbols 43

3.1 Motivation . 43

3.2 Overview of Results . 46

3.3 Value-Accumulating Relaxed Planning Graph 47

3.4 First-Order Relaxed Planning Graph 50

3.5 Computation of the First-Order Relaxed Planning Graph 52

3.5.1 The Functional STRIPS Fragment FSTRIPS0 54

3.5.2 CSP Model for FSTRIPS0 Formulas 54

3.5.3 CSP Model for Arbitrary FSTRIPS Formulas 56

3.6 Approximation of the First-Order Relaxed Planning Graph 58

3.7 Language Extensions . 58

3.7.1 Global Constraints . 59

3.7.2 Externally-Defined Symbols . 59

3.7.3 State Constraints . 60

3.8 Empirical Evaluation . 63

3.8.1 Setup . 63

3.8.2 Results . 64

3.8.3 Other Planners and Overview 69

3.9 Discussion . 70

4 Planning with Existential Quantification 73

4.1 Motivation . 73

4.1.1 Effective Support for Existential Quantification 73

4.1.2 Constraint Satisfaction in Planning 75

4.2 Overview of Results . 76

4.3 STRIPS with Existential Quantification: E-STRIPS 77

4.3.1 E-STRIPS Language . 77

4.3.2 E-STRIPS Heuristics . 78

4.4 Supporting Existential Quantification in Functional STRIPS 78

4.5 Relation of E-STRIPS and Functional STRIPS 80

4.6 Lifted Planning: Planning without Grounding Action Schemas 82

4.7 Empirical Evaluation . 83

4.7.1 Setup . 83

4.7.2 Domains . 84

4.7.3 Results on E-STRIPS Encodings 88

4.7.4 Results on FSTRIPS Encodings 88

4.7.5 Results on Lifted Planning . 89

4.8 Discussion . 90

5 Planning with No Language 93

5.1 Motivation . 93

5.2 Factored State Models and Simulators 95

5.3 Width-Based Methods and BFWS(f) 96

5.4 Simulation-Based Planning with BFWS(R) 98

5.5 Empirical Results . 100

5.6 New Possibilities for Modeling and Control 104

5.6.1 Modeling . 104

5.6.2 Control Knowledge: Features and BFWS(F) 106

5.7 Discussion . 107

contents xxi

6 The FS Planner 109
6.1 Design Overview . 110
6.2 Supported Features and Extensions . 111
6.3 Implementation and Optimization Details 113

6.3.1 Grounding . 113
6.3.2 State Representation . 114
6.3.3 Optimization of the First-Order Relaxed Planning Graph . . . 114
6.3.4 Optimization of Width-Based Algorithms 115

7 Conclusions 119
7.1 Summary of Contributions . 119
7.2 Ongoing and Future Work . 121

A First-Order Logic 125

Bibliography 129

List of Figures

2.1 PDDL encoding of a towers of Hanoi problem with 3 towers 14
2.2 Functional STRIPS encoding of the n-puzzle problem 20
2.3 Initial and goal states of the 8-puzzle problem corresponding to the FSTRIPS

encoding of Fig. 2.2 . 21
2.4 Complete state space of a blocks world with three blocks. 26
2.5 Relaxed Planning Graph corresponding to a 3-block blocks-world. 30
2.6 Plan extraction phase of the Relaxed Planning Graph. 31
2.7 Best-first search algorithmic schema . 32
2.8 IW(k) search algorithm . 34

3.1 Functional STRIPS encoding of the blocks-world domain (simplified syntax) 44
3.2 Fragment of a PDDL encoding of the counters domain (simplified syntax) 45
3.3 Fragment of a FSTRIPS encoding of the counters domain (simplified

syntax) . 45
3.4 Computation of the First-Order Relaxed Planning Graph (FOL-RPG) . . 53
3.5 Functional STRIPS encoding of a sokoban instance (simplified syntax) . 62
3.6 Fragment of a FSTRIPS encoding of the grouping domain 65

4.1 Fragment of an E-STRIPS encoding of the counters domain (simplified
syntax) . 80

5.1 Computation of the goal-oriented set of atoms RG 99
5.2 Fragment of Pacman encoding in FSTRIPS 105

xxii

List of Tables

3.1 Planning with functions: Summarized comparative performance between
FF and FS using a greedy best-first search with heuristics hFF and hapxFF

on equivalent STRIPS and FSTRIPS encodings 66
3.2 Planning with functions: Detailed comparative performance between FF

and FS using a greedy best-first search with heuristics hFF and hapxFF on
equivalent STRIPS and FSTRIPS encodings 67

4.1 Planning with existentials: Comparison of results between different plan-
ners on E-STRIPS and propositional STRIPS encodings 86

4.2 Planning with existentials: Comparison of results between different plan-
ners on E-STRIPS, propositional STRIPS and FSTRIPS encodings 86

4.3 Planning without Action Grounding: Results on the random push domain 87

5.1 Simulation-Based Planning: Performance of PDDL Planners vs. Best
Simulation Planner . 101

5.2 Simulation-Based Planning: Performance of BFWS(R) algorithms for dif-
ferent R sets . 102

xxiii

Chapter 1

Introduction

From this, one can make a deduction which is
quite certainly the ultimate truth of jigsaw
puzzles: despite appearances, puzzling is not a
solitary game: every move the puzzler makes,
the puzzlemaker has made before; every piece
the puzzler picks up, and picks up again, and
studies and strokes, every combination he tries,
and tries a second time, every blunder and
every insight, each hope and each
discouragement have all been designed,
calculated, and decided by the other.

Georges Perec, Life A User’s Manual

1.1 Planning and Artificial Intelligence

The nature of knowledge and of human intelligence has been one of the central
concerns of Western philosophy at least since Descartes’ Discourse on the Method
(Descartes, 1996; Appiah, 2003), and a foundational cornerstone for the entire field
of Artificial Intelligence (AI) since the seminal texts by Alan Turing (1950) and
Claude Shannon (1950). A key component of human intelligence is planning, which
in its broadest sense can be defined as the ability to look into the future in order
to determine the most appropriate behavior for the present (Seligman et al., 2016).
Planning lies at the heart of the Artificial Intelligence enterprise since its begin-
nings (McCarthy et al., 2006; Newell and Simon, 1963), and is critically related to
the assumption that a symbolic representation or model of the world is a necessary
condition for intelligence (McCarthy and Hayes, 1969; Newell and Simon, 1976). In
light of this assumption, which is far from being universally accepted,1 but which
we share, planning can be more precisely defined as the model-based approach to
intelligent behavior, where predictions based on a symbolic model of the world and
objectives of the agent are used to figure out what to do next.

Different computational models of planning have been studied over the years, taking
into account real-world features such as the existence and interaction of multiple

1 See e.g. (Dreyfus, 1979; Brooks, 1990) for some interesting critiques to this symbolic approach
to AI, or Nilsson (2007) and Dreyfus (2007) for a recent retrospective on the issue.

1

2 introduction

intelligent agents, the imperfection of human knowledge or the apparently stochastic
nature of human actions (Russell and Norvig, 2009). This work is concerned with the
simplest of those models, the so-called classical planning model, in which a single,
omniscient agent is presumed to be acting in a world where actions have well-known
deterministic effects, and her objective is to achieve through her action a certain
state of affairs. The classical planning problem is no doubt an extremely simplistic
model of the world, but it is broad enough to capture many real-world combinatorial
problems, and a source of insight into how more complex models can be dealt with
computationally. Indeed, one of the crucial known facts about such a simple model is
that it is intractable (assuming a compact representation of it), and yet humans plan
on an everyday basis with apparent ease. Another such fact is that there usually are
many alternative ways to represent the same classical planning problem, and not all
of them are equivalent in computational terms. The relation between representation
and computation is indeed one of the main focuses of this work.

Progress and Challenges in Planning

In the classical planning problem, a compact description of the initial situation of the
world and of the possible actions to be taken, along with a similar description of the
goal to be achieved, are provided as input. A solution to the problem is a sequence
of actions that maps the initial situation into some situation that satisfies the goal
description; such a sequence is called a plan. A crucial distinction in planning is be-
tween finding any plan that solves a problem (satisficing planning) and finding a plan
with minimum cost or number of actions (optimal planning). The focus of this work
is on satisficing planning. The exact form of each of the above components (world
state, action and goal descriptions) is deliberately left unspecified, as it will depend
on the concrete representation language used to encode the problem. Some archety-
pal classical planning problems include the Blocks-world and well-known games such
as the 8-puzzle, Sokoban or the Tower of Hanoi. In recent years there has been an
increased effort to model tasks from other fields such as computer security or biology
as (not necessarily classical) planning problems (Haslum, 2011; Gefen and Brafman,
2011; Hoffmann, 2015; Matloob and Soutchanski, 2016).

One of the main challenges of planning is at the same time one of its its most con-
spicuous strengths: generality. The ability to solve any problem represented in a
high-level declarative language is attractive not only because it may shed light on
the way human intelligence works, but also because modeling problems in such a
language is much easier than programming an ad-hoc solver for every problem that
might arise (McCarthy, 1987; Geffner, 2002). Many of the planning problems which
are routinely used as benchmarks for novel algorithms are not difficult problems in
themselves, particularly when optimal plans are not a requirement (Helmert, 2003,
2006b), and effective strategies can be easily found by humans for some of them. The
challenge of planning is indeed to solve them when represented in a general language,
where no domain-dependent information or control advice is available (Junghanns
and Schaeffer, 1999). Solving problems encoded in the standard representation lan-
guages is in the worst-case PSPACE-complete (Bylander, 1994; Bäckström and Nebel,
1995), but despite this theoretical hardness, the field has witnessed significant practi-
cal progress in the recent decades. One of the causes of this has been methodological:
the standardization of a modeling language (PDDL) and creation of a readily avail-
able set of benchmarks, along with the establishment of the International Planning

1.1. planning and artificial intelligence 3

Competition (McDermott, 2000), has helped focusing efforts and having effective
means of testing and comparing the performance of different planning algorithms
and systems. Such a focus has its downsides too, as it might prevent the recog-
nition and exploration of ideas that progress off the beaten track, in particular in
what concerns representational issues (Rintanen, 2015), which is one of the focuses
of this work. In any case, undeniable progress has been made in the scalability of
planners and in the stock of ideas powering these planners, which nowadays includes
approaches based e.g. on heuristic search, symbolic search or propositional satisfi-
ability, among others (Kautz and Selman, 1992; Blum and Furst, 1995; Bonet and
Geffner, 2001b; Hoffmann and Nebel, 2001a; Edelkamp and Reffel, 1999; Richter and
Westphal, 2010).

This progress, however, does not mean that there is not still much to be done. In
spite of frequent claims to the contrary, the scalability of planners on provably easy
problems such as the abovementioned blocks-world is still far from adequate. Funda-
mental aspects of human cognition such as learning from previous solving attempts
or from problem analogies, or coming up with generalized solutions which can be
applied to several instances of the same problem, are likely to play a crucial role
in effective planning, but still need to be explored more systematically (Mart́ın and
Geffner, 2004; Hu and De Giacomo, 2011; Geffner, 2010). On the representational
side, the lack of expressiveness of standard planning languages is still a major issue,
which acts both as an impediment for a wider adoption of the technology and some-
times as a computational obstacle (Rintanen, 2015). This thesis addresses some of
these issues.

Modeling and Computation

There is a fundamental distinction between the precise mathematical models that
characterize different classes of problems and the languages which are used to repre-
sent or encode problems that fall within a given class. This is not at all exclusive of
planning, but holds in several areas of artificial intelligence such as SAT, constraint
satisfaction, Answer Set Programming or Bayesian Networks (Biere et al., 2009;
Dechter, 2003; Brewka et al., 2011; Pearl, 1988). In general, solvers tackle a precise
class of problems, and modeling languages provide a way to represent the particular
values taken by the different mathematical structures of a model in any instance of
that model, hopefully in a general and succinct manner. But just as human language
and thought are inextricably related (Gleitman and Papafragou, 2005; Boroditsky,
2011), so do their computational counterparts. Formal modeling languages do much
more than representing problems in a declarative manner: they inevitably emphasize
some aspects of the problem and conceal others, and by doing so they might ease
or harden the task of solving the problem. This is usually referred to as preserving
or concealing the structure of the problem. If planning is in general intractable, ex-
ploiting the structure of planning problems is likely to be key for solving efficiently
those problems that can be solved efficiently, unless we are content with exponential
search strategies. The impact of the language which we use to represent a problem
on the efficiency with which the problem can be dealt with has long been recognized
as a fundamental issue, both at the human level (Novick and Bassok, 2005) and at
the computational level (Amarel, 1968). Several areas of AI have dealt with this is-
sue (Freuder, 1999; Walsh, 2000; Smith, 2006), including planning (Bäckström, 1994,
1995; Nebel, 2000; Riddle et al., 2011; Barták and Vodrážka, 2015).

4 introduction

These considerations are related to what Doyle and Patil (1991) have named the
“restricted language thesis”, implicit in two influential articles by Levesque and
Brachman (1985, 1987). Levesque and Brachman convincingly argue that, in the
context of knowledge representations, there is a tradeoff between how expressive a
representation language is and how tractable it is to reason over that language. Full
first-order logic, for instance, is widely regarded as having an adequate degree of
expressiveness, but logic entailment is, in general, not decidable. On the other hand,
a knowledge base in database form (i.e. a collection of function-free atoms) is, under
a few standard assumptions, much more convenient from a computational point of
view, but its expressiveness is much more limited. Different formalisms, according to
Levesque and Brachman, occupy different positions on the tradeoff between expres-
siveness and tractability. The restricted language thesis is the idea that we should
focus our attention on restrictions or fragments of the knowledge representations
where reasoning is tractable (i.e. polynomial), since otherwise there is little hope in
developing systems which show some degree of intelligence.

According to Doyle and Patil, however, the very idea of sacrificing expressiveness
for the sake of tractability is counterproductive, as it “destroys the generality of the
language”:

These restrictions severely impair the utility of the system for developing
applications. Language restrictions impose large costs in working around
restrictions, when this is possible. When this is not possible, users must
invent mechanisms external to the representation system for expressing
their knowledge. In addition to reintroducing intractability concerns, this
lack of standards for expression results in different ad hoc extensions to
the language for each application. These gaps in expressive power thus
mean that the restricted languages are not general purpose, contrary to
the intent of their designers.

(Doyle and Patil, 1991, p.5)

Tom Bylander extends the argument to the particular case of planning, and indeed
shows that the syntactic restrictions on the STRIPS planning language that would be
necessary (according to his particular taxonomy) for planning to be tractable are so
severe that the resulting language can barely capture any interesting problem. Such
restrictions, additionally, “would fail to permit expression of crucial domain knowl-
edge” (Bylander, 1994). Indeed, a number of researchers have tried to characterize
tractable fragments of planning along different syntactical or structural restrictions,
but the resulting classes of problems are often considered to be too narrow to include
problems that are interesting in practice (Bäckström and Klein, 1991; Jonsson and
Bäckström, 1998; Giménez and Jonsson, 2008; Katz and Domshlak, 2008; Chen and
Giménez, 2010). Recently, other researchers have alternatively argued in favor of
more expressive languages, on both modeling and computational grounds (Ivankovic
and Haslum, 2015; Rintanen, 2011, 2015). This is also the line that we take in this
thesis. We will argue and show with concrete examples that seeking efficiency by
restricting ourselves to low-level languages might actually be counterproductive. For
the tradeoff between expressiveness and tractability is a worst-case result, but fixed
a problem, it might well be that a high-level representation exposes its structure in
a clearer manner, and thus lends itself to be tackled more efficiently by a solver.

1.2. contributions 5

1.2 Contributions

Our work in this thesis aims at developing effective means for dealing with expressive
planning languages which go beyond the propositional fragment of STRIPS that
is the de facto standard in the community. We think this is important not only
because it eases the task of modeling, but also, as argued above, because higher-level
modeling languages better expose the relevant bits of the problem structure that can
be exploited computationally for efficiency purposes.

These are the main results of this thesis:

1. We build on the existing Functional STRIPS modeling language (Geffner, 2000),
and show that the additional expressiveness obtained by allowing function sym-
bols in the language can be exploited computationally to derive more accurate
heuristics. We do this by extending the relaxed planning graph construct to
support these function symbols, and showing that this permits taking into ac-
count some constraints in the problem that would otherwise become lost in
function-free representations. This is illustrated with a number of examples
and experiments.

2. Similarly, we argue that existentially quantified variables are an essential mod-
eling feature. They allow to elegantly and explicitly model open choices, i.e.
situations in which there is no need to commit to a particular variable instan-
tiation, and they are key for representing and reasoning with constraints in
planning. We further argue that the standard strategy of compiling them away
is not a good option, as it hides relevant problem structure that can be exploited
computationally. We show this by extending the relaxed planning graph to ac-
count for existential quantification through constraint satisfaction techniques,
and proving the resulting heuristics more informed. We demonstrate the im-
portance of existential variables with a set of novel planning domains, which
additionally illustrate an important bridge between constraint satisfaction and
planning problems. We report experiments that show that the performance of
our approach clearly dominates that of previous approaches.

3. Building on the recent notions of planning width and novelty of a state (Lipovet-
zky and Geffner, 2012), we develop a family of simulation-based planning al-
gorithms which perform an extremely effective search which does not require
a compact declarative representation of the actions of the problem. This rep-
resents a significant departure from mainstream planning research over the
last decades. Despite the severe handicap that having no declarative informa-
tion about actions represents, experimental results over a large set of standard
benchmarks from the last two international planning competitions show that
the performance of the approach is competitive with the state of the art. The
prospect of an efficient planning technique that (mostly) does away with the
requirement of declarative representations is extremely interesting in itself, and
additionally furthers our agenda. As it turns out, if no information about ac-
tion structure is necessary, then expressive modeling features can be used to
define them. Even more interestingly, these features do not need to be declar-
ative, but one can instead use procedural routines to provide the denotation of
parts of the language.

4. On a more practical side of things, an important contribution of this thesis is the
FS planner, which to the best of our knowledge is the first planner that supports

6 introduction

the full specification of the Functional STRIPS language, including arbitrary
terms using (possibly nested) function symbols and externally-defined symbols,
plus a number of interesting extensions, such as efficient support for existential
quantification, state constraints (Lin and Reiter, 1994; Ferrer-Mestres et al.,
2015), and global constraints (Régin, 2011). Most of the problems we use to
benchmark the performance of all of the above ideas have been made public
and are also novel, and therefore should be regarded as a contribution. Some
of them have already been used by other authors (Scala et al., 2016b).

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces most of
the necessary background on classical planning, organized along the axes of model,
language and computation, as well as a review of the state of the art in satisfic-
ing planning. Additional background knowledge on first-order logic can be found
in Appendix A. Chapters 3 to 6 are relatively self-contained. Chapter 3 discusses
and evaluates our extension of traditional heuristics based on the relaxed planning
graph to deal with function symbols in the modeling language. Likewise, Chapter 4
discusses and evaluates the extension of the same heuristic to support existential
quantification. Chapter 5 presents our width-based algorithms that are able to plan
with no knowledge on the action structure, along with an experimental study with
benchmarks from the last two international competitions that shows these algorithms
are competitive with the state of the art. Chapter 6 describes the FS planner where
all of the ideas presented in the previous chapters have been implemented. We con-
clude the thesis in Chapter 7 by summarizing our findings and outlining some lines
of ongoing or future research.

Chapter 2

Background

In this chapter we review the area of planning, with particular emphasis on classi-
cal planning, articulating our discussion along three main axes: models, languages
and computation. We also briefly describe the basic ideas from satisfiability and
constraint satisfaction, which are related to our work.

2.1 Introduction

One of the oldest and most central areas in artificial intelligence, planning can be best
defined as the model-based approach to the task of generating autonomous behavior
automatically (Geffner and Bonet, 2013). In planning, unlike in other close disciplines
such as reinforcement learning, a precise model of how the world works is used to
derive the behavior of an agent. This model might typically include a description
of which of the myriad features of the world are relevant for the task at hand, the
possible effects of actions on those features, a description of the current situation and
of the desired outcome of the agent’s actions. Computing such a behavior is usually
worst-case intractable, and hence a great deal of the research carried out in the area
is focused on the ways in which this can be done in practice.

Crucial to planning, as well as to other AI fields such as satisfiability or constraint
satisfaction, is the distinction between

1. the mathematical models that characterize in a precise manner the problem
that we are trying to solve,

2. the formal languages that are used to represent the problems within one of
those models, and

3. the different computational approaches that can be used to solve those prob-
lems,

on which we will elaborate later on this chapter. Several planning models have
been considered in the literature, with different degrees of expressiveness, which
might capture or ignore things such as the presence of other planning agents in the
environment, the unpredictable nature of the agents’ actions, the non-atomic nature
of those actions, or the lack of knowledge the agent can have about the environment.
The more expressive a model is, in general, the more difficult that reasoning and
planning for it can be expected to be (Levesque and Brachman, 1985). Indeed, a

7

8 background

salient strand in artificial intelligence and knowledge representation research concerns
the balance between the competing needs of providing expressive modeling languages
and of reasoning about problems expressed in those languages in an effective manner.

2.2 The Classical Planning Model

The work presented in this thesis is chiefly concerned with the most elementary of
those models, classical planning, in which an omniscient agent is assumed to act alone
in a world where no changes occur that are not triggered by the agent’s actions, and
the outcome of these actions is fully-deterministic. Despite the simplicity of such a
model, work in classical planning is relevant not only because it provides a starting
point which is broad enough to capture many real-world combinatorial problems, but
also because it often provides insight into how more expressive models can be dealt
with computationally (Yoon et al., 2007).

We next give a formalization of this classical planning model as a transition system,
and will later use this formalization to provide in a clear and compact manner the
semantics of several of the languages that we will be discussing.

Definition 2.1 (Classical Planning Model). A classical planning model is a tuple
Π = 〈S, s0, SG, O, f〉 that consists of

• A finite set of states S,

• An initial state s0 ∈ S,

• A set of goal states SG ⊆ S,

• A set of operators O, and

• A (partial) transition function f : S ×O 7→ S.

The transition function encodes the result s′ = f(o, s) of applying an operator o
in state s. To emphasize that not all operators are applicable in all states, it is
customary to denote by A(s) ⊆ O the set of operators applicable in state s:

A(s) =
{
o ∈ O | ∃s′ f(s, o) = s′

}
It is often necessary to include a cost function c : O × S 7→ R+ that captures the
cost of applying a certain action in a given state. Although some of the results that
we present in this thesis can be easily extended to this classical planning with costs
setting, we will in general assume that we are dealing with uniform cost schemas, in
which the cost of all actions is the same, which is in general equivalent to saying that
all actions have unit cost. For simplicity, we will thus often ignore this cost function.

Definition 2.2 (Plan). Given a classical planning model Π, a plan is a sequence of
operators π = 〈a0, . . . , an〉 that maps the initial state s0 into a goal state s ∈ SG, i.e.
π induces a sequence of states s0, . . . , sn+1, where sn+1 ∈ SG and for all i = 0, . . . , n
we have that si+1 = f(ai, si).

Any classical planning model Π = 〈S, s0, SG, O, f〉 can be readily mapped into a
directed graph GΠ where nodes represent planning states, edges are labeled with

2.3. classical planning languages 9

operators from O, and a directed edge (v1, v2) between two nodes with label o ∈ O
represents the existence of an operator o whose application transforms the state
represented by v1 into the state represented by v2. The problem of finding a plan
reduces then to the problem of finding a path between the graph vertex representing
s0 and any other vertex representing a state in SG. The computational cost of such
a task is polynomial in the number of vertices; in planning, however, one is usually
interested in finding a path in a graph whose size is exponential with respect to the
compact representation that is used to describe it implicitly. The task of a classical
planner is precisely to take a compact representation of a classical planning problem
and to produce a plan for it. Satisficing planning is concerned with computing a plan,
regardless of its cost or length, whereas optimal planning is additionally concerned
with the computed plan being the shortest or lowest-cost of all possible plans.

Compact representations are usually expressed in a declarative planning language
such as STRIPS or PDDL. Planning languages provide not only a way to represent
problems over completely different domains in a uniform manner, but also to reveal
problem structure that can be exploited computationally. Most techniques which
are key to the performance of modern planners, heuristic or otherwise, are derived
from the actual representation of the problem, not from the characteristics of the
underlying planning model alone.

2.3 Classical Planning Languages

In this section we briefly review some of the planning languages that have been
used over the years, paying particular attention to STRIPS and PDDL, because of
their widespread use nowadays, and to Functional STRIPS, which will constitute the
basis of our work. There is, to the best of our knowledge, no updated, systematic
comparison of the different planning languages commonly used in planning, likely
because the community has leaned over the years towards using the standard PDDL.
Bäckström (1995) and Nebel (2000), however, present interesting theoretical analyses
of the comparative expressive power of different modeling formalisms.

2.3.1 The Situation Calculus

The Situation Calculus (McCarthy, 1963; McCarthy and Hayes, 1969; Reiter, 2001),
developed after John McCarthy’s Advice Taker (McCarthy, 1960), is one of the
earliest attempts to have an expressive first-order mechanism to reason about actions
and change. The Situation Calculus promotes a full axiomatization in first-order logic
of the effects of actions; in the calculus, the states of the world, named situations,
and the relevant actions of the problem, are represented as objects of a particular
type. Any predicate or function symbol is extended to account for an extra situation
argument, so that e.g. an atom on(a, b, s) might denote that a block a is on top of
a block b in a certain situation s. The result of applying an action a in a certain
state s is denoted by result(a, s), where result is a reserved function symbol. One
of the effects of applying the action a ≡ move(b1, b2) in the classical blocks-world,
for instance, might be denoted with the axiom

∀s [b1 6= b2 ∧ clear(b1, s) ∧ clear(b2, s)→ on(b1, b2, result(a, s))]

10 background

The expressiveness of the formalism however comes at a cost. In the Situation
Calculus, planning is indeed reduced to (first-order logic) theorem proving (Green,
1969), which in the general case is not decidable (Enderton, 2001; Rautenberg, 2006).
Variants and extensions of the Situation Calculus, however, have been used in recent
years for expressing dynamics and control (Levesque et al., 1997; De Giacomo et al.,
2000).

2.3.2 STRIPS

Partly as a response to the computational challenge posed by the Situation Calculus,
the Stanford Research Institute Problem Solver (STRIPS, Fikes and Nilsson (1971))
brought about not only an actual problem solver, but also a novel modeling language,
less expressive than the Situation Calculus, but more suited for efficient computation
techniques. In the original STRIPS formulation, world models are collections of first-
order sentences over a given language L. These sentences can be simple atoms such
as at(rob1, room2), or sentences such as

∀x, y, z connects(x, y, z)→ connects(x, z, y)

A STRIPS operator o is a tuple o = 〈name(o), pre(o), add(o), del(o)〉, where name(o)
is a symbol identifying the operator, the precondition pre(o) is a sentence over L,
and the add and delete lists add(o) and del(o) are sets of such sentences over L. A
STRIPS system Σ = 〈M0, O〉 is made up of an initial world model M0 plus a set of
operators O. A plan π of a given system Σ is a sequence of operators π = (o1, . . . , on),
which in turn induces a sequence of world models M0, . . . ,Mn such that M0 is the
initial world model and

Mi = (Mi−1 \ del(oi)) ∪ add(oi)

A plan π is valid if Mi−1 ` pre(oi) for all i.

From a historical point of view, one of the key technical contributions of STRIPS
is its solution to the frame problem (McCarthy and Hayes, 1969), embodied in the
assumption that those aspects of the world not explicitly mentioned in the operators’
add and delete list remain unaffected (Fikes and Nilsson, 1993). Lifschitz (1987)
however notices that the semantics of this original formulation of the language is
ill-defined, because of the infinite nature of the sets of first-order sentences. Lifschitz
proposes a reformulation where world models, add and delete lists can only be sets of
atoms instead of sentences. For the system to be proven sound, Lifschitz observes, the
only non-atomic sentences allowed in M0 and in the add list of any operator should
be sentences which are satisfied in all possible states of the world. The standard
practice since is to follow this restriction.

The original specification of the language additionally included several features such
as action expansions or safety constraints (Weld and Etzioni, 1994). For reasons of
succinctness and relevance to our work, however,we limit our description here to the
STRIPS subset of PDDL (McDermott et al., 1998), which we formalize next.

In terms of the language syntax, STRIPS allows only constant and predicate symbols.
The only terms that the language permits are constant symbols such as b1, b2, and
atoms are recursively defined in the usual way by (a) applying a predicate symbol p
of arity k to k constants t1, . . . , tk to form the atom p(t1, . . . , tk), and (b) applying
the standard logical connectives ¬, ∧, ∨.

2.3. classical planning languages 11

Definition 2.3 (STRIPS Planning Problem). A STRIPS planning problem P =
〈A,O, I,G〉 consists of

• A set of atoms A,

• A set of operators O,

• A set of atoms I ⊂ A describing the initial state, and

• A set of atoms G ⊂ A describing the goal state.

Often, planning literature makes a distinction between problem domains and in-
stances, in the sense that many planning problems can be seen as different instances
of the same domain, perhaps with different properties, initial or goal situations, etc.
We will not be concerned with such a distinction here.

Operators have the form that was described above. The set of operators is often
given through compact first-order action schemas containing variables, which are
assumed to be existentially quantified. We will have more to say about this later,
but in general, unless explicitly noted, we will assume that operators are grounded.

The precise semantics of any STRIPS problem P , and in general of a classical planning
problem expressed in any language, can be given by a mapping with a corresponding
classical model S(P). In this case, S(P) = 〈S, s0, SG, O

′, f〉 is defined as follows:

• The set of states is S = P(A),

• The initial state is s0 = I,

• The set of goal states is given by SG = {s ∈ S | G ⊆ s},

• The set of operators is O′ = O

• The transition function f is defined only over those pairs 〈s, o〉 such that
pre(o) ⊆ s, in which case

f(s, o) = (s \ del(o)) ∪ add(o)

Note that there is a fundamental difference between the semantics of the sets of
atoms I and G. The set I is intended to denote a single state in S, namely, the
state where the atoms in the set I are true, and the rest are assumed to be false.1

In contrast, the set G is intended to denote a subset of states in S, made up of all
those states for which the atoms in G are true, regardless of whether there are other
true atoms or not.

In STRIPS, actions modify the denotation of some of the predicate symbols of the
language, which are then called fluents. The denotation of other symbols not affected
by any action, as well as that of constant symbols, is assumed not to change, for which
reason they are called fixed symbols.

1This assumption is often referred to as the closed-world assumption (Reiter, 1978).

12 background

2.3.3 Action Languages and ADL

The eighties and nineties saw the development of languages based on first-order logic
that tried to reach an intermediate ground between the expressiveness of Situation
Calculus and the computational convenience of STRIPS (Pednault, 1989; Baral et al.,
1997; Gelfond and Lifschitz, 1998). Pednault’s Action Description Language (ADL;
Pednault, 1986, 1989, 1994) is perhaps the most important of these. ADL can be seen
as a set of restrictions on the form of the axioms allowed by the Situation Calculus
that allow for the definition of STRIPS-like action schemas with function symbols,
conditional effects and universal quantification.

Syntactically, each action schema is made up of a name, a set of variables (the action
parameters) plus the precondition, add, delete and update lists. The precondition
is a first-order formula, usually a conjunction, that determines applicability of the
action; the add and delete lists are sets with one of the forms

1. R(t1, . . . , tn) if φ.

2. R(t1, . . . , tn) for all z1, . . . , zm such that φ.

where R is a relation symbol, all ti’s are terms, all zi’s are variables and φ a (first-
order) formula. Finally, the update list is the equivalent of the add and delete lists
for function symbols, and has one of the forms

1. f(t1, . . . , tn)← t if φ.

2. f(t1, . . . , tn)← t for all z1, . . . , zm such that φ.

where f is a function symbol of arity n (possibly a constant, i.e. n = 0), t all ti’s are
terms, all zi’s are variables and φ a (first-order) formula.

Semantically, ADL states are the actual algebraic structures that underlie first-order
logic interpretations (Rautenberg, 2006).2 ADL schemas define not first-order for-
mulas that hold or cease to hold in the state that results from applying the schema,
as in the original STRIPS, but instead they directly define the transformation on the
resulting state of the world, i.e. on the first-order interpretation representing this
state. ADL allows for partially-known initial initial states, going beyond the classical
planning model; when the initial state is fully specified, however, the problem can be
dealt with techniques which are significantly simpler than the more generic regression
mechanism proposed in (Pednault, 1994).

A few planners have been developed for fragments of the ADL language (McDermott,
1991; Penberthy and Weld, 1992). To the best of our knowledge, none of them
supports the full language specification and, in particular, none of them supports
function symbols. ADL is nonetheless interesting to us because it introduces many
of the features that make Functional STRIPS the convenient language upon which
the work described in Chapters 3 and 4 is based. Functional STRIPS is formally
introduced and discussed in Section 2.3.6.

In parallel, several expressive action languages have been also developed (Gelfond and
Lifschitz, 1993, 1998), including the action language A, which is roughly equivalent
to the propositional fragment of ADL; and action languages B and C. B extends A
with static laws, i.e. axioms for inferring the truth value of certain fluents; C extends

2This idea is further elaborated in the description of the Functional STRIPS language below.

2.3. classical planning languages 13

B with non-inertial fluents, i.e. fluents whose value might change not as the result
of some action enacted by the agent (Gelfond and Lifschitz, 1998).

2.3.4 SAS+

The Extended Simplified Action Structures SAS+ formalism (Bäckström and Nebel,
1995), deriving from SAS (Bäckström and Klein, 1991), is a slight generalization
of propositional STRIPS which allows for multivalued state variables. It can be
seen that, under the ESP reduction framework presented by Bäckström (1995), both
STRIPS and SAS+ are equivalent from an expressive point of view, in the sense that
a problem represented in any of the two formalisms can be translated in polynomial
time into the other formalism, and solution sizes are preserved. This would seem
to suggest that there is no practical difference between using e.g. SAS+ or STRIPS
to represent a problem that needs to be solved. This, however, is not at all the
case, since polynomial reducibility is too coarse a measure, and nothing prevents the
problem represented in one language to be exponentially harder to solve than the
(polynomially-transformed) equivalent in the other language (Bäckström, 1994). As
a matter of fact, this can actually happen when transforming certain multivalued
SAS+ problems into propositional STRIPS (Bäckström, 1994).

2.3.5 PDDL

The Planning Domain Definition Language (PDDL; McDermott et al., 1998) was
developed as a standardization effort for the first edition of the International Planning
Competition in 1998 (AIPS-98, then called the AI planning systems competition;
McDermott, 2000), and has been since then used in all subsequent editions. PDDL
should therefore be seen more as a standard syntax for the core of the STRIPS
language, along with certain extensions coming from ADL and other planner-specific
existing modeling languages, than as a distinct language in itself. The original PDDL
formulation contemplated the use of features such as conditional effects, universal
quantification over dynamic universes, stratified axioms or safety constraints, not all
of which have resisted equally well the test of time. The success of PDDL prompted
however the development of several extensions to accommodate more sophisticated
modeling needs. PDDL 2.1, for instance, offered support for numeric fluents and
of non-atomic actions, i.e. actions with variable duration (Fox and Long, 2003),
and sparked an interesting controversy over the nature of modeling languages and
the relation between expressiveness and computability (Bacchus, 2003; Boddy, 2003;
Geffner, 2003; McDermott, 2003a; Smith, 2003). PDDL 3.0 (Gerevini et al., 2009)
and PDDL 3.1 further extended the language with support for trajectory constraints
and preferences. PDDL 3.1, in particular, addressed previous criticism for the lack of
support for function symbols (McDermott, 2003a) by extending the language with
so-called object fluents, essentially a reformulation of the Functional STRIPS language
that we present below.3 Unfortunately, no planner entering subsequent international
planning competitions seems to have offered support for it, and no benchmark in
the competition makes use of it either. Other separate extensions exist as well, such
as PDDL+, which deals with continuous change and exogenous processes (Fox and
Long, 2002; McDermott, 2003b).

3 See http://icaps-conference.org/ipc2008/deterministic/PddlResources.html [Accessed
28 Jun. 2017].

http://icaps-conference.org/ipc2008/deterministic/PddlResources.html

14 background

;; Problem Domain

(define (domain hanoi)

(:requirements :strips)

(:predicates (clear ?x) (on ?x ?y) (larger ?x ?y))

(:action move :parameters (?disk ?from ?to)

:precondition (and (larger ?to ?disk) (on ?disk ?from)

(clear ?disk) (clear ?to) (not (= ?from ?to)))

:effect (and (clear ?from) (on ?disk ?to)

(not (on ?disk ?from)) (not (clear ?to))))

)

;; Problem Instance

(define (problem hanoi3) (:domain hanoi)

(:objects peg1 peg2 peg3 d1 d2 d3)

(:init

(larger peg1 d1) (larger peg1 d2) (larger peg1 d3)

(larger peg2 d1) (larger peg2 d2) (larger peg2 d3)

(larger peg3 d1) (larger peg3 d2) (larger peg3 d3)

(larger d2 d1) (larger d3 d1) (larger d3 d2)

(clear peg2) (clear peg3) (clear d1)

(on d3 peg1) (on d2 d3) (on d1 d2))

(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2))))

Figure 2.1: PDDL encoding of a towers of Hanoi problem with 3 towers.

For the sake of brevity, we do not provide here a full formalization of the language
and semantics of the several variations of PDDL.4 The basic STRIPS subset of the
language introduced in Section 2.3.2 will cover most of our needs; those extensions rel-
evant to our work such as functional symbols are properly formalized in Section 2.3.6
below. We conclude this section by presenting and discussing a sample encoding of
the well-known Tower of Hanoi.

Example 2.4 (Tower of Hanoi PDDL encoding). Figure 2.1 shows a possible PDDL
representation of the classic Tower of Hanoi problem with 3 disks. Constants (that
is, PDDL objects) include three pegs and three disks. A predicate larger encodes size
relations between disks and also between disks and pegs (note that all pegs are larger
than all disks, so that disks can always be placed on empty pegs). As is customary, in
the initial situation all disks are stacked on the first peg, respecting their sizes, and
the goal is to move them so that they lay in the same order on the third peg. The
encoding of the move action takes care that stacking size constraints are respected,
and that only clear disks are moved.

4 Indeed, the modular design of PDDL makes it unclear that the semantics of the language is
well defined for certain combinations of the several extensions of the language (McDermott, 2003b).

2.3. classical planning languages 15

2.3.6 Functional STRIPS

Functional STRIPS (FSTRIPS, for short) is a classical planning language that extends
STRIPS with functional symbols in order to provide a number of expressive and
computational advantages, such as the ability of making indirect reference to domain
objects through the use of nested terms. Although the original formulation by Geffner
(2000) presents a variable-free version of the language, we here lift that restriction to
give a full first-order logic account, which we will need in subsequent chapters. We
assume the reader is familiar with the basic definitions of first-order logic, on which
the following FSTRIPS formalization relies; an overview of these definitions can be
found in Appendix A. We will use the classical blocks-world as a running example.

Problem Language. A Functional STRIPS problem P is defined over a many-
sorted first order logic language with equality, which we denote by L(P). Such a
language is made up of a non-empty and finite set T of types (or sorts), a possibly
infinite set of variables vt1, v

t
2, . . . for each type t ∈ T , a set Φ of function symbols

and a set Π of relation symbols, assumed to include the equality symbol “=”. A
Functional STRIPS language L(P) meant to model blocks-world, for instance, will
typically include a unary predicate symbol clear, a binary function symbol loc, and
constant symbols b1, b2, b3 and table.

Problem Interpretations. Recall that any first-order interpretation M is made
up of a set of typed, non-empty universes UM = {Ut}t∈T plus the denotation of each
function and predicate symbol, where:

1. The denotation of a constant (nullary function) symbol c of type 〈t〉 is an
element cM ∈ Ut.

2. The denotation of a nullary predicate symbol P is a truth value PM ∈ {>,⊥}.

3. The denotation of an n-ary function symbol f of type 〈t1, . . . , tn, tn+1〉 is a
function fM : Ut1 × · · · × Utn → Utn+1 .

4. The denotation of an n-ary predicate symbol P of type 〈t1, . . . , tn〉 is a subset
PM ⊆ Ut1 × · · · × Utn .

Functional STRIPS assumes that the universe of discourse in any problem P is fixed,
i.e. all valid interpretations for P have the same universe, denoted by UP = {Ut}t∈T .
It is further assumed that the universe Ut of any type t is finite. In the blocks-world
example above, a possible interpretation M for L(P) might consist of a single type
t with universe Ut = {b1, b2, b3, table}. Constants b1, b2, b3 and table are respectively
denoted by the object with equal name; the denotation of predicate symbol clear is
the set clearM = {table, b1}; the denotation of function symbol loc is the function:

locM(x) =

b2, if x = b1

b3, if x = b2

table, if x = b3.

Action Schemas. A Functional STRIPS action schema a is defined by its name,
its signature 〈v1, . . . , vn〉, where each vi is a (typed) variable, its precondition formula
pre(a), which is an arbitrary formula over L(P), and its set of (conditional) effects
effs(a). Each effect e ∈ effs(a) can be either a relational or a functional effect:

16 background

• A relational effect e has the form φ→ L, where φ is a formula (the condition of
the effect) and L is a literal, i.e. an atomic formula R(t̄) or its negation ¬R(t̄).
In the first case we say that the effect is an add effect, in the second, a delete
effect.

• A functional effect e has the form φ→ f(t̄) := w, where φ is again the condition
of the effect, w is an arbitrary term, and f(t̄) is made up of a (possibly nullary)
function symbol f over a tuple of terms t̄ of appropriate size and type. The
types of term w and symbol f must coincide.

In our blocks-world running example, the only action schema is move, with signature
〈x, y〉, precondition

x 6= table ∧ x 6= y ∧ loc(x) 6= y ∧ clear(x) ∧ clear(y)

and effects

1. > → loc(x) := y,

2. > → clear(loc(x)), and

3. y 6= table→ ¬clear(y).

As customary, when the condition of an effect is >, we often drop it and denote e.g.
the first effect above simply as loc(x) := y.

Fluent and Fixed Symbols. A function symbol f is said to be fluent if it appears
in the head of some functional effect φ→ f(t̄) := w, whereas a relation symbol R is
fluent if it appears in the head of some relational effect φ→ R(t̄) or φ→ ¬R(t̄). Non-
fluent function and relation symbols are called fixed, or static. In the blocks-world
above, clear and loc are the only fluent symbols.

Ground Actions. Action schemas can be grounded by substituting all occurrences
of the action parameters (i.e. variables in the signature of the schema) in the action
precondition and effects by type-consistent constant symbols (we disallow the possi-
bility of grounding action schemas with arbitrary terms, as in ADL (Pednault, 1994)).
We denote by gr(a) the grounding of an action schema a with signature 〈x1, . . . , xn〉.
gr(a) is a set of action schemas with nullary signature (which we will call operators,
or simply ground actions), and contains one ground action for every possible substi-
tution for variables x1, . . . , xn. We further denote by gr(A) the grounding of a set of
action schemas, gr(A) = ∪a∈A gr(a).

States and State Variables. States in a FSTRIPS problem P are the represen-
tation of first-order interpretations over L(P) with fixed universe UP .5 In practice,
states need only represent the denotation of fluent symbols, since the denotation of
fixed symbols remains by definition the same for all possible states of the problem.
We often write c∗ to refer to the actual (state-independent) denotation of such fixed
symbols. To simplify definitions, we will also assume that every fixed constant sym-
bol c denotes a different object c∗, and that for every type t and element o ∈ Ut,

5 This is similar to the way ADL states are defined.

2.3. classical planning languages 17

there is a fixed constant symbol c whose denotation c∗ is o, i.e. all objects in the
universe are denoted by some fixed constant.

The relation between fluent symbols and states is captured by the notion of state
variable. For any fluent n-ary function symbol f with type 〈t1, . . . , tn, tn+1〉, and
tuple 〈a1, . . . , an〉 ∈ Ut1 × · · · × Utn , f(a1, . . . , an) is a (functional) state variable of
type tn+1. Relational state variables are defined analogously for relation symbols.

Because all universes in UP are finite, the number of possible first-order interpre-
tations with universe UP is also finite, which implies that planning in FSTRIPS is
decidable (and polynomial in the number of states). For the same reason, there is
a finite number of state variables. We will often denote by V(P) the set of all state
variables of a FSTRIPS problem P . Indeed, FSTRIPS states can be equivalently seen
as first-order logical interpretations or as complete assignments of values to the set
of state variables of the problem, mapping each functional state variable with type t
to an element from Ut, and each relational state variable to a truth value in {>,⊥}.

We will sometimes use the notation M(s) to emphasize that we are referring to
the interpretation encoded by a state s. We write ts and φs for the denotation of
term t and formula φ in state s. With a slight abuse of notation, we also say that
the term f(c1, . . . , cm) is a state variable when c1, . . . , cm are fixed constants of the
language, since in all valid interpretations for the problem, they actually correspond
to the same state variable f(c∗1, . . . , c

∗
m). The same notational device will be used

for predicate symbols. To avoid confusion between the term f(c1, . . . , cm) and the
corresponding state variable, we will sometimes denote the latter by f(c1, . . . , cm).

We are finally ready to define a FSTRIPS problem:

Definition 2.5 (FSTRIPS planning problem). A FSTRIPS planning problem is a
tuple P = 〈L(P),UP , sI , A, φG〉, where

• L(P) is a first-order language, as described above.

• UP = {Ut}t∈T is the set of finite, typed universes.

• sI is the initial state of the world.

• A is a set of action schemas.

• The goal formula φG is a formula over the L(P) language.

The semantics of P are defined by giving its correspondence with a classical plan-
ning model S(P). The basic intuition is that FSTRIPS operators represent ways of
modifying the denotation of some of the logical symbols in the interpretation that de-
scribes the state of the world. The transition function of the planning model induced
by a FSTRIPS problem can be defined as follows:

Definition 2.6 (FSTRIPS Transition Function). The partial transition function
f : S × O 7→ S corresponding to a FSTRIPS problem P is defined over all state-
operator pairs 〈s, o〉 such thatM(s) � pre(o). For one such pair, the state s′ = f(s, o)
that results from applying operator o in state s is the logical interpretation with
universe UP where the denotation of each symbol in L(P) is as follows. For each

18 background

function symbol f ,

fM(s′)(x̄) =

wM(s), if o has a functional effect φ→ f(t̄) := w

such that M(s) � φ and x̄ = t̄M(s)

fM(s)(x̄), otherwise.6

Analogously, the denotation PM(s′) of every n-ary predicate symbol P in M(s′), for
n > 1, contains the tuple x̄ if both of the following conditions hold:

1. There is no delete effect φ→ ¬P (t̄) such that M(s) � φ and t̄M(s) = x̄, and

2. either x̄ ∈ PM(s) or there is an add effect φ → P (t̄) such that M(s) � φ and
t̄M(s) = x̄.

The above can be extended to nullary predicate symbols P in a straight-forward man-
ner. This generalizes the STRIPS transition function f(s, o) = (s \ del(o)) ∪ add(o)
given above to the first-order case.

Let us now summarize the semantics of a Functional STRIPS problem:

Definition 2.7 (FSTRIPS semantics). Let P = 〈L(P),UP , sI , A, φG〉 be a Func-
tional STRIPS problem. The semantics of P are given by the classical planning
model S(P) = 〈S, s0, SG, O, f〉, where:

• The finite set of states S, as described above, contains all possible interpreta-
tions over the language L(P) with universe UP .

• The initial state is s0 = sI ,

• The set of goal states SG contains all interpretations M over L(P) such that
M � φG,

• The set of operators is O = gr(A),

• The transition function f : S ×O 7→ S is the function given in Definition 2.6.

The denotation of fixed function and predicate symbols in FSTRIPS can be provided
either extensionally, i.e. by enumeration in the initial state, or intensionally, through
external procedures specified in some programming language. Additionally, for sim-
plicity we will often assume that the denotation of standard fixed symbols such as
“3” or “+” is given by the underlying programming language.

Example 2.8 (Blocks-world, complete). Let us fully recapitulate the blocks-world
example with 3 blocks. The logical language of the problem P has one single type t,
and symbols {clear, loc, b1, b2, b3, table}, where clear is a unary predicate symbol, loc
a binary function symbol, and the rest of symbols are constants. The fixed universe

6 If operator o has more than one functional effect φ1 → f(t̄1) := w1 and φ2 → f(t̄2) := w2 such

that (1) both effect conditions are satisfied in M(s) and (2) t
M(s)
2 = t

M(s)
1 , but their right-hand

sides w1 and w2 have different denotations w
M(s)
1 6= w

M(s)
2 , then we consider the FSTRIPS problem

inconsistent. In contrast with STRIPS, in FSTRIPS it is not possible to ensure that a given problem
is consistent from the syntactical description of the problem alone.

2.3. classical planning languages 19

Ut contains the objects {b1, b2, b3, table}. The only action schema is move(x, y), with
precondition

x 6= table ∧ x 6= y ∧ loc(x) 6= y ∧ clear(x) ∧ clear(y)

and effects (1) loc(x) := y, (2) clear(loc(x)), and (3) y 6= table → ¬clear(y). A
possible ground action in the set gr(A) of the problem is move(b1, table). This ground
action has precondition

loc(b1) 6= table ∧ clear(b1) ∧ clear(table),

and effects (1) loc(b1) := table and (2) clear(loc(b1)). Note that the substitution of
action parameters by actual constant symbols often allows to simplify precondition
and effects by following the standard rules of first-order logic.

Both clear and loc are fluent symbols, i.e. their denotation will possibly change in
different states, because they appear in the head of the move action. In contrast, the
denotation of symbols b1, b2, b3 and table is fixed in all states of the problem.

A situation where block b1 is on top of b2, block b2 is on b3, and b3 is on the table, is
represented by the state (i.e. interpretation) s where the symbol clear is denoted by
the set clears = {b1, table}, and the symbol loc is denoted by the function

locs(x) =

b2, if x = b1

b3, if x = b2

table, if x = b3

The value assigned to the point table by the function is actually irrelevant for this
particular problem.

The problem has state variables clear(table), clear(b1), clear(b2), clear(b3), loc(b1),
loc(b2) and loc(b3). Any FSTRIPS state can be seen as an assignment of values to
these state variables; the above state, for instance, can be seen as the assignment
clear(table) = >, clear(b1) = >, clear(b2) = ⊥, clear(b3) = ⊥, loc(b1) = b2,
loc(b2) = b3, loc(b3) = table. Finally, a typical goal formula for the problem could be
loc(b1) = table ∧ loc(b3) = b2.

Example 2.9 (n-puzzle). The blocks-world example above still does not show an
actual computer-parsable problem specification. As was mentioned before, PDDL 3.1
does actually provide support for object fluents, a somewhat obscure equivalent mech-
anism to function symbols. We can thus use PDDL 3.1 to encode FSTRIPS problems;
Fig. 2.2 shows an actual PDDL 3.1 encoding of the classical n-puzzle domain, along
with a possible instance with n = 8.

The problem types are tile and position, with fixed universes Utile = {no tile, t1, . . . , t8}
and Uposition = {p1, . . . , p9}. The logical constants no tile, t1, . . . , t8, p1, . . . , p9 have
fixed denotations, as they are not affected by the swap action. The predicate sym-
bol adjacent also has fixed denotation, which is provided extensionally in the spec-
ification of the initial problem state. In contrast, the logical constant blank, with
type 〈position〉, has fluent denotation, as has the unary function tile at, with type
〈position, tile〉.

20 background

;; Problem Domain

(define (domain n-puzzle)

(:types tile position)

(:constants no_tile - tile)

(:predicates (adjacent ?p1 ?p2 - position))

(:functions

(tile_at ?p - position) - tile

(blank) - position)

(:action swap :parameters (?p - position)

:precondition (adjacent ?p (blank))

:effect (and

(assign (blank) ?p)

(assign (tile_at (blank)) (tile_at ?p))

(assign (tile_at ?p) no_tile)))

)

;; Problem Instance

(define (problem example) (:domain n-puzzle)

(:objects t1 t2 t3 t4 t5 t6 t7 t8 - tile

p1 p2 p3 p4 p5 p6 p7 p8 p9 - position)

(:init

(adjacent p1 p2) (adjacent p2 p1)

(adjacent p1 p4) (adjacent p4 p1)

...

(adjacent p8 p9) (adjacent p9 p8)

(= (blank) p5)

(= (tile_at p1) t7) (= (tile_at p2) t2) (= (tile_at p3) t4)

(= (tile_at p4) t5) (= (tile_at p5) no_tile) (= (tile_at p6) t6)

(= (tile_at p7) t8) (= (tile_at p8) t3) (= (tile_at p9) t1))

(:goal (and

(= (tile_at p2) t1) (= (tile_at p3) t2)

(= (tile_at p4) t3) (= (tile_at p5) t4) (= (tile_at p6) t5)

(= (tile_at p7) t6) (= (tile_at p8) t7) (= (tile_at p9) t8)))

)

Figure 2.2: Functional STRIPS encoding of the n-puzzle problem, for n = 8. Fig-
ure 2.3 illustrates the corresponding initial and goal states.

2.4. computation 21

Figure 2.3: Graphical depiction of the initial and goal states of the 8-puzzle problem
corresponding to the FSTRIPS encoding of Fig. 2.2. By Haiqiao [Creative Commons
CC0 License], via Wikimedia Commons.

The initial and goal situations that correspond to the given encoding are depicted in
Fig. 2.3. The 9 positions are numbered left-to-right, top-bottom, from p1 to p9. The
blank constant is intended to represent which of the 9 positions pi is blank; for that
position, it will always hold that tile at(pi) = no tile. The action swap(p : position)
simply puts the tile on position p where the blank was.

Correspondence Between Functional STRIPS and PDDL. Let us briefly clar-
ify some possible confusion between the logical language we employ and the standard
usage in PDDL problems. PDDL objects are logical constants with fixed denotation.
Nullary PDDL functions are also logical constants, but might have fluent or fixed
denotation, depending on whether they are affected by some action or not. The
slightly misleading notion of PDDL constant is not related to logical constants, but
rather refers to PDDL objects which invariably exist in all problems of a certain PDDL
domain. In the n-puzzle example above, all PDDL objects, including the constant
no tile, are logical constants with fixed denotations; the fact that a PDDL object
is declared as a PDDL constant or not pertains to the distinction between PDDL
domain and PDDL instance, but is otherwise irrelevant to the logical formulation of
the problem. blank is also a logical constant (i.e. nullary function symbol), but in
this case with fluent denotation.

2.4 Computation

After presenting the classical planning model and some standard representational
languages, we now discuss the main computational question in planning: given that
planning is intractable, what are the most appropriate ways of computing plans?
We first sketch the main tractability results, then survey some of the computational
paradigms that have been proposed over the years, moving progressively towards
those which are directly related to our work.

2.4.1 The Complexity of Planning

The two elementary planning-related problems from a complexity perspective are:

1. Plan-Existence(P): Given a classical planning problem P , is there a plan
that solves the problem?

http://creativecommons.org/publicdomain/zero/1.0/deed.en
http://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File%3A8puzzle_example.svg

22 background

2. Plan-Length(P , k): Given a classical planning problem P and a non-negative
integer k, does a plan with at most k actions exist?

Both problems mirror the distinction between satisficing and optimal planning, and
their computational complexity depends on the exact modeling language that we
choose to represent the planning problem. Chapman (1987); Bylander (1994); Bäck-
ström and Nebel (1995); Erol et al. (1995) are some of the standard references in this
regard, and provide complexity results for problems encoded in STRIPS, SAS+, and
other formalisms; the following discussion is based on them. In the case of problems
expressed in propositional STRIPS, Plan-Existence is PSPACE-complete (Bylan-
der, 1994), even when highly restricted versions of the problem are considered. It
remains PSPACE-complete, for instance, when operators are allowed to have no more
than one precondition, and likewise when they can have only one effect. The above
assumes that the input of the computational problem is grounded; if instead ac-
tion schemas are used, the problem complexity moves one step up the ladder to
EXPSPACE-completeness, as the grounding can result in an exponential number of
actions (Ghallab et al., 2004).

Two results with strong practical implications that provide the basis for some of the
most successful heuristic techniques in planning (discussed below) are the following.
First, Plan-Existence is NP-complete for delete-free STRIPS, i.e. STRIPS where
actions have no delete effects. This is because in that setting, the number of atoms
satisfied in each state grows monotonically with the application of actions, and thus
the length of any plan is (polynomially) bounded by the total number of ground
atoms, making the problem lie within NP. Interestingly, what makes delete-free
Plan-Existence complete for the class NP is the interaction between add effects
and negative preconditions: if negative preconditions are also disallowed, then Plan-
Existence is polynomial (Bylander, 1994; Erol et al., 1995). This is of crucial
importance for the so-called delete-free relaxation of any planning problem.

Allowing function symbols in the language somewhat muddies the waters. Chapman
(1987) directly claims that “efficient general purpose planning with more expressive
action representations is impossible”. The model that Chapman has in mind is
general enough to encode any Turing machine as a planning problem, and includes
the possibility of creating novel objects (i.e. logical constants) through the application
of actions. This of course makes the state space of the search infinite and places the
problem well beyond what we have defined as the classical planning model. Erol et al.
(1991, 1992, 1995) and (Subrahmanian and Zaniolo, 1995, Sec. 2) discuss several other
undecidability results for planning with function symbols. In the case of Functional
STRIPS as defined above (Section 2.3.6), however, the universe of discourse in any
problem is finite and remains the same in all logical interpretations relevant for the
problem. Since the number of symbols in the language is also finite and fixed, the
number of possible interpretations will be finite, and hence checking the problem of
satisfiability of any given logical sentence is decidable, as one can simply enumerate
all possible interpretationsM and evaluate the truth value of the sentence underM.
We will see however that more efficient strategies exist for that.

Between Theory and Practice

The worst-case theoretical intractability of the classical planning problem might
sometimes seem at odds with the good observed empirical performance of actual

2.4. computation 23

planners when applied to some of the benchmarks which are standard in the com-
munity. This can always of course be attributed to these particular benchmarks
possessing some kind of structure that allows current planning techniques to deal
with them effectively, but not too much is known from a theoretical point of view in
that respect.

A starting point to address this issue is to understand what is the actual complexity of
the planning benchmarks when viewed as computational problems on their own, i.e.
when tackled not through a generic planner in some planning language, but through
ad-hoc algorithms. A number of researchers, for instance, discuss the complexity the
popular blocks-world domain along with several variations of it (Chenoweth, 1991;
Gupta and Nau, 1992; Slaney and Thiébaux, 2001). Gupta and Nau (1992) estab-
lish that (the nowadays most common variation of) blocks-world optimal planning is
NP-hard, while blocks-world satisficing planning is in P. More interestingly than the
particular classification is the fact that the authors are able to pin down the structural
reason of the theoretical hardness of optimal planning, which in this case is related to
the positive side-effects of actions. Helmert (2003, 2006b) extends the above thread
by providing analyses of the complexity of both satisficing and optimal planning for
several benchmarks from the International Planning Competitions, which interest-
ingly ranges from P to PSPACE. A similar analysis, this time of the approximation
properties of several competition benchmarks, is presented in (Helmert et al., 2006).
Helmert and Röger (2008), in turn, discuss the scalability limits of optimal-planning
search algorithms such as A∗ when almost perfect heuristics, i.e. where heuristic er-
ror is bound by an additive constant, are used. Their findings show that in many
standard planning problems, even when the heuristic error is small, an exponential
number of node expansions might be necessary when using such algorithms.

A more theoretical take on the above problem has focused on attempting to char-
acterize tractable subclasses of planning, defined either by syntactical or structural
properties of the problems (Bäckström and Klein, 1991; Jonsson and Bäckström,
1998; Giménez and Jonsson, 2008; Chen and Giménez, 2010), although these sub-
classes are often considered to be too narrow to include problems that are inter-
esting in practice. More recently, alternative analysis tools such as fixed-parameter
complexity analysis are starting to be used in an attempt to obtain finer-grained
parametrizations of the complexity of solving the classical planning problem (Back-
strom and Jonsson, 2011; Bäckström et al., 2012; Kronegger et al., 2013; Bäckström
et al., 2015).

2.4.2 Computational Paradigms in Planning

From the practical point of view, the problem of automated planning has been ap-
proached in two significantly distinct manners. Beginning with the General Problem
Solver (GPS; Newell et al., 1959), planning has been thought of as a problem-solving
activity best tackled through state-space search algorithms that find a sequence of
actions in some suitably-designed search space. At the same time, and beginning
with McCarthy’s Situation Calculus (McCarthy, 1963; Levesque et al., 1998; Reiter,
2001), planning has been conceptualized as a theorem-proving activity, where pred-
icate calculus is used on a rigorous axiomatization of the effects of actions on the
world to deduce a sequence of actions. In this thesis we focus mainly on the first
approach.

24 background

At the same time, the short history of planning is punctuated by certain shifts in the
type of computational approaches deemed as best suited to approach the problem
(Hendler et al., 1990; McDermott and Hendler, 1995; Weld, 1999; Minker, 2000;
Ghallab et al., 2004; Geffner and Bonet, 2013). The General Problem Solver, for
instance, computed plans through means-ends analysis, a form of search that relied
on an analysis of the differences between the current and the desired state of the
world — differences which depend on the operators that are available to modify that
state of the world. Strongly inspired by the way human cognition tackles problem-
solving (Newell and Simon, 1963), the GPS was a first attempt at abstracting away
the particular details of each problem to derive general principles.

The research carried out at the Stanford Research Institute during the late 1960s
and early 1970s resulted in several developments with lasting impact on the field of
AI.7 Besides the STRIPS modeling language (described in Section 2.3.2), the project
brought about the development of the Stanford Research Institute Problem Solver
(Fikes and Nilsson, 1971), a GPS-like planner in charge of controlling the Shakey
robot. The planner anticipated delete-free heuristics in that it ignored the delete
lists of operators to focus on operators that added logical clauses which would help
progress a search for a state that entailed the goal formula (Fikes and Nilsson, 1993).
Up until the mid-seventies, most planning systems usually proceeded by performing
some kind of search in state-space (Hendler et al., 1990).

The paradigm shifted with the advent of partial-order planning (alternatively called
least commitment planning or nonlinear planning), where plans are searched not in
state (world) space but in a space where search nodes represent partially-constructed
plans (Sacerdoti, 1975; Tate, 1977; McAllester and Rosenblitt, 1991; Weld, 1994).
Starting with an empty plan, plans are refined by adding actions and ordering con-
straints between them, until the set of actions and constraints in a search node can
be used to derive an actual plan. One of the advantages of least commitment plan-
ners is that they avoid unnecessary commitments to concrete (total) action order-
ings, sidestepping for instance the problems of state-space search with symmetries. A
good representative of partial-order planning was UCPOP (Penberthy and Weld, 1992),
which supported a fragment of the ADL language and was considered state-of-the-art
during the first half of the 1990s.

The second half of the 1990’s, however, witnessed the arrival of several novel plan-
ning techniques. On the one hand, Blum and Furst (1995) developed GRAPHPLAN,
which builds a polynomial planning graph of the problem from the initial state, and
then performs backward search from the goal using information extracted from the
graph to guide the search; if no valid plan is found, the planning graph is further
extended and the process repeated, in a strategy that resembles iterative-deepening
search (Weld, 1999). On the other hand, Kautz and Selman showed that determin-
ing whether a classical planning task has a plan of a certain horizon length can be
converted into a propositional formula in conjunctive normal form that is then fed
into a SAT solver, in what became known as the planning as satisfiability paradigm
(Kautz and Selman, 1992, 1996; Kautz, 2006).

At the same time, state-space planners regained the attention of the community

7 Which included, among others, the development of the A∗ algorithm (Hart et al., 1968) and of
the first automatic generation systems of both planning macros (Fikes et al., 1972) and abstraction
hierarchies (Sacerdoti, 1974). Fikes and Nilsson (1993) offer a brief but interesting retrospective
analysis.

2.4. computation 25

thanks to the development of automatic methods to generate domain-independent
heuristics from the problem description (McDermott, 1996; Bonet et al., 1997; Bonet
and Geffner, 2001b), quickly sparking the development of additional improvements to
the general idea (Hoffmann and Nebel, 2001a). The performance of heuristic search
planners, particularly in satisficing (i.e. non-optimal) planning, quickly exceeded that
of previous approaches, becoming to dominate the first editions of the International
Planning Competition. Most of the work in this thesis can indeed be framed within
the planning as heuristic search paradigm, whose main ideas we survey in the next
section.

Other paradigms have been explored as well, and although their empirical perfor-
mance has not always matched that of contemporary state-of-the-art techniques,
they represent interesting contributions and sometimes perform well for particular
problem classes and/or for non-classical planning models. These include planning as
CSP (Do and Kambhampati, 2001), planning as integer programming (Kautz and
Walser, 1999; Vossen et al., 1999) or planning as model checking (Edelkamp and
Reffel, 1999; Edelkamp and Helmert, 2001; Torralba et al., 2017), as well as recent
hybridizations of the above techniques such as the one presented in (Davies et al.,
2015).

2.4.3 Planning as Search

The founding assumption that underlies the planning as search paradigm is that the
classical planning problem can be cast as a path-finding problem over a directed graph
unambiguously defined by the planning problem specification, in which the nodes of
the graph represent the states of the planning problem, its (labeled) edges represent
the transitions between states induced by the application of planning operators, and
the task is to find a path between the node representing the initial state of the
planning task and any node representing a goal state. Figure 2.4 presents a possible
visualization of the state space of a blocks-world problem with three blocks. Clearly,
any path-finding algorithm can be used to solve the classical planning problem; the
main obstacle though is that the cost of standard path-finding algorithms such as
Dijkstra’s is polynomial in the size of the state space, and, as Fig. 2.4 suggests, the
size of the state space induced by a planning task is exponential in the number of
problem variables. Altogether, this means that standard algorithms will not scale
up unless some additional mechanism is in place to improve the search.

One such common mechanism to improve path-finding algorithms is to use informa-
tion about the goal nodes to guide the search. This is most often achieved by means
of heuristic functions, which aim at providing quick estimates of the (minimum) cost
h(s) of reaching a goal state from any given state s (Pearl, 1983; Edelkamp and
Schroedl, 2011). Algorithms making use of this technique are called heuristic search
algorithms, as opposed to blind search (also known as brute-force) algorithms, in
which the goal plays no role in providing search guidance. Common examples of
blind search algorithms include breadth-first search, depth-first search, uniform cost
search (Dijkstra’s algorithm) or iterative-deepening depth-first search, all possessing
distinct time and memory costs (Russell and Norvig, 2009). Examples of heuristic
search algorithms, on the other hand, include greedy best-first search, hill-climbing,
A∗ (Hart et al., 1968) or IDA∗ (Korf, 1985). Before describing them, however, we
turn to the question of how can heuristic functions be obtained.

26 background

Figure 2.4: Complete state space of a blocks world with three blocks and an atomic
move action. All edges are bidirectional, since any block move can can be immediately
reversed, and they are colored with the color of the moved block.

Heuristics are often computed from relaxations, i.e. simplifications of the problem we
want to solve, where certain restrictions have been lifted or reformulated in order to
make the relaxed problem easier, yet at the same time informative enough so that
a solution to this relaxed problem provides information that is relevant to solve the
original problem. A classic example is the well-known 8-puzzle problem and the Man-
hattan distance heuristic. For any particular configuration s of an 8-puzzle board,
a common heuristic choice is to set h(s) to the sum of the Manhattan distances
between each tile and its goal position; where the Manhattan distance between two
positions of the board is defined as the sum of the absolute differences of their Carte-
sian coordinates. In this case, the heuristic can be seen as the length of an optimal
solution for a relaxation of the original 8-puzzle, namely, the relaxation in which the
constraints on tile moves are loosened and tiles can be moved to adjacent positions
regardless of whether those positions are empty or not. Interestingly, it turns out
that in the 8-puzzle this heuristic never overestimates the true cost to a goal, since
no matter which optimal solution for the original problem we pick, it will necessarily
feature at least nk moves for each tile k, where nk is the Manhattan distance between
the position of the tile and its goal position (Russell and Norvig, 2009). Heuristics
that never overestimate the true minimum cost are called admissible; admissibility
is necessary e.g. to guarantee that solutions returned by A∗ are optimal.

2.4. computation 27

2.4.4 Classical Planning Heuristics

As a matter of fact, the key idea behind the planning as search paradigm is indeed to
derive heuristics in an automatic and domain-independent manner from relaxations
of the problem that are defined from the encoding of the problem in some model-
ing language. The prime example of this is the delete-free relaxation (McDermott,
1996, 1999; Bonet et al., 1997; Bonet and Geffner, 2001b), which has arguably had a
crucial impact on many of the developments in both satisficing and optimal heuristic-
based planning in the last two decades (Haslum and Geffner, 2000; Porteous et al.,
2001; Bonet and Geffner, 2001a; Hoffmann and Nebel, 2001a; Hoffmann, 2003; Vidal,
2004a; Haslum et al., 2005; Richter et al., 2008; Keyder and Geffner, 2008; Helmert
and Domshlak, 2009; Keyder et al., 2012; Domshlak and Nazarenko, 2013; Domshlak
et al., 2015). The delete-free relaxation of a STRIPS problem P , often denoted by
P+, is an abstraction of the original problem in which the delete effects of actions
are ignored. While finding an optimal plan in a delete-free problem is still NP-hard
(Bylander, 1994), two key properties of the relaxation, monotonicity and decompos-
ability, ensure that that a (possibly suboptimal) plan can be computed in a tractable
manner. Monotonicity refers to the fact that in a delete-free problem, the number
of atoms satisfied in any reachable state grows monotonically with the application of
new actions, since no atom is ever “deleted” from a state. This bounds plan length
by ensuring that in any plan for P+ every operator needs to appear no more than
once, since its effects are never undone. Decomposability ensures that a plan for a
conjunction p ∧ q can be obtained simply by concatenating a plan for p and a plan
for q.

Other options not based on the delete-free relaxation are also possible to obtain
heuristics in an automatic, domain-independent manner. One such option is the
critical-path family of heuristics hm (Haslum and Geffner, 2000), which computes
lower-bound estimates of the cost of achieving sets of atoms of size m, for some fixed
integer m > 1. In this case, the relaxation resides in the assumption that the cost of
reaching a large set of atoms is not larger than the cost of reaching its most expensive
subset of size at most m. Another option is to abstract some of the characteristics of
the problem away, for instance by ignoring certain atoms of the problem. In general,
abstraction heuristics build on a homomorphism α that maps states of the original
problem into states of an abstract state space, typically of smaller size. The heuristic
value hα(s) of any state s is then obtained as the minimum distance between α(s)
and any goal state in the abstract state space. Different ways of constructing the
homomorphism function lead to different heuristics of this class, which for instance
include pattern database heuristics (Edelkamp, 2001; Haslum et al., 2005, 2007) and
merge-and-shrink heuristics (Helmert et al., 2007).

A third option are (pseudo-) heuristics based on the notion of landmarks (Porteous
et al., 2001; Hoffmann et al., 2004), facts that must necessarily hold at some point
in any plan for the problem. Landmarks can be propositional formulas over the
problem language (most commonly single atoms, but the use of conjunctions and
disjunctions of atoms has also been explored), or over atoms use(a) that denote the
necessary use of some problem action a in any plan. The computation of landmarks is
in general intractable (Porteous et al., 2001), but several tractable strategies exist to
approximate useful sets of landmarks (Richter et al., 2008; Bonet and Helmert, 2010),
a simple one of which is to check if the delete-free relaxation of the problem without
one single action becomes unsolvable, in which case that action must necessarily be

28 background

part of any plan. The computation of landmarks is usually distinguished from their
use. Landmarks can e.g. be used in an heuristic-like fashion by setting h(s) to the
number of landmarks that have not been achieved in the way to the state s; this is
not a heuristic in the standard sense, since the value of h(s) is path-dependent, but
it works well in practice. Other, more sophisticated uses of landmarks exist (Helmert
and Domshlak, 2009). Critical-path, abstraction-based and landmark heuristics have
all been proven effective strategies to tackle classical planning problems.

Delete-Free Relaxation Heuristics

Because of their relevance to this thesis, we describe a bit more extensively some
heuristics based on the delete-free relaxation.

Definition 2.10 (Delete-free relaxation of a STRIPS problem). Let P be a STRIPS
problem P = 〈A,O, I,G〉. The delete-free relaxation of P , denoted by P+, is the
STRIPS problem P+ = 〈A,O+, I, G〉, where

O+ = {〈pre(o), add(o), ∅〉 | o ∈ O}

In words, the relaxation consists in ignoring the delete-effects of the actions. The
optimal cost of a plan for a delete-free relaxed problem P+ starting from any state s
is usually denoted by h+(s). As we just saw, in general the computation of h+ NP-
hard (Bylander, 1994), so the computation of a fast heuristic does typically involve
some further relaxation.8 Three of the most prominent options in that sense give
rise to the hmax, hadd and hFF heuristics. We briefly present the first two here, and
devote the next subsection to the hFF heuristic and the relaxed planning graph upon
which it builds, directly related to our work in Chapters 3 and 4.

The hmax and hadd heuristics (Bonet and Geffner, 2001b) approximate the value of
h+ by making assumptions on the cost c(Q, s) of achieving, from a given state s,
all atoms in a set Q (think of Q as an action precondition or problem goal). hmax

assumes that this cost is equal to the cost of achieving the most expensive atom in
the set, while hadd assumes that this cost is equal to the sum of the costs of achieving
each of the atoms in the set — both of them are “incorrect” assumptions, due to
the fact that actions have side-effects, and an action achieving a certain atom p ∈ Q
can help achieve another atom q ∈ Q as well, but they are tractable approximations
nevertheless.

Definition 2.11 (hmax and hadd heuristics). Let P = 〈A,O, I,G〉 be a STRIPS
problem, s a state in the corresponding state space, and Q ⊆ A a set of atoms. The
max-cost cmax(Q, s) of achieving Q from s is:

8 However, see (Betz and Helmert, 2009) for an interesting per-domain analysis of the actual
complexity of computing h+ for many of the standard classical planning benchmarks in a domain-
dependent fashion and how well (or poorly) are they approximated in practice by the heuristics used
by classical planners, or (Helmert and Mattmüller, 2008) for a similar analysis focused on admissible
heuristics.

2.4. computation 29

cmax(Q, s) =

0, Q ⊆ s
mino∈ach(q)

(
1 + cmax(pre(o), s)

)
, Q = {q}

maxq∈Q cmax(q, s), otherwise

where for any atom q ∈ A, ach(q) = {o ∈ O | q ∈ add(o)} is the set of operators that
achieve q. The hmax value of any state s is then

hmax(s) = cmax(G, s)

The add-cost cadd(Q, s) can be defined analogously by replacing the max function by
the sum function:

cadd(Q, s) =

0, Q ⊆ s
mino∈ach(q)

(
1 + cadd(pre(o), s)

)
, Q = {q}∑

q∈Q cadd(q, s), otherwise

And then,
hadd(s) = cadd(G, s)

Both hmax and hadd can be efficiently computed in time polynomial in the number
of fluents, e.g. through a Bellman-Ford-like procedure (Bonet and Geffner, 2001b).
The hmax heuristic is admissible, although usually not too informative, and can in
fact be seen as the special case for the hm heuristic in which m = 1 (Haslum and
Geffner, 2000). The hadd heuristic is not admissible, but is often in practice a much
better choice for satisficing planning, as it is more informed.

The Relaxed Planning Graph

Another option is to approximate h+ as the cost of a suboptimal relaxed plan (i.e.
a plan for the problem relaxation), which can be computed by a GRAPHPLAN-like
procedure (Blum and Furst, 1995) applied to the delete-free problem, through what
is known as the Relaxed Planning Graph (RPG) (Hoffmann and Nebel, 2001a).

Definition 2.12 (Relaxed planning graph). The relaxed planning graph RPG(P ,
s) of a given STRIPS problem P = 〈A,O, I,G〉 built from state s is a succession
P0, A0, P1, A1, . . . of interleaved atom (Pi) and action (Ai) layers, such that:

• Atom layer P0 = s contains all atoms which are true in the state s,

• action layer Ai = {o ∈ O | pre(o) ⊆ Pi} contains all actions applicable in the
previous atom layer Pi, and

• atom layer Pi+1 = Pi ∪
(⋃

a∈Ai
add(a)

)
, for i ≥ 0, contains all atoms from the

previous atom layer Pi plus those atoms achievable through the actions in Ai.

As the number of atoms is finite, this inductive definition must eventually reach a
fixpoint k where Pi = Pk for all i > k. The number of atom layers k is upper-bounded
by the (finite) number of atoms, which guarantees that an iterative implementation

30 background

unstack(a, b)

pick-up(c)

stack(a, c)

pick-up(b)

put-down(a)

stack(c, a)

stack(c, b)

stack(b, a)

stack(b, c)

on(a,b)

ontable(b)

ontable(c)

clear(a)

handempty

clear(c)

clear(b)

holding(a)

holding(c)

on(a,c)

on(c,a)

holding(b)

ontable(a)

on(c,b)

on(b,c)

on(b,a)

A0P0 P1 A1 P2 P3A2

B

A

C

Initial state

put-down(b)

pick-up(a)

unstack(c, b)

stack(a, b)

put-down(c)

Figure 2.5: A (partial) Relaxed Planning Graph corresponding to a blocks-world
instance with three blocks a, b, and c, and initial state as depicted. The illustration
alternates atom (Pi) and action layers (Ai); lines denote support both between atom
and actions and between actions and atoms. For readability, some actions have been
removed, actions are only depicted on the first layer they become applicable, and
atoms on the first layer where they become reachable.

of the above definition will eventually finish (in time polynomial with respect to the
number of atoms). Figure 2.5 depicts the relaxed planning graph of a toy blocks-
world instance with three blocks, assuming the standard 4-action STRIPS encoding
of the problem with actions stack, unstack, pick-up and put-down. P3 is a fixpoint
and contains all problem atoms. In general, Pi is an over-approximation of the set
of atoms that are reachable in i steps: if an atom is indeed reachable in i steps, it
will be in Pi.

The relaxed planning graph from a state s can be used to extract a relaxed plan
πRPG backwards from the first atom layer Ak that reaches all goal atoms, i.e. such
that G ⊆ Ak. Very roughly, the extraction algorithm selects for each goal atom
p ∈ G one of the actions o ∈ Ak−1 that achieves the atom; o is usually called a
supporter of p, and different selection mechanisms are possible when more than one
such supporter exists. Each selected supporter action o is tagged, and the algorithm
proceeds recursively by seeking a support for each of the precondition atoms in
pre(o). The procedure takes polynomial time, and once it is finished, the relaxed
plan πRPG can be built by linearizing all tagged actions, respecting the order given
by the first layer Ai in which they appear. Because multiple supporters for any
atom might exist, the resulting relaxed plan, as well as heuristics based on it, are
not unique. Figure 2.6 illustrates the extraction algorithm on the toy problem from
Fig. 2.5. Bryce and Kambhampati (2007) offer a clear and complete exposition of
different aspects of the RPG.

2.4. computation 31

unstack(a, b)

pick-up(c)

stack(a, c)

pick-up(b)

put-down(a)

stack(c, a)

stack(c, b)

on(a,b)

ontable(b)

ontable(c)

clear(a)

handempty

clear(c)

clear(b)

holding(a)

holding(c)

on(a,c)

on(c,a)

holding(b)

ontable(a)

on(c,b)

A0P0 P1 A1 P2

A

B C

Initial state Goal state

A

C

B

stack(a, b)

put-down(c)

Figure 2.6: Plan extraction phase for the relaxed planning graph depicted in
Fig. 2.5, assuming the goal is given by the set of atoms {on(a, c), on(c, b)}. Atom
layer P2 satisfies the goal, and hence the construction of the RPG need not pro-
ceed further. Action and atom supports chosen during the plan extraction phase
that proceeds backwards from layer P2 are highlighted, the rest are dashed and
greyed out. The relaxed plan that results from the plan extraction is π+ =
〈unstack(a, b), pick-up(c), stack(c, b), stack(a, c)〉

2.4.5 Informed Search Algorithms for Classical Planning

Within the planning as search paradigm, the use of heuristics that exploit informa-
tion about the goal to guide the search has proven key to tackle the combinatorial
explosion inherent to classical planning, particularly in satisficing planning, when
any (possibly suboptimal) plan is sought. Here, we provide a brief overview of best-
first search, one of the most common heuristic search schemas in classical planning
(Korf, 1998; Russell and Norvig, 2009). Best-first search is not a concrete search
algorithm, but a general algorithmic schema, the guiding principle of which is to ex-
pand nodes in the order given by a certain evaluation function f that estimates the
cost of the cheapest path running through a certain search node. Nodes with lower
value f(n) are thus expanded with higher priority. The general schema is depicted
in Fig. 2.7. All best-first algorithms iteratively select the node n from the open list
with lowest value f(n). If n is not a goal, it is expanded by generating all of its child
nodes and placing them in the open list, unless they had already been expanded, in
which case they are discarded, as there is no point in processing them again. This
last check requires the maintenance of a closed list (typically a hash table) in order
to keep track of all expanded nodes. Depending on the evaluation function f(n) and
on the type of optimality guarantees expected from the algorithm, it is sometimes
necessary to update nodes which were already on the open list, or even to reopen

32 background

Algorithm: best first search(problem Π)

root := make node(state=Π.s0, parent=None, action=None)

open := priority queue with node root as only element

closed := ∅
while open is not empty do

n := extract node with lowest f(n) value from open

if Π.is goal(n.state) then return make solution(n)

Add n.state to closed

foreach action a in Π.applicable(n.state) do
n′ := make node(state=Π.successor(n.state), parent=n, action=a)

if n′ is not in open nor in closed then insert n′ into open

else if n′ is in open with higher g value then
replace the node in open with n′

else if n′ is in closed with higher g value then
reopen the node

return Failure

Figure 2.7: The best-first search algorithmic schema.

nodes on the closed list by placing them back in the open list. In the finite search
spaces usually found in planning, all best-first search instantiations are complete,
meaning that they will find a solution whenever one exists.

Different instantiations of the evaluation function f(n) result in different concrete
search algorithms; f(n) usually combines the accumulated cost of reaching the node,
denoted by g(n), with the estimation of the cost to reach the goal given by the
heuristic function, h(n). In the classical A∗ algorithm (Hart et al., 1968), for instance,
the evaluation function is set to f(n) = g(n) + h(n). The plans returned by A∗ are
provably optimal as long as the heuristic function h is admissible, i.e. h(s) never
overestimates the minimum cost to reach a goal state from s. An interesting variant
of A∗ is Weighted A∗, in which the evaluation function is set to f(n) = g(n)+w ·h(n),
where w > 1 is some positive weight that trades off solution quality for computational
speed (Pohl, 1970).

More relevant to our work is greedy best-first search (GBFS, sometimes called pure
heuristic search; Korf, 1998; Russell and Norvig, 2009), where the accumulated cost
is ignored by setting f(n) = h(n), and thus the algorithm always expands the node
with lowest heuristic value. Greedy best-first search offers no optimality guarantees,
but typically runs significantly faster than A∗ or other best-first variations. For this
reason, GBFS is heavily used in the context of satisficing planning, although its
behavior is less well understood than that of A∗ — a drawback often observed in
practice being that GBFS can get stuck in large plateaus or node regions with equal
heuristic value (Hoffmann, 2001, 2002, 2005). Several recent publications tackle this
issue (Imai and Kishimoto, 2011; Xie et al., 2014b,c; Wilt and Ruml, 2015; Heusner
et al., 2017).

Many recent planners combine different heuristics through the use of multiple queues
(Helmert, 2006a), or use other techniques to enhance search performance such as

2.4. computation 33

helpful actions (Hoffmann and Nebel, 2001a; Richter and Helmert, 2009), delayed
node evaluation (Helmert, 2006a; Richter and Helmert, 2009), or the combination of
different search algorithms, as is the case with the FF planner (Hoffmann and Nebel,
2001a), which chains a fast but incomplete Enforced Hill Climbing search with a
greedy best-first search that is run only if the former is not able to find a plan.

2.4.6 Width-Based Search Algorithms

A recent approach to tackle the combinatorial explosion of planning as state-space
search which is orthogonal to the use of heuristic evaluators is that of width-based
search (Lipovetzky and Geffner, 2012). The basic idea in this type of search is
to focus the search on those states that are in some sense novel. Lipovetzky and
Geffner’s original formulation is focused on propositional planning problems, but we
here give a more general formulation. The precise definition of this general notion of
novelty requires a couple of preliminary definitions.

Definition 2.13 (State factorization). Let s be a state of a search problem. A state
factorization φ of size n is a function that maps s into a tuple φ(s) = 〈x1, . . . , xn〉,
where xi ∈ Di, the i-th feature of the factorization, is often denoted by φi(s), and
Di is the domain of that feature.

Definition 2.14 (Predecessor states). Let s0, s1, . . . be the ordered sequence of
states generated by some search algorithm and, for any state s ∈ S, let γ(s) be
the generation order of s, i.e. the smallest i such that s = si, or ∞, if s is never
generated by the search. The set of predecessor states of s in the search, denoted by
S↓s, is S↓s = {s′ ∈ S | γ(s′) < γ(s)}.

Based on the two previous definitions, we can now define the novelty of a state:

Definition 2.15 (Novelty of a state with respect to a search). Let φ be a state
factorization of size n, and let I ⊆ {1, . . . , n} be a subset of the features of the
factorization (identified by their indices). We say that a state s is I-novel in a
search if for all previously-encountered states s′ ∈ S↓s, there is always some feature
i ∈ I whose value in s′ does not match its value in s, i.e. φi(s

′) 6= φi(s). The novelty
w(s) of s is the size of the smallest set I such that s is I-novel. If no such subset
exists (i.e. because s is a duplicate state already in S↓s), then w(s) = n+ 1.

Thus, a state s has novelty w(s) = 1 if there is one index i ∈ {1, . . . , n} such that s
is the first state in the search in which the i-th feature has value φi(s). Otherwise,
w(s) = 2 if there are two different indices i, j ∈ {1, . . . , n} such that s is the first
state in the search in which both the i-th feature has value φi(s) and the j-th feature
has value φj(s) at the same time, etc.

Many of the works that explore the application of width-based search to classical
planning use the straight factorization that maps states to the values given by their
state variables (Lipovetzky and Geffner, 2012, 2014, 2017a,b; Katz et al., 2017).9 We
will denote this state-variable factorization by φ0. Other works such as (Lipovetzky

9 Often, in propositional planning, where state variables are binary, only those features that
have a true value are taken into account when defining the novelty of a state (Francès et al., 2017).

34 background

Algorithm: IW(problem Π, k ∈ N1)

if Π.is goal(Π.s0) then return 〈〉

root := make node(state=Π.s0, parent=None, action=None)

open := queue with node root as only element

while open is not empty do
n := extract shallowest node from open

foreach action a in Π.applicable(n.state) do
n′ := make node(state=Π.successor(n.state), parent=n, action=a)

if n′ is not in open then
if Π.is goal(n′.state) then return make solution(n′)

(1) if w(n′.state) <= k then insert n′ into open

return Failure

Figure 2.8: The IW(k) Iterated Witdh search algorithm: A breadth-first search
augmented with pruning of states with width higher than a fixed parameter k.

et al., 2015) or (Geffner and Geffner, 2015) use application-dependent factorizations.
Although in Chapter 5 we briefly look at how these non-standard (and possibly
domain-dependent) factorizations open up the prospect of improving the informa-
tiveness of the search, we restrict the following discussion of width-based algorithms
to this φ0 state-variable factorization, in which φ0

i (s) is the value taken by the (pos-
sibly multivalued) i-th state variable of the state.

From a practical standpoint, checking if a certain state has novelty w(s) ≤ k can be
computed in time and space O(nk), by storing for each value i ∈ {1, . . . , k} a global
novelty-i table that contains all tuples of size i of the feature values seen in the search
so far.

The IW(k) Algorithm

One straight-forward way to use the notion of novelty in a search is the IW(k) algo-
rithm (Lipovetzky and Geffner, 2012), a simple breadth-first procedure that prunes
those states that have novelty greater than k. Figure 2.8 shows a basic outline of the
algorithm.10 The closed list that is normally used in breadth-first search to detect
duplicates is no longer necessary, since by definition duplicate states have novelty
n+ 1 > k and will become pruned. Since the value of k is fixed, the computation of
the novelty of the newly-generated state in line (1), actually boils down to computing
whether the novelty of the state is either w(s) ≤ k or w(s) > k, which as we just saw
has polynomial cost. On the other hand, the maximum number of states with novelty
w(s) <= k is upper-bounded by O((n ·m)k), where n is the number of state variables
and m = |D| is the cardinality of the largest state variable domain. For the binary
domains that result from propositional planning, this can be seen to be O(nk). For
fixed k, IW(k) thus runs in time and space polynomial, unlike breadth-first search,
which requires time and space exponential in n. The pruning of IW(k) makes it in

10 Given that the notion of novelty bears no relation with the notion of goal, IW(k) can be
considered to all effects a blind search algorithm.

2.4. computation 35

general an incomplete algorithm, unless k = n, in which case IW(n) is actually the
breadth-first search algorithm. IW(k) can thus be seen as a way of approximating
breadth-first search by trading off completeness for memory and speed.

Interestingly, Lipovetzky and Geffner (2012) show that IW(k) with k ∈ 1, 2 is able
to find plans over many of the standard planning domains in low-polynomial time,
provided that the goal features a single atom only. For many of those domains, one
can prove theoretically that problems in the domains have a bounded and small width
w, independent of the instance size. This implies that they can be solved optimally
by running the IW(k) algorithm with k = w. A complete, iterative-deepening-like
version of IW(k), called IW, works by calling IW(k) iteratively for increasing values
of k = 1, 2, . . ., which guarantees that a plan will eventually found if it exists. IW,
however, is not optimal, as a call to IW(k) might succeed for a value of k lower than
the actual width of the problem. In problems with multiple atomic goals, however,
IW does not seem to be a particularly effective strategy to deal with the problem of
finding the right serialization in which goals need to be achieved. The performance
of extensions such as Serialized Iterated Width (SIW), where IW is called to achieve
one atomic goal at a time, is significantly below that of state-of-the-art planners
(Lipovetzky and Geffner, 2012). A more effective strategy for those cases seems to
be best-first width search, which we introduce next.

Best-First Width Search (BFWS)

The IW(k) algorithm is simply an effective exploration strategy, but as we saw it
makes no attempt at guiding the search towards goal nodes. This opens up the
possibility of combining its effective exploration mechanism with the goal-directed
guidance typically provided by standard planning heuristics. This has been recently
attempted in (Lipovetzky and Geffner, 2017a,b; Katz et al., 2017), yielding state-of-
the art results. An effective approach of this kind is best-first width search (BFWS;
Lipovetzky and Geffner, 2017a), a greedy best-first search (see Fig. 2.7) where the
node evaluation function f is a lexicographic combination of different metrics, the
primary of which is novelty-based. This means that the evaluation function has
form f(n) = 〈w, f1, . . . , fm〉, where w is some measure of novelty, and f1, . . . , fm are
arbitrary functions of the state in the search node, and the greedy best-first search
underlying BFWS expands always the node in the open list with smallest value of
w, breaking ties with f1, then with f2, and so on.

The best results for BFWS are obtained when the novelty is computed in a fine-
grained manner over certain partitions of the state space S. The approach usually
taken is to consider partitions induced by different heuristic functions. In general, for
any set F = {f1, . . . , ft} of arbitrary functions over states, we can define a partition of
S such that two states belong to the same equivalence class if and only if f(s) = f(s′)
for all functions f in F .

Definition 2.16 (Novelty of a state given set of functions). Let φ be a state factor-
ization of size n, and F = {f1, . . . , ft} a set of arbitrary functions defined over the
set of states S. The novelty wF (s) of a state s given the functions in F is the size
of the smallest subset of feature indices I ⊆ {1, . . . , n} such that for all predecessor
states s′ ∈ S↓s that belong to the same equivalence class than s (given f1, . . . , ft),
there is at least one feature index i ∈ I such that φi(s

′) 6= φi(s). If no such subset
exists (i.e. because s is a duplicate state already in S↓s), then w(s) = n+ 1.

36 background

This essentially restricts Definition 2.15 so that the novelty of s is computed not with
respect to all predecessor states, but only with respect to those predecessor states in
the same equivalence class than s, i.e. with the same fi-values than s.11 The set F
of functions used to partition the state space for the novelty computations is com-
pletely independent of the functions used with tie-breaking purposes to prioritize
search nodes, although often the same functions can be used for both purposes. In
BFWS(f4), for instance (Lipovetzky and Geffner, 2017a), a greedy-best first search
is used with evaluation function f(n) = 〈wF , hL, hFF〉, where F = {hL, hFF} contains
the landmark heuristic hL (Richter et al., 2008), and the FF heuristic hFF (Hoffmann
and Nebel, 2001a). This means that BFWS(f4) partitions the state space into equiv-
alence classes containing nodes with equal landmark and FF heuristic values, and the
novelty of each generated state s is computed taking only into account those prede-
cessor states that are in the same equivalence class as s. States with lower novelty
wF are expanded first, and ties are broken by prioritizing states with lower hL, first,
and states with lower hFF, second.12 Further variations of these ideas are discussed
in Chapter 5.

2.5 State of the Art in Classical Planning

The state of the art in classical planning is usually evaluated and discussed through
the International Planning Competitions, held in connection with the ICAPS confer-
ence at (somewhat uneven) time intervals since 1998, and articulated around differ-
ent tracks (deterministic, temporal, probabilistic, learning, etc.), of which the most
relevant to the work here presented is the deterministic track (McDermott, 2000;
Long et al., 2000; Bacchus, 2001; Long and Fox, 2003; Hoffmann and Edelkamp,
2005; Gerevini et al., 2009; Helmert et al., 2008; Coles et al., 2012; Vallati et al.,
2015a). Each competition usually evaluates planners on a set of benchmarks includ-
ing domains both new and from previous competitions. Planners are allowed certain
maximum time and memory limits, and a variety of evaluation criteria is used, in-
cluding runtime, plan quality and coverage (i.e. number of problems solved under
the given time and memory limits).

The first competitions (1998, 2000, 2002) saw heuristic search planners quickly be-
come the dominating paradigm for satisficing planning, chiefly embodied in the HSP

and FF planners (Bonet et al., 1997; Bonet and Geffner, 1998, 1999; Hoffmann and
Nebel, 2001a). HSP implemented a form of hill-climbing driven by the hadd heuristic
and coupled with restarts to escape from local minima. FF, in turn, implements a
two-phase search, using the hFF heuristic. The first phase is an incomplete enhanced
hill-climbing search that focuses on helpful actions only, i.e. actions which are part
of the relaxed plan that is obtained as a byproduct of the computation of hFF. The
second phase is a greedy best-first search driven by hFF as well. Hoffmann and Nebel
(2001b) conduct an empirical comparison between HSP and FF, and conclude that
the superior performance of FF is largely due to the combined use of enhanced hill-
climbing and helpful actions, rather than to the difference in heuristics. A different
planner not based on the ideas of planning as heuristic search but that also made

11This partitioning is reminiscent to the type-based system discussed in (Lelis et al., 2013; Xie
et al., 2014b), although their use is different.

12 In practice, and due to the high cost of tracking and computing state novelty values higher
than k = 2, the novelty values that are taken into account for the lexicographic ordering of nodes are
usually discretized into w(s) = 1, w(s) = 2 or w(s) > 2; sometimes even only w(s) = 1, w(s) > 1.

2.5. state of the art in classical planning 37

use of Blum and Furst’s planning graph and which showed top performance was LPG
(Gerevini and Serina, 2002). LPG performs a form of randomized local search over a
search space of partial plans defined by subgraphs of the planning graph, guided by
heuristics that take into account the number of inconsistencies in any such partial
plan.

Subsequent editions of the international planning competition saw the continued
domination of heuristic search planning in the satisficing planning tracks. The
top contender of the 2004 edition was the Fast-Downward planner (FD, Helmert,
2006a), which used an automatic transformation of propositional planning problems
into a SAS+-like multivalued representation, and combined the use of causal graph
heuristic (Helmert, 2004) with different advanced techniques such as multiple search
queues (Röger and Helmert, 2010), helpful actions (preferred operators) (Hoffmann
and Nebel, 2001a; Richter and Helmert, 2009) and delayed or lazy node evaluation
(Richter and Helmert, 2009; Helmert, 2006a). Over the years, Fast-Downward has
grown into a heavily engineered and extensible codebase, offering a large number of
search and heuristic strategies, and is often taken as the starting point from which
novel ideas are tested. The prime example of this is the LAMA planner, winner of
the 2008 competition, which builds on FD and crucially combines the hFF heuristic
with the novel landmark heuristic hL (Richter et al., 2008), by using a greedy best-
first search with multiple search queues; LAMA also uses the abovementioned helpful
actions and delayed node evaluation techniques, and once a first solution is found,
triggers a series of weighted A∗ search with decreasing weights, pruned by the cost
of the best solution so far, to find plans with lower cost.

The last two competitions, in 2011 and 2014, have witnessed the raise of portfolio
planners, which use several strategies to combine the often complementary strengths
of existing techniques for increased performance. The winner of the 2011 compe-
tition, for instance, was the Fast Downward Stone Soup planner (Helmert et al.,
2011), which uses all the available time to run independently, in sequence, a num-
ber of different planning strategies, among which the landmark-based BJOLP planner
(Domshlak et al., 2011), the LM-cut heuristic (Helmert and Domshlak, 2009) and
merge-and-shrink abstractions (Helmert et al., 2007). The exact strategies used and
amount of runtime allowed to each strategy was statically determined from their
respective performances on a set of training instances, which in this case included all
suitable instances from previous competitions. The winners of the 2014 competition,
the IBaCoP2 and IBaCoP2 portfolio planners (Cenamor et al., 2014), similarly select
a subset of options among a pool of existing planners, but employ more sophisticated
models to predict planner performance, based on performance on past competition
instances as well. Portfolio techniques are used in several areas and make up an
interesting field of research in themselves, but they do not provide particularly novel
insights into the ways in which the classical planning problem can be addressed, and
as such we will not be concerned with them in this work.

Other planners employing interesting approaches that have been developed over
the years include YAHSP and its various extensions (Vidal, 2004a,b, 2011), PROBE

(Lipovetzky and Geffner, 2011), Mercury (Katz and Hoffmann, 2014), Jasper (Xie
et al., 2014a) and Madagascar (Rintanen, 2014). YAHSP uses polynomial-time delete-
free relaxed plans as a lookahead mechanism, by considering how far one can go
applying the relaxed plan as if it was a normal plan, and inserting that state in the
search queue of a standard heuristic search algorithm. PROBE uses a more sophis-

38 background

ticated but still polynomial-time strategy to compute, without search, sequences of
actions which in practice turn out to be correct plans quite frequently, and when
they are not, can be used as a lookahead strategy in a similar fashion as in YAHSP.
Mercury uses the ideas of partial delete relaxation embodied in the red-black plan-
ning approach (Katz et al., 2013), which roughly consists on ignoring only some of
the delete effects, namely, those that affect certain variables of the problem, in order
to compute the heuristic. Jasper aims at dealing more effectively with heuristic
plateaus, i.e. large regions of the state space where the heuristic function is unable
to discriminate between search nodes. To achieve that, it improves the LAMA planner
with two mechanisms: a local search that is triggered whenever the global greedy
best-first search is unable to produce improvements for a certain number of steps, and
a type system that partitions search nodes according to different heuristic values and
helps diversify the search (Xie et al., 2014b). Finally, Madagascar is a performant
SAT-based planner that implements several enhancements to the classical reduction
of planning to SAT, including more compact encodings that result in shorter hori-
zons (Rintanen et al., 2006) and planning-specific SAT-solving heuristics (Rintanen,
2012).

As mentioned in Section 2.4.6, another recent development which is directly related
to the work we present in this thesis and which achieves state-of-the-art performance
is the best-first width search algorithmic schema (BFWS; Lipovetzky and Geffner,
2017a), which builds on the notion of novelty to perform an effective exploration
of the state space. The BFWS(f4) algorithm by Lipovetzky and Geffner presented
above, for instance, solves 149 instances out of the 280 International Planning Com-
petitions (IPC) instances on which it is tested, compared to 171 solved by LAMA or
198 by Jasper (Lipovetzky and Geffner, 2017a). Other BFWS variations work even
better. BFWS(f5), which will be discussed in Chapter 5, solves 192 instances, outper-
forming both LAMA and Jasper, while the Dual-BFWS strategy solves 225 instances,
significantly above the 198 instances solved by the IBaCoP2 portfolio planner. In-
terestingly, the polynomial flavor of novelty-k measures for low values of k can be
additionally exploited to devise (incomplete) variations of the basic greedy-best first
search in which nodes with novelty higher to a certain threshold are pruned. This
turns out to be a surprisingly powerful search schema for standard classical planning
benchmarks: Lipovetzky and Geffner (2017b) report that over a large benchmark
base comprising 1676 instances from all International Planning Competitions, vari-
ations of this search schema solve as much as 1518 instances, compared to 1504
instances solved by Mercury or 1556 by Jasper. This is an astounding result, taking
into account that these variations run in polynomial time.

2.6 Constraint Satisfaction and Satisfiability

Constraint satisfaction and Boolean satisfiability are both powerful frameworks to
represent and solve a wide range of combinatorial problems. Constraint satisfac-
tion is primarily concerned with the representation and solution of problems where
an assignment of values to variables consistent with certain constraints is sought
(Montanari, 1974; Mackworth, 1977), whereas satisfiability is concerned with finding
models of propositional formulas (Biere et al., 2009). In this section we briefly define
and discuss the satisfiability (SAT) and constraint satisfaction problems (CSP), with
an emphasis on those concepts related to CSP that are related to the work we present
in Chapters 3 and 4. For a more detailed account, we refer the interested reader to

2.6. constraint satisfaction and satisfiability 39

(Dechter, 2003; Rossi et al., 2006; Biere et al., 2009; Russell and Norvig, 2009).

Definition 2.17 (Constraint Satisfaction Problem). A constraint satisfaction prob-
lem (CSP) Π = 〈X,D,C〉 consists of a finite set of variables X = {x1, . . . , xn}, a
domain D(x) for each variable x ∈ X, containing the values allowed for that variable,
and a set of constraints C = {C1, . . . , Cm}. Each constraint Ci = 〈Si, Ri〉 is made
up of a scope Si and a relation Ri. The scope is a tuple of variables Si = 〈x1, . . . , xk〉
affected by the constraint, while the relation is a subset Ri ⊆ D1 × · · · × Dk. The
arity of the constraint is the size of its scope.

A complete assignment is a mapping σ from each variable xi to a value σ(xi) ∈
D(xi). An assignment σ satisfies a constraint with scope 〈x1, . . . , xk〉 and relation R
if 〈σ(x1), σ(x2), . . . , σ(xk)〉 ∈ R. A solution to a constraint satisfaction problem is a
complete assignment σ that satisfies all the constraints of the problem.

Example 2.18 (Vertex Coloring). As an illustration of the above definition, con-
sider the k-vertex-coloring problem, where we are given an undirected graph
G = 〈V,E〉 and k colors c1, . . . , ck, and are required to find a coloring of each one
of the graph nodes so that no two adjacent nodes are painted with the same color.
Assuming that V = {v1, . . . , vn}, the problem can be cast as a constraint satisfaction
problem Π = 〈X,D,C〉 with set of variables X = {x1, . . . , xn}, each of which having
domain D(xi) = {c1, . . . , ck}, and a set of constraints C that contains one constraint
xi 6= xj for each every (vi, vj) ∈ E. Each variable xi is intuitively meant to repre-
sent the color assigned to vertex xi in a particular vertex coloring; “xi 6= xj” can be
read as an intensional representation of an actual constraint with scope 〈xi, xj〉 and
relation {〈a, b〉 | a ∈ D(xi) ∧ b ∈ D(xj) ∧ a 6= b}. A possible solution to the problem
Π, if it exists, will simply be an assignment of colors to each variable.

Closely related to constraint satisfaction, the problem of Boolean satisfiability can
be succinctly defined as a CSP with Boolean variables and clausal constraints. This
definition, however, obscures the fact that SAT and CSP have vastly different origins
and historical developments within the field of artificial intelligence, although recently
the connections between both of them have begun to be explored (Walsh, 2000;
Bacchus, 2007; Ohrimenko et al., 2009; Stuckey, 2010). The satisfiability problem
consists in finding an assignment to a set of Boolean variables that satisfies a given
propositional formula, typically given in conjunctive normal form:

Definition 2.19 (Boolean Satisfiability Problem). Let φ be a propositional formula
over a set of variables X = {x1, . . . , xn}. The Boolean satisfiability problem consists
in finding whether there is a truth assignment T , i.e., a substitution T : X 7→
{true, false}, such that the result of replacing the variables in φ as dictated by T
evaluates to true according to the standard semantics of propositional logic. If φ is
restricted to be in conjunctive normal form (CNF), i.e. is a conjunction of clauses,
where a clause is a disjunction of literals, then the problem is often named CNF-
SAT; if all clauses in the formula are restricted to have at most k literals, then the
problem is named k-SAT.

Both SAT and CSP are NP-complete problems.13 Furthermore, there is a close
relation between satisfiability and (bounded) planning: the problem of finding a plan

13 SAT was indeed the first problem to be proven NP-complete (Cook, 1971; Karp, 1972; Levin,

40 background

of bounded polynomial size, also NP-complete, can be encoded as a SAT problem
(Kautz and Selman, 1992, 1996) in a rather natural manner; as a matter of fact,
this is precisely the approach followed by some state-of-the-art planners (Rintanen,
2012, 2014). Similar compilations of planning to constraint satisfaction have also
been explored, although with less success (Do and Kambhampati, 2001; Nareyek
et al., 2005). Both SAT and CSP have witnessed very significant progress over the
last decades. Thanks to developments such as the DPLL algorithm or conflict-driven
clause learning (Davis and Putnam, 1960; Marques-Silva et al., 2009), SAT solvers
now are able to tackle problems with over a million of variables and several million
clauses (Gomes et al., 2008).

Progress in CSP, on the other hand, has focused in the exploration of efficient con-
straint propagation methods for several types of constraints, of different notions of
local consistency and of variable and value ordering heuristics, among others (Rossi
et al., 2008). Most relevant to the subject of this thesis, a key concern in constraint
satisfaction that is less pressing in Boolean satisfiability (since CNF, a normal form
itself, is the widely-accepted, low-level representation of choice for SAT instances),
is modeling (Freuder, 1999; Smith, 2006). Issues related to the computational value
of different representations of the same problem have been thoroughly studied, and
powerful constraint modeling languages (e.g. Savile Row, Essence, Zinc, MiniZinc)
are actively being developed and improved (Frisch et al., 2007; Nethercote et al.,
2007). In the remainder of this section, we focus on some other constraint satisfac-
tion concepts related to the work presented in this thesis.

A key idea for scaling up efficiently in the face of the worst-case theoretical hardness of
the constraint satisfaction problem is that of local consistency, which allows standard
search methods to be combined with a form of inference called constraint propagation.
For that, the problem constraints are used not only passively (i.e., to check whether a
given assignment satisfies them), but also actively, to prune the set of possible values
that is considered feasible for each variable at any given moment during the search.
For instance, assume we have two variables x and y both with domain {1, 2, 3}, and
a constraint x = y + 1. We can infer from that constraint that value 1 will never
be possible for variable x, and likewise for value 3 and variable y. Those values are
said to be locally inconsistent with the constraint, and can be safely pruned from the
domains under consideration without affecting the set of solutions of the problem.
This local consistency checks can normally be performed efficiently, and their cost is
usually largely compensated by the reduction in the amount of search necessary to
find a solution.

Different notions of local consistency are possible, each with different costs and prun-
ing power. A variable xi, for instance, is said to be node consistent with respect to
a unary constraint iff all values in D(xi) satisfy the constraint. In turn, xi is said
to be arc consistent with respect to a binary constraint with scope 〈xi, xj〉 iff for
every value v ∈ D(xi), there is one value v′ ∈ D(xj) such that 〈v, v′〉 satisfies the
constraint. Arc consistency can be generalized to higher-arity constraints (general-
ized arc consistency). A CSP is arc consistent if each of its variables is arc consistent
with respect to all constraints that involve it. Enforcing arc consistency on a CSP
usually involves iterating over all variables and pruning inconsistent values from their
domains until either a fixpoint is reached and the problem is arc consistent, or some
domain becomes empty, in which case the problem is unsolvable (Mackworth, 1977).

1973).

2.6. constraint satisfaction and satisfiability 41

In general, constraints can be represented extensionally, by listing all tuples con-
tained in its relation R, or intensionally, by means of some procedure that encodes
the characteristic function of R, i.e. is able to tell whether a given tuple belongs to
R or not. Unary and binary constraints are the most common in constraint mod-
eling, but another key aspect of the field is the use of global constraints. A global
constraint is a constraint with arbitrary arity that usually affords an elegant and
compact way of modeling some recurrent concept. A quadratic number of binary
constraints xi 6= xj , for instance, can be conveniently encoded with a single global
alldiff(x1, . . . , xn) constraint, that enforces that no two variables take the same
value. Other popular global constraints include different sorts of cardinality, packing
and scheduling constraints (Régin, 2011).

Global constraints are advantageous not only because they allow more compact and
elegant models, but because at the same time they allow a more effective use of the
structure of the problem. This is done through the use of specialized propagation
algorithms that take into account the structure and semantics of each particular
constraint. Enforcing arc consistency on an arbitrary constraint of arity k has worst-
case complexity O(kdk), where d is the maximum size of the involved domains (Rossi
et al., 2008). In contrast, for a simple constraint such as x ≤ y, it can be easily
established that all values that lie outside the range [min(D(x)),max(D(y))] are arc
inconsistent, and thus can be pruned more much more efficiently. For a more complex
constraint such as alldiff(x1, . . . , xn), not only arc consistency can be established
in O(k2d) (van Hoeve, 2001), but equally important, enforcing arc consistency on
such an all-different constraint achieves a stronger pruning than enforcing it over
its binary decomposition into a quadratic number of inequality constraints xi 6= xj .
Indeed, arc consistency over the binary constraints will find no inconsistency when all
variables have domain D(xi) = {0, 1}, yet it is known that such constraints cannot
be jointly satisfied if |∪ni=1D(xi)| < n.

Chapter 3

Planning with Function Symbols

3.1 Motivation

The main contribution of Functional STRIPS (FSTRIPS) is the extension of the
STRIPS language with function symbols, which might appear a minor change, but en-
tails significant consequences for both modeling and problem solving (Geffner, 2000).
As shown by Geffner, function symbols allow encodings with fewer ground actions
and result in state representations that are closer to those of specialized solvers.
FSTRIPS representations are often more compact and readable than their STRIPS
counterparts. Figure 3.1, for instance, presents a FSTRIPS encoding of the classical
blocks-world, where a single action schema move(b, x) suffices to capture the dynam-
ics of the problem. Standard STRIPS encodings, in contrast, require different action
schemas to represent moves of blocks from and to the table, or require extra fluents
to encode moves as a sequence of pick and place operations.

Easing the modeling task is but one of the objectives of modeling languages. Another
is capturing problem structure in a way that can be exploited by solvers (Rintanen,
2015). In this chapter, we argue that function symbols are convenient for both
objectives. The use of functions captures some key constraints that are usually
obscured by propositional encodings, but which are useful to derive more informed
heuristics. Even if a planner designer is not willing to offer support for functions,
the additional expressiveness allowed by functions remains attractive, and problems
making use of them can be automatically translated into function-free encodings.
This, however, does not mean that dealing with the translation is bound to be
computationally as easy as dealing with the original encoding (Bäckström, 1994),
which is precisely one of the main messages of this chapter.

An example. To illustrate, consider a simple planning problem involving a set of
integer variables x1, . . . , xn plus two actions per each variable xi: one increases the
value of xi by one, the other one decreases it also by one, provided the value remains
within some interval [0,m]. Initially, all variables have value 0, and the goal is to
achieve the inequalities x1 < x2 < x3 < . . . < xn. We name this problem counters.
Because of the use of integers and arithmetic relations, it is not straightforward to
represent counters in a propositional language. A possible PDDL encoding is shown
in Fig. 3.2.1 In this encoding, there is one atom val(xi, k) representing each equality

1 See also the next chapter (Fig. 4.1) for a simpler encoding in (first-order) PDDL with existential
quantification.

43

44 planning with function symbols

types place, block subtype of place

objects

T: place

b1, . . . , bn: block

predicate clear(x: place)

function loc(b: block): place

action move(b: block, x: place)

prec b 6= x ∧ loc(b) 6= x ∧ clear(b) ∧ clear(x)
effs loc(b) := x

clear(loc(b))
x 6= T → ¬clear(x)

init loc(b1) = T, loc(b2) = b1, . . . clear(b2), . . .
goal loc(b1) = b2 ∧ loc(b2) = T ∧ . . .

Figure 3.1: Functional STRIPS encoding of the classical blocks-world domain (sim-
plified syntax). The encoding requires one single action schema move that moves in
one step any given block b to the given place x, which might be another block or the
table, represented here with the constant T .

xi = k, and one atom lt(xi, xj) representing each (strict) inequality xi < xj . Keeping
the intended semantics of the latter requires a linear number of conditional effects.
The goal is expressed by the conjunction of all atoms lt(xi, xi+1), for i ∈ [0, n− 1].

From a modeling point of view, counters illustrates how Functional STRIPS allows
simpler encodings. Figure 3.3 shows a FSTRIPS encoding of the same problem.
Each variable xi is represented by the term val(ci) (a multivalued state variable).
No other state variables are needed, and no logical symbols besides val and the
constants c1, . . . , cn, as the goal formula uses the standard symbol “<”. The increase
of a variable can be directly represented with a single effect val(c) := val(c) + 1,
fully supported by the language. The encoding has 2n ground actions (including
increment and decrement actions), whereas the propositional PDDL encoding has
2nm2 ground actions, of which 2nm are potentially applicable in some state.

From a computational point of view, counters illustrates the shortcomings of propo-
sitional heuristics such as those based on the Relaxed Planning Graph (RPG), in-
troduced in Chapter 2. It is easy to see that the atom layer P1 of the RPG for the
propositional encoding of counters makes true each of the goal atoms lt(xi, xi+1),
because only a single increment is needed to make each such atom true. The initial
state s0 of the problem thus has an hmax heuristic value of 1, and an hFF value of n−1;
the shortest plan for the problem, however, has h∗(s0) = 1+2+· · ·+n−1 = n(n−1)/2
steps. What is interesting is not the failure of the heuristics to provide a better ap-
proximation (they are, after all, heuristics), but the fact that their inaccuracy is
due to the the assumption implicit in the RPG that goal atoms such as lt(x1, x2)
and lt(x2, x3) are independent, while they are not. Their dependence, however,

3.1. motivation 45

types counter, int

objects

x1, . . . , xn: counter

i1, . . . , im: int

predicates

val(x: counter, v: int)

lt(x: counter, y: counter) ;; i.e. val(x) < val(y)
S(v0: int, v1: int) ;; The successor relation, v1 = v0 + 1

action increment(x: counter, v0: int, v1: int)

prec val(x, v0) ∧ S(v0, v1)

effs ¬val(x, v0)

val(x, v1)

∀y ∈ counter (x 6= y ∧ val(y, v0))→ lt(y, x)
∀y ∈ counter (x 6= y ∧ val(y, v1))→ ¬lt(x, y)

init val(x1, 0), val(x2, 0), . . ., val(xn, 0)
goal lt(x1, x2) ∧ . . . ∧ lt(xn−1, xn)

Figure 3.2: Fragment of a PDDL encoding of the counters domain (simplified
syntax), where n variables take values in the range [0..m]; the increment action
increases the value of a single variable by one.

type counter

objects c1, . . . , cn: counter

function val(c: counter): int[0..m]

action increment(c: counter)

prec val(c) < m

effs val(c) := val(c) + 1

init val(c1) = 0, val(c2) = 0, . . ., val(cn) = 0

goal val(c1) < val(c2) ∧ . . . ∧ val(cn−1) < val(cn)

Figure 3.3: Fragment of a FSTRIPS encoding of the counters domain (simplified
syntax), for comparison with the PDDL encoding in Fig. 3.2.

46 planning with function symbols

is represented, in the propositional encoding, in the delete effects of the increment
and decrement actions, and is therefore lost in the relaxation. If we analyze this
type of delete-free relaxation heuristics over more expressive encodings making use
of numeric (i.e. multivalued) state variables (Rintanen and Jungholt, 1999; Hoff-
mann, 2003; Coles et al., 2008; Helmert, 2009; Holte et al., 2014), a different picture
emerges, in which the delete-free nature of the heuristic is not the only responsible
for its lack of accuracy, but the loss of logical structure in the move from first-order
atoms such as val(c1) < val(c2) to propositional atoms such as lt(x1, x2) also plays
a major role.

3.2 Overview of Results

In this chapter, we analyze the relaxed planning graph from a logical point of view,
to gain a better understanding of the sources of inaccuracy of RPG-based heuristics.
These are related not only to the absence of delete effects, but also to the assumption
that atoms in a conjunction are independent, which is justified only in a propositional
setting. The key idea is how to determine whether a formula over the problem
language is reachable in a certain layer of the RPG. Accounts of the RPG inspired
by the propositional nature of its original formulation focus mostly on formulas that
are conjunctions of atoms, and assume that they are reachable in a layer if each of the
atoms is reachable in that layer. This is tractable and works well for propositional
formulas, but is too weak an inference for first-order formulas: with this mechanism,
a formula such as x < 0 ∧ x > 0 cannot be detected as unsatisfiable.

We present an alternative, first-order account of the RPG which circumvents this in-
dependence assumption and embodies a stronger inference mechanism. Our account
explicitly identifies each layer of the RPG as encoding a set of reachable first-order
interpretations over the problem language. A formula is then considered reachable in
some RPG layer if at least one of the interpretations represented by that layer satisfies
the formula according to the standard notion of first-order satisfiability. This is an
elegant approach, and we show that it can be easily mapped into a constraint satis-
faction problem. The downside is that the operation becomes worst-case intractable,
but we empirically show that in practice the constraint satisfaction problems are sim-
ple enough to be efficiently solvable,2 and that in many cases (which we illustrate)
the stronger inference results in more informed heuristics, whose use in standard
search algorithms pays off for their increased cost. Additionally, we show how the
inference mechanism in our first-order relaxed planning graph can be approximated
in polynomial time by using standard constraint satisfaction techniques, trading off
informativeness for speed. The first-order RPG that we present and its mapping into
a constraint satisfaction problem allow for a number of language extensions, such as
the use of global constraints in the problem definition, which are interesting both
from a modeling and from a computational point of view. We also illustrate this.

While the importance of more expressive planning languages for modeling is well-
known (Rintanen, 2006, 2011; Gregory et al., 2012; Rintanen, 2015; Ivankovic and
Haslum, 2015), our emphasis is mainly on the computational value of such extensions,
and their use for understanding the limitations and possible elaborations of current
heuristics. Some of the language extensions that we consider, however, such as the
use of global constraints (van Hoeve and Katriel, 2006) are novel in the context of

2Rintanen (2006) makes a similar argument.

3.3. value-accumulating relaxed planning graph 47

planning and interesting on their own. Our technique also offers support for the
use of fixed symbols whose denotation is given intensionally, by means of external
procedures implemented in some programming language. This feature was already
present in the first definition of Functional STRIPS (Geffner, 2000) and has recently
gained attention again under the name of semantic attachments (Dornhege et al.,
2009; Bernardini et al., 2017). Yet, while the planning language accommodates global
constraints and semantic attachments, and the planning heuristics accommodate
forms of constraint propagation, we hope to show that these are not add-ons but
pieces that fall into place from the logical analysis of the language and the heuristic
computation.

The remainder of the chapter is organized as follows. In Section 3.3 we define a
generalization of the RPG to first-order languages that follows the so-called value-
accumulating semantics (Gregory et al., 2012; Katz et al., 2013) and is based on the
assumptions of monotonicity and decomposability. In Section 3.4 we propose an alter-
native, first-order relaxed planning graph, where layers of the graph are understood
in terms of sets of reachable first-order interpretations, and where the assumption of
decomposability is dropped. We give the technical details of the CSP-based compu-
tation of this first-order RPG in Section 3.5, and in Section 3.6 discuss how constraint
satisfaction techniques can be used to obtain an approximate, polynomial version. In
Section 3.7 we present some interesting language extensions easily supported by the
first-order RPG, and in Section 3.8 we evaluate experimentally all of the previous
ideas. We conclude the chapter in Section 3.9 with a discussion of our contribution
and of related work. Most of the work presented in this chapter has been previously
published in (Francès and Geffner, 2015; Ferrer-Mestres et al., 2015; Francès and
Geffner, 2016a).

3.3 Value-Accumulating Relaxed Planning Graph

Heuristics based on the relaxed planning graph, such as hmax and hFF, can be gen-
eralized to languages featuring finite-domain, multivalued state variables plus ar-
bitrary formulas in a rather straight-forward manner, through the so-called value-
accumulating semantics (Hoffmann, 2003; Gregory et al., 2012; Katz et al., 2013;
Ivankovic et al., 2014).3 In the value-accumulating relaxation, each time an applica-
ble action reaches a new value for a certain state variable, this value is accumulated
into a set of previously-reached values. Thus, each propositional layer Pk of the
relaxed planning graph encodes a set xk of values that are reachable in k steps for
each state variable x. This preserves the key property of monotonicity, because sets
xk grow monotonically as actions supporting new values for x become applicable.

The value-accumulating semantics is often discussed in the context of multi-valued
languages where atoms are restricted to have the form x = c or x 6= c, with x being a
variable and c an integer value. In that context, an atom x = c is said to be satisfied
in RPG layer Pk if c ∈ xk, i.e. if c is one of the values that have been reached in

3 Hoffmann (2003) is chiefly concerned with the generalization of the delete-free relaxation to
problems featuring numeric variables and a limited number of arithmetic expressions over them;
Katz et al. (2013) and Ivankovic et al. (2014) also discuss numeric variables, but they limit their
usage to atoms of the form x = v, where x is a variable and v an integer value. In contrast, Gregory
et al. (2012) presents a generalization of delete-free relaxation to any sort of (finite-domain) data
type, which is valid not only for integer and real variables but also for other data types such as sets,
intervals, etc. for which some kind of value-accumulation operation can be defined.

48 planning with function symbols

that layer; its negation x 6= c is satisfied in that same layer if there is some element
c′ 6= c such that c′ ∈ xk. Such notion of satisfiability can then be used to define the
sets φk ⊆ {>,⊥} of possible truth values of arbitrary formulas φ and from them, the
sets of possible values xk+1 for the next propositional layer Pk+1. We next define a
generalization of this setting to arbitrary variable-free terms, atoms and formulas,
in the context of Functional STRIPS,4 which basically requires to define how such
entities are considered as reachable in any given layer of the RPG.

Definition 3.1 (Reachable Denotations of a Term). Let P be a FSTRIPS problem
with variable-free language L(P), and t a term over L(P). The set tk of possible de-
notations of t in atom layer Pk of the RPG relaxed planning graph can be inductively
defined as follows:

• Assume t is a constant c. If its denotation is fixed, then ck = {c∗}; if it is
fluent, then by definition, c is a state variable x, in which case ck is directly
given by the RPG layer, ck = xk.

• If t is a term f(t1, . . . , tm), m > 0, then

[f(t1, . . . , tm)]k =

{⋃
c1∈tk1 ,...,cm∈tkm

f∗(c1, . . . , cm), if f is fixed⋃
x∈V(f,tk1 ,...,t

k
m) x

k, if f is fluent

where V(f, tk1, . . . , t
k
m) ⊆ V(P) is the set of all state variables that can be derived

from the symbol f applied to values from each of the sets tki :

V(f, tk1, . . . , t
k
m) =

⋃
c1∈tk1 ,...,cm∈tkm

f(c1, . . . , cm)5

Definition 3.2 (Reachable Truth Values of a Formula). Let P be a FSTRIPS prob-
lem with variable-free language L(P), and φ a formula over L(P). The set φk of
possible truth values of φ in atom layer Pk of the RPG can be inductively defined as
follows:

• Assume φ is a nullary relation symbol p. If it is a fixed symbol, then pk = {p∗};
if it is fluent, by definition it is a (relational) state variable x, in which case
pk is directly given by the RPG layer, pk = xk.

• Assume φ is an atom R(t1, . . . , tm). If R is a fixed symbol, then [R(t1, . . . , tm)]k

contains the value > (⊥, respectively) iff there are values c1 ∈ tk1, . . . , cm ∈ tkm
such that 〈c1, . . . , cm〉 ∈ p∗ (respectively, 〈c1, . . . , cm〉 /∈ p∗).

If R is fluent, then [R(t1, . . . , tm)]k contains the value > (⊥, respectively) iff
there are values c1 ∈ tk1, . . . , cm ∈ tkm such that > (⊥, resp.) is contained
in the set xk of reachable truth values for the (relational) state variable x ≡
p(c1, . . . , cm).

• If φ is a disjunction, conjunction or negation involving atoms p and q, then

1. > ∈ [¬p]k if ⊥ ∈ pk;

4 Support for existential variables is discussed in Chapter 4.
5By f(c1, . . . , cm) we refer to the state variable made up by symbols f , c1, ..., cm, not to any

actual value, see Section 2.3.6.

3.3. value-accumulating relaxed planning graph 49

2. > ∈ [p ∧ q]k if > ∈ pk and > ∈ qk;

3. > ∈ [p ∨ q]k if > ∈ pk or > ∈ qk.

4. ⊥ ∈ [¬p]k if > ∈ pk;

5. ⊥ ∈ [p ∧ q]k if ⊥ ∈ pk or ⊥ ∈ qk;

6. ⊥ ∈ [p ∨ q]k if ⊥ ∈ pk and ⊥ ∈ qk.

We can now define the generalization of the value-accumulating RPG to FSTRIPS:

Definition 3.3 (Value-Accumulating Relaxed Planning Graph for FSTRIPS). Let
P be a FSTRIPS problem with state variables x1, . . . , xn. The value-accumulating re-
laxed planning graph RPG(P , s) of P built from state s is a succession P0, A0, P1, A1, . . .
of interleaved atom (Pi) and action (Ai) layers, such that:

• Atom layer P0 = 〈x0
1, x

0
2, . . . , x

0
1〉 contains, for each state variable xi, the set

x0
i = {xsi} with the value of xi in the state from which the RPG is computed.

• Action layer Ai =
{
o ∈ O | > ∈ [pre(o)]i

}
contains all actions considered appli-

cable in the previous atom layer Pi, i.e. such that the truth value > is reachable
for the precondition of the action.

• Atom layer Pi+1 = 〈xi+1
1 , xi+1

2 , . . . , xi+1
1 〉 contains, for each state variable xi,

the union of xi with the set of possible values for xi that are supported by the
(possibly conditional) effect of some action in o ∈ Ai, called the supporter of
those values. A conditional effect φ → f(t1, . . . , tm) := w of a supports value
v of x in Pk iff > ∈ φk, v ∈ wk, and x is the state variable f(c1, . . . , cm) for

some values c1 ∈ tk1, . . . , cm ∈ tkm.

This finishes the definition of the sequence of propositional layers P0, . . . , Pk that
make up the relaxed planning graph for a given problem P and state s. When
computing the heuristics hmax and hFF, the computation can be stopped in the first
layer Pk where the goal formula G is true, i.e. where > ∈ Gk, or whenever a fixed
point has been reached without rendering the goal true, i.e. xk = xk+1 for all state
variables x in the problem. In the second case, hmax(s) = hFF(s) = ∞ as one can
show that there is no plan for P from s. In the first case, hmax(s) = k, and a relaxed
plan πFF(s) can be obtained backward from the goal by applying the standard RPG
extraction algorithm: keeping track of the state variables x and values v ∈ xk that
make the goal true, the actions o and effects φ → f(t) := w supporting such values
first, and iteratively, the variables and values that make pre(o) and φ true. The
heuristic hFF(s) is given by the length of the plan πFF(s).

Example 3.4. Let P be the Functional STRIPS instance of the above-defined coun-
ters problem (Fig. 3.3) with 3 integer variables x1, x2, x3, with domain ranges [0, 3].
Recall that the goal formula is (x1 < x2) ∧ (x2 < x3), the initial state s0 is given
by x1 = 0, x2 = 0, x3 = 0, and actions increment or decrement each variable within
the [0, 3] range. In the relaxed planning graph computed from the s0, we have a first
atom layer P0 where for all i, the set of reachable values for each state variable is
x0
i = {0}. The first action layer A0 contains all actions o such that the truth value
> is reachable for pre(o) in layer P0. This includes all increment actions, since
[xi < 3]0 = {>}: the state variable xi has one single value 0 reachable in the first
layer, and likewise for the fixed constant symbol 3; they together clearly belong to

50 planning with function symbols

the denotation of the fixed symbol “<”. Following a similar reasoning, decrement
actions are not applicable in layer P0.

Now, the sets of reachable values in the next atom layer are x1
1 = x1

2 = x1
3 = {0, 1}.

As it turns out, this implies that > ∈ [x1 < x2]1 as there are values 0 and 1 in x1
1

and x1
2 such that 0 < 1. Similarly, > ∈ [x2 < x3]1, so we get > ∈ G1.

One can easily see that the defined relaxation generalizes to a first-order language
such as FSTRIPS, yet the variable x1 can have both values 0 and 1 at the same time,
using 0 to make the first goal true and 1 to make the second goal true. Indeed, in
this relaxation, self-contradictory goals like x1 = 0 ∧ x1 = 1 are achievable in one
step as well. Thus, applying this value-accumulating semantics to our counters
problem, we find that each of the atoms xi < xi+1 is true in layer P1, thus yielding
the same heuristic values as in the propositional encoding. In the next section, we
offer an alternative relaxation based on the notion of first-order logical interpretation
that addresses this shortcoming.

3.4 First-Order Relaxed Planning Graph

In the above discussion, it is possible to see that the inaccuracy of the heuristic is
not a result of the delete-free relaxation itself, but rather of the way in which the
value-accumulating semantics have been defined. While it is correct to regard each
of the atoms xi < xi+1 as true in layer P1, where all variables have domain {0, 1}
and hence there are values for xi and xi+1 that satisfy xi < xi+1, it is not correct to
regard the conjunction of all of them as true, since there are no values for the state
variables in the domains D(xi) = {0, 1} that can satisfy all the atoms xi < xi+1 at
the same time (assuming n > 2).

Monotonicity and Decomposability. From a logical perspective, the value-
accumulating semantics is too weak because it makes two simplifications, not just
one. The first is monotonicity, by which the variable domains D(x) grow mono-
tonically as new values for variable x become reachable, in line with the notion of
“delete-relaxation”. The second is decomposability, by which a conjunction of atoms
is regarded as true in a propositional layer whenever each one of the atoms in the
conjunction is true. Like monotonicity, decomposability is not true in general.

A way to understand this to see each propositional layer of the relaxed planning graph
as the encoding of a set Ik of possible first-order interpretations over the language.
For a conjunction of atoms p ∧ q, it is possible that one interpretation in Ik makes
p true, a second interpretation makes q, and yet no interpretation makes the two
atoms true at the same time. Decomposability is the assumption that if Ik contains
interpretations that satisfy each of the atoms in a conjunction, it will also contain
interpretations that satisfy all of the atoms in that conjunction. This is actually
a valid assumption when no two atoms in the conjunction involve the same state
variable, e.g. in conjunctions such as x1 > 3∧x2 < 2, or clear(b)∧ ontable(b), where
the conjuncts involve different state variables. This class of conjunctions indeed sub-
sumes the standard STRIPS language fragment handled by most classical planners,
where preconditions, conditions, and goals are conjunctions of propositional atoms
such as on(a, b) that can be seen as (binary) state variables. In such conjunctions, no
state variable is mentioned more than once. This language fragment also subsumes

3.4. first-order relaxed planning graph 51

the restricted numeric planning tasks in Metric-FF where atoms can contain at most
one numeric variable, and hence can be of the form x = c or x > c, where c is a
constant, but not of the form x > y, where both x and y are numeric state variables.6

However, in general, the fact that different values are all regarded as possible for a
certain state variable in layer Pk of the relaxed planning graph does not imply that
they are jointly possible. A possible way to retain monotonicity in the construction of
the RPG while while removing the assumption that a state variable can take several
values at the same time is to use an alternative, first-order semantics of the RPG,
which we define next.

Definition 3.5 (First-order Interpretations Corresponding to a Relaxed Planning
Graph Layer). Let P be a FSTRIPS problem with state variables x1, . . . , xn, and Pk
the propositional layer of a relaxed planning graph built from some problem state. As
we saw in Section 2.3.6, a FSTRIPS state can be alternatively seen as a complete
assignment of values to state variables or as a first-order interpretation over the
language L(P) of the problem. The set Ik of first-order interpretations that are
reachable in the layer Pk contains all those interpretations derived from the complete
assignments given by the Cartesian product xk1 × · · · × xkn.

With this, a different notion of (relaxed) reachability in any RPG layer can be defined
in a concise and elegant manner.

Definition 3.6 (Formula Reachability in the First-Order RPG). Let P be a FSTRIPS
problem with language L(P). A formula φ over L(P) is satisfiable in propositional
layer Pk iff there is an interpretation M∈ Ik that satisfies φ.

We call this alternative definition of the relaxed planning graph the First-Order Re-
laxed Planning Graph (FOL-RPG). This definition affects the contents as well as the
computation of the RPG, keeping the monotonicity assumption, but dropping that
of decomposability. In the FOL-RPG, a functional conditional effect φ→ f(t̄) := w
of an action o supports the value v of state variable x in Pk iff there is an inter-
pretation M ∈ Ik such that M � (pre(o) ∧ φ), wM = v, and f(t̄) resolves under
M to the state variable x, i.e. f is a fluent symbol and x ≡ f(t̄M). Analogously,
a relational conditional effect φ → R(t̄) (φ → ¬R(t̄) respectively) supports value >
(⊥) for the binary state variable x, iff there is an interpretation M ∈ Ik such that
M � (pre(o) ∧ φ) and x ≡ R(t̄M).

Heuristics. We denote by hFOmax and hFOFF the heuristics that can be computed from
the FOL-RPG. To compute them, the construction of the RPG stops at the first layer
Pk where the goal formula φG is satisfiable, i.e. where there is some interpretation
M ∈ Ik such that M � φG, or when a fixed point is reached without rendering the
goal true. We distinguish these heuristics from the standard hmax and hFF, as they
behave in a different way, produce different results, and have different computational

6In Metric-FF, two atoms in a conjunction can actually involve the same state variable, provided
that they do not involve any other state variable. That is, a conjunction can feature the atoms x > 1
and x < 5, yet such conjunctions, as we will see can be easily compiled into a single atom such as
between(x, 1, 5). Indeed, decomposability is true on conjunctions of such atoms as well provided
that that such conjunctions are logically consistent.

52 planning with function symbols

cost. From a semantic standpoint, inconsistent goals like (x < 0 ∧ x > 0) produce
infinite hFOmax and hFOFF values. The counters goal

∧n−1
i=0 (xi < xi+1) results in optimal

hFOmax and hFOFF values, as the goal becomes satisfiable only at layer Pn.

From a computational standpoint, computing hFOmax and hFOFF is NP-hard. It is possible
to reduce any SAT problem T into a planning problem P such that T is satisfiable
iff hFOmax(s0) ≤ 1, where s0 is the initial state of P . For the mapping, we just need
Boolean state variables xi initially set to ⊥ along with actions ai that can make
each variable xi true. The goal P is the CNF formula T with the literals pi and ¬pi
replaced by the atoms xi and ¬xi respectively. In practice, however, the formulas
appearing in action preconditions and effects, and even in goal formulas, are often
simple enough so that the heuristics can be computed efficiently. When that is not the
case, the heuristics can be approximated by applying local consistency techniques,
trading off informativeness for complexity, and bringing the computation of the FOL-
RPG back to polynomial time. We discuss this option in Section 3.6.

3.5 Computation of the First-Order Relaxed Planning
Graph

From an operational point of view, the computation of the first-order RPG follows
the same philosophy than that of the standard RPG. An outline of the algorithm
is given in Fig. 3.4. The computation starts on propositional layer P0, where the
set x0 of reachable values for each state variable x ∈ V(P) contains the single value
xs, i.e. the value of the variable on the state s from which the FOL-RPG is built.
Sets xk in successive layers k of the graph contain by definition all those values in
xk−1, plus values newly supported by the (possibly conditional) effect of some ground
action that is found to be applicable in the previous propositional layer Pk−1. The
construction of the FOL-RPG continues until the goal of the problem is satisfied
in some layer, or a fixed point is reached. In the first case, a relaxed plan can be
extracted from the graph; in the second no relaxed plan exists.

The key operation in the construction of the FOL-RPG is that of checking whether
a first-order interpretation exists in the set Ik for a certain layer of the graph that
satisfies a given formula. This operation is used at two points in the algorithm:

1. For each problem action o ∈ A and effect e ∈ effs(o), the algorithm iterates
through all models M ∈ Ik−1 from the previous layer Pk−1 that satisfy both
the precondition of the action and the condition of the effect (Fig. 3.4, line 1).
For each such model M, the effect is said to support the value [rhs(e)]M for
the state variable var(lhs(e),M), where

• rhs(e) is the right-hand side term of the effect (or the values > or ⊥, for
relational effects).

• lhs(e) is the left-hand side term or atom of the effect, which is by definition
of the form f(t̄) or R(t̄), with f and R being fluent function and predicate
symbols, and t̄ = t1, . . . , tm terms over the language.

• var(p(t̄),M) is the actual state variable, functional or relational, that the
symbol p resolves to when applied to the objects denoted by t̄ under the
model M, i.e. var(p(t̄),M) ≡ p(t̄M).

3.5. computation of the first-order relaxed planning graph 53

Algorithm: FOL-RPG(FSTRIPS problem P , state s)

x0 := {xs} for all x ∈ V(P)

for k = 1, 2, . . . do

xk := xk−1 for all x ∈ V(P)

forall o ∈ A and e ∈ effs(o) do

(1) for M∈ models(pre(o) ∧ cond(e), Pk−1) do

x := var(lhs(e),M)

v := [rhs(e)]M

xk := xk ∪ {v}

Pk :=
{
xk | x ∈ V(P)

}
if Pk = Pk−1 then return ⊥ // Fixpoint reached: no solution

(2) if models(φG, Pk) is not empty then

Let σ be the value assignment corresponding to any
M∈ models(φG, Pk)

Let α be the set of atoms “x = v” from σ that support φG

return extract(α, 〈P0, . . . , Pk〉)

Figure 3.4: Computation of the First-Order Relaxed Planning Graph. Successive
propositional layers Pk are built for k = 0, 1, . . ., each containing a set xk of reachable
values for each state variable x. Values in xk grow monotonically with k, including
all those values in xk−1 plus values newly supported by the (possibly conditional)
effect of some ground action o ∈ A that is found to be applicable in the previous
propositional layer Pk−1.

2. Checking whether there is any model M ∈ Ik in layer Pk of the FOL-RPG
that satisfies the goal formula φG (Fig. 3.4, line 2).

We next show that both operations can be mapped into a standard constraint sat-
isfaction problem that depends both on the formula φ whose reachability we want
to check and on the particular layer Pk of the relaxed planning graph where we
check this reachability. We denote by Γ(φ, Pk) this CSP, which we define next. In
general, the intuition is that each solution to Γ(φ, Pk) will correspond to a logical
interpretation that satisfies φ in layer Pk.

Because it is significantly simpler and is actually sufficient for most of the problems
we will be looking at, however, we first present a version of Γ(φ, Pk) that works for
the syntactic fragment of FSTRIPS which we call FSTRIPS0. We use Γ0(φ, Pk) to
denote the simpler constraint satisfaction problem that is sufficient for this fragment.
In Section 3.5.3, we provide the full definition of Γ(φ, Pk).

54 planning with function symbols

3.5.1 The Functional STRIPS Fragment FSTRIPS0

The computation of the FOL-RPG is significantly simpler for a syntactic fragment
of Functional STRIPS that is nevertheless expressive enough to subsume most of the
standard propositional benchmarks from the International Planning Competitions.

Definition 3.7 (FSTRIPS0). FSTRIPS0 is the syntactic fragment of Functional
STRIPS where

1. Formulas can only be conjunction of literals, and

2. fluent predicate and function symbols do not appear nested, i.e. in the abstract
syntax tree of any formula or term appearing in the problem description, there
is no node labeled with a fluent symbol which is the root of a subtree containing
some other fluent symbol.

Without loss of generality, when discussing FSTRIPS0 we will assume that in all
terms f(t̄) where f is a fluent symbol and atoms R(t̄) where R is a fluent predicate
symbol, t̄ is a tuple of constant symbols, and hence f(t̄) and R(t̄) stand for state
variables of the problem. Indeed, if that is not the case, then t̄ must be a tuple of
fixed compound terms ti, which can be replaced at preprocessing by constant symbols
ci such that t∗i = c∗i thanks to the restrictions in FSTRIPS0.

3.5.2 CSP Model for FSTRIPS0 Formulas

Definition 3.8 (Γ0(φ, Pk)). Let P be a FSTRIPS problem P over language L(P),
φ a variable-free conjunction of literals over the language, and Pk a layer of a first-
order relaxed planning graph for the problem, i.e. containing one domain xk for
each state variable x ∈ V(P) of the problem. The constraint satisfaction problem
Γ0(φ, Pk) = 〈X,D,C〉 that has set of variables X, domains D and constraints C is
defined by induction over the structure of the formula φ. For each term, atom and
subformula that appears in φ, a number of variables and constraints are added to the
CSP, as follows.

Terms For each term t in φ, X contains one CSP variable vt, intended to capture the
denotation of t under the interpretation that will be derived from each solution
to the CSP. The domain D(vt) of vt is given by the logical type type(t) of the
term, and contains all objects of its (finite) universe Utype(t).7

When t is one of the functional state variables x ∈ V(P) of the problem, C
contains a domain constraint vt ∈ xk, so that vt can take only those values
allowed in Pk. If t is not a state variable, but is a fixed constant term, then
C contains a constraint vt = t∗ that restricts the value of vt to the only actual
value allowed by the planning problem for t.

Finally, if t is a term of the form f(t1, . . . , tm) where f if a fixed function
symbol, then C contains an extensional (“table”) constraint of arity m+1 with
scope 〈vt1 , . . . , vtm , vt〉. The constraint contains one tuple 〈c1, . . . , cm, c〉 for
every tuple 〈c1, . . . , cm〉 in the function domain, and c = f∗(c1, . . . , cm). Intu-
itively, this constraint ensures that the values taken by the variables vt1 , . . . , vtm
and vt are consistent with the fixed denotation of the function f .

7 Appendix A provides more details on these first-order logic constructs.

3.5. computation of the first-order relaxed planning graph 55

For some fixed function symbols for which the underlying CSP solver accepts a
built-in equivalent constraint, such as the arithmetic functions “+”, “−”, etc.,
the built-in instead of the table constraint is used. Since nested fluent symbols
are not allowed, the above case-based definition covers all possible terms allowed
by the FSTRIPS fragment we are discussing.

Atoms The case of atoms is analogous to that of terms. For each atom p in φ, X
contains one CSP variable vp intended to capture the truth value of p under the
logical interpretation derived from each solution to the CSP. The domain of vp
is D(vp) = {0, 1}.
If p is one of the relational state variables x ∈ V(P) of the problem, C con-
tains a unary domain constraint vp ∈ xk. Otherwise, if p is a fixed constant
nullary atom, then C contains a constraint vp = p∗. If p is an atom of the
form R(t1, . . . , tm) where R if a fixed predicate symbol, then C contains an ex-
tensional constraint of arity m+ 1 with scope 〈vt1 , . . . , vtm , vt〉. The constraint
contains one tuple 〈c1, . . . , cm, c〉 for every tuple 〈c1, . . . , cm〉 in the predicate
domain, where c = 1 if 〈c1, . . . , cm〉 ∈ R∗, and c = 0 otherwise.

For some fixed relation symbols for which the underlying CSP solver accepts
a built-in equivalent constraint, such as the integer comparison operators “=”,
“ 6=”, “<”, “≤”, “>”, “≥”, the built-in rather than the extensional constraint
is used, reified into the Boolean variable vp.

8

Negation and Conjunction of Atoms For any conjunction of literals L1 ∧ . . . ∧
Lm, where Li is an atom p or its negation ¬p, a constraint vp = 1 (vp = 0,
respectively) is added to C for every positive (negative) occurrence of atom p
in the conjunction.

In some situations where the formula is simple enough (e.g. a conjunction
x < y∧y < z, where x, y and z are fluent logical constants, i.e. state variables),
the CSP is optimized and no actual CSP variables are created for the atoms
themselves. Instead, non-reified constraints vx < vy and vy < vz are directly
created.

From any solution to the CSP Γ0(φ, Pk), a (possibly partial) assignment σ to the state
variables of the problem P that appear in φ can be directly built. Let us denote by
I(σ) the set of first-order interpretations for L(P) that contains all interpretationsM
consistent with σ, i.e. such that for every state variable x appearing in φ, xM = σ(x).
Because of the construction of Γ0(φ, Pk), we have that I(σ) contains exactly all those
interpretations in Ik that satisfy φ.

Example 3.9. Assume we have a FSTRIPS counters instance (see Fig. 3.3) with 3
variables x1, x2, x3 taking values within the interval [0, 5]. As discussed before, layer
P1 of the FOL-RPG is made up of state variable domains x1

1 = x1
2 = x1

3 = {0, 1}. In
order to check whether the goal formula φG ≡ x1 < x2 ∧ x2 < x3 is satisfied in layer
P1, the set of first-order interpretations I1 (i.e. the set of interpretations consistent
with the state variable domains in P1) is explored to find some model of φG. To do
this, a solution of the constraint satisfaction problem Γ0(φG, P1) is sought. Γ0(φG, P1)

8 In constraint programming, a constraint c is said to be reified into a Boolean “control” variable
b if the truth value of the constraint under any given assignment of values to variables is bound to
b, i.e. b = 1 iff the constraint holds (Smith, 2006; Feydy et al., 2011).

56 planning with function symbols

has integer variables vx1, vx2, vx3 with domains D(vx1) = D(vx2) = D(vx3) = {0, 1};
each of these variables models, respectively, the value taken by terms x1, x2 and x3

of the formula φG. The two goal atoms x1 < x2 and x2 < x3 are mapped into
CSP arithmetic constraints vx1 < vx2 and vx2 < vx3. It can be seen that the CSP
has no solutions, from which we conclude that φG is not reachable in P1 On the
contrary, layer P2 has state variable domains x2

1 = x2
2 = x2

3 = {0, 1, 2}, and the
constraint satisfaction problem Γ0(φG, P2) is defined as above, but with CSP domains
D(vx1) = D(vx2) = D(vx3) = {0, 1, 2}. The assignment vx1 = 0, vx2 = 1 and vx3 = 2
is a solution to the CSP, hence φG is satisfiable, and that assignment is the basis
from which the relaxed plan extraction proceeds.

3.5.3 CSP Model for Arbitrary FSTRIPS Formulas

The above syntactic restrictions on the class of FSTRIPS problems that can be ad-
dressed with Γ0(φ, Pk) can be dropped with some extra work to account for (a) the
possibility of using arbitrary logical connectives other than conjunctions, and (b) the
possibility of having nested fluents. We formalize this below.

Allowing arbitrary connectives is rather straight-forward, once atoms p are reified
into Boolean variables vp as described above. This is common practice in constraint
programming modeling languages such as Essence (Frisch et al., 2007) or Zinc (Mar-
riott et al., 2008), which transform expressive models into existentially quantified
conjunctions of primitive constraints, of the form ∃x̄

∧
c∈C c, through reification and

flattening (Feydy et al., 2011). A formula such as (x < y ∨ x < z) ∧ (x > w), for
instance, can be translated with the help of 4 extra Boolean variables b1, . . . , b4, into
a set of 4 reified primitive constraints

• x < y ⇐⇒ b1,

• x < z ⇐⇒ b2,

• x > w ⇐⇒ b3,

• (b1 ∨ b2)⇐⇒ b4

plus one final constraint b4 ∧ b3 (Marriott et al., 2008).

Dealing with arbitrarily nested fluents is slightly more involved. To illustrate, con-
sider the unsatisfiable formula φ:

f(0) = 0 ∧ f(f(0)) = 1

involving a fluent function symbol f defined over domain and range {0, 1}. Assume
that f(0) and f(1) are the only two state variables of the problem, and the RPG layer
Pk dictates reachable values {0, 1} for both of them. In the constraint satisfaction
problem Γ0(φ, Pk) as defined above, the denotation of terms f(0) and f(f(0)) is
modeled by CSP variables vf(0) and vf(f(0)), respectively, and the set of constraints
of the problem is:

• vf(0) ∈ {0, 1}

• vf(f(0)) ∈ {0, 1}

• vf(0) = 0

• vf(f(0)) = 1

3.5. computation of the first-order relaxed planning graph 57

The assignment vf(0) = 0, vf(f(0)) = 1 is a solution of the CSP, since there is no
constraint binding the values of variables vf(0) and vf(f(0)). By definition, however,
f is a function symbol, and its denotation under any interpretation must be an actual
function, meaning that if f(0) = 0, then f(f(0)) = f(0) = 0 as well.

We can enforce that the values of different CSP variables potentially denoting the
same function point be consistent by making use of an element constraint. In con-
straint satisfaction, an element constraint (Van Hentenryck and Carillon, 1988; van
Hoeve and Katriel, 2006) binds the value taken by an index integer variable I ∈ [0,m],
the values taken by an array T of m+ 1 integer variables T [0], T [1], . . ., T [m], and
a result variable integer R, so that the index variable does indeed act as an index to
the array of variables, and it holds that T [I] = R.

The general formulation of the CSP Γ(φ, Pk) takes both aspects into account, and
essentially extends the definition of Γ0(φ, Pk) with some additional constraints. We
consider here quantification-free problems only, and deal with existential quantifica-
tion in Chapter 4.

Definition 3.10 (Γ(φ, Pk)). Let P be a FSTRIPS problem P over language L(P),
φ an arbitrary variable-free formula of the language and Pk a layer of a first-order
relaxed planning graph for the problem, i.e. containing one domain xk for each
state variable x ∈ V(P) of the problem. Let Γ0(φ, Pk) be the constraint satis-
faction problem as defined in Definition 3.8. The constraint satisfaction problem
Γ(φ, Pk) = 〈X,D,C〉 contains all variables, corresponding domains and constraints
specified in Γ0(φ, Pk), plus some additional elements for each term, atom and formula
appearing in φ, which are the following:

Terms If t is a term of the form f(t1, . . . , tm), where f is a fluent function symbol
and at least one of the terms t1, ..., tm contains some occurrence of a nested
fluent symbol, then C contains an element constraint constraining the value
taken by vt to be consistent with the values taken by variables vt1 , . . . , vtm and
by any other variable vt′ in the CSP where t′ is a state variable that results
from the same fluent symbol f . To do so, every possible combination of values
for terms t1, . . . , tm is given a unique index with an extra integer variable I
and an extra extensional constraint with scope 〈vt1 , . . . , vtm , I〉. The element
constraint then has index variable I and result variable vt, and the array of
variables contains the (ordered) CSP variables vx1 , vx2 , . . . , vxl, where xi is the
state variable formed by symbol f plus arguments given by the tuple in the
function domain that corresponds to index value I = i.

Atoms If φ contains some atom R(t1, . . . , tm), with R a fluent predicate symbol
and some other nested (function) symbol, then C contains extra variables and
constraints exactly in the same manner as in the case of function symbols above.

Negation, Conjunction and Disjunction of Formulas Let us assume without
loss of generality that the (variable-free) φ is in negation normal form, i.e. it
is constructed from literals using ∧ and ∨. For each literal L in φ which is
the negation ¬p of some atom p, X contains a Boolean CSP variable vL, and
C contains the reified constraint ¬vp ⇐⇒ vL. For each subformula ϕ of the
form L1 ⊗ L2 in φ, where ⊗ ∈ {∧,∨}, X contains a Boolean CSP variable vϕ,
and C contains the reified constraint (vL1 ⊗ vL2) ⇐⇒ vϕ. Finally, C contains

58 planning with function symbols

a top-level constraint vφ = 1. As described before, in some situations where
the formula is simple enough, the CSP is optimized and simpler, non-reified
constraints are used.

3.6 Approximation of the First-Order Relaxed
Planning Graph

We look now at methods for approximating the first-order relaxed planning graph
in polynomial time, in order to derive heuristics that are more informed than those
resulting from the standard RPG, but remain computationally tractable. The in-
tractability of the FOL-RPG follows from checking whether there is an interpretation
M in a potentially exponentially-sized set of interpretations Ik valid in a certain layer
Pk of the RPG that satisfies a certain formula. In Sections 3.5.2 and 3.5.3 above, we
have seen how this can be mapped into a constraint satisfaction problem with size
linear on the size of the planning problem.

The CSP that models the satisfiability of the formula pre(a) ∧ φ ∧ w = v for each
action a and conditional effect φ→ f(t) := w, which is posted to determine whether
a supports the value v for a certain state variable, usually involves a bounded and
small set of state variables, and can thus be fully solved. On the other hand, the
CSP that represents models the satisfiability of the goal formula φG might be in
some cases too hard to solve when φG is a complex formula. Note, however, that for
most of the standard existing classical planning benchmarks, which can be expressed
in the FSTRIPS0 fragment, this formula will be a conjunction of fluent atoms of the
form p1 ∧ . . . ∧ pn, and the corresponding CSP will be solved in linear time. For
complex FSTRIPS formulas, the corresponding CSP can be solved approximately by
using various forms of local consistency. In other words, the approximation in the
construction of the FOL-RPG will typically apply only to checking whether the goal
φG is satisfiable in a propositional layer Pk, and relies on the notions of polynomial
arc and node consistency that were discussed in Section 2.6. In our case, the goal φG
is approximated as being satisfiable in some RPG layer Pk if the corresponding CSP
Γ(φG, Pk) is locally consistent, i.e. if after propagating all constraints and pruning
the domains of the CSP variables, no variable gets an empty domain. The hapxmax

heuristic is defined by the index k of the first layer Pk where the goal is satisfiable,
and it is a polynomial approximation of the intractable hFOmax heuristic. It is easy
to see that 0 ≤ hmax ≤ hapxmax ≤ hFOmax ≤ h∗, where h∗ is the optimal heuristic. The
pruning resulting from the goal CSP is used also in the plan extraction procedure that
underlies the computation of the hapxFF heuristic, where pruned values of goal variables
are excluded. As an example, if the goal is the atom x = y where x and y are state
variables with domains D(x) = {e, d} and D(y) = {d, f}, arc consistency will prune
the value e from D(x) and f from D(y), so that plan extraction will backchain from
atoms x = d and y = d.

3.7 Language Extensions

The computation of the FOL-RPG through a mapping into a constraint satisfaction
problem opens up a number of interesting extensions to the language, which we
review next.

3.7. language extensions 59

3.7.1 Global Constraints

In constraint satisfaction, global constraints are constraints with arbitrary but usu-
ally large arity that offer a compact way to model some important concept that
arises frequently in a number of problems (Bessiere and Van Hentenryck, 2003; van
Hoeve and Katriel, 2006). As we discussed in Section 2.6, global constraints are
useful not only from an expressive point of view, but also from a computational one.
The classical example to illustrate this is the global constraint alldiff(x1, . . . , xn),
which declares that the values of the n variables xi need to be different, and can
be seen as a compact way of encoding a quadratic number of binary constraints
xi 6= xj . The constraint alldiff(x1, . . . , xn) is not only more compact, but has
stronger propagation. Indeed, arc consistency over the set of xi 6= xj constraints
finds no inconsistency when the domains are e.g. D(xi) = {0, 1} for all i, yet it is
known that such constraints cannot be jointly satisfied if | ∪ni=1 D(xi)| < n.

Global constraints can be a useful addition to planning as well. As a simple illustra-
tion, the goal of stacking all blocks in a single tower in blocksworld, regardless
of their relative positions, can be compactly encoded with the global constraint
alldiff(loc(b1), . . . , loc(bn)). Even standard classical planning benchmarks often
have features that could be best captured with global constraints. The Childsnack
domain from the 2014 International Planning Competition, for instance, requires
that a number of children be served each one a different sandwich that satisfies cer-
tain dietary restrictions. A possible FSTRIPS reformulation can feature an atom
alldiff(served(c1), . . . , served(cn)) in the goal conjunction in order to encode that
requirement in a compact manner. Other global constraints such as arithmetic con-
straints, or more application-oriented packing and scheduling constraints (Beldiceanu
et al., 2012), also possess an immediate relevance for planning. We discuss further
examples involving the use of global constraints as state constraints in Section 3.7.3.

In our context, a global constraint can simply be seen as nothing else than a conve-
nient manner of providing the denotation of a fixed predicate symbol of the first-order
language L(P) over which a FSTRIPS problem P is defined. Thus, they are dealt
in the same manner than e.g. a predicate symbol “<”: during the computation of
the FOL-RPG, the built-in global constraints of the underlying CSP solver are used
instead of extensional constraints; whereas during the search, the CSP solver can be
invoked in order to provide the actual denotation of the symbol or, if performance
is crucial, simple ad-hoc procedures can be implemented for each particular global
constraint to provide that denotation without having to perform a costly invocation
of a CSP solver. When the complexity of the formula makes it necessary for the com-
putation of the FOL-RPG to reify the CSP constraints corresponding to the atoms in
the formula (see Sections 3.5.2 and 3.5.3), some global constraints might not be avail-
able, since not all CSP solvers offer reified versions of all global constraints (Feydy
et al., 2011). This means, for instance, that a disjunction of different alldiff atoms
might prevent the computation of the FOL-RPG from using off-the-shelf solvers.

3.7.2 Externally-Defined Symbols

As we just saw, global constraints are no other thing that a convenient way of spec-
ifying the denotation of fixed symbols of the language, but they are not the only
convenient way of doing so. Indeed, as long as some mechanism is provided that
supports the operations that are necessary during the search and computation of
the heuristic, any fixed symbol R can be denoted by any external procedure. In

60 planning with function symbols

our case, these operations essentially are (a) providing the denotation of the symbol
on any point in the symbol domain, and (b) for the computation of the FOL-RPG,
providing a (polynomial) constraint propagator that is able to enforce some form of
local consistency over domains D(vi) for any expression of the form R(v1, . . . , vm),
where vi are CSP variables with domains D(vi). This latter requirement is far from
trivial, but when the arity of the symbol and the involved domains are small, an ex-
tensional constraint can efficiently be used to fulfill it, and can always be computed
for any arbitrary denotation. When no heuristics are required, as in Chapter 5, this
requirement can be dropped.

Externally-defined symbols are extremely useful to model aspects which are not
easy to capture in a declarative way, such as e.g. geometrical constraints on packing
problems. In Chapter 5, we will use them to model things such as the (deterministic)
motion of ghosts in pacman, or the billiard-like ball motion of pong. The possibility
of giving the (fixed) denotation of some of the logical symbols of the language by
means of external procedures implemented in some programming language was first
considered theoretically in (Geffner, 2000), and given support in the GPT planner
(Bonet and Geffner, 2001a). The practicality of the notion led to its revitalization
several years after, this time under the name of semantic attachments (Dornhege
et al., 2009, 2012; Hertle et al., 2012), and to efforts to give adequate heuristic
support to problems with this type of feature (Bernardini et al., 2017).

3.7.3 State Constraints

Another relatively straight-forward extension of the language allowed by the FOL-
RPG model is that of state constraints, which are arbitrary formulas that must be
true in all states encountered through the execution of a plan. The convenience of
state constraints has been thoroughly discussed in the literature on reasoning about
actions (Lin and Reiter, 1994; Son et al., 2005), sometimes under the name of plan
or state invariants. State constraints however should not be confused with state
invariants: a state constraint enforces a formula to be true in all reachable states,
while a state invariant is a formula that can be proven to hold in all reachable states.
For example, block a not being on top of two blocks at the same time is a typical
state invariant in blocksworld, whereas a not being on top of block b might be a
particular state constraint that we want to enforce. State constraints can thus be
thought of as a convenient way to express and make use of information about:

1. Preconditions that are implicit for all actions: actions leading to the violation
of a state constraint are deemed as not applicable.

2. States to be avoided, e.g., states where a formula p∧q is true. State constraints
φ used this way model the class of extended temporal goals “never φ” (Dal Lago
et al., 2002).

3. Dead-end conditions, that is, conditions that if ever achieved preclude reaching
the goal.

Actually, a state constraint φ can also be seen as the particular Linear Temporal
Logic (LTL) formula “always φ” (Huth and Ryan, 2004), and as such is subsumed
by the state trajectory constraints in the PDDL 3.0 specification (Gerevini and Long,
2005), which in spite of offering interesting expressive power, have received little
support from existing planners. Indeed, state constraints are also related to safety

3.7. language extensions 61

constraints (Weld and Etzioni, 1994), which were already present in the original
PDDL formalism (McDermott et al., 1998, Section 10).

State constraints can be convenient for both modeling and computation. The clas-
sical Missionaries and Cannibals problem (Amarel, 1968; McCarthy, 1998), for in-
stance, has 3 missionaries and 3 cannibals on the left bank of a river which they
all want to cross. A single boat is available that can take at most 2 people at a
time, missionaries or cannibals alike. Missionaries do not want to be outnumbered
by the cannibals, be it on either bank of the river or inside of the boat, for fear of the
cannibals exercising their defining inclination.9 The goal is to find an appropriate
schedule of river crossings that transports everyone to the right bank of the river in
a safe manner. A generalization of the problem for n missionaries and n cannibals,
n ≥ 3, on a complete graph, can be easily modeled in FSTRIPS with the help of
state constraints. For this, there is a set of locations l1, . . . , lm, and terms nc(l) and
nm(l) that represent the number of cannibals and missionaries at each location l.
The nullary function symbol x represents the current location of the boat. One single
action schema move(c,m, x′) is needed, with precondition

(1 ≤ c+m ≤ 2) ∧ (c ≤ nc(x)) ∧ (m ≤ nm(x))

which moves c cannibals and m missionaries in one boat trip from the current location
x to x′, thanks to effects x := x′, nc(x′) := nc(x′) + c, nc(x) := nc(x)− c, nm(x′) :=
nm(x′) + m, nm(x) := nm(x) − m. Most relevantly, the restriction on cannibals
not outnumbering missionaries is modeled by a state constraint

∧
l(nm(l) ≥ nc(l) ∨

nm(l) = 0).

As a different example, in (Ferrer-Mestres et al., 2015) we show how state constraints
can be conveniently used to express non-overlap conditions between the different
objects of task and motion planning problems. Another example, the well-known
Sokoban domain can also be encoded more compactly and elegantly by making use
of state constraints. Figure 3.5 shows a possible encoding, where the location of the
agent and of the stones (or boxes) is encoded through a loc fluent function symbol,
and the geometry of the 2-dimensional grid through a next fixed function symbol,
such that next(l, d) denotes the grid location which is adjacent to l when moving in
direction d. A single state constraint alldiff(loc(p), loc(s1), . . . , loc(sm)) is used to
ensure that no two things, stones or agent alike, are on the same grid location at
the same time. This allows us to get rid of the traditional clear predicate, whose
(redundant) denotation needs to be updated on every action, and allows the heuristics
based on the relaxed planning graph to be more accurate, as we show in the Results
section.

We next discuss the minor changes required in the language and in the derivation of
heuristics for accommodating state constraints.

Syntax and Semantics. A FSTRIPS problem p with state constraints is a stan-
dard FSTRIPS problem with the addition of a first-order formula φC over the language
L(P), which is used to encode implicit preconditions. The semantics of the problem
is thus equal to the one given in Section 2.3.6 for standard FSTRIPS problems, except

9A historically more accurate version of the problem has it that it is the cannibals that do
not want to be outnumbered by the missionaries for fear of being converted, but we restrict our
discussion to the first version for the sake of tradition.

62 planning with function symbols

types thing, location, direction

player subtype of thing,

stone subtype of thing

objects

l1, . . . , ln,⊥: location

p: player

s1, . . . , sm: stone

N,E, S,W: direction

predicate next(l: location, d: direction)

function loc(t: thing): location

action move(p: player, d: direction)

prec next(loc(p), d) 6= ⊥
effs loc(p) := next(loc(p), d)

action push(p: player, d: direction, s: stone)

prec next(loc(p), d) = loc(s) ∧ next(loc(s), d) 6= ⊥
effs loc(p) := loc(s)

loc(s) := next(loc(s), d)

state-constraint alldiff(loc(p), loc(s1), . . . , loc(sm))

init loc(p) = l2, loc(s1) = l15, . . ., loc(sm) = l24,

next(l1, N) = l2, . . .

goal loc(s1) = l7 ∧ loc(s2) = l9 ∧ . . .

Figure 3.5: Functional STRIPS encoding of a classical sokoban instance (simplified
syntax), where an agent needs to move a number of boxes or stones in a grid-like
warehouse in order to place them in certain goal locations, the challenge arising
from the fact that stones can be pushed, but not pulled. The encoding features
action schemas move and push, which move the agent alone and pushing a stone,
respectively. The use of state constraints makes unnecessary the traditional clear
predicate.

3.8. empirical evaluation 63

that the transition function f of the corresponding classical planning model S(P)
is not defined on any state that violates the state constraint formula, i.e. does not
contain any transition 〈s, o, s′〉 ∈ S×O×S such thatM(s) � ¬φC orM(s′) � ¬φC .
As a result, if s0, . . . , sn is the sequence of states generated by a plan that solves P ,
then φC will be true in all the states si, i = 0, . . . , n.

Heuristics. The introduction of state constraints affects the definition and com-
putation of the first-order RPG and of the derived heuristics hFOmax and hFOFF and their
polynomial approximations hapxmax and hapxFF . The changes, however, are minor: In the
presence of state constraints, the set of first-order interpretations Ik that is consid-
ered for satisfiability purposes in each propositional layer Pk of the first-order RPG
is not allowed to contain any interpretation that does not satisfy the state constraint
formula φC . In the polynomial approximation that leads to the heuristics hapxmax and
hapxFF , the state constraints are not used to prune interpretations directly, but just
the domains xk of the state variables x in layer k through constraint propagation.

3.8 Empirical Evaluation

3.8.1 Setup

The results reported in this section were first published in (Francès and Geffner,
2015), using a preliminary version of the FS planner which was able to deal with the
FSTRIPS0 fragment of the Functional STRIPS language extended with externally-
defined symbols and support for the alldiff and sum global constraints. In this
preliminary version, the constraint satisfaction problems Γ0(φ, Pk) arising in the
computation of the FOL-RPG were solved by using handcoded algorithms and local
consistency propagation routines. The planner has since evolved to interface with
the Gecode constraint solver (Gecode Team, 2006); a full account of the current
capabilities of the planner can be found in Chapter 6. Here we report results on the
use of a greedy best-first search (GBFS) strategy guided by the hapxFF heuristic. Full
details of the benchmarks and the exact version of the planner source code used to
run these experiments can be found online at www.gfrances.github.io.

We run the FS planner on a number of domains, described below, to compare its re-
sults with those obtained by some standard planners on equivalent PDDL models, up
to language limitations. In order to understand the differences in accuracy and com-
putational cost between the hFF and hapxFF heuristics, we run the FF and Metric-FF

(Hoffmann and Nebel, 2001a; Hoffmann, 2003) planners (the latter on encodings
with numeric fluents, when suitable), using the same greedy best-first search strat-
egy (i.e. f(n) = h(n) and enforced hill-climbing disabled). To complete the picture,
we also run the state-of-the-art Fast-Downward planner with the LAMA-2011 con-
figuration, which uses different search algorithms and exploits additional heuristic
information derived from helpful actions and landmarks (Helmert, 2006a; Richter
and Westphal, 2010). Metric-FF and LAMA results are not shown in the tables but
discussed on the text — this is because for Metric-FF there is too large a gap in
coverage, and in the case of LAMA, the different heuristics and search algorithms do
not allow for a meaningful comparison other than in terms of coverage. All planners
are run a maximum of 30 minutes on a cluster with AMD Opteron 6300@2.4Ghz
nodes, and are allowed a maximum of 8GB of memory. We focus on coverage, plan
length, number of expanded nodes and total runtime of the plan search. Table 3.1

www.gfrances.github.io

64 planning with function symbols

shows summary statistics for all domains, whereas Table 3.2 shows detailed results
for selected instances from each of the domains.

3.8.2 Results

We next describe and discuss, domain by domain, the empirical results of the planner.

Counters

As discussed above, the counters domains features a number of positive integer
variables x1, . . . , xn that take values in some interval [0,m], and the goal is to reach
the inequalities xi < xi+1, for i ∈ {0, . . . , n− 1}, by applying actions that increase
or decrease by one the value of a single variable. We consider three variations of the
problem that differ in the way in which variables are initialized:

1. All variables initialized to zero (count0).

2. All variables initialized to random values in the [0, 2n] range (countrnd).

3. All variables initialized to decreasing values from the [0, 2n] range (countinv).

The results in Tables 3.1 and 3.2 reveal that for both FF and FS, the number of
expanded nodes agrees with plan length, meaning that plans are found greedily.
Plans found by the FS planner, however, are consistently shorter. Incidentally, the
relaxed plans computed with the approximate FOL-RPG are valid plans for the
non-relaxed problem, which is not the case for the standard RPG used by FF.

FF performs quite well in count0, where the improved heuristic accuracy offered
by FS does not compensate the increased running times. This is no longer true if
the values of consecutive variables are decreasing. Both in countrnd and countinv,
FF shows significantly poorer performance, solving only instances up to 20 and 12
variables, respectively. As discussed, this results from the fact that each of the
xi < xj inequalities is conceived as independent, since they are actually encoded in
apparently independent propositional atoms less(i, i + 1), which frequently guides
the search towards heuristic plateaus. This is not the case for the FS planner, which
in spite of a much slower node expansion rate, has better coverage on these two
variations of the problem, finding much shorter plans and expanding a consistently
smaller amount of nodes.

Grouping

Figure 3.6 shows a fragment of what we call the grouping domain, in which some
blocks of different colors are scattered on a grid, and we want to group them so that
two blocks are in the same cell iff they have the same color. In standard PDDL,
there is no compact manner of modeling a goal atom such as loc(b1) = loc(b2),
unless existentially quantified variables are used. Since that type of quantification
is not well-supported by current planners (we will have more to say about that in
Chapter 4), we have devised an alternative PDDL formulation with two additional
actions which are used, respectively, to (1) tag any cell as the destination cell for all
blocks of a certain color, and (2) secure a block in its destination cell. We generate
random instances with increasing grid size s × s, s ∈ {5, 7, 9}, number of blocks
b ∈ {5, 10, 15, 20, 30, 35, 40} and number of colors c between 2 and 10, where blocks
are assigned random colors and initial locations.

3.8. empirical evaluation 65

types block, cell, color, direction

functions

loc(b: block): cell

next(x: cell, d: direction): cell

color(b: block): color

action move(b: block, d: direction)

prec @in-grid(next(loc(b), d))
effs loc(b) := next(loc(b), d)

goal ∀b1, b2 : block (loc(b1) = loc(b2))⇔ (color(b1) = color(b2))

Figure 3.6: Fragment of a FSTRIPS encoding of the grouping domain, in which the
blocks must be moved until they occupy the same cell iff they belong to the same
group. The “@” in predicate symbol @in-grid denotes that its denotation is provided
by an external function; @in-grid(x, d) holds whenever the cell reached by moving in
direction d from cell x is within the grid. The universally quantified goal predicate
gets expanded over the finite (typed) universe of blocks at preprocessing; since color
is a fixed predicate, the truth values of atoms color(b1) = color(b2) can be computed
at preprocessing time as well, and hence the resulting formula is a conjunction of
literals of the form loc(b1) = loc(b2) or loc(b1) 6= loc(b2).

6
6

p
l
a
n
n
in
g

w
it
h
f
u
n
c
t
io
n
sy

m
b
o
l
s

Domain #I #C Coverage Plan length Node expansions Time (s.)
FF FS FF FS R FF FS R FF FS R

count-0 13 11 13 11 770.09 270.09 2.51 770.09 270.09 2.51 33.98 318.42 0.13
count-i 13 7 8 9 946.14 204.43 4.99 946.14 204.43 4.99 34.16 272.11 0.65
count-r 39 17 17 28 499.00 87.35 4.10 499.00 88.76 4.04 154.50 25.68 3.39
group. 72 42 48 55 424.24 43.86 9.61 681.24 104.79 12.28 354.45 83.12 41.57
gard. 51 20 20 33 366.85 86.55 4.10 2635.95 456.45 14.28 205.89 7.84 39.68
push. 17 5 5 8 65.40 34.20 1.43 404.60 64.80 3.18 0.07 3.98 0.01
push-r 81 34 53 34 121.29 59.38 1.67 2964.88 624.82 7.23 3.38 214.33 0.03

Table 3.1: Summary of results for FF and FS using a greedy best-first search with heuristics hFF and hapxFF (FF’s EHC disabled). #I denotes
total number of instances and #C number of instances solved by both planners. Length, node expansion and time figures are averages over
instances solved by both planners; R (for ratio) is the average of the per-instance FF / FS ratios. Best-of-class figures are shown in bold. LAMA
and Metric-FF results are discussed in the text.

3
.8
.

e
m
p
ir
ic
a
l
e
v
a
l
u
a
t
io
n

6
7

Instance Plan length Node expansions Time (s.)
FF FS FF FS FF FS

count0 (n = 8) 68 28 68 28 0.03 0.14
count0 (n = 20) 530 190 530 190 2.46 25.13
count0 (n = 40) 2260 780 2260 780 197.65 1796.9
countinv (n = 8) 54 48 54 48 0.06 0.36
countinv (n = 20) 416 300 416 300 8.62 99.99
countinv (n = 44) 2148 - 2148 - 1073.46 -
countrnd (n = 8) 30 26 30 26 0.05 0.1
countrnd (n = 20) 2250 227 2250 227 333.41 37.1
countrnd (n = 36) - 680 - 680 - 1422.83

group. (s = 5, b = 10, c = 2) 287 23 391 23 3.34 0.57
group. (s = 7, b = 20, c = 5) 215 37 259 105 9.75 26.39
group. (s = 9, b = 30, c = 7) 638 98 752 98 1346.79 169.78

gard. (s = 5, k = 4) 121 30 144 34 3.47 0.12
gard. (s = 10, k = 10) 1156 155 8827 244 1058.55 7.54
gard. (s = 15, k = 22) - 360 - 1580 - 242.45

push (s = 7, k = 4) 51 49 85 102 0.02 4.27
push (s = 10, k = 7) - 189 - 576 - 160.52
pushrnd (s = 7, k = 4) 36 38 75 105 0.02 3.16
pushrnd (s = 10, k = 8) 423 113 31018 4867 59.92 1024.59

Table 3.2: Details on selected instances for the FF and FS planners. A dash indicates the solver timed out before finding a plan, and
best-of-class numbers are shown in bold typeface. Particular instance parameters are described on the text.

68 planning with function symbols

Results show that the coverage of FS is slightly higher, and the hapxFF heuristic used
by FS proves to be much more informed than the propositional version used by FF,
resulting on average on 12 times less node expansions and plans around 10 times
shorter. This is likely because the delete-free relaxation of the problem allows all
unpainted cells to be painted of all colors in the first layer of the RPG, thus producing
poor heuristic guidance. FS does not incur on this type of distortion, as it understands
that goal atoms such as loc(b1) = loc(b2) and loc(b2) 6= loc(b3) are constrained to be
satisfied at the same time. Comparing both planners, the increased heuristic accuracy
largely compensates in terms of search time the cost of the polynomial approximate
solution of the CSP based on local consistency.

Gardening

We now illustrate an additional way in which global constraints can greatly improve
not only the modeling process but also the accuracy of the heuristic estimates. In
the gardening domain, an agent in a grid needs to water several plants with a
certain amount of water that is loaded from a tap and poured into the plants unit
by unit. It is well-understood that standard delete-free heuristics are misleading in
this type of planning-with-resources environments (Coles et al., 2008), since they fail
to account for the fact that the agent needs to load water repeatedly : in a delete-
free world, one unit of water is enough to water all plants. As a consequence, the
plans computed following delete-free heuristics tend to have the agent going back
and forth to the water tap, loading each time a single unit of water. FS, however, is
actually able to accommodate and use a flow constraint equating the total amount
of water obtained from the tap with the total amount of water poured into the
plants. This only requires state variables poured(p1), . . . , poured(pn), and a variable
T intended to denote the total amount of obtained water, plus a goal sum constraint
poured(p1) + · · ·+ poured(pn) = T .

We generate random instances with grid size s×s, s ∈ [4, 20], having one single water
tap and k = max(4,

⌊
s2/10

⌋
) plants to be watered, each with a random amount of

water units ranging from 1 to 10. The goal and preconditions of the problem are
simple enough not to involve more than once the same state variable, so we are just
testing how a reasonably simple goal constraint can improve the heuristic accuracy of
the first-order RPG. The results indeed show that FS significantly and systematically
outperforms FF in all aspects, offering higher coverage and finding plans 4 times
shorter, almost 40 times faster, on average.

Pushing

Finally, the push domain is a simplification of the well-known sokoban domain
where obstacles have been lifted. In push, an agent moves around an obstacle-free
grid, pushing k stones into k fixed different goal cells. A noticeable inconvenient
of delete-free heuristics in this type of domain is that relaxed plans tend to push
all stones to the closer goal cell, even if this means that several stones end up on
the same cell. This is because the delete-free nature of the relaxation means that
if a given cell is clear in the state on which the RPG is computed, it remains clear
throughout the whole relaxed plan. FSTRIPS allows us to express the (implicit) fact
that stones must be placed in different cells through the use of a global constraint
alldiff(loc(s1), . . . , loc(sk)), which FS exploits to infer more informative heuristic
values. This stands in contrast to other heuristic planners, which might be able to

3.8. empirical evaluation 69

indirectly model such a constraint but not to leverage it to improve the heuristic and
the search.

To specifically test the potential impact of this constraint, we model a variation of
the problem in which all stones concentrate near a single goal cell, with the rest
of goal cells located on the other side of the grid (push). We also test another
variation where agent, stones and goal cells are assigned random initial positions
(pushrnd). For the first type of instances, FS is indeed able to heuristically exploit
the alldiff constraint and scale up better, having an overall larger coverage, and
finding significantly shorter plans. In random instances, on the other hand, FF offers
slightly better coverage and a notably smaller runtime, likely because the impact
of the above-mentioned heuristic distortion is much smaller in this setting, but in
terms of plan length and number of expanded nodes, FS still outperforms FF by a
large margin.

3.8.3 Other Planners and Overview

We now briefly discuss the performance of the LAMA and Metric-FF planners on the
same set of problems. In the counters domain family, LAMA offers a somewhat
uneven performance, solving 27/33 instances of the random variation, but only 5/11
of the other two variations. Average plan length is in the three cases significantly
better than FF, but at least a 30% worse than FS, and while total runtimes decidedly
dominate the two GBFS planners in the rnd and inv version, they are much worse
in count0. For Metric-FF, the PDDL 2.1 encoding that we use is identical to the
FSTRIPS encoding, save minor syntactic differences. Metric-FF solves 8/11 instances
in count0, but for the other variations only solves a couple of instances. Given that
the model is the same, this strongly suggests that at least in some cases it pays off to
properly account for the constraints among state variables involved in several atoms.

In the grouping domain, LAMA has perfect coverage and is much faster than the
two GBFS-based planners, but again the FS plans are significantly shorter. In the
gardening domain, LAMA performs notably worse than FS in all aspects, solving
26/51 instances and finding plans that are on average about 4 times longer, in 13
times the amount of time. In the Metric-FF model, we have added the same flow
constraint as an additional goal conjunct total retrieved = total poured but this
does not help the search: Metric-FF is not able to solve any of the instances, giving
empirical support to the idea that even if we place additional constraints on the goal,
these cannot be adequately exploited by the propositional hFF heuristic, precisely
because it does not take into account the constraints induced on state variables
appearing in more than one goal atom. Finally, in the push domain LAMA outperforms
in all aspects the two GBFS planners in the random variation, but shows a much
poorer performance on the other variation, where the alldiff constraint proves its
heuristic usefulness.

Overall, results show that in our test domains the use of the first-order hapxFF heuristic
consistently results in significantly shorter plans (between approximately 1.5 to 9.5
times shorter, depending on the domain) compared to its propositional counterpart.
The heuristic assessments are also more accurate in all domains, resulting in a 2.5-
to 14-fold decrease in the number of expanded nodes, depending on the domain. In
some cases, the increased heuristic accuracy demands significantly larger computa-
tion time, although in terms of final coverage this overhead tends to be compensated,

70 planning with function symbols

as the more accurate heuristic scales up better; in other cases the increased accuracy
itself already allows smaller average runtimes.

3.9 Discussion

The goal in the push domains can be described in FSTRIPS as placing each stone
in a goal cell while ensuring that all stones are in different cells. In propositional
planning, the goal is encoded differently, and the alldiff constraint is implicit,
hence redundant. Indeed, the flow constraint of the FSTRIPS gardening domain
is also redundant. The fact that the performance of FS is improved by adding
redundant constraints reminds of CSP and SAT solvers, whose performance can
also be improved by explicating implicit constraints. This distinguishes FS from the
existing heuristic search planners that we are aware of, that either make no room
for any type of explicit constraints or cannot use them in the computation of the
heuristic. This capability is thus not a “bug” that makes the comparisons unfair but
a “feature”. Indeed, recent propositional planners illustrate the benefits of recovering
multivalued (Helmert, 2009) and flow constraints (Bonet and van den Briel, 2014)
that the modeler was forced to hide. Here, we advocate a different approach: to
make room for these and other types of constraints at the language level, and to
account for such constraints in the computation of the heuristics. We have shown
how allowing function symbols at the modeling level allows us to exploit constraints
that otherwise become hidden in the propositional landscape. The use of function
symbols has been previously discussed in other areas of artificial intelligence such
as constraint programming (Frisch et al., 2007; Marriott et al., 2008) or answer
set programming (Lin and Wang, 2008; Alviano et al., 2010), but has received less
attention in recent planning research, in spite of languages such as ADL supporting
them (Pednault, 1989).

To summarize the results in this chapter, we have considered the intertwined prob-
lems of modeling and computation in classical planning, and found that expressive-
ness and efficiency are not necessarily in conflict. Indeed, computationally it may
pay to use richer languages when state variables appear more than once in action
preconditions and goals, as long as the resulting constraints are accounted for in
the computation of the heuristic. In our formulation, heuristics are obtained from a
logical analysis of the shortcomings of standard delete-free heuristics, where we have
seen that the fact that the assumption of decomposability is valid for simple languages
where formulas are conjunctions of atoms involving one state variable each, does not
necessarily mean that such languages are more convenient for modeling and problem-
solving than richer languages that do not enforce this restriction. On the contrary, if
the goal of the problem contains different atoms involving the same state variables, a
better alternative will likely be to acknowledge the constraints imposed by the atoms
on these state variables within the language itself, so that these constraints can be
used at will to derive more informed heuristics.

This has resulted in an extension of the standard relaxed planning graph into what we
have called the first-order relaxed planning graph (FOL-RPG), where sets of values
xk that are possible for a state variable x in propositional layer xk of the relaxed
planning graph are thought of as encoding an exponential set of possible logical
interpretations. Since these heuristics are more informed but intractable, we show
how they can be effectively approximated with local consistency techniques. Our FS

3.9. discussion 71

planner, further described in Chapter 6, implements these ideas, along with a number
of extensions to the expressiveness of the Functional STRIPS language, namely:

1. Global constraints can be freely used as (fixed-denotation) symbols of the first
order language L(P) of any FSTRIPS problem P , which is convenient to easily
model certain recurrent concepts and benefit from the increased performance
of the associated constraint propagators.

2. More in general, the denotation of any fixed symbol can be defined by an exter-
nal procedure. An ad-hoc constraint propagator can be defined for the symbol
that makes the computation of the FOL-RPG more efficient; otherwise, the de-
notation of the symbol is compiled into a generic extensional constraint. This
is convenient to model certain aspects that otherwise would be very difficult,
if not impossible, to model declaratively.

3. State constraints, i.e. formulas that need to hold in all states of a plan, can
be used at will to ease the task of modeling and to enhance the accuracy of
heuristics at the same time.

The use of relaxed-planning-based ideas in settings richer than the propositional has
been previously explored (Hoffmann, 2003; Gregory et al., 2012; Katz et al., 2013;
Aldinger et al., 2015; Scala et al., 2016a), and actually constitutes a promising avenue
of research for integrating specialized solvers into heuristic search planners, in the
same manner that we have integrated a CSP solver.

Rintanen (2006) also generalizes the formulation of delete-free heuristics such as hmax

hadd and hFF to propositional STRIPS featuring arbitrary formulas, and identifies the
NP-hardness of the satisfiability tests as one of the potential computational bottle-
necks of this generalization, although his discussion is purely theoretical, and does
not contemplate the use of function symbols as we do. Rintanen further explicitly
identifies the decomposition assumption with which propositional formulations deal
with this source of hardness, but argues that in general the structure of formulas is
simple enough so that this theoretical hardness is not a problem in practice. This is
true for the propositional benchmarks that are standard in the field, but is in general
not true for formulas featuring functional symbols. The propositional (function-free)
equivalent of even a simple formula such as x < y will typically be complex enough,
for non-trivial domains, to make an approach such as the one we present here worth-
while, as the results e.g. for the counters domain show.

Chapter 4

Planning with Existential
Quantification

4.1 Motivation

Modeling and computation are essential components for using planners and many
other automated tools. On the one hand, we want planners to scale up gracefully
to large problems, even if the task is computationally worst-case intractable; on the
other, we want users to be able to encode problems naturally and directly without
having to understand how planners work. Indeed, the need to “hack” encodings to
make planners work is one of the factors that hinder the use of planners by non-
experts. Since modeling and computation are heavily coupled, the problem cannot
be entirely solved, yet this doesn’t mean that progress on this front is not possible and
necessary. In the previous chapter, we analyzed how the simple addition of function
symbols to the language we use to describe planning problems can have significant
consequences both for modeling and computation. In this chapter, we aim at doing
a similar thing, but this time discussing the use of existential quantification.

4.1.1 Effective Support for Existential Quantification

Existentially quantified variables provide indeed a simple and convenient modeling
feature in problems where the goal is not a fully-specified single state, but leaves
room for choices. In a Scan-like problem, for instance, the goal may be to place a set
of packages in different target locations, but without explicitly saying in which target
location to place each package. In the blocks-world, to name but another example,
the goal may be to reach not a single, particular configuration of blocks, but a state in
which a blue block is on a red block, irrespective of the actual block identities. There
are no doubt other mechanisms to model such open choices in propositional languages
such as STRIPS, but existential variables offer a way to do so very compactly, and
in addition have the advantage of making these choices explicit, which is useful for
reasoning about them.

As a matter of fact, existentially quantified variables in preconditions and goals are
part of the standard PDDL language (McDermott et al., 1998), but few planners
offer support for them, and those that do compile them away at a cost that is expo-
nential in the number of this type of variables, which is definitely not a good option
from a computational standpoint. We will call this approach the compilation-based

73

74 planning with existential quantification

approach. The usual alternative in the PDDL world is to avoid existential variables
altogether. In the last three International Planning Competitions (2008, 2011, 2014),
for instance, no benchmark makes use of existential quantification. As we will show,
however, this is not good either, as it leads to clumsy encodings that obscure the
problem structure and results in less informed heuristics than the compilation-based
approach, not to mention the fact that coming up with such alternative encodings is
not always trivial. We illustrate these various points below.

To illustrate, consider the problem of placing a blue block on top of a red block, and
this red block on top of a blue block.1 This can be easily encoded in PDDL with a
goal formula

∃z1, z2, z3. on(z1, z2) ∧ on(z2, z3) ∧ blue(z1) ∧ red(z2) ∧ blue(z3).

Modern classical planners like FF, FD, and LAMA (Hoffmann and Nebel, 2001a; Helmert,
2006a; Richter and Westphal, 2010) accept such existentially quantified formulas, but
they compile the quantification away at preprocessing, producing in this case a goal
in disjunctive normal form (DNF) with terms

on(a, b) ∧ on(b, c) ∧ blue(a) ∧ red(b) ∧ blue(c)

for all possible combinations of blocks a, b and c. This DNF goal is mapped in
turn into an atomic dummy goal that can be achieved with extra actions, whose
preconditions are those terms (Gazen and Knoblock, 1997). The immediate problem
with this compilation is that it does not scale up: the number of terms in the
compilation is exponential in the number of variables, which is problematic for more
than a few quantified variables. In our example, this will happen as soon as the
desired color pattern in the goal involves more than a few blocks.

In general, it is not trivial to find equivalent and compact propositional encodings
that avoid existential variables, but in some cases it is feasible. The goal of placing
n packages pi into n different target locations lk, for instance, can be expressed with
existential quantification and equality as

∃z1, . . . , zn

∧
j 6=i

zi 6= zj ∧
∧
i

target(zi) ∧ at(pi, zi)

 .

The quantification and the compilation can be avoided here by using a clear pred-
icate over target locations that becomes a precondition of the action of dropping a
package in such locations. The resulting encoding is equivalent to the one obtained
by compiling the previous formula in the sense that both encodings result in the
same set of plans (dummy actions aside), and it has the advantage that its size does
not grow exponentially with n. This compact encoding, however, is not only less
clean and direct than the one with quantification, but it is also certainly not equiv-
alent from a computational point of view. To see this, consider the behavior of the
standard delete-relaxation heuristics on a situation where none of the packages is
at a target location. If existential variables are compiled away as outlined above,
the heuristic will estimate the cost of taking each package to a different target lo-
cation; in the alternative encoding using the clear predicate with no variables, in

1 Similar variations of the classical blocks-world have often been considered in the AI literature
(Subrahmanian and Zaniolo, 1995; Hölldobler et al., 2006).

4.1. motivation 75

contrast, the heuristic will estimate something different: namely, the cost of taking
each package to its closest target location. These estimates will be different when
several packages have the same closest target location. This can be easily seen for
n = 2, where, assuming the two different target locations are named l1 and l2, the
compilation results in a DNF goal

(at(p1, l1) ∧ at(p2, l2)) ∨ (at(p1, l2) ∧ at(p2, l1)),

without terms at(p1, l1) ∧ at(p2, l1) or at(p1, l2) ∧ at(p2, l2) where both packages end
up at the same location. In contrast, the encoding with the clear predicate does not
account for this difference, as both locations l1 and l2 will remain clear in the delete
relaxation as long as they are clear in the state from which the heuristic is computed.

4.1.2 Constraint Satisfaction in Planning

The above discussion illustrates that while compiling away the variables in the goal
has an exponential cost, there are also hidden computational costs in the avoidance
of existential variables to prevent the exponential blow-up. This point can be made
more general and compelling once we notice that existential variables allow us to
encode naturally and directly constraint satisfaction problems as planning problems.

It is well known that CSPs and SAT problems can be encoded as planning problems.
In the standard encoding, actions set the value of variables, preconditions are used to
check that new values do not violate a constraint and the goal requires all variables to
have a value. This “planning approach” is not expected to do well on such problems
in general. Indeed, common heuristics will be useless, and the space full of dead ends
(assuming that values cannot be unset, something that makes sense, as no value needs
to be set more than once in a solution). In principle, the assumption that planners
should not do well in SAT and CSP problems is reasonable, but this “separation of
concerns” between planning and constraint-based reasoning is artificial: there are
many problems that involve both planning and constraint reasoning — think e.g. on
a typical graph coloring with an added agent that needs to travel around the graph,
picking up and dropping a limited number of colored pencils in order to actually
paint the graph vertices; or a n-queens problem where the pieces must be moved
physically one square at a time until reaching a goal configuration. Several other
more realistic problems sharing this double Planning-CSP affiliation have also been
recently discussed, e.g. involving network-flow numerical constraints, integration of
task and motion planning or scheduling of mining operations (Ivankovic et al., 2014;
Mansouri and Pecora, 2014; Ferrer-Mestres et al., 2015; Burt et al., 2015).

The addition and effective support of existential variables to a language such as
STRIPS provides a direct bridge between CSPs and planning. Consider for example
a CSP with variables x1, . . . , xn, domains Di, and binary constraints pi,j between
pairs of variables xi and xj expressed in extensional form such that an entry pi,j(a, b),
for a ∈ Di and b ∈ Dj means that the pair 〈a, b〉 satisfies the constraint pi,j . The
mapping of this CSP into a a STRIPS problem P = 〈A,O, I,G〉 making use of
existential variables is rather straightforward:

1. P has no actions or fluent symbols, i.e. O is empty, and S contains binary
atoms pi,j over types given by the CSP domains Di and Dj .

2. The initial state I contains atoms pi,j(a, b) for each value pair 〈a, b〉 ∈ Di×Dj

allowed by each constraint pi,j .

76 planning with existential quantification

3. The goal is simply the conjunction

∃z1, . . . , zn.
∧
i,j

pi,j(zi, zj) .

where each zi is an existentially quantified variable with type Di.

Indeed, as we will see below, the extension of the FS planner to support existential
variables handles such problems naturally, as a CSP solver, as it interfaces with the
Gecode CSP solver (Gecode Team, 2006) to solve the CSPs that may arise during the
computation of the heuristic and in goal and action applicability checking operations.
The advantage of FS is that it is a planner, and can smoothly accommodate variations
of the problem featuring actions and fluents as well, as in the agent-based graph
coloring problem mentioned above, to which we return in the experimental section.

The compilation-based approach outlined above would convert such a quantified goal
into a grounded DNF goal whose terms are all possible joint valuations of the CSP.
The very existence of the field of constraint satisfaction bears witness to the fact that
this is not an effective way of solving the CSP. The delete-relaxation heuristic for the
compilation, however, is exact : it will yield a heuristic value of 0 for the initial state
iff the CSP is actually solvable. Alternative STRIPS encodings of the CSP that do
not involve variables and are compact are certainly possible, yet such compact, poly-
nomial encodings cannot yield a (polynomial) delete-relaxation heuristic equivalent
to the heuristic obtained from the compilation unless P = NP.

4.2 Overview of Results

In other words, while dealing with existential variables by compiling them away is ex-
ponential, avoiding them altogether results in poorer heuristic estimates in general.
In this chapter, we show that there is actually a third option: to explicitly han-
dle existentially quantified variables during the computation of the delete-relaxation
heuristic. As we will show, this option avoids the exponential blow-up in the com-
pilation, and yet it delivers a heuristic that is equivalent to the one that would be
delivered by the delete-relaxation in the grounded, compiled problem. The proposed
method is based on a modification of the relaxed planning graph (see Section 2.4.4)
that takes into account the first-order structure of the atoms. This modification is
actually an extension of the FOL-RPG and the underlying Γ(φ, Pk) model that we
introduced in the previous chapter. This extension, however, is independent of the
support for function symbols, and for most of the chapter we assume we are sim-
ply dealing with the extension of propositional STRIPS with existentially quantified
variables, which we name E-STRIPS. As in the previous chapter, the computation of
the heuristic is worst-case intractable, but as we will show, it can be informed and
cost-effective in practice.

Interestingly, the proper handling of existential variables in STRIPS opens up a way
for compiling pure FSTRIPS into E-STRIPS as in (Haslum, 2008), but with no effect
on the structure and informativeness of the resulting heuristic. Another interesting
corollary of this support for existential variables is that it allows lifted planning, i.e.
planning directly with the action schemas, both in the search and in the computa-
tion of the heuristics, as action parameters are nothing else that a special kind of
existential variables, as we will see.

4.3. strips with existential quantification: e-strips 77

In the rest of the chapter, we formalize the extension of propositional STRIPS with
existentially quantified variables, which we name E-STRIPS (Section 4.3), and pro-
vide a minor reformulation of the FOL-RPG that accounts for these variables (Sec-
tion 4.4). We discuss the link between STRIPS with functions and with existential
variables, and possible compilations from functions to existentials, and the other way
around, in Section 4.5. In Section 4.6 we show how the above ideas can be used to
perform planning without having to ground the action schemas. We then evaluate
the extension of the FS planner to support existential quantification by comparing
it with state-of-the-art STRIPS planners run on existentially-quantified encodings
and on alternative, compact propositional encodings that avoid the compilation, and
also with an extension of the FSTRIPS planner FS, and we preliminary illustrate the
performance of the planner when doing lifted planning (Section 4.7). We conclude
the chapter with a discussion of our contribution and of related work. All of the
work presented in this chapter, except for the section on lifted planning, which is
unpublished work, has been previously published in (Francès and Geffner, 2016b).

4.3 STRIPS with Existential Quantification: E-STRIPS

Although originally conceived as a first-order language (Fikes and Nilsson, 1971),
we already saw that STRIPS is most often used as a propositional language. We
here extend the standard definition of propositional STRIPS given in Chapter 2 to
include existentially quantified variables, and discuss how heuristics based on the
relaxed planning graph can be adapted to this extension, which we call E-STRIPS.

4.3.1 E-STRIPS Language

An E-STRIPS problem is a tuple P = 〈A,O, I,G〉, with the same syntax and seman-
tics given by the state model S(P) that was defined in Section 2.3.2 for STRIPS, ex-
cept for one key difference: in addition to ground atoms, preconditions and goals may
feature e-formulas. An e-formula is a first-order formula of the form ∃x1, . . . , xn. φ,
where φ is a conjunction of atoms p(t1, . . . , tn) with each term ti being either a con-
stant symbol or a variable symbol xi from the quantification prefix. The e-formula
∃x1, . . . , xn. φ is true in a state s if the variable symbols xi can be replaced by ob-
jects o1, . . . , on in the STRIPS universe so that the resulting grounded formula φ′

is true in s. This definition extends naturally for STRIPS problem with types —
in such a case, variables have to be replaced by objects from the universe of the
appropriate type. When x̄ is a tuple of variables, we write the e-formula ∃x̄. φ as
∃x̄. φ[x̄] so that the ground conjunction of atoms φ′ that results from the substitution
x̄ 7→ ō in φ can be written as φ[x̄ 7→ ō] or simply φ[ō]. For example, for the formula
∃x1, x2, x3. p(x1, x2) ∧ p(x2, x3), if φ is p(x1, x2) ∧ p(x2, x3), φ[x1, x2, x3 7→ c, d, c]
denotes the variable-free formula p(c, d) ∧ p(d, c).

Determining if an e-formula holds in a state s is NP-complete, meaning that plan
verification in E-STRIPS is NP-complete as well, and that any heuristic h able to
distinguish between goal and non-goal states (i.e., such that h(s) = 0 iff s is a goal
state) will be intractable. This is however a worst-case result and additionally does
not imply that such heuristics cannot be cost-effective, as we argue below.

78 planning with existential quantification

4.3.2 E-STRIPS Heuristics

Adapting the relaxed planning graph heuristic from STRIPS to E-STRIPS is simple,
even though the resulting heuristic is no longer polynomial. We just need to define
how to deal with e-formulas in preconditions and goals in the construction of the
RPG. While a ground atom p is deemed to be satisfiable in a propositional layer
Pi when p belongs to Pi, we take an e-formula ∃x.φ[x] to be satisfiable in Pi when
there is a substitution x 7→ o such that all ground atoms in φ[o] belong to Pi (recall
that φ[x] is assumed to be a conjunction of ground atoms). If, for instance, φ is
p(x1, x2) ∧ p(x2, x3), then the formula ∃x1, x2, x3. φ is satisfiable in a layer Pi that
contains the atoms p(c, d), p(c, e), and p(d, c), through the substitution [x1, x2, x3 7→
c, d, c]. On the other hand, the same formula would not be satisfiable in that layer if
only the first two atoms were contained in Pi.

Extending the RPG construction to take into account e-formulas is simple to state
but potentially complex to compute. Indeed, the satisfiability test for e-formulas
in a state or in a propositional layer Pi amounts to solving a CSP with variables
that correspond to the variable symbols in the prefix, domains given by the sets of
STRIPS objects (respecting type consistency), and constraints given by the atoms
p(t1, . . . , tn) in φ, such that the predicate symbols represent the tables that contain
the tuples o1, . . . , on for atoms p(o1, . . . , on) in layer Pi only. A substitution x 7→ o
satisfies φ if o is a solution to this CSP.

For plan extraction, the supporters of an e-formula ∃x.φ[x] that is satisfied in a layer
Pi with substitution x 7→ o are identified with the supporters of the atoms in φ[o].
Thus the plan extraction procedure that works backward from the goal does not see
e-formulas at all, just ground atoms, as in the standard RPG procedure.

We call the relaxed plans and the heuristic that result from this procedure for the
E-STRIPS language πeFF(s) and heFF(s) respectively. If instead of counting the actions
in the relaxed plan we count the number of propositional layers, we get a variant
of the hmax heuristic, hemax, that can be shown to be admissible for E-STRIPS. The
heuristic heFF(s) is inadmissible, in the same way that hFF is inadmissible for STRIPS.

The heuristics he are equivalent to the corresponding heuristics h for the STRIPS
compilation and can be regarded as a lazy version of them. The key difference is
that the compilation requires time and space exponential in the number of existential
variables, while the heuristics for E-STRIPS require only exponential time in the
worst case. The terms of the ground DNF formulas required for compiling away
e-formulas ∃x. φ[x] in preconditions and goals correspond indeed to the conjunctions
of ground atoms φ[c] for each of the possible substitutions x 7→ c. The computation
of the heuristics however does not apply these possible substitutions all at once,
and moreover, it does not explore the space of all possible substitutions exhaustively
either. Instead, it uses constraint propagation to search for a substitution that makes
the e-formula ∃x. φ[x] satisfiable, as will become clear in the next section.

4.4 Supporting Existential Quantification in Functional
STRIPS

If dealing with existential quantification in STRIPS is directly related to solving
constraint satisfaction problems, the question naturally arises of whether the first-
order RPG for Functional STRIPS that we discussed in the previous chapter, and

4.4. supporting existential quantification in functional strips 79

whose construction we mapped into a CSP as well, can be extended to support
existential quantification in FSTRIPS. The answer is positive; in this section, we
outline the details of such extension.

The definition of the Functional STRIPS language given in Chapter 2 does indeed
already account for existential quantification. Syntactically, note that existential
variables can appear in preconditions, effect conditions, and goal formulas; the scope
of these quantifiers, however, does not extend to functional effect heads, since oth-
erwise effects like f(x) := c or f(c) := x, where x is some existentially quantified
variable, could be non-deterministic, depending on the value chosen for x. Our usage
is roughly analogous to the usage of the :vars construct in PDDL (McDermott et al.,
1998) for denoting existential variables (indeed, symbol variables occurring in heads
are assumed to be universally quantified). The usual way to model this in PDDL is
to “push” this existential variables as extra parameters of the action schema.

The algorithm outlined in Fig. 3.4 for the construction of the first-order RPG works
the same when existential quantification is allowed in the formulas, as long as the
satisfying interpretations (models) in lines 1 and line 2 are understood to be extended
with the actual variable substitution necessary to satisfy the respective formulas, as
customary in standard first-order logic semantics (Enderton, 2001). The only thing
that hence warrants discussion is how to deal with existential quantification in the
constraint satisfaction problems Γ(φ, Pk) into which the construction of the FOL-
RPG is mapped. We assume that the formula has no universal quantifiers; universal
quantifiers can be eliminated by expanding them over the finite universe of their
associated type. For the sake of simplicity, we further assume that all formulas
are in prenex normal form, i.e. have the form ∃x̄.φ[x̄], where φ[x̄] is a quantifier-free
formula with only free variables in x̄. Arbitrary first-order formulas can be converted
to prenex normal form by variable renaming and application of simple rewriting rules.

Definition 4.1 (Γ(φ, Pk) with existential quantification). Let P be a FSTRIPS
problem P over language L(P) and Pk a layer of a first-order relaxed planning graph
for the problem, i.e. one domain xk for each state variable x ∈ V(P) of the problem.
The constraint satisfaction problem Γ(φ, Pk) = 〈X,D,C〉 for a formula φ in prenex
normal form without universal quantifiers,

φ ≡ ∃ x1/τ1, . . . , xn/τn φ[x1, . . . , xn],

where x1, . . . , xn are the only free variables appearing in φ, contains all variables,
corresponding domains and constraints specified in Definition 3.10, plus the follow-
ing additional CSP variables, defined inductively over the structure of every term t
appearing in φ:

Terms If t is an existentially-quantified variable x with type τ , Γ(φ, Pk) contains a
CSP variable vx with domain given by the universe Uτ .

If t is a term of the form f(t1, . . . , tm), and some ti is an existentially-quantified
variable, then no extra adjustment is necessary with respect to Definition 3.10.
Γ(φ, Pk) will contain, depending on whether f if a fixed or fluent symbol, an
extensional or an element constraint placed upon the CSP variables vt1 , . . . , vtn,
and vt, which capture, respectively, the denotations of t1, . . . , tm and of the term
t. Details are provided in Definition 3.10.

80 planning with existential quantification

type counter, value

objects c1, . . . , cn: counter

i1, . . . , im: value

predicates

val(c: counter, v: value)

successor(v0: value, v1: value)

lt(v0: value, v1: value)

action increment(c: counter, v0: value, v1: value)

prec val(c, v0) ∧ successor(v0, v1)

effs val(c, v1)

¬val(c, v0)

init val(c1. 0), val(c2, 0), . . ., val(cn, 0)

goal ∃v1, . . . , vn. val(c1, v1) ∧ . . . ∧ val(cn, vn) ∧ lt(v1, v2) ∧ . . . ∧ lt(vn−1, vn)

Figure 4.1: Fragment of an E-STRIPS encoding of the counters domain (simplified
syntax). Compare with the original FSTRIPS formulation in Fig. 3.3.

As in Section 3.5.2, any solution σ to the CSP Γ0(φ, Pk) can be mapped into a set
I(σ) of first-order interpretations consistent with the solution, which is guaranteed,
by construction, to contain exactly those interpretations in Ik that satisfy φ.

4.5 Relation of E-STRIPS and Functional STRIPS

There is a close relation between E-STRIPS and Functional STRIPS. Haslum (2008)
has shown how pure FSTRIPS (with no built-in functions) can be compiled into E-
STRIPS by adding existential variables and replacing functions of arity m by relations
of arity m + 1 using the principles of Skolemization in reverse. For example, a
grounded atom f(g(c)) = d is replaced by the e-formula

∃x. f ′(x, d) ∧ g′(c, x),

where the relations f ′(x1, x) and g′(c1, x) represent f(x1) = x and g(c1) = x re-
spectively. When functional terms appear in action schemas, as noted by Haslum,
the existential variables that result from the above transformation can be pushed
into the action signature as additional action schema parameters. Fig. 4.1 shows
the E-STRIPS encoding that results from the application of this transformation to
the FSTRIPS encoding of the counters problem that was discussed in the previ-
ous chapter, shown in Fig. 3.3. In the increment action, existential variables v0

and v1 are created representing terms val(c) and val(c) + 1, respectively, and then
they are moved to the signature of the action as extra action parameters, which by
definition are (implicitly) quantified existentially. Predicates val and successor of
the E-STRIPS encoding represent functions val and “+1” of the FSTRIPS encoding,
whereas predicate lt represents the built-in FSTRIPS predicate “<”.

4.5. relation of e-strips and functional strips 81

This is important not only for modeling but also for computation. As we have shown
in the previous chapter, the heuristics hFOFF and hFOmax, as well as their approximate
versions hapxFF and hapxmax, are able to capture constraints in FSTRIPS representations of
problems such as counters that are otherwise missed in their propositional versions.
Interestingly, the proposed he heuristics for E-STRIPS are also able to leverage such
constraints to gain accuracy, as they take into account the first-order structure of
the formulas. As it turns out, the goal formula in the E-STRIPS encoding above,
namely:

∃v1, . . . , vn.
∧

i=1..n

[val(i, vi)] ∧ [
∧

i=1..n−1

lt(vi, vi+1)]

will be satisfied in a propositional layer Pk only by the substitution that replaces
the variable vi by the value i, because the heuristic accounts for the fact that the
vi variables need to be replaced consistently in all goal subformulas. This is very
interesting, as it means that the positive results obtained in Chapter 3 can be re-
produced on the E-STRIPS function-less encodings of the problem obtained through
Patrik Haslum’s translation, provided the new heuristics he are used. Running other
planners on such translations would not deliver the same results. It must be said,
however, that Haslum’s translation captures the core of FSTRIPS only, leaving out
the ability to use the extensions outlined in Chapter 3 such as built-in functions,
global constraints, externally defined symbols, etc., which on certain problems can
make a large difference. On the other hand, the heuristic for E-STRIPS is simpler to
describe and implement than the heuristic for FSTRIPS.

Compiling a problem represented in E-STRIPS into an equivalent problem making use
of function symbols but without existential quantification is also straight-forward,
although less elegant. We do not provide the full details here, but the intuition is
that every distinct existential variable x of type τ in an action precondition or in the
goal formula can be modeled by adding

1. An extra type τ ′ with universe Uτ ′ = Uτ ∪ {u}, where u is a new element
representing the undefined value.

2. An extra constant vx with type τ ′ (which will be a state variable of the prob-
lem).

3. An extra action schema with signature setx(o: τ), with no precondition and
with effect vx := o.

The initial state is then extended by assignments vx := u, and each occurrence of x
can then be replaced by the (fluent) constant vx, adding, where necessary, a condition
specifying vx 6= u. This compilation can be seen as representing the bindings of
existential variables to propositions (Kautz et al., 1996). Plans for this compilation
can be readily converted into plans for the original E-STRIPS problem by removing
the setx actions. The two encodings will not however have the same computational
properties.

82 planning with existential quantification

4.6 Lifted Planning: Planning without Grounding
Action Schemas

The interpretation of existential variables so far presented provides also a principled
way for dealing with action schemas without grounding them either in the search
or in the computation of the heuristic. This is critical in some applications where
action schemas take many arguments and where exhaustive grounding is not feasible
(Koller and Hoffmann, 2010; Masoumi et al., 2013; Areces et al., 2014). Exhaustive
grounding of action schemas is not too different indeed from grounding goals with
existential quantifiers: if the action preconditions are constrained, there might be
several valuations for the action arguments, but few of them that actually satisfy
the preconditions and thus make the grounded action applicable in a given state.
In general, a large number of ground actions also imposes a heavy load during the
construction of the relaxed planning graph.

As we have already pointed out, Functional STRIPS often allows a reduction of the
number of ground actions thanks to the use of (possibly nested) function symbols,
as in the case of the n-puzzle, that can be modeled with 4 ground actions. In
contrast, the standard STRIPS encoding requires more than n2 ground actions. Still,
the language and the computation model, which relies heavily on consistency tests
performed by an underlying CSP solver, suggest alternative ways for dealing with
action schemas without having to ground them.

We need to distinguish between the use of action schemas during the computation
of the relaxed plan and during the search. In the the construction of the planning
graph, the action schema parameters can be treated exactly as existential variables
with types given by the type of the schema parameter. In other words, an action
schema a with 6 argument variables whose types include 10 constants each, would
result in 106 ground instances. In this lifted method for computing relaxed plans,
on the other hand hand, the six argument variables are added to the corresponding
CSPs, and dealt with efficiently by using constraint satisfaction techniques.

Doing lifted planning during the search, on the other hand, is different than lifting in
the computation of the RPG, as one cannot “choose” the action schema but has to
generate, evaluate, and select particular ground instances. In our context of forward
search, the main implication of this is that we need to be able to compute, given any
state s, and for each action schema a the set of groundings of the schema that make
the schema applicable in that state. For this, one needs to build a single CSP per
action schema. The different solutions of this CSP can then be directly associated to
the different ground instances that are applicable in any given state, and to the state
variable updates that they lead to. Another way of understanding this approach is
that the grounding of action schemas is done “on the fly”, i.e. by solving, each time
that a state s is expanded, a constraint satisfaction problem which is built based on
the action parameters, action precondition and on the state s. Each solution to this
CSP gives a possible variable substitution σ that is equivalent to an action grounding.
Interestingly, this CSP is exactly the constraint satisfaction problem Γ0(pre(a), P0),
where P0 is the initial RPG layer for state s or, alternatively, the layer that allows
for each state variable x ∈ V(P) of the problem, the singleton set of values {xs}.

In a sense, the only difference between grounding all actions statically before the
search and doing the search with action schemas as discussed here is that the first
approach is nothing but an exhaustive generate-and-test method applied at pre-

4.7. empirical evaluation 83

processing time, whereas the second can apply forms of constraint reasoning in order
to speed up the search, but is applied during search time. Computing all the solutions
of a CSP is more complex than testing satisfiability, and the variables in this action
schema CSP are typically few. If that is the case, it may be better to ground the
actions previous to the search, whereas if the number of action parameters is large,
the CSP approach is likely to scale up better. On their discussion of operator splitting
techniques in the context of reductions of planning to propositional satisfiability,
Kautz et al. (1996) discuss ideas similar to the ones discussed here. Younes and
Simmons (2002) also discuss performance differences between planning with lifted
and grounded actions, but in the context of partial order planning.

4.7 Empirical Evaluation

4.7.1 Setup

Most of the results reported in this section were first published in (Francès and
Geffner, 2016b). The aim of the section is to analyze empirically the different ways
in which problem representations using existential variables can be dealt with. To
this end, we consider four families of problems, each of which we encode in three
different formalisms:

1. E-STRIPS, i.e. propositional STRIPS with existential quantification but no func-
tion symbols. As noted above, this is included in the PDDL standard.

2. Propositional STRIPS, where existential variables have been removed by some
manual reformulation of the problem that preserves equivalence.

3. Functional STRIPS with existential quantification.

The methods proposed in this chapter have been implemented in the FS planner. A
full account of the current capabilities of the planner can be found in Chapter 6. The
planner interfaces with the Gecode constraint solver (Gecode Team, 2006) in order to
compute the heuristics based on the FOL-RPG that we have described above, thus
offering full support for both problems represented in E-STRIPS and in FSTRIPS
with existential quantification, as the former is a subset of the latter. The discussion
of the results of the planner when applied to E-STRIPS encodings and to FSTRIPS
encodings are kept separately, to emphasize that the proposed heuristics are useful
even when only STRIPS with existential quantification is considered. As we will see,
however, the additional compactness of FSTRIPS pays off also computationally when
paired with existential quantification. In both cases, the planner uses a plain greedy
best-first search coupled with the heFF heuristic.

The performance of the FS planner running on all the above encodings is compared
against that of the Fast-Downward planner (Helmert, 2006a, FD) running on those
encodings which it accepts: E-STRIPS and propositional STRIPS. FD is configured
with the same search strategy as FS: a greedy best-first search with the hFF heuristic,
a single queue, no EHC, and non-delayed evaluation. All planners run a maximum
of 30 minutes on a cluster with AMD Opteron 6300@2.4Ghz nodes, and are allowed
a maximum of 8GB of memory. The source code of the FS planner plus all problem
encodings are available on www.gfrances.github.io.

www.gfrances.github.io

84 planning with existential quantification

4.7.2 Domains

The four families of domains that we test are bw-pattern, vertex-coloring,
grouping and counters, the last two of which were already discussed in Chapter 3.
We briefly describe them here:

Blocksworld Pattern bw-pattern, sketched in the chapter introduction, is a
blocksworld variation where each block has a color, and we want to reach
any block configuration displaying a given color pattern, such as “a red block
on a blue block on a green block”, modeled in E-STRIPS with the goal formula

∃ b1, b2, b3. col(b1, red) ∧ col(b2, blue) ∧ col(b3, green) ∧ on(b1, b2) ∧ on(b2, b3).

In FSTRIPS, locations and colors of the blocks are modeled with a function
symbol instead of a predicate, but the goal formula remains otherwise equal.
The FSTRIPS encoding results however in more compact action schemas, and
avoids the need of modeling block moves with a sequence of pick and place
operations. For bw-pattern we test no propositional encoding, as it is not
trivial to reformulate the problem without existential variables.

Vertex Coloring vertex-coloring illustrates how any CSP can be easily em-
bedded in an (action-less, fluent-less) E-STRIPS planning problem. A classical
k-vertex-coloring problem with n nodes and set of edges E maps into an
E-STRIPS problem with k objects of type τc (i.e. of “color” type) and typed
goal e-formula

∃ z1/τc, . . . , zn/τc
∧

(i,j)∈E

zi 6= zj .

The initial (and only) state of this planning problem will be detected as a goal
if and only if the graph is k-colorable. The above formula is also the one we
use as the FSTRIPS encoding, as in this case there is no gain to be obtained
through the use of function symbols. We have also devised a propositional
STRIPS reformulation with a single action paint(v, c) that paints vertex v with
color c if it was previously unpainted. The action cannot be applied if this
would create an invalid vertex painting. This is encoded with a precondition
subformula involving universal quantification:

∀v′/τv(E(v, v′)→ unpainted(v′, c))

where E(v, v′) is the graph edge relation, τv is the type that represents “graph
vertex” objects, and unpainted(v′, c) denotes that vertex v′ is not painted with
color c. Nodes are initially all unpainted, and a plan consists in a sequence of
node paints (whose ordering is actually irrelevant).

We also test a variation of the domain that we name agent-coloring, where
an agent moves around the graph and has to manually perform the painting of
the vertices by picking up some cans of paint that are randomly distributed,
with the additional constraint that only one such can can be carried at a time.
This variation requires few changes, but provides the chance of giving a more
planning-like nature to the problem, in the sense that the order of actions
becomes relevant.

4.7. empirical evaluation 85

We use two sets of instances: first, random instances (100 ≤ n ≤ 500, 10 ≤ k ≤
30) where the graph results from adding edges at random to a uniform span-
ning tree until a certain graph density is reached; second, standard instances
from a public compilation from the literature,2 of which we have pruned those
instances reported as not solvable in less than 1 hour by state-of-the-art col-
oring methods or having a chromatic number χ > 10, From the remaining
34 coloring instances, we generate planning problems with a number of colors
k ∈ {χ, χ+ 1}, for a total of 68 non-random instances.

Grouping Blocks In grouping, already discussed in Chapter 3 (see e.g. Fig. 3.6),
colored blocks are randomly placed on a grid and need to be moved around
with the goal that two blocks end up on the same cell iff they have the same
color. The original FSTRIPS formulation features a goal formula with an atom
loc(bi) ./ loc(bj) for each pair of blocks bi, bj , where ./ is = (6=) if the two
blocks have the same (different) color. This translates directly to E-STRIPS,
so that the goal of a problem with red blocks a and b and a blue block c is

∃ l/τL, l′/τL. l 6= l′ ∧ at(a, l) ∧ at(b, l) ∧ at(c, l′),

where τL is the type corresponding to grid locations.

The propositional STRIPS reformulation that we have devised uses additional
actions to “label” in advance the final grid location for the blocks of each color,
and once the target location of all colors is fixed, it moves blocks to their
corresponding color locations. The E-STRIPS encoding that we just sketched,
however, is not only much simpler and cleaner, but it preserves the problem
structure in a manner which allows the heFF heuristic to be more informed than
hFF, as we discuss below.

Counters Finally, counters, also described in the previous chapter (see e.g. Figs. 3.2
and 3.3) is the problem were we have n integer variables and apply actions to
increase or decrease their value by one until the inequalities x1 < . . . < xn hold.
We use two variations, labeled count0 and countrnd, where variables are ini-
tially set to 0 and to random values, respectively. The E-STRIPS encoding is
the one shown in Fig. 4.1, which is the result of applying Patrik Haslum’s com-
pilation technique to the original FSTRIPS encoding, plus replacing the “<”
FSTRIPS built-in predicate for a lt predicate with extensional denotation.

The propositional encoding, in turn, requires the use of conditional effects and
a linear number of extra atoms to model when two consecutive variables xi,
xi+1 satisfy the xi < xi+1 goal requirement. An alternative encoding could
feature existential variables quantified in pairs, i.e. with a goal formula∧

i=1..n−1

(
∃z, z′. val(ci, z) ∧ val(ci+1, z

′) ∧ lt(z, z′)
)
.

As long as the problem actions maintain the functional character of the val
relation, this formulation is equivalent to the one presented in Section 4.5.
We expected Fast-Downward to have less difficulties here during preprocessing
time, even if at the cost of a certain loss of heuristic accuracy, but it turns out
that it is the other way round, the planner barely going beyond preprocessing
on any instance, so we omit results for this encoding from the discussion.

2 https://sites.google.com/site/graphcoloring/, accessed on 31 July 2017.

https://sites.google.com/site/graphcoloring/

8
6

p
l
a
n
n
in
g

w
it
h
e
x
ist

e
n
t
ia
l
q
u
a
n
t
if
ic
a
t
io
n

Domain N Coverage Plan length Node expansions Time (s.)
E-FF P-FF E-FS E-FF P-FF E-FS E-FF P-FF E-FS E-FF P-FF E-FS

count0 12 3 7 7 - 70.7 70.7 - 542K 70.7 - 52.6 84.9
countrnd 36 9 25 21 21.4 21.6 22.1 22.4 36.6 22.1 0.9 0.0 0.7
grouping 48 28 34 47 25.8 41.6 26.1 26.8 203K 26.2 2.1 179.5 54.6
bw-pattern 30 11 - 20 8.4 - 50.9 306.3 - 16.19K 0.6 - 60.9
v-coloring 80 1 43 78 - 84.3 0 - 60.7K 0 - 87.7 0
a-coloring 88 6 30 27 24.5 26.9 29.2 41.2 80.8 65.0 0.0 0.0 0.3

Table 4.1: E-STRIPS planning. Comparison of results between different planners on E-STRIPS and propositional STRIPS encodings. “E-
FF” is the FD planner with FF-like configuration on E-STRIPS encodings; “P-FF” is the same planner on a (manual) propositional STRIPS
reformulation (except for bw-pattern, for which we have no such encoding); “E-FS” is our FS planner on the E-STRIPS version; N is number
of instances; length, node expansion and time figures are averages over instances solved by all those planners that solve at least 5 instances.
Best-of-class coverage numbers are shown in bold.

Domain N Coverage Plan length Node expansions Time (s.)
P-FF E-FS EF-FS P-FF E-FS EF-FS P-FF E-FS EF-FS P-FF E-FS EF-FS

count0 12 7 7 11 70.7 70.7 70.7 542K 70.7 70.7 52.6 84.9 5.6
countrnd 36 25 21 30 93.0 86.6 86.2 6.9K 87.2 86.2 15.8 117.9 11.2
grouping 48 34 47 48 42.4 23.8 24.3 150K 23.8 24.3 146.8 25.9 5.8
bw-pattern 30 - 20 29 - 45.1 5.7 - 9.28K 6.2 - 38.8 0.2
v-coloring 80 43 78 78 84.3 0 0 60.7K 0 0 87.7 0 0
a-coloring 88 30 27 38 71.9 94.9 77.9 353.3 1.82K 609.6 0.1 30.9 4.1

Table 4.2: E-STRIPS vs. FSTRIPS planning. Comparison of results between different planners on E-STRIPS, propositional STRIPS and
FSTRIPS encodings. “P-FF” is FD with FF-like configuration on a (manual) propositional STRIPS reformulations (except for bw-pattern, for
which we have no such encoding); “E-FS” is our FS planner on E-STRIPS encodings; “EF-FS” is our FS planner run on FSTRIPS encodings that
feature existential variables, when necessary. P-FF and E-FS columns are from Table 4.1. N is number of instances; length, node expansion
and time figures are averages over instances solved by the three planners. Best-of-class coverage numbers are shown in bold.

4
.7
.

e
m
p
ir
ic
a
l
e
v
a
l
u
a
t
io
n

8
7

Instance Plan length Node expansions Time (s.)
FF FS0 FS1 FS2 FF FS0 FS1 FS2 FF FS0 FS1 FS2

push-rnd (7, 4) 44 39 39 32 244 64 64 42 0.03 0.67 0.68 0.72
push-rnd (10, 6) 108 100 100 100 1319 526 526 672 0.35 48.97 26.23 36.93
push-rnd (13, 8) 288 - 247 239 37554 - 1417 2717 25.34 - 231.23 447.44
average 87.71 59.96 59.96 54.11 3131.39 315.39 315.39 304.04 0.98 68.76 21.57 23.05

Table 4.3: Planning without Action Grounding. Results on the random push domain, including three selected instances plus the average
over the 36 instances in the benchmark set. push-rnd (n, k) denotes grid size n2 and k stones. Results for planners FF and FS, the last
running in three different modes: standard (FS0), RPG-lifted (FS1) and Fully-lifted (FS2) (see text for a full description). A dash indicates
time or memory out. Best-of-class numbers shown in bold typeface. FS2 solves 34 instances, FS0, 30, and FF and FS1, 32 instances each.

88 planning with existential quantification

4.7.3 Results on E-STRIPS Encodings

Table 4.1 shows the results of the FS planner run on E-STRIPS encodings (labeled
“E-FS”), as well as of Fast-Downward on both E-STRIPS encodings (labeled “E-FF”)
and on manual propositional reformulations (labeled “P-FF”). We next highlight the
main conclusions that can be drawn from these results.

First, the exponential time and space required to compile away E-STRIPS existential
variables has a huge impact on domain coverage. In general, FD tends to either time or
memory out during preprocessing. As an example, the planner times/memories out
on grouping instances with more than 3 colors, and on counters instances with
more than 9 variables. The only domain with acceptable coverage is grouping, but
this is just because the benchmark set includes many instances with only 2 existential
variables.

Second, the heuristic that can be derived from the propositional reformulations is less
informed than the one computed from the E-STRIPS encoding. In grouping or in
count0, for instance, the average number of node expansions is orders of magnitude
higher on the propositional reformulation, because the delete-relaxation does not
account for certain constraints that are captured on the E-STRIPS version, such as
(in grouping) the constraint that all blocks of the same color must be on the same
position at the same time. In spite of this, however, FD has much better performance
on these propositional reformulations than on the E-STRIPS encodings, because it
avoids the exponential time and space required to compile away the existential vari-
ables and to process the result of the compilation.

Third, the first-order approach of FS to handle existential variables avoids the ex-
ponential time and space penalty of the compilation approach without making the
resulting heuristics less informed, making it a more effective strategy, and resulting
in consistently higher coverages. When compared to FD on E-STRIPS, the average
number of nodes expanded by FS is similar in all domains but in bw-pattern (more
on this below). In vertex-coloring, instances are large, and FD on E-STRIPS solves
only one instance, likely because the planner takes too long determining which of the
exponential number of ground actions into which the goal e-formula is compiled are
applicable In contrast, FS needs only perform one single call to the underlying CSP
solver, therefore scaling up to large instances in less than 1 second.

Fourth, when compared to the performance of FD on the propositional reformulations,
FS produces better coverage on two cases and worse coverage on two other cases,
excluding the bw-pattern domain that is not simple to encode propositionally.
The average number of expanded nodes is in general much lower for FS, up to one or
two orders of magnitude in some cases, but at the same time node expansion rate is
also around between one and two orders of magnitude faster in FD. Upon inspection,
FS suffers a significant overhead caused by the lack of multivalued variables in E-
STRIPS, which results in CSPs with too many Boolean variables that could well
be replaced by fewer multivalued variables. This shortcoming does not appear in
FSTRIPS, which in addition benefits from built-in functions and constraints. We
next discuss the results on FSTRIPS.

4.7.4 Results on FSTRIPS Encodings

Indeed, one of the advantages of FSTRIPS is that it in general results in more compact
encodings. This is true not only at the level of the declarative model, but also at

4.7. empirical evaluation 89

the level e.g. of the CSP encodings that are used to compute the FOL-RPG on
which the heuristics are based. Table 4.2 compares FD on the propositional STRIPS
reformulations (“P-FF”, which is the best option for Fast-Downward according to
Table 4.1, leaving aside the reformulation effort that it requires) with FS on E-STRIPS
encodings (“E-FS”) and with FS on equivalent FSTRIPS encodings that exploit both
functions and existential variables (“EF-FS”). In some cases (counters, grouping),
these are pure FSTRIPS encodings that do not need existential quantification, but
in the remaining domains (bw-pattern, vertex-coloring, agent-coloring)
existential quantification is indeed necessary.

When compared to FS on E-STRIPS encodings, FS on the FSTRIPS encodings shows
higher node expansion rates and even a more informed heuristic in bw-pattern.
This is because

1. Functional STRIPS encodings usually result in fewer grounded actions.

2. The CSPs used during the heuristic computation have significantly fewer vari-
ables (e.g. quadratically so in the case of grouping).

3. These CSPs benefit from custom constraint propagators for FSTRIPS built-in
symbols, such as the “<” symbol in counters.

4. Certain tie-breaking mechanisms during the plan extraction phase of the FOL-
RPG are easily implemented for FSTRIPS, but have not yet been implemented
for existential variables in the current version of the FS planner, which upon
inspection seems to be harming heuristic accuracy particularly in bw-pattern.

Overall, the FS planner is more performant when working on a combination of
FSTRIPS with existential quantification than when working on E-STRIPS reformula-
tions alone, offering a coverage which consistently dominates the other two planners,
and plan length, average number of expanded nodes and overall running time fig-
ures which are consistently better. In particular, the extension of FSTRIPS with
existential quantification yields better results than the manual propositional STRIPS
reformulations in all domains.

4.7.5 Results on Lifted Planning

In order to test whether the above ideas on planning without grounding the action
schemas do actually work well in a problem with a potentially large number of ground
actions, we have run a preliminary experiment in the random variation of the push
domain described in Section 3.8, which is actually a simplification of the well-known
sokoban domain where grid obstacles have been lifted. We compare the FF planner
with three different execution modes of FS, labeled FS0, FS1 and FS2:

• FS0 is the standard version of the planner that fully grounds the problem actions
at preprocessing time.

• FS1 uses only action schemas for the construction of the first-order relaxed
planning graph, but grounds the actions at preprocessing and performs the
forward search with ground actions.

• FS2 performs fully-lifted planning, i.e. uses action schemas both in the construc-
tion of the first-order relaxed planning graph and during the forward search.

Table 4.3 shows the results of this comparison. Out of 36 instances, coverage (not
shown in the table) is similar for the four planners: FS0 solves 30 problems, FS2, 34,

90 planning with existential quantification

and the remaining two solve 32 instances each. Thus, the three FS variants remain
competitive with the FF planner, which runs significantly faster due to its cheaper
heuristic, but this cheaper heuristic results in a significantly higher number of node
expansions as well. More relevant are the relative differences between the three FS

variants. It turns out that the heuristic is roughly equally informed in the three cases,
but when it comes to runtime, FS1 and FS2 are significantly faster then the standard
FS0, which is the cause of the higher coverage we just mentioned. Interestingly, what
makes a difference is not so much avoiding action grounding altogether during the
search, but using action schemas in the construction of the relaxed planning graph.
This is due to the fact that heuristic computation times heavily dominate overall
search time, being roughly responsible for 90% of it. Altogether, the characteristics
of the push domain (a high number of ground actions with highly constrained pre-
conditions – at most 8 actions can be applicable in Sokoban at any time, 4 moves
and 4 pushes) appear to be a good use case where both the reduction of action ar-
guments allowed by nested fluents and the ability of FS to compute heuristics and
perform search directly with action schemas pay off computationally. This however
remains to be tested over a larger set of benchmarks as future work.

4.8 Discussion

This chapter presents a novel view of existential quantification in STRIPS that relates
planning to constraint satisfaction and relational databases (Gottlob et al., 1999). A
goal that involves existential variables is indeed like a query; what makes it particular
in the context of planning is that we are not simply evaluating the goal “query” in
a static database, but can apply actions that modify the database in order to make
the query satisfiable, and hence the goal true.

We have also argued that the use of existential quantification for leaving some choices
open in goal and preconditions allows for simpler and more concise models, while
giving planners the chance to reason about those choices. Instead of compiling exis-
tential variables away with an exponential technique or avoiding them altogether, we
have shown how, as in the previous chapter, delete-relaxation heuristics can be ex-
tended to deal with existential variables by using constraint satisfaction techniques,
resulting in heuristics that are more informed than those that can be obtained from
alternative propositional encodings.

This view of existential variables in STRIPS has resulted in the extension of he
existing FSTRIPS FS planner to offer full support for both E-STRIPS and FSTRIPS
with existential quantification. This is achieved by extending the first-order relaxed
planning graph defined in the previous chapter to support existential quantification.
This extension requires only a few, simple modifications to the constraint satisfaction
problems into which the construction of such relaxed planning graph is mapped. This
simplicity, however, comes hardly as a surprise, as the formulation of the language,
the semantics, and the computational model are not propositional but first-order.

We have developed a small number of benchmark domains and encoded them in dif-
ferent representational formalisms (propositional STRIPS, E-STRIPS, FSTRIPS with
existential variables) in order to empirically evaluate the proposed methods. The
fact that the best computational results have been achieved for the more expressive
language illustrates the importance of making problem structure explicit so that it
can be exploited computationally (Rintanen, 2015; Ivankovic et al., 2014). The work

4.8. discussion 91

we have presented here is also related to (Porco et al., 2011, 2013), where a general
compilation mechanism is presented to compile formulas for the existential fragment
of second-order logic, which includes the existential fragment of first-order logic, into
STRIPS.

The use of existential quantification, in particular, is also related to the identifica-
tion of symmetries in planning problems (Fox and Long, 1999), and might open up
novel ways of dealing with them effectively. Riddle et al. (2015a,b, 2016) provide a
mechanism to automatically reformulate PDDL problems to reduce symmetries, by
way of what the authors call bagged representations.3 Here we focus on providing
a higher-level language in which such reformulation mechanisms are less necessary
because the language provides the adequate means to represent the same problem in
a more convenient manner. In the case of gripper, for instance, a language that
can deal with integer variables such as FSTRIPS can help reduce symmetries.

3 In gripper, for instance, the identities of the different balls in the problem are completely
irrelevant, and the problem can be reformulated to keep track of the number of balls in every room
instead of the exact room where every individual ball lies.

Chapter 5

Planning with No Language

5.1 Motivation

Research in planning during the last decades has studied a wide variety of planning
models, from classical (deterministic, fully-observable) to temporal models, Markov
decision processes, partially-observable MDPs, etc. What seems to be common in
the area, however, is that between the mathematical model and the actual problem
that falls within the space defined by that model, there is a fundamental third entity:
a declarative modeling language, e.g. STRIPS or PDDL, that bridges the gap between
the abstractness of the model and the concreteness of the particular problem.

Planning languages serve several important roles, among which:

1. They describe in a compact manner problems whose size is usually exponential
with respect to the encoding.

2. They are general enough so that different types of problems and domains can
be fed into planners.

3. They reveal problem structure that can be exploited computationally, as we
have already seen in previous chapters.

Indeed, the planners that address the simplest (classical) planning models and scale
up best all exploit in some way or another the problem structure encoded in action
preconditions, effects, and goals. This includes from the first means-end and partial-
order planners (Newell and Simon, 1963; Tate, 1977; Nilsson, 1980; Penberthy and
Weld, 1992) to the latest SAT, OBDD, and heuristic search planners (Kautz and
Selman, 1996; Edelkamp and Kissmann, 2009; Richter and Westphal, 2010; Rintanen,
2012). Key techniques in modern planning such as heuristic estimators (McDermott,
1999; Bonet and Geffner, 2001b), helpful actions (Hoffmann and Nebel, 2001a), and
landmarks (Hoffmann et al., 2004), are all computed from the delete-free relaxation
of the problem representation, but cannot be derived from the underlying planning
model alone.

The focus on standard, declarative planning languages has resulted in a dramatic
progress in scalability in spite of the intractability of the classical planning prob-
lem (Bylander, 1994), but has a downside too: some problems that clearly fit e.g.
the classical planning model are not easy at all to represent in declarative classi-
cal planning languages such as PDDL. The canonical example are problems that
require some geometrical reasoning, but this shortcoming has been exposed more

93

94 planning with no language

acutely with the recent development of simulators that pose interesting challenges
as potential stepping stones towards truly general artificial intelligence (McCarthy,
1987; Pennachin and Goertzel, 2007). Simulators are software architectures that en-
code classical or nearly-classical planning models (known initial state, deterministic
actions, and, often, reachability goals) in an implicit manner, i.e., through some
programmatic interface; however, as it is not at all clear how to extract a declarative
model from these simulators, existing classical planners cannot be directly used for
planning in them. Recent simulators include the Atari Learning Environment (Belle-
mare et al., 2013), the games of the General Video Game competition (Perez-Liebana
et al., 2016), Minecraft (Johnson et al., 2016) and the Universe platform (OpenAI,
2016).

In Chapters 3 and 4, we have argued in favor of planners that support more ex-
pressive, first-order languages, not only because they allow more natural and elegant
models, but also because effective reasoning strategies can be employed when prob-
lems make use of that additional expressiveness. In this chapter, we explore an
orthogonal way of dealing with the same powerful modeling features, e.g. function
symbols, existential quantification, externally-denoted symbols, conditional effects
or derived predicates. Instead of extending existing heuristic constructs to support
those features, which is costly, we directly develop a planning method that actually
does not care about the type of features used to represent the model, or, for that mat-
ter, about the declarative representation of the problem at all. We call this classical
planning method planning with simulators or simulation-based planning, as virtually
the only thing that is required is a simulator that implements the classical plan-
ning model as described in Section 2.2. In particular, the proposed method makes
no assumption nor places any requirement on the form of the transition function
f : S × O 7→ S. Indeed, our method treats the transition function as a black box,
and concepts such as the problem language, the precondition of an action, or the
effects of an action, which hitherto were central to the planning enterprise, become
largely irrelevant. As we will detail below, only a factorization of the state into state
variables and, for increased performance, a count of the number of goal conditions
achieved in any state, need to be provided, in addition to the constructs specified by
the classical planning model.

This of course does not need to be taken as implying that modeling languages are
not important. On the contrary, it is as an additional argument in favor of more
expressive modeling languages that allow the modeler to easily and succinctly rep-
resent the problem she has in mind without having to worry about the potential
performance impact of the language constructs that she uses. Domain-independent
planners able to plan with simulators rather than planning languages can thus be a
key addition to the planning toolbox while, broadening the scope of planners. Such
planners would be insensitive to the syntax of action descriptions, since they would
not see such descriptions at all (Vallati et al., 2015b). Indeed, the result of applying
an action to a state can be obtained from declarative descriptions or procedures,
whatever is more convenient, reducing the challenge of modeling.

The key question we address in this chapter is: is it possible to achieve the goal of
planning with simulations while retaining the scalability of planners that are based
on and make use of the actual declarative representations of actions? In other words,
can a domain-independent planner that has access to the structure of states and to
some notion of progress towards the goal only approach the performance of planners

5.2. factored state models and simulators 95

that have also access to the structure of actions? To address this question, we first
formalize the theoretical definition of simulators Section 5.2. In Section 5.3, we give
a brief overview on the most recent state-of-the-art width-based methods upon which
our work is based, which were already introduced in Section 2.4.6, and then go on
to design a domain-independent family of classical planning algorithms that ignore
the representation of actions (Section 5.4). We perform an experimental evaluation
of our methods over standard planning benchmarks in Section 5.5, and find out that
they can match state-of-the-art performance in spite of not performing any reasoning
based on action structure. We explore the exciting possibilities that open up for
modeling and for expressing domain-dependent knowledge when planning languages
are replaced by simulation languages in Section 5.6, and conclude the chapter with
a general discussion of the contribution in Section 5.7. Most of the work presented
in this chapter has been previously published in (Francès et al., 2017).

5.2 Factored State Models and Simulators

A classical planner is a program whose input is a compact representation of a classi-
cal planning model and whose output is a plan. Compact representations are usually
expressed in a declarative planning language such as STRIPS, PDDL or ADL, but
these purely declarative planning languages are not the only way to represent clas-
sical planning models in compact form. State models Π = 〈S, s0, SG, O, f〉 can also
be represented in general by using state variables and by encoding the partial tran-
sition function f(a, s) (and, when relevant, the cost function c(a, s)) as a black box
procedure. This is indeed what many simulators do. For instance, in the ALE and
GVG-AI simulators, the transition function f is encoded by a procedure, all actions
are always considered to be applicable, and the cost function c(a, s) encodes rewards
(negative costs). One problem with this approach is that it is not general. There
is indeed no way for simulating the blocks-world in the ALE. On the other hand,
the GVG-AI simulator has some generality, as it comes with a language for a class
of games that is partially declarative and partially procedural (Perez-Liebana et al.,
2016). Such a representation of actions has been seldom used in domain-independent
planning, and in what follows we address the question of whether effective, general
planning methods can be developed for it. To this end, we first need to introduce
the concept of factored state model :

Definition 5.1 ((Classical Planning) Factored State Model). A (classical planning)
factored state model is a tuple F = 〈V,D, s0, G,O, f〉 that consists of

• A finite set of state variables V = {x1, . . . , xn}.

• A finite domain D(x) for each state variable x ∈ V .

• An initial assignment s0 of values to state variables which is compatible with
their domains.

• A set G = {g1, . . . , gm} of goal conditions expressed as Boolean functions
gi : D(x1)× . . .×D(xn) 7→ {>,⊥}.

• A set of actions or operators O.

• A (partial) transition function f : S ×O 7→ S.

96 planning with no language

As usual, we will denote by A(s) ⊆ O the set of operators applicable in state s:

A(s) =
{
o ∈ O | ∃s′ f(s, o) = s′

}
The tuple F provides a compact representation of a corresponding state model
S(F) = 〈S, s0, SG, O, f〉 where S is the set of variable assignments compatible with
their domains, and SG is the set of assignments satisfying all goal conditions in G.
The goal conditions in G do not have to be atoms of the form X = x, but can be
arbitrary procedures mapping states into Booleans. A factored state model is not
a logic-based language such as FSTRIPS, but for the sake of consistency, we will
still often refer to “atoms” in the context of factored state models, by which we will
understand any fact of the form x = c, where x ∈ V is a variable of the problem and
c ∈ D(x) one of its allowed values.

Any STRIPS planning problem P = 〈A,O, I,G〉 can be converted into a factored
state model F = 〈V,D, s0, G

′, O′, f〉 where

• The set of state variables is V = F ,

• the domains of all state variables are Boolean,

• s0 is the assignment that assigns the value > to those state variables whose
corresponding atom appears in I, and ⊥ otherwise,

• O′ = O, and

• the transition function f is derived in linear time from the information in action
preconditions and effects in the standard manner (see e.g. Section 2.3.2).

This simple and polynomial translation is not bidirectional. In what follows, a simu-
lator will be a factored state model F = 〈V,D, s0, G,O, f〉 where the function f and
all goal condition functions g ∈ G are given by black box procedures. The focus on
black box methods that plan with simulators does not mean that these functions can-
not be described declaratively or through hybrids involving procedures, but rather
that simulation-based planning algorithms make no assumption about the form of
such descriptions.

5.3 Width-Based Methods and BFWS(f)

The methods developed for planning in simulated environments like ALE and GVG-
AI are based mainly on blind and heuristic search, Monte Carlo Tree Search (MCTS,
Browne et al., 2012), width-based search, and hybrids of these (Bellemare et al.,
2013; Perez-Liebana et al., 2016; Soemers et al., 2016). Blind search methods can be
applied directly to factored state models that just encode weighted directed graphs in
compact form. Heuristic search methods, on the other hand, require heuristics, which
are not easy to derive from simulations. MCTS methods potentially combine the
benefits of blind and heuristic search: they can be used off-the-shelf as the former, but
scale up better as value functions akin to heuristic functions are incrementally learned
and used to guide the search. Usually, however, MCTS performs this bootstrapping
slowly when rewards are sparse and there is no domain-dependent knowledge in the
form of informed base policies. This explains why MCTS is not used in classical
planning.

Other planning methods based on the concepts of novelty and width of a problem,
however, have been successfully used both in simulated environments like ALE and

5.3. width-based methods and bfws(f) 97

GVG-AI and in classical (propositional) planning (Lipovetzky and Geffner, 2012;
Lipovetzky et al., 2015; Geffner and Geffner, 2015; Shleyfman et al., 2016; Jinnai
and Fukunaga, 2017). In Chapter 2 we described the basic IW(k) algorithm and
the so-called Best-First Width Search (BFWS) methods (Lipovetzky and Geffner,
2017a,b) that work on STRIPS encodings and build on the same notion of novelty
to perform an effective exploration of the state space which, when coupled with in-
formation extracted from standard classical planning heuristics, is able to match the
performance of state-of-the-art planners such as LAMA, Mercury or Jasper (Richter
and Westphal, 2010; Katz and Hoffmann, 2014; Xie et al., 2014a). These BFWS
methods perform a greedy best-first search prioritizing search nodes lexicographi-
cally according to the novelty of the node, in the first place, and to some standard
heuristic measure, to break ties. BFWS algorithms often do not use the vanilla def-
inition of novelty, but instead use the notion of novelty wF of a state given certain
functions, which in effect partitions the whole state space into different equivalence
classes determined by the value of certain state functions f ∈ F , f : S 7→ N, where S
is the set of states of the problem (see Section 2.4.6 for details), and then the novelty
of each newly-generated state s is computed with respect to those previously-seen
states that belong to the same equivalence class than s, i.e. share the same f -values.

The best BFWS planner in (Lipovetzky and Geffner, 2017a), named BFWS(f5),
however, does not completely fit with the description above, as it uses path-dependent
(instead of state-dependent) metrics to partition the search space. The novelty metric
used by BFWS(f5) is w{u,r} (we will use the denotation wu,r when there is no possible
ambiguity), where

• The function u maps states s to the number of atomic goals u(s) that are
unsatisfied in s.1

• The function r is a subtler path-dependent metric that roughly tries to capture
progress towards achieving potential subgoals not explicitly represented in the
problem goal, and involves the computation of a (delete-free) relaxed plan.

More precisely, when a state s is generated that achieves more goals than its parent
p (i.e. u(s) < u(p)), a set of atoms R(s) is computed. For any descendant s′ of s
reached from s through intermediate states that do not achieve more goals than s,
r(s′) is the number of atoms in R(s) that are made true at some point in the way
from s to s′. For example, if R(s) is defined as a set of landmarks, then r(s′) would
count the number of those landmarks in R(s) achieved in the way from s to s′, even
if they do not hold in s′ anymore. This definition of the function r is generic for
any possible definition of the set of atoms R(s); in BFWS(f5) in particular, R(s) is
defined as the set of all atoms appearing in the preconditions and positive effects of
the actions in a relaxed plan πFF(s) computed from s (Hoffmann and Nebel, 2001a).

The greedy best-first search in BFWS(f5) then orders search nodes by the lexico-
graphic evaluation function f(n) = 〈wu,r, u〉, i.e., prioritizing nodes n with lower
value wu,r(n), and breaking ties in favor of nodes with lower value u(n) and, even-
tually, of nodes with lower accumulated cost to the node.

Example 5.2. To illustrate, each time a search node n is generated in BFWS(f5),
its novelty wu,r is computed. To that end, the (state-dependent) value of u(n) and

1 This assumes, as is usually the case in benchmarks from the International Planning Competi-
tions, that the goal is specified as a conjunction of ground atoms.

98 planning with no language

the (path-dependent) value of r(n) and need to be computed. u(n) is the number of
goal atoms that have yet not been achieved in the state corresponding to the node n,
and can be computed in a straightforward manner. The computation of r(n) depends
on a set R(s′), which is determined as follows:

1. If u(n) < u(p), where p is the parent node of n, then we take s′ to be the
state that corresponds to search node n. In that case, a relaxed plan πFF is
computed from s′ with the standard relaxed planning graph procedure, and any
atom appearing on a precondition or a positive effect is collected into R(s′).

2. If, on the contrary, u(n) ≥ u(p), then we seek the closest ancestor n′ of n such
that u(n) < u(n′), and take R(s′) as the basis for computing r(n), where s′ is
the state that corresponds to search node n′.

Whatever is the case, r(n) is computed by traversing all the nodes from s′ to s,
both inclusive, and counting how many atoms in R(s′) are true in some state. The
novelty value wu,r is then computed by following Definition 2.16, i.e. taking into
account only those previously-seen nodes n′ that have the same values u(n′) = u(n)
and r(n′) = r(n).

5.4 Simulation-Based Planning with BFWS(R)

The BFWS(f5) algorithm is a state-of-the-art method for classical planning, yet it
cannot be applied to simulations. This is because the computation of the sets of
atoms R(s) used in the definition of the path-dependent r counter relies on the
delete-relaxation of the problem, which is not available from simulations. In order to
have an algorithm that can plan with the black box functions A(s) and f(s, a) (action
costs are assumed to be 1), we generalize the BFWS(f5) procedure into a family of
search algorithms, called BFWS(R), that differ from BFWS(f5) only in the way that
the sets of atoms R(s) are defined and computed. Thus, BFWS(R) is a best-first
search algorithm with a primary evaluation function given by novelty measures wu,r,
breaking ties using the u counter and accumulated costs. The BFWS(f5) algorithm is
BFWS(R) with R(s) defined as the set of atoms in a relaxed plan computed from the
state s, which we will denote as RX(s). Other methods for defining and computing
R(s) are explored below, most of which do not require declarative action descriptions.
Moreover, we focus only on methods that define and compute the set R once from
the initial state s0 and then fix R(s) to R(s0) for any other state s where the set R
is required. This is because the computation of such sets, while polynomial, can be
expensive.

The intuition behind the BFWS(R) search schema, where R is a fixed set of atoms
precomputed from the initial state, is that R represents a set of “potential subgoals”
that, along with the given set G of goal conditions, partitions the search nodes into
classes associated with different “subproblems”; namely, the set of nodes that satisfy
the same subset of goals from G and have reached the same set of subgoals from R.
In each subproblem, the aim is to reach another goal or another potential subgoal
that can eventually lead to another goal, ideally, by expanding novelty-1 nodes only
(of which there is a linear number). Yet, since the number of such subproblems
is exponential in the sizes of G and R, that objective is approximated by merging
together subproblems with the same number of goals and subgoals u and r. This

5.4. simulation-based planning with bfws(r) 99

Algorithm: Computation of RG from state s0

for k = 1, 2 do
Run IW(k) from s0 and set Ng to contain all nodes n in the search where
g(n) is true, for each goal condition g ∈ G

if Ng 6= ∅ for all g ∈ G then
Let N∗g be a set with one arbitrary node n ∈ Ng for each g ∈ G

Let Π∗G contain all paths from s0 to some node in N∗g

return a set with all atoms that are true at some point in some plan
in Π∗G

return RA

Figure 5.1: Computation of the goal-oriented set of atoms RG.

is indeed what the novelty measure wu,r used in BFWS(R) does.2 In particular, a
novelty measure of 1 for a state s means that s is the first state in the search that
makes some atom p true, among the states s′ generated so far that belong to the
same “subproblem” as s, namely, that have the same u and r counts. The result is
that the total number of subproblems is given by |G| × |R|, and hence the maximum
number of states that can have novelty k (given functions u and r) is |G|×|R|×|F |k,
where |F | is the number of problem atoms.

The discussion and definitions below will be mostly tested in problems that are
encoded in propositional STRIPS, but apply in general to any problem which can
be represented as a factored state model, in which case by “atom” we understand
some equality x = c, where x ∈ V is a variable of the problem and c ∈ D(x) one
of its allowed values. The choices of the sets R of atoms in the general algorithm
BFWS(R) that we consider are all fixed, in the sense that each is computed once
from the initial state s0 as a polynomial form of preprocessing from the simulation,
so that for any state s where the set R(s) is required, R(s) = R(s0). The different
sets R that we consider are:

1. R0 is the empty set. For this set, r(s) = 0 for all s.

2. RA is the set of all atoms; i.e., RA = F .

3. R[k] contains all atoms are true in some state that is reachable from s0 by
running IW(k), for k ∈ {1, 2}.

4. RG is a goal-oriented version of R[k] that is obtained from the plans to achieve
from s0 some individual goal condition of the problem. These plans are com-
puted by IW(1) and IW(2) alone, as detailed below.

5. R∗G is a variant of RG that skips IW(2) computations altogether when the
number of ground actions is too large.

6. RX is the union of the preconditions and positive effects of the actions in
a relaxed plan computed from s0 (Lipovetzky and Geffner, 2017a). This set
cannot be computed from simulations and is included only as a baseline.

2A related discussion can be found in Lipovetzky (2014).

100 planning with no language

The exact definition of RG is given in Fig. 5.1. The procedure IW(1) is run from
s0; if that single invocation of IW(1) finds partial plans that reach each one of the
individual goal conditions of the problem,3 then RG is set to the collection of atoms
made true at some point in the execution of such partial plans. If, on the contrary,
there is some goal condition for which IW(1) does not find a plan, then IW(2) is run
from s0. If IW(2) finds partial plans for each of the goal conditions, RG is set to
the collection of atoms made true by such plans. Otherwise, i.e. if neither IW(1) nor
IW(2) reach each of the goal conditions, RG is set to RA; i.e., the collection of all
atoms.

This definition takes advantage of the fact that the width of many standard domains
when the goals are atomic is often 1 or 2, meaning that IW(1) or IW(2) will find plans
for them in low polynomial time (Lipovetzky and Geffner, 2012). The requirement
that IW(1) and IW(2) reach all of the goals in order to consider the atoms appearing
in state trajectories reaching a goal is there just to keep things simple. Indeed, one
could consider the atoms in such trajectories even if, say, 10% of the goals are not
reached. Also for simplicity, when each of the problem goals is reached by IW(1) or
IW(2) through more than one plan, we collect in RG the atoms made true by only
the first plan found for each goal, discarding all the others, which in principle could
also yield useful information.

The definition of RG is reminiscent of the use of relaxed plans in PDDL planning.
Indeed, the union of the plans found by IW(k) that reach each of the individual
problem goals is a plan for a problem relaxation which is tighter than the standard
delete-relaxation: whereas the relaxed plan for a goal G1 ∧ . . . ∧ Gn in the delete-
relaxation is the union of relaxed plans for each of the Gi goals, the relaxed plans
computed by IW(k) are made up of actual plans for each Gi. The downside of this
is that IW(k) will not deliver any individual plan if the width of the atomic goals Gi
is higher than k, and that even for a value such as k = 3, IW(k), while polynomial,
can be prohibitively expensive (Lipovetzky and Geffner, 2012).

The set R∗G is defined exactly as the set RG except for problems involving too many
ground actions (> 40, 000), where running IW(2) becomes too expensive. For such
problems, R∗G is set to RG when the IW(1) run reaches all of the problem goals, but
when not, the IW(2) computation is skipped and R∗G is set directly to the collection
of all atoms RA.

Notice that the first three R options, R0, RA and R[k], are independent of the
problem goal, i.e. are blind search methods, while the last three, RG, R∗G, and RX ,
are all goal-oriented, with RX being the only option that assumes knowledge of
action preconditions and effects. For the other R sets, BFWS(R) is a simulation-
based planning method.

5.5 Empirical Results

In this section we report on the performance of the simulation-based BFWS(R) family
of planning algorithms, for the different possible definitions of the set R that we
discussed above. Performance figures are given in Tables 5.1 and 5.2. The first table

3Finding plans that reach each of the goals individually is different than finding plans that reach
all goals jointly. By partial plan here we mean a path in the search state from s0 to some state s
that satisfies (at least) one goal condition.

5
.5
.

e
m
p
ir
ic
a
l
r
e
su

lt
s

1
0
1

PDDL Planners Simulation Planner
FF∗ LAMA-11 BFWS(f5) BFWS(R∗G)

C L T Exp C L T Exp C L T Exp C L T Exp
Barman (20) 11 195 1K 5M 19 219 20 42K 20 174 21 107K 9 226 369 1M
Caved. (20) 7 23 71 1M 7 23 117 1M 7 24 0 8K 7 24 3 44K
Childs.† (20) 7 65 391 278K 5 69 3 2K 2 50 372 406K 5 57 176 59K
CityCar (20) 11 39 3 11K 5 36 631 1M 5 29 153 222K 19 30 57 27K
Floort.† (20) 2 38 5 169K 2 39 21 246K 2 42 5 73K 0 - - -
GED† (20) 0 - - - 20 135 4 3K 18 126 29 17K 20 133 10 8K
Hiking (20) 20 58 3 26K 18 54 284 36K 16 51 150 176K 7 64 246 174K
Maint.† (20) 10 116 3 16K 0 - - - 16 86 38 86 16 85 94 1K
Openst.† (20) 0 - - - 20 892 31 892 20 840 262 65K 14 780 1K 123K
Parking (20) 13 97 433 18K 20 105 114 2K 20 105 205 3K 20 106 397 44K
Tetris (20) 10 61 412 76K 10 60 615 59K 11 70 152 9K 20 61 158 5K
Thought. (20) 10 72 24 190K 16 76 2 673 17 72 3 5K 20 70 19 8.0K
Transp. (20) 4 325 147 15K 12 233 58 6K 20 240 6 39K 20 234 141 43K
Visitall† (20) 0 - - - 20 4K 212 21K 20 3K 52 4K 20 3K 10 3K
Elevat.† (20) 0 - - - 20 229 145 19K 20 247 20 35K 18 334 516 51K
Nomyst. (20) 9 29 234 1M 11 28 0 929 14 30 3 43K 13 30 63 76K
Pegsol (20) 20 31 4 97K 20 33 2 18K 20 29 109 785K 20 29 5 123K
Scanal. (20) 20 50 19 595 20 42 25 508 20 40 5 342 20 40 6 429
Sokob. (20) 18 231 34 487K 19 240 122 817K 15 195 122 2M 14 178 322 5M

All (380) 172 0.94 0.60 0.59 264 0.92 0.51 0.35 283 0.87 0.27 0.35 282 0.89 0.48 0.45

Table 5.1: Performance of PDDL Planners vs. Best Simulation Planner. Coverage (C), avg. plan length (L), avg. runtime in sec.
(T), and avg. number of expanded nodes (Exp). Averages computed over instances solved by all planners, except in domains marked with †,
where there are less than three commonly-solved instances. Times are total and include preprocessing. Best coverage in bold. Last row shows
aggregated coverage and, for L, T and Exp, the avg. of normalized values computed for each planner over all domains, except those marked
with †, where an L, T, and Exp value x is normalized by dividing it by the maximum value of that attribute over all planners (i.e., lower is
better).

1
0
2

p
l
a
n
n
in
g

w
it
h
n
o

l
a
n
g
u
a
g
e

BFWS(RX) BFWS(R0) BFWS(RA) BFWS(R[1]) BFWS(RG)
C L T Exp C L T Exp C L T Exp C L T Exp C L T Exp

Barman† 6 161 759 7M 0 - - - 8 245 75 319K 16 271 109 342K 9 237 391 1M
Caved. 7 23 6 265K 7 23 8 141K 7 26 6 79K 7 23 6 91K 7 24 3 44K
Childs.† 0 - - - 0 - - - 7 54 364 141K 8 56 345 196K 5 57 181 59K
CityCar 4 28 86 184K 15 26 37 35K 5 28 253 488K 5 26 176 176K 18 27 57 28K
Floort.† 1 42 578 14M 0 - - - 0 - - - 0 - - - 0 - - -
GED 20 148 39 269K 20 122 17 13K 20 126 5 8K 20 127 9 8K 20 133 28 8K
Hiking† 16 51 84 116K 2 42 12 142K 6 70 316 209K 3 44 1K 4M 7 76 525 241K
Maint. 14 83 293 582 16 83 122 1K 16 83 104 1K 16 83 99 1K 16 83 109 1K
Openst.† 20 839 112 63K 0 - - - 11 769 1K 124K 2 822 2K 140K 11 778 2K 120K
Parking 20 87 7 2K 20 102 441 51K 20 110 451 46K 20 110 480 46K 16 109 1K 46K
Tetris 17 93 145 261K 20 76 419 17K 20 78 230 10K 20 94 316 17K 20 84 307 11K
Thought. 17 84 8 172K 15 95 14 8K 20 87 71 69K 20 89 392 251K 20 86 187 46K
Transp. 14 248 21 63K 7 233 664 368K 17 224 51 39K 20 231 63 41K 7 290 613 59K
Visitall 20 3K 5 4K 20 3K 9 3K 20 3K 10 3K 20 3K 12 3K 20 3K 22 3K
Elevat. 18 175 19 27K 16 178 314 126K 15 282 148 46K 12 670 372 119K 20 261 348 30K
Nomyst. 19 24 0 4K 6 24 7 100K 10 26 14 124K 12 25 1 8K 13 24 3 16K
Pegsol 20 29 4 81K 20 30 3 100K 20 30 4 111K 20 30 4 111K 20 29 4 123K
Scanal. 20 40 1 358 20 40 6 432 20 40 6 430 20 40 5 430 20 40 7 429
Sokob. 15 186 106 3M 13 178 422 11M 12 184 183 4M 13 182 164 3M 13 191 233 4M

All 268 0.89 0.36 0.56 217 0.87 0.62 0.66 254 0.91 0.53 0.58 254 0.95 0.56 0.56 262 0.92 0.68 0.44

Table 5.2: Performance of BFWS(R) algorithms for different R sets. These are all simulation-based algorithms except for BFWS(RX),
that makes use of action structure and is included as a baseline. See caption of Table 5.1 for an explanation of the different entries.

5.5. empirical results 103

compares the top-performing R, R∗G, against two state-of-the-art PDDL planners,
LAMA and BFWS(f5), and a version FF∗ of the FF planner (Hoffmann and Nebel,
2001a) that is supported in the Fast Downward planner, where FF’s heuristic is used
to drive a best-first search with two queues, one restricted to the nodes obtained
with helpful actions only (Helmert, 2006a). FF is a second-generation heuristic search
planner that uses helpful actions, while LAMA is a third-generation heuristic search
planner that uses a landmark heuristic as well. Together, FF and LAMA have been
among the top-performing classical planners for the last 15 years. The original
version of FF could not be used, as many instances include cost information. For
the experiments, however, actions costs are taken to be 1 so that plan cost is equal
to plan length. The second table evaluates BFWS(R) for the different choices of R,
including the baseline option, R = RX , that relies on PDDL encodings for computing
a relaxed plan once from the initial state.

Benchmarked problems include all instances from the last planning competition (IPC
2014), along with all instances from IPC 2011 domains that did not appear in the 2014
IPC, with the exception of Parcprinter, Tidybot and Woodworking, which produced
parsing errors. There are thus a total of 19 domains, with 20 instances each, for
a total of 380 instances. All planners and configurations in both tables have been
run on AMD Opteron 6378@2.4Ghz CPUs with CPU-time and memory cutoffs of
1h and 16GB respectively. Tables report the standard measures: coverage (number
of instances solved), and average plan lengths, (total) runtimes, and number of node
expansions. Average times are in seconds rounded to the nearest integer. All averages
are over the instances solved by all planners except when there are less than three
such instances. Implementation details of the BFWS planners are given in Chapter 6;
LAMA and FF∗ are run using the latest version of Fast Downward (Helmert, 2006a)
available at the time of running the experiments.

Table 5.1 shows that the best simulation-based BFWS(R) planner, BFWS(R∗G), per-
forms extremely well in spite of not using any information about action structure,
when compared to the state-of-the-art PDDL planners. Indeed, while LAMA solves
264 of the 380 instances (69.5%), BFWS(R∗G) solves 282 (74.2%). The PDDL plan-
ner BFWS(f5) does only slightly better, solving 283 (74.5%). FF∗, on the other
hand, solves 172 instances (45.3%), which illustrates that the considered problems
are challenging. The planners, however, do very differently in the different domains.
For example, in the domains Barman, Hiking, and Openstacks, LAMA solves 19, 18,
and 20 instances respectively, while BFWS(R∗G) solves 9, 7, and 14. On the other
hand, in domains such as CityCar, Maintenance, and Tetris, LAMA solves 5, 0, and
10 instances, while BFWS(R∗G) solves 19, 16, and 20. Surprisingly, these numbers
are better than those of BFWS(f5) that solves 5, 16, and 11 instances, suggesting
that relaxed plans are not helping that much in such domains. This seems to be
confirmed by the other PDDL planner, RX , shown in Table 5.2, that solves 4, 14,
and 17 of the instances. In terms of average plan lengths and times, there is no clear
pattern, although BFWS(f5) is usually fastest, and along with LAMA, is the one that
expands fewer of nodes. The averages of normalized plan lengths, times, and number
of expanded nodes, displayed at the bottom of both tables, show that the simulation
planner BFWS(R∗G) is only a bit slower than LAMA, produces plans of similar quality
and, somewhat surprisingly, does not expand too many more nodes on average, in
spite of the strong exploratory nature of BFWS algorithms.

Table 5.2 evaluates BFWS(R) for different alternatives of R. While none of them

104 planning with no language

is better than R∗G in terms of coverage, they all do better than FF∗, with some of
them approaching the performance of LAMA. Except for RX , they are all simulated
algorithms that do not exploit action descriptions. In comparison with the simulation
planners, the relaxed plan computed by RX appears to provide useful guidance in
domains such as Hiking, Openstacks, and Nomystery, where simulation planners solve
much less instances. In fact, in Nomystery RX solves many more instances than LAMA

and BFWS(f5), 19 vs. 11 and 14 respectively, meaning that the computation of all
the other relaxed plans does not pay off. Since R∗G is RG except in instances that have
more than 40,000 ground actions, it is only on those instances where the performance
of BFWS(R∗G) and BFWS(RG) differ. These instances come mainly from the Parking
and Transport domains, where the latter planner solves 16 and 7 instances, while the
former solves them all. The empty R set, R0, is the weakest R, with 217 instances
solved, well behind the other options and LAMA, although well ahead of FF∗, which
solves 172 instances.

The domains where simulated BFWS(R) algorithms struggle are of two types: prob-
lems where the atomic goals have a high width, and problems with tightly constrained
plans where goals and subgoals are not easy to serialize. Examples of the former class
of domains include Barman, Hiking, and Openstacks. Examples of the latter include
Cavediving, Childsnack, and Floortile. This last class of domains, like any tight
constraint satisfaction problem encoded as a planning problem, are hard also for
heuristic PDDL planners like LAMA and BFWS(f5), which nevertheless perform much
better in the first class of problems due to the exploitation of action structure in the
form of relaxed plans.

5.6 New Possibilities for Modeling and Control

We have seen how a move from purely declarative planning languages to simulation
languages that freely combine declarative representations with procedures does not
entail a significant performance loss, as one can plan effectively by exploiting state
and goal structure while ignoring action structure. We now illustrate what can
be gained from this move by considering two other aspects: modeling and control
knowledge.

5.6.1 Modeling

Many classical problems that require reaching a goal by applying deterministic ac-
tions from a known initial state cannot be modeled easily using the standard plan-
ners, sometimes because of limitations of planners, that do not always provide good
support to complex language constructs (Ivankovic and Haslum, 2015), sometimes
because of limitations of planning languages. Challenging domains include, for in-
stance, so-called “pseudo-adversarial” problems involving adversaries that follow a
known, deterministic strategy that is nonetheless difficult to express propositionally,
and problems like Pong, where physical actions have complex ramifications, like a
ball bouncing against walls. Many of these limitations, however, can be overcome in
one shot through the combination of expressive modeling languages and black box
planning algorithms. A modeling language like Functional STRIPS offers the best
of the declarative and procedural worlds; namely, a declarative, first-order logical
language for modeling, where the denotation of fixed function and predicate sym-
bols can be given extensionally, through sets of atoms, or intensionally, by means of

5.6. new possibilities for modeling and control 105

action move(x1: loc)

prec alive(p) ∧ @valid_move(loc(p), x1)
effs loc(p) := x1

¬pellet_at(x1)

pellet_at(x1)→ C := C + 1
∀g ∈ ghost

[
loc(g) := @moveG(loc(g), x1)

]
goal alive(p), C = K
init alive(p), C = 0, pellet_at(l1), . . .
def alive(p: pacman)≡ ∀g : ghost loc(g) 6= loc(p)

Figure 5.2: Fragment of Pacman encoding in FSTRIPS where the goal is to eat K
food pellets. Function and predicate symbols @f denote functions and relations
specified by external procedures. The encoding requires a single action move, which
notably uses (a) a conditional effect to update a “counter” C of collected food pellets,
and (b) a set of universally-quantified effects to move all ghosts as dictated by the
(deterministic) external procedure @moveG. See text for further details.

procedures. This distinction makes no difference to simulated planning algorithms
like BFWS(R) that get to see only the black box action transition and applicability
functions.

Figure 5.2 shows a possible FSTRIPS encoding of Pacman. In Pacman, the agent has
to collect a number of food pellets (dots) by moving around in a maze, while avoiding
a number of deadly ghosts that chase him. Functional (predicate) symbols @f denote
(Boolean) functions specified by external procedures. In this case, the maze is im-
plicitly encoded by the Boolean function @valid move, and the deterministic strategy
followed by the ghosts (move always to the adjacent grid position that is closest to
the pacman according to the Manhattan-distance) is encoded by the @moveG proce-
dure, where ghosts are assumed to know where the pacman is moving. For simplicity,
“power pellets” are omitted. We have run different versions of BFWS(R) in these
and other domains that are difficult or impossible to tackle with PDDL planners.
These include a single-agent version of the Pong videogame, where the agent con-
trols a paddle and aims at hitting a ball with billiard-like dynamics a certain number
of times; Trapping (Ivankovic and Haslum, 2015), where the agent has to trap an
opponent (a cat) that is always looking for the nearest exit; Helping, in which the
agent guides the cat to an exit by turning lights on that the cat will follow if suf-
ficiently close, and Pursuit, a predators-and-prey game. All problem encodings can
be found at https://github.com/aig-upf/2017-planning-with-simulators.

Interestingly, the GVG-AI competition problems encoded in VGDL, an elegant lan-
guage for encoding grid-problems that is part declarative and part procedural (Schaul,
2013), should be easy to translate into FSTRIPS, once dynamic object creation and
non-determinism are excluded. Non-deterministic and probabilistic extensions of
FSTRIPS were implemented early in the GPT planner, that deals with MDPs and
POMDPs (Bonet and Geffner, 2001a).

https://github.com/aig-upf/2017-planning-with-simulators

106 planning with no language

5.6.2 Control Knowledge: Features and BFWS(F)

Features offer a way to express domain-dependent knowledge in the context of width-
based search algorithms like IW and BFWS. A feature φ is a Boolean function of
the state which can be used as an extra atom in the computation of novelty. For
example, in blocks-world problems, a Boolean feature φx,y can be defined for each
goal atom on(x, y), that is true in a state s when clear(x) and clear(y) are both true
in s. By adding such a feature, BFWS(R0), for example, decrements the number
of nodes expanded to reach the goal by an average factor of 3. Such a reduction
happens because some relevant states that are reached in the search with novelty
2, will have novelty 1 once the extra atoms are considered. This is indeed what
conjunctive features do: they promote or give priority to states that achieve certain
conjunctions of atoms. Yet features can be arbitrary Boolean functions of the state,
not just conjunctions, and an interesting generalization can be obtained by combining
features and explicit priorities.

Let a ranked feature list be a list F = 〈F1, . . . , FM 〉 where Fi is a set of Boolean fea-
tures with priority i. Ranked feature lists provide an abstraction and generalization
of the algorithms IW and BFWS, where the notion of novelty is decoupled from the
problem atoms and the size of conjunctions. For this, let the F -novelty of a state s
in the search, wF (s), be the minimum i such that for some feature φ in Fi, φ is true
in s for the first time in the search, with the convention that wF (s) is M + 1 when
there is no such feature.

The IW(1) algorithm can be seen as a breadth-first search where states with novelty
wF (s) > 1 are pruned, where F = 〈F1〉 and F1 is given by the features φ〈p〉, one
for each problem atom, such that φ〈p〉(s) is true iff p is true in s. Similarly, IW(2)
is a breadth-first search where states with novelty wF (s) > 2 are pruned, where
F = 〈F1, F2〉, and F2 contains a feature φ〈p,q〉 for each pair of different atoms p and
q, and φ〈p,q〉(s) is true iff p and q are both true in s.

More interestingly, BFWS(R) for R = R0 (empty R) is a plain best-first algorithm
guided by a novelty function wF where the features are F = 〈F1, F2〉, and F1 and
F2 contain the features φ〈p,i〉 for each atom p, and the features φ〈p,q,i〉 for each pair
p, q, where 1 ≤ i ≤ |G|. The feature φ〈p,i〉 is true in a state s when p is true in
s and u(s) = i, while φ〈p,q,i〉 is true in s when both p and q are true in s, and
u(s) = i. Finally, the general BFWS(R) algorithm can be approximated when the
features in F1 and F2 are defined as φ〈p,i,j〉 and φ〈p,q,i,j〉 where in both cases the new
j component, 1 ≤ j ≤ |R|, tests whether the number of atoms in R that are true
in s, r′(s), is equal to j. This is an approximation because the r′ counter is state-
dependent, while the actual counter r used in BFWS(R) is path-dependent (counts
number of atoms from R reached in the way to s).

The algorithms IW(F) and BFWS(F) refer to the IW and BFWS algorithms where
novelties are computed according to the ranked feature list F . The use of these lists
not only provides a uniform way for understanding and programming width-search
based algorithms, but also opens up the possibility of encoding control knowledge by
playing with features and priorities, which could potentially be inferred from training
data using machine learning algorithms.

5.7. discussion 107

5.7 Discussion

In this chapter we have presented a new class of black box planning algorithms. From
the General Problem Solver to the latest, state-of-the-art SAT-based and heuristic
search planners, planning algorithms have been predominantly based on deriving
useful information from the declarative representation of the problem actions (pre-
condition, effects). In contrast, the algorithms we have presented here, based on the
recent notions of state novelty and problem width, have knowledge only about to
the structure of states (i.e. its decomposition into state variables), the initial state,
and the decomposition of the problem goal into different goal conditions, but com-
pletely ignore the information about actions. In spite of that, we have shown that
they approach the performance of the best classical planners over the existing PDDL
benchmarks. This suggests that the computational role of declarative planning lan-
guages such as PDDL may be overrated.

Declarative languages, however, remain important from the point of view of model-
ing. Indeed, as observed by Haslum (2011) in the context of TLPlan, the fact that
our planner only requires a black-box implementation of the transition function to
generate successor states implies that the language can include powerful and ex-
pressive modeling features such as externally-denoted symbols, derived predicates,
etc. Planning languages such as Functional STRIPS provide the best of both worlds,
allowing compact first-order constructs and, when necessary, procedurally-defined
symbols. While this expressive power is not compatible with mainstream planning
methods, it can be exploited by the methods proposed here. Additionally, the use of
features and of ranked feature lists opens up a novel way in which domain-dependent
control knowledge that helps speed up the search (Junghanns and Schaeffer, 1999;
Bacchus and Kabanza, 2000) can be manually specified or learned. Effective black
box planning methods can thus produce a radical change in the scope and use of
planners, and in the ways in which planning problems are modeled.

Chapter 6

The FS Planner

From a practical perspective, one of the most important outcomes of the work carried
out during the elaboration of this thesis is the FS planner, where every one of the
ideas that have been discussed so far have been implemented and tested. The planner
has been in constant evolution since the work on this thesis began. While most of the
design and development of the planner has been carried out by myself, credit is due to
Miquel Ramı́rez for contributing to very significant parts of the planner, in particular
to the integration with the Gecode constraint solver, to important improvements in
the grounding module of the planner (see below), and to the efficient implementation
of novelty-related algorithms, on which matter the help of Nir Lipovetzky has also
been invaluable.

The planner is open-sourced under a GNU General Public License, version 3 (GPL-
3.0), and available for download at https://github.com/aig-upf/fs. Different
parts of the planner make use or are built on top of the following third-party software
components:

• The parsing of FSTRIPS encodings is sometimes performed with (a modified
version of) the Python PDDL parser component of the Fast-Downward planner
(Helmert, 2006a), available at www.fast-downward.org.

• Some of the search and width-based algorithms are taken from or strongly
inspired in the Lightweight Automated Planning Toolkit (Ramirez et al.,
2015), available at http://lapkt.org

• The computation of the first-order RPG on which the heuristics described in
chapters Chapters 3 and 4 depend, as well as the lifted planning search mode, is
mapped into a number of CSPs solved by the Gecode constraint programming
framework (Gecode Team, 2006), available at www.gecode.org.

• The grounding of certain propositional encodings is (optionally) performed by
mapping it into a logic program solved by Clingo, the Answer Set solver from
the Potsdam Answer Set Solving Collection (Gebser et al., 2012), available at
https://potassco.org.

In this short chapter, we discuss the architecture of the planner, review some of the
language extensions it supports and then go to discuss some key optimizations geared
towards achieving better performance. Some future development lines of the planner
are also discussed in Chapter 7.

109

https://github.com/aig-upf/fs
www.fast-downward.org
http://lapkt.org
www.gecode.org
https://potassco.org

110 the fs planner

6.1 Design Overview

The FS planner can be best thought of as divided into a front-end, implemented
in Python, and a back-end, implemented in C++. Broadly speaking, the Python

front-end is in charge of the following tasks:

1. To parse the problem representation. The planner supports the full specifica-
tion of the FSTRIPS language plus some extensions described in Section 6.2.
Standard PDDL benchmarks usually employ a subset of the previous, and are
thus also supported.

2. In certain cases, to perform an efficient, logic programming-based grounding of
the problem, as detailed in Section 6.3.1.

3. To generate an internal representation of the problem used by the core C++

planner routines, optionally including grounded operators (see previous point).

4. If the problem has externally-defined symbols, the front-end compiles the def-
inition of these symbols (which must be provided as a set of C++ classes con-
forming to a certain interface) and links it with the core planner library to
produce a standalone, instance-specific binary. Otherwise, a generic binary is
used.

5. To invoke the corresponding binary, generic or otherwise, to bootstrap the
actual planning process.

The C++ back-end, which contains most of the code and functionality, broadly fol-
lows the design of the Lightweight Automated Planning Toolkit (Ramirez et al.,
2015), and is thus divided into distinct modules for language support, planning mod-
els, search algorithms tackling those models, heuristic evaluators, and state repre-
sentations. In more detail, the most relevant modules of the back-end include:

1. A FSTRIPS language module that contains abstract syntax trees for the full
language, as described in chapters Chapters 2 to 4, plus adequate devices to
represent and reason with action schemas, ground actions, state constraints,
etc. Given that FSTRIPS is a superset of (basic) STRIPS, this module is able
to deal with the latter as well.

2. A built-in naive action grounder, described in Section 6.3.1.

3. An implementation of the successor generator strategy described in (Helmert,
2006a) to iterate through applicable actions in the set A(s) in a performant
manner, see Section 6.3.4.

4. A set of generic search algorithms making heavy use of C++ templates for the
sake of performance (Burns et al., 2012), which include breadth-first search,
greedy best-first search, IW(k), and BFWS(R).

5. A constraint satisfaction module that interfaces with the C++ libraries of the
Gecode constraint solver in order to set up and solve the constraint satisfaction
problems Γ(φ, Pk) that arise during the computation of the first-order RPG,
as described in Chapter 3. Optimization details are given in Section 6.3.3.

6. A set of heuristic evaluators which include evaluators for the heuristics based
on the first-order relaxed planning graph, as described in Chapters 3 and 4.

6.2. supported features and extensions 111

7. A set of novelty feature evaluators that map any state into a set of novelty fea-
tures, including the trivial state-variable evaluator φ0 (Section 2.4.6) as well as
more sophisticated options. This is coupled with a set of novelty evaluators for
different supported feature representations (binary, multivalued, etc.), which
are able to track and compute the novelty of any state in the search given any
novelty feature evaluator. Implementation details are given in Section 6.3.4.

8. A built-in FSTRIPS plan validator.

6.2 Supported Features and Extensions

The FS planner supports the two basic search modes which have been described
throughout this thesis. On the one hand, a greedy best-first search driven by the
variations of the hmax and hFF heuristics based on the first-order RPG (FOL-RPG),
as described in Chapters 3 and 4. On the other hand, the width-based BFWS(R)
family of algorithms, described in Chapter 5. In both cases, the planner is able to
perform a search grounding actions or with action schemas alone, as described in
Section 4.6.

Along with the core of the Functional STRIPS classical planning language, the plan-
ner supports a number of extensions which are useful both from the expressive and
the computational point of view. These include existential quantification, state con-
straints, a library of global constraints, and the possibility of using externally-defined
symbols and built-in arithmetic symbols. Due to its simplicity and to the fact that it
needs to compute no heuristics, BFWS(R)-based search supports all these language
features; FOL-RPG-based search support most, but not all of them.

Conditional Effects Conditional effects are fully supported in both search modes
of the planner.

Bounded Integer Variables The planner supports a simple and compact mecha-
nism to declare bounded integer types.

Externally-Defined Symbols One of the most powerful extensions of the lan-
guage, as we argue in Chapters 3 and 5, is the possibility given to the modeler
of providing the denotation of (fixed) function and predicate symbols p of the
language through a procedure defined in some programming language. In the
case of the FS planner, this procedures need to be encoded in a C++ class
conforming to a particular interface.

If a search based on first-order RPG heuristics is to be used effectively in a
problem with external symbols, then the arity of the symbol needs to be small
enough so that the denotation can be compiled into an extensional constraint.
This compilation is actually equivalent to having the modeler specify the fixed
denotation extensionally in the problem representation (e.g. the PDDL instance
file), that is, by listing all atoms of the form p(t̄) that are true in the initial
state (and in any state, given the static nature of the symbol). If the arity of
the symbol is not small, then the modeler can provide a handcrafted constraint
propagator for the symbol to be used during the construction of the first-
order RPG. This, however, is time-consuming and requires familiarity with the
internals of both the FS planner and Gecode.

112 the fs planner

More interestingly, BFWS-based search does not impose the requirement above,
as it does not need to compute any heuristic, and only requires the ability to
compute the denotation of the symbol in any given state. This means that
the arity of these symbols does not need to be bound, and, in particular, that
arbitrary-arity externally-denoted symbols can be used. These are symbols
whose denotation can depend on the full state, i.e. on all of the state variables,
and in that sense they can be considered as procedural derived predicates (see
below for standard derived predicates), without having to worry about how to
deal with them in the computation of heuristics, which is a non-trivial issue
(Bernardini et al., 2017).

Global Constraints As described in Chapter 3, the fact that the planner interfaces
with the Gecode constraint solver allows it to support with little effort any
Gecode constraint, and in particular global constraint, as a predicate symbol
of the language of any FSTRIPS problem, in both search modes. Currently, the
planner offers support for a limited number of constraints, e.g. alldiff, sum,
nvalues, but the addition of other constraints supported by Gecode requires
only a few lines of code to specify their intended denotation and link them
with the appropriate Gecode constraint. The latter is not necessary for BFWS
search, where no heuristic needs to be computed, and where indeed there is
no actual distinction between a global constraint-backed symbol and simply an
externally-defined symbol.

Existential and Universal Quantification The planner accepts the use of exis-
tential and universal quantification in the encoding of problems. Existential
quantification is dealt with efficiently in the manner described and tested in
Chapter 4. Universal quantification is dealt with during preprocessing by ex-
panding any quantifier into a conjunction of formulas over the finite universe
of the quantifier type.

Universally-Quantified Effects Universal quantification in the first-order logical
language L(P) corresponding to a FSTRIPS problem P is not to be confused
with universally-quantified effects, a useful feature already present in the ADL
language (Pednault, 1989). In the pacman domain in Fig. 5.2, for instance,
we express that after a move of the Pac-Man to grid position x1, there is a
position update for every ghost in the problem; to do so, we use a functional
effect

∀ g/τG loc(g) := @moveG(loc(g), x1)

where τG is the type denoting “ghost” agents, and thus the variable g is quanti-
fied over all possible ghosts in the problem. The universal quantifier here is not
part of any formula whatsoever, but a feature of the problem encoding used to
compactly express a large number of effects quantified over a type domain. The
FS planner deals with universally-quantified effects by expanding them into a
linear number of effects over the finite domain of the quantifier type.

Derived Predicates The planner features very rudimentary support for PDDL de-
rived predicates, otherwise known as axioms. Derived predicates have been
shown to allow for exponentially shorter problem representations in some cases
(Thiébaux et al., 2005); besides, features that occur quite naturally in planning

6.3. implementation and optimization details 113

domains such as transitive closures (e.g. the above predicate in blocksworld),
can be represented in a straight-forward manner with PDDL axioms.1 The
planner currently supports axioms with only one level of stratification.

6.3 Implementation and Optimization Details

The empirical evaluation and comparison of planners and of algorithms in general is
fraught with difficulties, as witnessed by the sizeable, albeit not too conclusive, liter-
ature that addresses best practices and methodologies (McGeoch, 1996; Rardin and
Uzsoy, 2001). The runtime performance of heuristic search algorithms is extremely
sensitive to a plethora of implementation choices and details which often go unno-
ticed or, in the best case, under-reported, but can nonetheless have a decisive impact
on experimental results (Junghanns and Schaeffer, 2001; Burns et al., 2012). Indeed,
Hooker (1995) presents a solid case against conflating research with development and
evaluating algorithms based on their running times on a set of fixed benchmarks. For
better or for worse, however, many of the metrics usually employed in the planning
research community depend, to some extent, on the runtime of planners, and as such,
we here try to report some of those optimization and implementation details in the
FS planner that through informal, preliminary testing we have become to consider
as most important for the performance of the planner.

6.3.1 Grounding

Function symbols in Functional STRIPS often allow encodings where action schemas
need fewer parameters than equivalent function-free representations, overall resulting
in a smaller number of ground actions. On the other hand, function-free schemas
usually result in much simpler, propositional ground actions, and those operations
that arise more frequently during search, such as checking applicability of an action
in a certain state, or computing successor states, can be implemented with specialized
routines. Whether one or the other option is more performant strongly depends on
the exact type of search, and eventually heuristic, that is used.

In simple problems, the FS planner can apply the naive grounding strategy that
consists in checking, for each possible substitution of the action parameters, whether
the precondition of the ground action that results from the substitution is equivalent
to a contradiction or not, in which case it is assumed that might be applicable
in some state. Action grounding however becomes more of a challenge when the
number of potential parameter substitutions for some action schemas (i.e. the size of
the Cartesian product of the domain of each action parameter) is very large (Areces
et al., 2014). This is the case for many of the standard benchmarks used in the
community. To name a couple, the Sokoban domain from the 2011 International
Planning Competition, or the Tetris domain from the last edition of the competition,
in 2014, feature action schemas with up to 7 parameters, and the number of potential
parameter substitutions in the largest instances is in the order of the billions. Other
problems that arise naturally in other domains such as organic synthesis (Matloob

1 PDDL axioms are slightly different than axioms as originally defined in STRIPS (Lifschitz,
1987); the former are actually stratified, function-free logic programs, while the latter are first-order
logic axioms. It is well known for instance that first order logic cannot express transitive closures
(Papadimitriou, 1994), while logic programs can.

114 the fs planner

and Soutchanski, 2016), can be readily cast as planning problems, but the number
of potential parameter substitutions is also in the order of the billions.

In these cases, the naive grounding strategy is not a sensible option. The FS planner
implements, thanks to work by Nathan Robinson and Miquel Ramı́rez, a more so-
phisticated grounding module that makes use of a compilation to a logic program in
order to perform reachability analysis and grounding all in one, roughly as described
in (Helmert, 2009, Section 6). This compilation is particular to both the set of action
schemas and the initial state of the search. The reachability analysis is often able
to infer that certain ground actions will never be applicable when starting from that
initial state, and that some fluents will never actually change their value, for which
they can actually be considered as static facts, not fluents. This type of analysis
not only results in more powerful pruning of actions and fluents, but in most cases
is orders of magnitude more efficient than the naive strategy, often performing the
grounding in less than one second, even for problems with number of ground actions
in the tens of thousands. This logic programming grounding currently only works
when no functions, externally-defined symbols or global constraints are used. In con-
trast to (Helmert, 2009), we do not directly solve the generated logic program but
use off-the-shelf the Clingo ASP solver (Gebser et al., 2012) to that end.

6.3.2 State Representation

The representation of the state is well known to be a key implementation detail in
heuristic search in general, and in heuristic planning in particular (Edelkamp and
Helmert, 1999; Helmert, 2009; Burns et al., 2012). The FS planner uses a hybrid state
representation where the representation of any state contains both a bitmap (a C++

vector of bools), to encode the value of all binary state variables, and a more general
data structure (namely, C++ vector of ints), to encode the value of all multivalued
state variables. State variables are indexed according to their type, and the access
to the value of any such variable in any state requires an additional indirection to
determine in which of the two data structures the actual value needs to be looked
up. This arrangement is not optimal for fully-propositional planning nor for fully-
multivalued planning, as it imposes in both cases an unnecessary overhead, but it
strikes a reasonable balance between performance, on the one hand, and generality
of the code and ease of maintainability, on the other.

6.3.3 Optimization of the First-Order Relaxed Planning Graph

The computation of the first-order relaxed planning graph is mapped by the FS

planner into a series of constraint satisfaction problems. Chapter 3 gives a high-level
description of the form of the Γ(φ, Pk) CSP that is constructed by the planner to
check whether a certain first-order formula φ is satisfied in layer Pk of this relaxed
planning graph. We here briefly review a number of alternative CSP models and
optimizations supported by the planner.

Incremental Computation of Layers The current implementation exploits the
monotonicity of the relaxed planning graph to speed up CSP resolution from
layer to layer. To this end, an extra constraint is added to the Γ(φ, Pk) con-
straint satisfaction problem to enforce the solutions of the CSP to result in
novel values for the layer domains. To illustrate, assume that we have an ac-
tion effect x = x+ 1, where x is a state variable, and we want to compute the

6.3. implementation and optimization details 115

values that this effect supports in layer Pk of the graph. Assume also that the
values that are reachable for x in the previous layer Pk−1 are xk−1 = [0, 10],
the domain of x is [1, 100] and the action precondition is, accordingly, x < 100.
As per the discussion in Chapter 3, the CSP that will be generated will have
a single CSP variable vx, with domain D(vx) = [1, 100], a constraint vx < 100
given by the precondition of the action, and a constraint vx ∈ [0, 10] given by
the previous layer of the relaxed graph. All the solutions to this CSP will be ex-
haustively explored, which amounts to 11 different solutions, and the effect will
be evaluated for each of them, to conclude that the values supported in layer
Pk are [1, 11]. Of these values, of course, the first 10 were already supported,
so there was little need to go through all of them.

To avoid having to iterate through the CSP solutions corresponding to value
that are already reachable, an extra variable vx+1 can be used to model the
value taken by the term x+ 1. To keep the semantics of the effect, a constraint
vx+1 = vx + 1 needs to be added as well, and then a constraint vx+1 /∈ [0, 10],
to ensure that all CSP solutions lead to novel values for state variable x. The
above example is simple, but its generalization to arbitrary actions is straight-
forward, except when the left-hand side of the effects involves nested fluents,
in which case the optimization is not applied, as it is not possible to know in
advance which is the actual state variable that will be affected by the effect.

One CSP per ground action A very simple alternative to posting one CSP to
check the values supported by every effect in any RPG layer is posting one CSP
per every action. This makes the incremental computation of layers described
above slightly more involved, but still feasible, and usually pays off.

One CSP per action schema As discussed in Chapter 4, a possible way of tack-
ling an excessive number of ground actions during the computation of the first-
order RPG is to compute the graph with the action schemas instead of the
ground actions. This adds at least as many additional CSP variables as pa-
rameters has the action schema, and in effect means that the parameter sub-
stitution of the actual ground action that supports novel values is computed as
part of the CSP solution. The resulting CSPs are usually more complex, but
the (potentially exponential) reduction in the number of CSPs that need to
be dealt with sometimes compensates for the overhead. An interesting middle
ground is to do what we call selective grounding : have the grounding applied
at preprocessing substitute only some of the action parameters, and compute
the first-order RPG with half-grounded actions. If this is done intelligently
to ground only those parameters which actually make the CSP more complex
(not all of them do), then the result can potentially combines the benefits
of grounded-action RPGs (simple, quick-to-solve CSPs) with the benefits of
action-schema CSPs (less CSPs to be solved).

6.3.4 Optimization of Width-Based Algorithms

The BFWS(R) family of algorithms presented in Chapter 5 has an unusual perfor-
mance profile, in that there is no need to compute any heuristic during the search. In
first-order RPG-based search algorithms presented in Chapters 3 and 4, for instance,
the computation of the heuristic can typically take up to 90% of all the runtime of the
planner. In the case of BFWS(R), the node generation rate is comparatively much

116 the fs planner

higher, and the bottleneck of the computation usually lies in checking action appli-
cability and generating successor states. The computation of the state novelty values
appears to be less time-consuming than the previous, although this largely varies de-
pending on the characteristics of the problem, particularly number of ground actions
and of state variables. A systematic analysis of the relative costs of each component
of the search remains as future work.

The planner features optimizations addressing both parts of the search, state transi-
tions and novelty computations. As far as the former is concerned, when the number
of ground actions is large enough, the set A(s) of actions applicable in any state s of
the search is computed and represented through a successor generator -like strategy
as described in (Helmert, 2006a, Section 5.3). The implementation of this successor
generator is geared towards propositional STRIPS problems, where its positive im-
pact is most visible. Its use is not restricted to width-based algorithms, indeed, it
can be used in any search mode supported by the planner.

As far as novelty computations are concerned, there are a couple of optimizations
worth mentioning. First, following Lipovetzky and Geffner (2017a), the planner
only computes novelty-1 and novelty-2 measures; novelty-3 measures and beyond
are usually too expensive. This means that all nodes with novelty larger than 2
are considered to have novelty 3 as far as their priority in the greedy best-first
search is concerned. When the number of atoms is too large to fit in memory the
data structures that are necessary to compute novelty efficiently, even novelty-2
computations are skipped. Novelty-k tables keep track of the atoms (k = 1) and
atom pairs (k = 2) that have so far been reached during the search. Different
implementations of these tables and of the novelty evaluators coexist in the planner
codebase, and are selected for use depending on whether (a) novelty features other
than the value of state variables are used or not, and (b) the number of possible
atoms x = v is small enough. When only state-variable features are used, the
computation of the novelty of a state can be optimized to directly use the actual
state representation instead of some intermediate representation of feature values;
when the number of possible atoms is relatively small, all possible atoms, and even
pairs of atoms, can be assigned an integer index, in which case a novelty-k table, for
k ∈ {1, 2}, can be implemented with a bitmap and requires |F |k bits. When novelty
wu,r(s) given values u(s) and r(s) is used, as in the best-performing algorithms
described in Chapter 5, this raises to |G| × |R| × |F |k bits, where G is the set of
goal conditions and R the set of relevant atoms. In standard benchmarks such as
Transport, Tetris or Parking, where the number of atoms is in the thousands, this
might prove too large for k = 2, hence the skipping of novelty-2 computations that
we mentioned above.

Additionally, the fact that the BFWS(R) works with no knowledge of the declarative
representation of actions imposes a certain penalty to the computation of the novelty
of any state. Indeed, when the action representation is available, testing if the state
generated by an action has novelty 1 can be done in constant time by checking
whether each one of the (typically bounded number of) atoms added by the action is
new. When that action representation is not available, however, this test is linear in
the number of variables, as there is no information about action effects, and the value
of all variables in the resulting state needs to be checked. In general, information on
action representation allows novelty-i tests to be performed in time exponential in
i− 1; when that information is lacking, the required time is exponential in i.

6.3. implementation and optimization details 117

For this and other optimization reasons, the planner adopts a lazy approach to
compute novelty values and even the set R of relevant atoms. Each time a state
is generated, the planner only computes whether the state has novelty 1 or greater
than 1. Novelty measures greater than 1 are computed only when no node with
novelty 1 remains in the open list of the search. Additionally, before computing the
set R and the actual wu,r novelty measures, nodes are evaluated using novelty wu
measures only. This can progress the search, and even solve some problems, without
the potentially expensive computation of R on the initial state. Our implementation
of this lazy search uses a schema with multiple open lists, each with a different
priority. Hence, there is for instance a queue for nodes n such that wu(n) = 1.
Only when nodes in that queue are exhausted, a second queue is explored that
contains all nodes n that potentially might have novelty wu,r(n) = 1, and only then
the actual set R is computed from the initial state s0, so that wu,r computations
can be performed. Some problems greatly benefit from this lazy approach: Visitall
problems, for instance, can be directly solved by considering only nodes from the
first queue, i.e. with novelty wu equal to one.

Chapter 7

Conclusions

Traducir de una lengua en otra [...] es como
quien mira los tapices flamencos por el revés,
que aunque se veen las figuras, son llenas de
hilos que las escurecen y no se veen con la
lisura y tez de la haz.

? ? ?

Translating from one language to another [...]
is like looking at Flemish tapestries from the
wrong side, for although the figures are visible,
they are covered by threads that obscure them,
and cannot be seen with the smoothness and
color of the right side.

Miguel de Cervantes Saavedra, El ingenioso
hidalgo don Quijote de la Mancha

Let us conclude this thesis with a summary of our contributions and a discussion
of potential lines of research that might follow this work, including some which are
already being explored.

7.1 Summary of Contributions

This thesis provides two main contributions linked to the same underlying leitmotiv :
exploring effective means of dealing with expressive modeling languages in planning.

The first of these contributions is the analytical and empirical evidence that the
use of more expressive modeling languages can be beneficial both for modeling and
computation. In spite of the well-known fact that more expressive languages are
worst-case harder to reason with (Levesque and Brachman, 1985), we have argued
and illustrated with several examples that in order to solve a certain, fixed problem,
it might be more convenient to represent it with the more expressive language, which
can capture relevant structure of the problem to be exploited computationally. We
have performed a logical analysis of the relaxed planning graph (RPG) that has
resulted in a stronger inference mechanism, which we have named first-order relaxed

119

120 conclusions

planning graph. This construct is based on the standard notion of first-order logic
interpretation, is simple, elegant, and supports function symbols (Chapter 3) and
existential quantification (Chapter 4) in the definition of the problem actions and
goal. We have shown how to map the computation of the first-order RPG into a
series of constraint satisfaction problems that can be solved off-the-shelf with a CSP
solver. The heuristics derived from the first-order RPG are more informed than their
standard counterparts, although they are no longer worst-case tractable. In practice,
the form of action descriptions and goal formulas is often simple enough so that this
is not a problem; when this is not the case, they can be (polynomially) approximated
thanks to standard constraint propagation techniques.

The use of a constraint solver opens up the possibility of using some other language
extensions such as global constraints in the definition of the problem. We have shown
that these extensions are convenient not only from the expressive but also from the
computational point of view. The efficient support for existential quantifiers in ac-
tion preconditions and goal formulas that our heuristics provide is interesting because
many planning problems can be modeled in a natural way by making use of them,
but also because, as we have shown, existential quantification opens up an interesting
connection between planning and constraint satisfaction, as any constraint satisfac-
tion problem can be expressed as a action-less, fluent-less planning problem. We also
show how the same mechanism that allows us to support existential quantification
can be used to search for plans and to compute heuristics without having to ground
the (lifted) action schemas in the problem description.

The second of the contributions (Chapter 5) is the development of a novel algo-
rithm that, unlike most of the standard classical planning techniques (planning as
satisfiability, heuristic search planning, partial order planning, etc.), is able to plan
efficiently without a declarative representation of the problem actions and almost
without a declarative representation of the problem goal. This is an original con-
tribution that represents a significant departure from mainstream planning research
over the last decades. Our algorithm is based on notions of state novelty and width-
based search recently proposed by Lipovetzky and Geffner (2012, 2017a), and only
requires information about the structure of the states of the problem and a count
of the number of subgoals that have been reached in any state, plus a black-box
implementation of the transition function. In spite of the handicap of not being able
to reason on the structure of actions, we show with an extensive experimental study
that the algorithm is competitive with the state of the art methods in benchmarks
from the last two international planning competitions. We do not take this as sug-
gesting that modeling languages are not important; on the contrary, we think this
provides a basis from which expressive modeling features can be given adequate sup-
port. We illustrate this by discussing a few problems such as (deterministic versions
of) pacman or pong. These are clearly classical planning problems, in that they have
an omniscient agent and actions with deterministic effects, but nonetheless seem to
be beyond the expressive capabilities of languages such as PDDL. The combination
of function symbols and, crucially, of logical symbols with denotations provided by
external procedures, is key to representing this problems compactly. These features
are all seamlessly supported by our width-based algorithms and the FS planner.1

1 The FS planner, described in detail in Chapter 6, is open-sourced and freely available at
https://github.com/aig-upf/fs.

https://github.com/aig-upf/fs

7.2. ongoing and future work 121

7.2 Ongoing and Future Work

The work on this thesis suggests a number of lines of research which we think might
be interesting. We briefly review some of them here, in no particular order.

Automatic Problem Reformulation. The results presented in this thesis consti-
tute significant evidence that offering the modeler an expressive language to represent
whatever problem needs to be solved might be a win-win situation. On the one hand,
the modeler can avoid unnecessary workarounds and produce a representation which
is more readable, maintainable, and elaboration tolerant (McCarthy, 1998). On the
other hand, and from the point of view of the designer of a planner, there are different
possibilities to deal with the problem. One is to extend the mechanisms by which the
planner operates (heuristic search, satisfiability compilations, etc.) so that they can
cope with the more expressive language features. This is a time-consuming task, but
as we have seen in this thesis, it may pay off computationally. Indeed, some recent
propositional planners do recognize the computational value of these constraints, and
try to recover them from the low-level representations. An example of this would be
at-most-one constraints in purely relational representations. For any block b in the
blocks-world, for instance, at most one of the atoms at(b, c), at(b, d), at(b, e), etc. can
be true at the same time (Edelkamp and Helmert, 1999; Helmert, 2009). Another
example would be the use of logical axioms, which in some situations allows not only
for exponentially smaller representations, but also smaller search spaces (Thiébaux
et al., 2005; Ivankovic and Haslum, 2015). Miura and Fukunaga (2017) have recently
shown some possible benefits of automatically inferring simple forms of axioms. In
general, recovering this type of structural information to leverage it computationally
is not a trivial process, and in many cases the effort might be spared if only the
modeler would have had a higher-level language at hand in the first place, allowing
her to represent that information directly.

Another option for the planner designer would be to use automatic reformulation
techniques to compile the high-level representation into a lower-level equivalent,
something which one would expect to be easier than the compilation in the in-
verse direction. In the case of the language features discussed in this thesis, we
have already mentioned how functions can be compiled into existential variables by
following the principles of Skolemization in reverse, as described in Haslum (2008);
other methods might of course produce more compact compiled representations. In
turn, existential variables can be compiled away, as we have discussed in Chapter 4.
All these transformations produce problem representations which are equivalent in
the sense that solutions of both source and target representations can be polyno-
mially mapped into one another, but they are not necessarily equivalent from the
computational standpoint, as we have argued.

Our point is that there is no gain in forcing the problem modeler use a low level
language: if the planner can deal with high-level constructs, so much the better; if
not, these constructs can be automatically translated into lower-level equivalents,
hopefully in a way that benefits the particular techniques used by the planner at
hand (Haslum, 2007). Incidentally, this approach has been explored to considerable
success in the field of constraint satisfaction, as in e.g. the Zinc family of expressive
languages and the automatic transformations between them (Nethercote et al., 2007;
Marriott et al., 2008).

122 conclusions

Planning with Data Types. The constraint satisfaction techniques that we saw
(Chapters 3 and 4) can help build a first-order relaxed planning graph can be applied
more or less off-the-shelf not only to integer variables, but also to structured data
types such as sets or intervals (Gervet, 1997). Constraint programming frameworks
such as Gecode do indeed support reasoning over such variable types, and extending
our heuristics to support them too should not be a challenge, and would in many
cases significantly ease the task of modeling. The width-based planning algorithm
presented in Chapter 5 would be even more powerful in that regard. Our algorithm
should be able to to support planning over any background theory with little addi-
tional effort, as long as the basic semantics of the theory is provided to implement the
(black-box) transition function of the planning model that the algorithm requires.
This could be seen as a straight-forward implementation roadmap for the planning
modulo theories paradigm (Gregory et al., 2012), which has yet to fulfill its enormous
potential.

Lifted Planning. On an unrelated note, the prospect of a planner which is able
to plan effectively by directly using the lifted action schemas of the problem (i.e. no
grounding involved), which we have described in Chapter 4, also suggests interesting
possibilities. Indeed, the classical planning benchmarks used in standard planning
competitions already include some benchmarks where the huge number of ground
actions is problematic for those approaches which ground all of the lifted actions
at preprocessing. Recent research has shown that a similar thing happens with
some meaningful problems from the natural sciences that can be readily cast as
planning problems. These include for instance the computation of the genome edit
distances used to assess the plausibility of different evolutionary trees or the synthesis
of molecules by means of appropriate sequences of chemical reactions (Haslum, 2011;
Matloob and Soutchanski, 2016).2 The intuitive encodings for both of these examples
contain action schemas with large signatures that are beyond the possibilities of most
current planners. In the case of the organic synthesis problem, for instance, this is
not because the problem has some particularly challenging combinatorial structure,
but because the size of the ground representation is orders of magnitudes larger
than the standard problems in the benchmarks, thus invalidating the apparently
innocuous assumption that grounding the problem representation at preprocessing
simplifies the subsequent reasoning. We are already working on the application of
lifted planning techniques as described in Section 4.6 to this type of problems.

Hybrid Planning. The FS planner developed in this thesis has recently been
transformed by Ramirez et al. (2017) into the FS+ planner, which extends our first
order relaxed planning graph to cope with hybrid planning problems, i.e. planning
problems with real-valued state variables and both continuous and instantaneous
change. FS+ precisely supports the PDDL+ language extended with function symbols,
including arithmetic expressions, arbitrary algebraic and trigonometric functions and
autonomous processes (Fox and Long, 2002, 2003, 2006; Cashmore et al., 2016; Scala
et al., 2016a). Work to merge both the FS+ and FS planners is currently undergoing,
including the exploration of meaningful generalizations to real-valued variables of
the notions of state novelty on which the work presented in Chapter 5 is based.

2 The first of these problems was already part of the 2014 international planning competition.

7.2. ongoing and future work 123

Learning Novelty Features for Width-Based Search. An issue that we only
briefly mentioned in Chapter 5 related to our width-based search algorithm is the
use of what we have called ranked feature lists to prioritize search nodes during the
search. This mechanism indeed opens up a novel way of incorporating domain knowl-
edge (Bacchus and Kabanza, 2000; Haslum and Scholz, 2003) in the form of novelty
features, i.e. arbitrary first-order formulas which are used to compute the novelty of
a given search node. These features can be specified by the modeler, but machine
learning techniques could also conceivably be used to infer from training samples
which features work best. Some of the preliminary results that we have obtained on
this are encouraging, showing significant search speed-ups, but the challenge remains
to gain a systematic understanding of the kind of features that can be beneficial in
this type of width-based search algorithms.

Appendix A

First-Order Logic

In this appendix we provide a brief overview of the first-order logic background
necessary to follow the formalization of the Functional STRIPS classical planning
language and the discussion on the First-Order Relaxed Planning Graph presented
in Chapters 2 to 4. A more systematic account can be found in any standard textbook
(Enderton, 2001; Rautenberg, 2006). Our exposition here follows the formalization
by Reiter (2001).

We begin by presenting the syntax and semantics of first-order languages with types
(or sorts), usually called many-sorted languages. It is known that many-sorted logics
are no more expressive than standard unsorted logics: any typed first-order sentence
can be rewritten into a type-free sentence with some auxiliary predicates, and such
transformation preserves the notion of satisfiability (Reiter, 2001). We will however
often work with many-sorted definitions in the rest of this thesis, so we prefer to give
a direct formalization of them.

Definition A.1 (Many-Sorted First-Order Logic). A many-sorted first-order lan-
guage L is made up of:

• A non-empty set T of types or sorts.

• An infinite number of variables xτ1 , x
τ
2 , . . . for each type τ ∈ T .

• For each n ≥ 0 and each tuple 〈τ1, . . . , τn+1〉 ∈ Tn+1 of types, a (possibly
empty) set of function symbols, each of which is said to have arity n and type
〈τ1, . . . , τn+1〉.

• For each n ≥ 0 and each tuple 〈τ1, . . . , τn〉 ∈ Tn of types, a (possibly empty) set
of relation symbols, each of which is said to have arity n and type 〈τ1, . . . , τn〉.

Nullary (i.e. arity-0) functions are called constants. We will usually say that a con-
stant with type 〈τ〉 has simply type τ . We will also omit the superscript in xτ when it
is clear from the context the type of variable x. Terms and formulas in the language
can be defined inductively as follows:

Definition A.2 (First-Order Terms).

• Any variable xτ of the language is a term with type τ .

• Any constant symbol of the language with type τ is a term with the same type.

125

126 first-order logic

• If t1, . . . , tn are terms with respective types τ1, . . . , τn, and f is a function symbol
with type 〈τ1, . . . , τn, τn+1〉, then f(t1, . . . , tn) is a term with type τn+1.

It is clear from the above that any term t in the language can be assigned a unique
type, which we will denote by type(t).

Definition A.3 (First-Order Formulas).

• If t1 and t2 are two terms with the same type, then t1 = t2 is an (atomic)
formula.

• If t1, . . . , tn are terms with respective types τ1, . . . , τn, and R is a relation symbol
with type 〈τ1, . . . , τn〉, then R(t1, . . . , tn) is an (atomic) formula.

• If φ1 and φ2 are formulas, then ¬φ1, φ1 ∨ φ2 and φ1 ∧ φ2 are also formulas.

• If φ is a formula, then ∃txτφ and ∀txτφ are also formulas.

Quantification happens over a certain type, i.e. for each type τ ∈ T there are universal
and existential quantifier symbols ∀τ and ∃τ , which must be applied to variables
of the same type. We sometimes abbreviate with ∃ x1/τ1, . . . , xn/τn the actual
quantification prefix ∃τ1 x

τ1
1 . . . ∃τn xτn1 , and likewise for universal quantification. We

will omit type information when the context is clear enough. A formula with no
existential (∃) or universal (∀) quantifier, we will call quantifier-free.

As customary, we will use φ1 → φ2 as shorthand for ¬φ1 ∨ φ2 and φ1 ↔ φ2 as
shorthand for (φ1 → φ2) ∧ (φ2 → φ1). We will sometimes assume that the symbols
> (tautology) and ⊥ (contradiction) are also atomic formulas.

Intuitively, a variable x is said to be free if it does not occur in the scope of any quan-
tification prefix ∃x or ∀x, and the variable is bound otherwise. If x̄ = 〈x1, . . . , xn〉 is
a tuple with all free variables in a formula φ, we sometimes denote the formula by
φ[x̄]. A formula without free variables is called a sentence.

We can now formalize the semantics of a first-order language, based on the notion
of model.

Definition A.4 (First-order logic model). Let L be a many-sorted first-order lan-
guage. A first-order model (sometimes called structure or interpretation) for the
language L is a tuple

M = 〈{Uτ} ,
{
fM
}
,
{
PM

}
〉

made up of:

• A non-empty set Uτ , the universe of type τ , for each τ ∈ T . We often assume
that the universes of all types are disjoint and use U =

⋃
τ∈T Ut for brevity.

• For each n-ary function symbol f of the language with type 〈τ1, . . . , τn, τn+1〉,
a function fM : Uτ1 × · · · × Uτn → Uτn+1. When n = 0 and f is a constant
symbol of type τ , fM is simply some element of the universe Uτ .

• For each n-ary predicate symbol P of type 〈τ1, . . . , τn〉, a subset PM ⊆ Ut1 ×
· · · × Uτn. If n = 0, we will assume that PM is a truth value PM ∈ {>,⊥}.

first-order logic 127

The notion of denotation of a term and truth of a formula under a given interpretation
requires that we take into account all possible free variables occurring in the term
of formula. We will do that by extending interpretations with a type-consistent
assignment of values to free-variables. Assume that φ[x̄] is a formula in some first-
order language L,M an interpretation for that language, and σ a variable assignment
for x̄, i.e. a function mapping any free variable xτ in the tuple x̄ to an element in Uτ .

The assignment σ can be easily extended into a function σ∗ that gives the denotation
of any term in the language, defined as follows:

1. For any variable x, σ∗(x) = σ(x).

2. For terms t1, . . . , tn and a n-ary function symbol f with matching type,

σ∗(f(t1, . . . , tn)) = fM(σ∗(t1), . . . , σ∗(tn)).

We say that φ is true under interpretationM, when its free variables are given values
according to assignment σ, denoted by M � φ(σ), in the following cases:

• For any two terms t1, t2, M � (t1 = t2)(σ) iff σ∗(t1) and σ∗(t1) are the same
element.

• For any n-ary predicate symbol P and terms t1, . . . , tn of appropriate type,
M � P (t1, . . . , tn)(σ) iff 〈σ∗(t1), . . . , σ∗(tn)〉 ∈ PM.

• M � (¬φ)(σ) iff not M � φ.

• If φ ≡ φ1 ∧ φ2, then M � φ(σ) iff M � φ1 and M � φ2.

• If φ ≡ φ1 ∨ φ2, then M � φ(σ) iff M � φ1 or M � φ2.

• M � (∃τx φ)(σ) iff M � φ(σ[x/a]), for some a ∈ Uτ .

• M � (∀τx φ)(σ) iff M � φ(σ[x/a]) for every a ∈ Uτ .

In the above definition, σ[x/a] is the function that assigns values as in σ except to
variable x, which is assigned value a.

Definition A.5 (Satisfaction and Validity). Let φ be a formula in some first-order
language L. We say that

• An interpretation M satisfies φ iff M � φ(σ) for any possible assignment σ. φ
is satisfiable iff there is some interpretation M that satisfies it.

• φ is a valid formula, denoted by � φ, iff every possible first-order interpretation
of the language L satisfies φ.

Determining if a first-order logic sentence is valid is an undecidable problem, and so
is determining if it is satisfiable.

Bibliography

Aldinger, J., Mattmüller, R., and Göbelbecker, M. Complexity of interval relaxed
numeric planning. In Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), pages 19–31. Springer, 2015.

Alviano, M., Faber, W., and Leone, N. Disjunctive ASP with functions: Decidable
queries and effective computation. Theory and Practice of Logic Programming, 10
(4-6):497–512, 2010.

Amarel, S. On representations of problems of reasoning about actions. Machine
intelligence, 3(3):131–171, 1968.

Appiah, K. A. Thinking it through: An introduction to contemporary philosophy.
Oxford University Press, 2003.

Areces, C., Bustos, F., Dominguez, M., and Hoffmann, J. Optimizing planning
domains by automatic action schema splitting. In International Conference on
Automated Planning and Scheduling, pages 11–19. AAAI Press, 2014.

Bacchus, F. The AIPS’00 planning competition. AI Magazine, 22(3):47–56, 2001.

Bacchus, F. The power of modeling - a response to PDDL 2.1. Journal of Artificial
Intelligence Research, 20:125–132, 2003.

Bacchus, F. GAC via unit propagation. In International Conference on Principles
and Practice of Constraint Programming, pages 133–147. Springer, 2007.

Bacchus, F. and Kabanza, F. Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence, 116(1-2):123–191, 2000.

Bäckström, C. Planning using transformation between equivalent formalisms: A case
study of efficiency. In AAAI Workshop on Comparative Analysis of AI Planning
Systems, 1994.

Bäckström, C. Expressive equivalence of planning formalisms. Artificial Intelligence,
76(1):17–34, 1995.

Backstrom, C. and Jonsson, P. All PSPACE-complete planning problems are equal
but some are more equal than others. In Annual Symposium on Combinatorial
Search, pages 10–17, 2011.

Bäckström, C. and Klein, I. Planning in polynomial time: the SAS-PUBS class.
Computational Intelligence, 7(3):181–197, 1991.

Bäckström, C. and Nebel, B. Complexity results for SAS+ planning. Computational
Intelligence, 11(4):625–655, 1995.

129

130 bibliography

Bäckström, C., Chen, Y., Jonsson, P., Ordyniak, S., and Szeider, S. The complexity
of planning revisited: a parameterized analysis. In AAAI Conference on Artificial
Intelligence, pages 1735–1741, 2012.

Bäckström, C., Jonsson, P., Ordyniak, S., and Szeider, S. A complete parameter-
ized complexity analysis of bounded planning. Journal of Computer and System
Sciences, 81(7):1311–1332, 2015.

Baral, C., Gelfond, M., and Provetti, A. Representing actions: Laws, observations
and hypotheses. The Journal of Logic Programming, 31(1-3):201–243, 1997.

Barták, R. and Vodrážka, J. The effect of domain modeling on efficiency of plan-
ning: Lessons from the Nomystery domain. In Conference on Technologies and
Applications of Artificial Intelligence, pages 433–440. IEEE, 2015.

Beldiceanu, N., Carlsson, M., and Rampon, J.-X. Global constraint catalog.
http://sofdem.github.io/gccat/, 2012.

Bellemare, M., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bernardini, S., Fox, M., Long, D., and Piacentini, C. Boosting search guidance in
problems with semantic attachments. In International Conference on Automated
Planning and Scheduling, pages 29–37. AAAI Press, 2017.

Bessiere, C. and Van Hentenryck, P. To be or not to be... a global constraint.
In Principles and Practice of Constraint Programming, pages 789–794. Springer,
2003.

Betz, C. and Helmert, M. Planning with h+ in theory and practice. In Annual
Conference on Artificial Intelligence, pages 9–16. Springer, 2009.

Biere, A., Heule, M., and van Maaren, H. Handbook of satisfiability. IOS press, 2009.

Blum, A. and Furst, M. Fast planning through planning graph analysis. In In-
ternational Joint Conference on Artificial Intelligence, pages 1636–1642. Morgan
Kaufmann, 1995.

Boddy, M. Imperfect match: PDDL 2.1 and real applications. Journal of Artificial
Intelligence Research, 20:133–137, 2003.

Bonet, B. and Geffner, H. GPT: A tool for planning with uncertainty and par-
tial information. In IJCAI Workshop on Planning with Uncertainty and Partial
Information, pages 82–87, 2001a.

Bonet, B., Loerincs, G., and Geffner, H. A robust and fast action selection mechanism
for planning. In AAAI Conference on Artificial Intelligence, pages 714–719, 1997.

Bonet, B. and Geffner, H. HSP: Heuristic search planner. In The AIPS-98 Planning
Competition, 1998.

Bonet, B. and Geffner, H. Planning as heuristic search: New results. In European
Conference on Planning, pages 360–372. Springer, 1999.

Bonet, B. and Geffner, H. Planning as heuristic search. Artificial Intelligence, 129
(1–2):5–33, 2001b.

Bonet, B. and Helmert, M. Strengthening landmark heuristics via hitting sets. In
European Conference on Artificial Intelligence, pages 329–334, 2010.

Bonet, B. and van den Briel, M. Flow-based heuristics for optimal planning: Land-
marks and merges. In International Conference on Automated Planning and

bibliography 131

Scheduling, pages 47–55. AAAI Press, 2014.

Boroditsky, L. How language shapes thought. Scientific American, 304(2):62–65,
2011.

Brewka, G., Eiter, T., and Truszczyński, M. Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

Brooks, R. Elephants don’t play chess. Robotics and autonomous systems, 6(1-2):
3–15, 1990.

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., and Colton, S. A survey of Monte Carlo
tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Bryce, D. and Kambhampati, S. A tutorial on planning graph based reachability
heuristics. AI Magazine, 28(1):47, 2007.

Burns, E., Hatem, M., Leighton, M., and Ruml, W. Implementing fast heuristic
search code. In Fifth Annual Symposium on Combinatorial Search, pages 25–32,
2012.

Burt, C., Lipovetzky, N., Pearce, A., and Stuckey, P. Scheduling with fixed mainte-
nance, shared resources and nonlinear feedrate constraints: A mine planning case
study. In International Conference on Integration of Artificial Intelligence and Op-
erations Research Techniques in Constraint Programming (CPAIOR), pages 91–
107, 2015.

Bylander, T. The computational complexity of STRIPS planning. Artificial Intelli-
gence, 69:165–204, 1994.

Cashmore, M., Fox, M., Long, D., and Magazzeni, D. A compilation of the full
PDDL+ language into SMT. In AAAI Workshop on Planning for Hybrid Systems,
2016.

Cenamor, I., De La Rosa, T., and Fernández, F. IBaCoP and IBaCoP2 planner. IPC
2014 planner abstracts, pages 35–38, 2014.

Chapman, D. Planning for conjunctive goals. Artificial Intelligence, 32:333–377,
1987.

Chen, H. and Giménez, O. Causal graphs and structurally restricted planning. Jour-
nal of Computer and System Sciences, 76(7):579–592, 2010.

Chenoweth, S. V. On the NP-hardness of Blocks world. In AAAI Conference on
Artificial Intelligence, pages 623–628, 1991.

Coles, A., Coles, A., Olaya, A. G., Jiménez, S., López, C. L., Sanner, S., and Yoon,
S. A survey of the seventh international planning competition. AI Magazine, 33
(1):83–88, 2012.

Coles, A., Fox, M., Long, D., and Smith, A. A hybrid relaxed planning graph-LP
heuristic for numeric planning domains. In International Conference on Automated
Planning and Scheduling, pages 52–59. AAAI Press, 2008.

Cook, S. A. The complexity of theorem-proving procedures. In Annual ACM sym-
posium on Theory of computing, pages 151–158. ACM, 1971.

Dal Lago, U., Pistore, M., and Traverso, P. Planning with a language for extended
goals. In AAAI Conference on Artificial Intelligence, pages 447–454, 2002.

Davies, T., Pearce, A., Stuckey, P., and Lipovetzky, N. Sequencing operator counts.

132 bibliography

In International Conference on Automated Planning and Scheduling, pages 61–69.
AAAI Press, 2015.

Davis, M. and Putnam, H. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

De Giacomo, G., Lespérance, Y., and Levesque, H. ConGolog, a concurrent pro-
gramming language based on the situation calculus. Artificial Intelligence, 121
(1-2):109–169, 2000.

Dechter, R. Constraint Processing. Morgan Kaufmann, 2003.

Descartes, R. Discourse on Method. For Conducting Reason and Seeking the Truth
in the Sciences. Yale University Press, 1996. Original work published in 1637.

Do, M. B. and Kambhampati, S. Planning as constraint satisfaction: Solving the
planning graph by compiling it into CSP. Artificial Intelligence, 132(2):151–182,
2001.

Domshlak, C. and Nazarenko, A. The complexity of optimal monotonic planning: the
bad, the good, and the causal graph. Journal of Artificial Intelligence Research,
48:783–812, 2013.

Domshlak, C., Helmert, M., Karpas, E., Keyder, E., Richter, S., Röger, G., Seipp,
J., and Westphal, M. BJOLP: The big joint optimal landmarks planner. In The
2011 International Planning Competition Booklet, pages 91–95, 2011.

Domshlak, C., Hoffmann, J., and Katz, M. Red–black planning: A new systematic
approach to partial delete relaxation. Artificial Intelligence, 221:73–114, 2015.

Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., and Nebel, B. Se-
mantic attachments for domain-independent planning systems. In International
Conference on Automated Planning and Scheduling, pages 114–121. AAAI Press,
2009.

Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., and Nebel, B. Semantic
attachments for domain-independent planning systems. In Towards service robots
for everyday environments, pages 99–115. Springer, 2012.

Doyle, J. and Patil, R. Two theses of knowledge representation: Language restric-
tions, taxonomic classification, and the utility of representation services. Artificial
intelligence, 48(3):261–297, 1991.

Dreyfus, H. What computers can’t do: The limits of artificial intelligence. Harper &
Row New York, 1979.

Dreyfus, H. Why Heideggerian AI failed and how fixing it would require making it
more Heideggerian. Artificial Intelligence, 171(18):1137–1160, 2007.

Edelkamp, S. and Reffel, F. Deterministic state space planning with BDDs. Technical
report, Computer Science Dept., University of Freiburg, 1999.

Edelkamp, S. Planning with pattern databases. In European Conference on Planning,
pages 84–90, 2001.

Edelkamp, S. and Helmert, M. Exhibiting knowledge in planning problems to mini-
mize state encoding length. In European Conference on Planning, pages 135–147.
Springer, 1999.

Edelkamp, S. and Helmert, M. MIPS: The model-checking integrated planning sys-
tem. AI magazine, 22(3):67, 2001.

Edelkamp, S. and Kissmann, P. Optimal symbolic planning with action costs and

bibliography 133

preferences. In International Joint Conference on Artificial Intelligence, pages
1690–1695, 2009.

Edelkamp, S. and Schroedl, S. Heuristic search: theory and applications. Elsevier,
2011.

Enderton, H. B. A mathematical introduction to logic. Harcourt Academic press,
2001.

Erol, K., Nau, D., and Subrahmanian, V. Complexity, decidability and undecidabil-
ity results for domain-independent planning: A detailed analysis. Technical Report
CS-TR-2797, UMIACS-TR-91-154, SRC-TR-91-96, University of Maryland, Col-
lege Park, MD, 1991.

Erol, K., Nau, D., and Subrahmanian, V. When is planning decidable. In Interna-
tional Conference on AI Planning Systems, pages 222–227, 1992.

Erol, K., Nau, D. S., and Subrahmanian, V. S. Complexity, decidability and unde-
cidability results for domain-independent planning. Artificial intelligence, 76(1):
75–88, 1995.

Ferrer-Mestres, J., Francès, G., and Geffner, H. Planning with state constraints and
its application to combined task and motion planning. In ICAPS Workshop on
Planning and Robotics (PlanRob), pages 13–22, 2015.

Feydy, T., Somogyi, Z., and Stuckey, P. Half reification and flattening. In Principles
and Practice of Constraint Programming, pages 286–301. Springer, 2011.

Fikes, R., Hart, P., and Nilsson, N. Learning and executing generalized robot plans.
Artificial intelligence, 3:251–288, 1972.

Fikes, R. E. and Nilsson, N. J. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

Fikes, R. E. and Nilsson, N. J. STRIPS, a retrospective. Artificial Intelligence, 59
(1):227–232, 1993.

Fox, M. and Long, D. The detection and exploitation of symmetry in planning
problems. In International Joint Conference on Artificial Intelligence, volume 99,
pages 956–961, 1999.

Fox, M. and Long, D. PDDL+: Modeling continuous time dependent effects. In
International NASA Workshop on Planning and Scheduling for Space, page 34,
2002.

Fox, M. and Long, D. PDDL 2.1: An extension to PDDL for expressing temporal
planning domains. Journal of artificial intelligence research, 20:61–124, 2003.

Fox, M. and Long, D. Modelling mixed discrete-continuous domains for planning.
Journal of Artificial Intelligence Research, 27:235–297, 2006.

Francès, G. and Geffner, H. Modeling and computation in planning: Better heuris-
tics from more expressive languages. In International Conference on Automated
Planning and Scheduling, pages 70–78. AAAI Press, 2015.

Francès, G. and Geffner, H. Effective planning with more expressive languages. In
International Joint Conference on Artificial Intelligence, pages 4155–4159, 2016a.

Francès, G. and Geffner, H. E-STRIPS: Existential quantification in planning and
constraint satisfaction. In International Joint Conference on Artificial Intelligence,
pages 3082–3088, 2016b.

Francès, G., Ramı́rez, M., Lipovetzky, N., and Geffner, H. Purely declarative action

134 bibliography

representations are overrated: Classical planning with simulators. In International
Joint Conference on Artificial Intelligence, pages 4294–4301, 2017.

Freuder, E. C. Modeling: the final frontier. In International Conference on The
Practical Application of Constraint Technologies and Logic Programming, pages
15–21, 1999.

Frisch, A. M., Grum, M., Jefferson, C., Hernández, B. M., and Miguel, I. The design
of ESSENCE: A constraint language for specifying combinatorial problems. In
International Joint Conference on Artificial Intelligence, volume 7, pages 80–87,
2007.

Gazen, B. and Knoblock, C. Combining the expressiveness of UCPOP with the
efficiency of Graphplan. In European Conference on Planning, pages 221–233,
1997.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. Answer set solving in
practice. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(3):
1–238, 2012.

Gecode Team. Gecode: Generic constraint development environment, 2006.
http://www.gecode.org.

Gefen, A. and Brafman, R. I. The minimal seed set problem. In International
Conference on Automated Planning and Scheduling, pages 319–322. AAAI Press,
2011.

Geffner, H. Functional STRIPS. In Minker, J., editor, Logic-Based Artificial Intelli-
gence, pages 187–205. Kluwer, 2000.

Geffner, H. Perspectives on artificial intelligence planning. In AAAI Conference on
Artificial Intelligence / Innovative Applications of Artificial Intelligence Confer-
ence, pages 1013–1023, 2002.

Geffner, H. PDDL 2.1: Representation vs. computation. Journal of Artificial Intel-
ligence Research, 20:139–144, 2003.

Geffner, H. The model-based approach to autonomous behavior: A personal view.
In AAAI Conference on Artificial Intelligence, pages 1709–1712, 2010.

Geffner, H. and Bonet, B. A concise introduction to models and methods for auto-
mated planning. Morgan & Claypool, 2013.

Geffner, T. and Geffner, H. Width-based planning for general video-game playing. In
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), pages 23–29, 2015.

Gelfond, M. and Lifschitz, V. Representing action and change by logic programs.
The Journal of Logic Programming, 17(2-4):301–321, 1993.

Gelfond, M. and Lifschitz, V. Action languages. Linkoping Electronic Articles in
Computer and Information Science, 3(16), 1998.

Gerevini, A. and Long, D. Plan constraints and preferences in PDDL3: The language
of the fifth international planning competition. Technical report, Department of
Electronics for Automation, University of Brescia, Italy, 2005.

Gerevini, A. and Serina, I. LPG: A planner based on local search for planning graphs
with action costs. In International Conference on Artificial Intelligence Planning
Systems, volume 2, pages 281–290, 2002.

Gerevini, A. E., Haslum, P., Long, D., Saetti, A., and Dimopoulos, Y. Deterministic
planning in the fifth international planning competition: PDDL3 and experimental

bibliography 135

evaluation of the planners. Artificial Intelligence, 173(5):619–668, 2009.

Gervet, C. Interval propagation to reason about sets: Definition and implementation
of a practical language. Constraints, 1(3):191–244, 1997.

Ghallab, M., Nau, D., and Traverso, P. Automated Planning: theory and practice.
Morgan Kaufmann, 2004.

Giménez, O. and Jonsson, A. The complexity of planning problems with simple
causal graphs. Journal of Artificial Intelligence Research, 31:319–351, 2008.

Gleitman, L. and Papafragou, A. Language and thought. In Holyoak, K. and Mor-
rison, R., editors, Cambridge handbook of thinking and reasoning, pages 633–661.
Cambridge University Press, 2005.

Gomes, C. P., Kautz, H., Sabharwal, A., and Selman, B. Satisfiability solvers. In
Handbook of Knowledge Representation, pages 89–134. Elsevier, 2008.

Gottlob, G., Leone, N., and Scarcello, F. On tractable queries and constraints. In
Database and Expert Systems Applications, pages 1–15. Springer, 1999.

Green, C. Application of theorem proving to problem solving. In International joint
conference on Artificial intelligence, pages 219–239. Morgan Kaufmann Publishers
Inc., 1969.

Gregory, P., Long, D., Fox, M., and Beck, J. C. Planning modulo theories: extending
the planning paradigm. In International Conference on International Conference
on Automated Planning and Scheduling, pages 65–73. AAAI Press, 2012.

Gupta, N. and Nau, D. S. On the complexity of blocks-world planning. Artificial
Intelligence, 56(2-3):223–254, 1992.

Hart, P., Nilsson, N., and Raphael, B. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

Haslum, P. and Geffner, H. Admissible heuristics for optimal planning. In Fifth
International Conference on AI Planning Systems, pages 70–82, 2000.

Haslum, P. Reducing accidental complexity in planning problems. In International
Joint Conference on Artificial Intelligence, pages 1898–1903, 2007.

Haslum, P. Additive and reversed relaxed reachability heuristics revisited. In The
2008 International Planning Competition Booklet, 2008.

Haslum, P. Computing genome edit distances using domain-independent planning.
In ICAPS Workshop on Scheduling and Planning Applications, 2011.

Haslum, P. and Scholz, U. Domain knowledge in planning: Representation and use.
In ICAPS Workshop on PDDL, 2003.

Haslum, P., Bonet, B., and Geffner, H. New admissible heuristics for domain-
independent planning. In AAAI Conference on Artificial Intelligence, volume 5,
pages 9–13, 2005.

Haslum, P., Botea, A., Helmert, M., Bonet, B., and Koenig, S. Domain-independent
construction of pattern database heuristics for cost-optimal planning. In AAAI
Conference on Artificial Intelligence, volume 7, pages 1007–1012, 2007.

Helmert, M. The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006a.

Helmert, M., Do, M., and Refanidis, I. The sixth international planning competition,
deterministic track, 2008. http://ipc.informatik.uni-freiburg.de, accessed 31 July

136 bibliography

2017.

Helmert, M. Complexity results for standard benchmark domains in planning. Ar-
tificial Intelligence, 143(2):219–262, 2003.

Helmert, M. A planning heuristic based on causal graph analysis. In International
Conference on Automated Planning and Scheduling, volume 4, pages 161–170.
AAAI Press, 2004.

Helmert, M. New complexity results for classical planning benchmarks. In Inter-
national Conference on Automated Planning and Scheduling, pages 52–62. AAAI
Press, 2006b.

Helmert, M. Concise finite-domain representations for PDDL planning tasks. Arti-
ficial Intelligence, 173(5-6):503–535, 2009.

Helmert, M. and Domshlak, C. Landmarks, critical paths and abstractions: What’s
the difference anyway? In International Conference on Automated Planning and
Scheduling, pages 162–169. AAAI Press, 2009.

Helmert, M. and Mattmüller, R. Accuracy of admissible heuristic functions in se-
lected planning domains. In AAAI Conference on Artificial Intelligence, pages
938–943, 2008.

Helmert, M. and Röger, G. How good is almost perfect? In AAAI Conference on
Artificial Intelligence, volume 8, pages 944–949, 2008.

Helmert, M., Mattmüller, R., and Röger, G. Approximation properties of planning
benchmarks. In European Conference on Artificial Intelligence, pages 585–589,
2006.

Helmert, M., Haslum, P., and Hoffmann, J. Flexible abstraction heuristics for opti-
mal sequential planning. In International Conference on Automated Planning and
Scheduling, pages 176–183. AAAI Press, 2007.

Helmert, M., Röger, G., and Karpas, E. Fast downward stone soup: A baseline for
building planner portfolios. In ICAPS Workshop on Planning and Learning, pages
28–35, 2011.

Hendler, J. A., Tate, A., and Drummond, M. AI planning: Systems and techniques.
AI magazine, 11(2):61, 1990.

Hertle, A., Dornhege, C., Keller, T., and Nebel, B. Planning with semantic attach-
ments: An object-oriented view. In European Conference on Artificial Intelligence,
pages 402–407. IOS Press, 2012.

Heusner, M., Keller, T., and Helmert, M. Understanding the search behaviour of
greedy best-first search. In Annual Symposium on Combinatorial Search, pages
47–55, 2017.

Hoffmann, J. and Nebel, B. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001a.

Hoffmann, J., Porteous, J., and Sebastia, L. Ordered landmarks in planning. Journal
of Artificial Intelligence Research, 22:215–278, 2004.

Hoffmann, J. Local search topology in planning benchmarks: An empirical analysis.
In International Joint Conference on Artificial Intelligence, pages 453–458, 2001.

Hoffmann, J. Local search topology in planning benchmarks: A theoretical analysis.
In International Conference on Artificial Intelligence Planning Systems, pages 92–
100, 2002.

bibliography 137

Hoffmann, J. The metric-FF planning system: Translating “ignoring delete lists”
to numeric state variables. Journal of Artificial Intelligence Research, 20:291–341,
2003.

Hoffmann, J. Where “ignoring delete lists” works: local search topology in planning
benchmarks. Journal of Artificial Intelligence Research, 24:685–758, 2005.

Hoffmann, J. Simulated penetration testing: From “Dijkstra” to “Turing test++”.
In International Conference on Automated Planning and Scheduling, pages 364–
372. AAAI Press, 2015.

Hoffmann, J. and Edelkamp, S. The deterministic part of IPC-4: An overview.
Journal of Artificial Intelligence Research, 24:519–579, 2005.

Hoffmann, J. and Nebel, B. What makes the difference between HSP and FF? In
IJCAI Workshop on Empirical Methods in Artificial Intelligence, 2001b.

Hölldobler, S., Karabaev, E., and Skvortsova, O. FluCaP: a heuristic search planner
for first-order MDPs. Journal of Artificial Intelligence Research, 27:419–439, 2006.

Holte, R. C., Arneson, B., and Burch, N. PSVN manual (june 20, 2014). Technical
Report TR14-03, Computing Science Department, University of Alberta, June
2014.

Hooker, J. N. Testing heuristics: We have it all wrong. Journal of heuristics, 1(1):
33–42, 1995.

Hu, Y. and De Giacomo, G. Generalized planning: synthesizing plans that work for
multiple environments. In International Joint Conference on Artificial Intelligence,
pages 918–923. AAAI Press, 2011.

Huth, M. and Ryan, M. Logic in Computer Science: Modelling and reasoning about
systems. Cambridge university press, 2004.

Imai, T. and Kishimoto, A. A novel technique for avoiding plateaus of greedy best-
first search in satisficing planning. In Annual Symposium on Combinatorial Search,
pages 985–991, 2011.

Ivankovic, F. and Haslum, P. Optimal planning with axioms. In International Joint
Conference on Artificial Intelligence, pages 1580–1586, 2015.

Ivankovic, F., Haslum, P., Thiébaux, S., Shivashankar, V., and Nau, D. S. Optimal
planning with global numerical state constraints. In International Conference on
Automated Planning and Scheduling, pages 145–153. AAAI Press, 2014.

Jinnai, Y. and Fukunaga, A. Learning to prune dominated action sequences in online
black-box planning. In AAAI Conference on Artificial Intelligence, pages 839–845,
2017.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. The Malmo platform for
AI experimentation. In International Joint Conference on Artificial Intelligence,
pages 4246–4247, 2016.

Jonsson, P. and Bäckström, C. State-variable planning under structural restrictions:
Algorithms and complexity. Artificial Intelligence, 100(1-2):125–176, 1998.

Junghanns, A. and Schaeffer, J. Domain-dependent single-agent search enhance-
ments. In International Joint Conference on Artificial Intelligence, pages 570–577,
1999.

Junghanns, A. and Schaeffer, J. Sokoban: Enhancing general single-agent search
methods using domain knowledge. Artificial Intelligence, 129(1-2):219–251, 2001.

138 bibliography

Karp, R. M. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

Katz, M. and Domshlak, C. New islands of tractability of cost-optimal planning.
Journal of Artificial Intelligence Research, 32:203–288, 2008.

Katz, M. and Hoffmann, J. Mercury planner: Pushing the limits of partial delete
relaxation. In The 2014 International Planning Competition Booklet, 2014.

Katz, M., Hoffmann, J., and Domshlak, C. Who said we need to relax all variables?
In International Conference on Automated Planning and Scheduling, pages 126–
134. AAAI Press, 2013.

Katz, M., Lipovetzky, N., Moshkovich, D., and Tuisov, A. Adapting novelty to
classical planning as heuristic search. In International Conference on Automated
Planning and Scheduling, pages 172–180. AAAI Press, 2017.

Kautz, H. Deconstructing planning as satisfiability. In National Conference on
Artificial Intelligence, volume 2, page 1524. AAAI Press / MIT Press, 2006.

Kautz, H. and Selman, B. Planning as satisfiability. In European Conference on
Artificial Intelligence, pages 359–363, 1992.

Kautz, H. and Selman, B. Pushing the envelope: Planning, propositional logic, and
stochastic search. In National Conference on Artificial Intelligence and Innovative
Applications of Artificial Intelligence Conference (AAAI, IAAI), pages 1194–1201.
AAAI Press, 1996.

Kautz, H. and Walser, J. P. State-space planning by integer optimization. In AAAI
Conference on Artificial Intelligence / Innovative Applications of Artificial Intel-
ligence Conference, pages 526–533, 1999.

Kautz, H., McAllester, D., and Selman, B. Encoding plans in propositional logic. In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
96:374–384, 1996.

Keyder, E. and Geffner, H. Heuristics for planning with action costs revisited. In
European Conference on Artificial Intelligence, pages 588–592, 2008.

Keyder, E., Hoffmann, J., and Haslum, P. Semi-relaxed plan heuristics. In Interna-
tional Conference on Automated Planning and Scheduling, pages 128–136. AAAI
Press, 2012.

Koller, A. and Hoffmann, J. Waking up a sleeping rabbit: On natural-language
sentence generation with FF. In International Conference on Automated Planning
and Scheduling, pages 238–241. AAAI Press, 2010.

Korf, R. E. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial intelligence, 27(1):97–109, 1985.

Korf, R. E. Artificial intelligence search algorithms. In Atallah, M., editor, Handbook
of Algorithms and Theory of Computation. CRC, 1998.

Kronegger, M., Pfandler, A., and Pichler, R. Parameterized complexity of optimal
planning: A detailed map. In International Joint Conference on Artificial Intelli-
gence, pages 954–961, 2013.

Lelis, L. H., Zilles, S., and Holte, R. C. Stratified tree search: a novel suboptimal
heuristic search algorithm. In International conference on Autonomous agents and
multi-agent systems, pages 555–562, 2013.

Levesque, H. and Brachman, R. A fundamental tradeoff in knowledge representation
and reasoning. In Levesque, H. and Brachman, R., editors, Readings in Knowledge

bibliography 139

Representation, pages 41–70. Morgan Kaufmann, 1985.

Levesque, H. and Brachman, R. Expressiveness and tractability in knowledge repre-
sentation and reasoning. Computational intelligence, 3(1):78–93, 1987.

Levesque, H., Reiter, R., Lespérance, Y., Lin, F., and Scherl, R. B. GOLOG: A logic
programming language for dynamic domains. The Journal of Logic Programming,
31(1-3):59–83, 1997.

Levesque, H., Pirri, F., and Reiter, R. Foundations for the situation calculus. Linkop-
ing Electronic Articles in Computer and Information Science, 3(18), 1998.

Levin, L. A. Universal sequential search problems. Problemy Peredachi Informatsii,
9(3):115–116, 1973.

Lifschitz, V. On the semantics of STRIPS. In Georgeff, M. and Lansky, A., editors,
Reasoning about actions and plans, pages 1–9. Cambridge University Press, 1987.

Lin, F. and Reiter, R. State constraints revisited. Journal of logic and computation,
4(5):655–678, 1994.

Lin, F. and Wang, Y. Answer set programming with functions. In International
Conference on Principles of Knowledge Representation and Reasoning, pages 454–
464. AAAI Press, 2008.

Lipovetzky, N. Structure and Inference in Classical Planning. AI Access, 2014.

Lipovetzky, N. and Geffner, H. Searching for plans with carefully designed probes. In
International Conference on Automated Planning and Scheduling, pages 154–161.
AAAI Press, 2011.

Lipovetzky, N. and Geffner, H. Width and serialization of classical planning prob-
lems. In European Conference on Artificial Intelligence, pages 540–545. IOS Press,
2012.

Lipovetzky, N. and Geffner, H. Width-based algorithms for classical planning: New
results. In European Conference on Artificial Intelligence, pages 1059–1060, 2014.

Lipovetzky, N. and Geffner, H. Best-first width search: Exploration and exploitation
in classical planning. In AAAI Conference on Artificial Intelligence, pages 3590–
3596, 2017a.

Lipovetzky, N. and Geffner, H. A polynomial planning algorithm that beats LAMA
and FF. In International Conference on Automated Planning and Scheduling,
pages 195–199. AAAI Press, 2017b.

Lipovetzky, N., Ramirez, M., and Geffner, H. Classical planning with simulators:
Results on the Atari video games. In International Joint Conference on Artificial
Intelligence, pages 1610–1616, 2015.

Long, D. and Fox, M. The 3rd international planning competition: Results and
analysis. Journal of Artificial Intelligence Research, 20:1–59, 2003.

Long, D., Kautz, H., Selman, B., Bonet, B., Geffner, H., Koehler, J., Brenner, M.,
Hoffmann, J., Rittinger, F., Anderson, C. R., Weld, D. S., Smith, D. E., and Fox,
M. The AIPS-98 planning competition. AI magazine, 21(2):13–33, 2000.

Mackworth, A. K. Consistency in networks of relations. Artificial intelligence, 8(1):
99–118, 1977.

Mansouri, M. and Pecora, F. More knowledge on the table: planning with space, time
and resources for robots. In International Conference on Robotics and Automation,
pages 647–654. IEEE, 2014.

140 bibliography

Marques-Silva, J., Lynce, I., and Malik, S. Conflict-driven clause learning sat solvers.
In Handbook of Satisfiability, pages 131–153. IOS Press, 2009.

Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P. J., De La Banda, M. G., and
Wallace, M. The design of the Zinc modelling language. Constraints, 13(3):229–
267, 2008.

Mart́ın, M. and Geffner, H. Learning generalized policies from planning examples
using concept languages. Applied Intelligence, 20(1):9–19, 2004.

Masoumi, A., Soutchanski, M., and Marrella, A. Organic Synthesis as Artificial
Intelligence Planning. In International Semantic Web Applications and Tools for
Life Sciences Workshop, pages 1–15, 2013.

Matloob, R. and Soutchanski, M. Exploring Organic Synthesis with State-of-the-Art
Planning Techniques. In ICAPS Workshop on Scheduling and Planning Applica-
tions, pages 52–61, 2016.

McAllester, D. and Rosenblitt, D. Systematic nonlinear planning. In AAAI Confer-
ence on Artificial Intelligence, pages 634–639. AAAI Press, 1991.

McCarthy, J. Programs with common sense. RLE and MIT Computation Center,
1960.

McCarthy, J. Situations, actions, and causal laws. Technical report, Stanford Uni-
versity, 1963. Reprinted in Semantic Information Processing (M. Minsky ed.), MIT
Press, Cambridge, Mass., 1968, pp. 410–417.

McCarthy, J. Generality in artificial intelligence. Communications of the ACM, 30
(12):1030–1035, 1987.

McCarthy, J. Elaboration tolerance, 1998. URL http://www-formal.stanford.

edu/jmc/elaboration.pdf. Unpublished Manuscript.

McCarthy, J. and Hayes, P. J. Some philosophical problems from the standpoint
of the artificial intelligence. Machine Intelligence, 4:463–502, 1969. Reprinted in
Readings in Artificial Intelligence (B.L. Webber and N. J. Nilsson ed.), Tioga, Palo
Alto, 1981, pp. 26–46.

McCarthy, J., Minsky, M. L., Rochester, N., and Shannon, C. E. A proposal for the
Dartmouth Summer research project on artificial intelligence, August 31, 1955. AI
magazine, 27(4):12, 2006.

McDermott, D. Regression planning. International Journal of Intelligent Systems,
6(4):357–416, 1991.

McDermott, D. A heuristic estimator for means-ends analysis in planning. In Inter-
national Conference on Artificial Intelligence Planning Systems, pages 142–149,
1996.

McDermott, D. Using regression-match graphs to control search in planning. Arti-
ficial Intelligence, 109(1-2):111–159, 1999.

McDermott, D. The 1998 AI planning systems competition. AI magazine, 21(2):35,
2000.

McDermott, D. PDDL 2.1 — the art of the possible? commentary on Fox and Long.
Journal of Artificial Intelligence Research, 20:145–148, 2003a.

McDermott, D. The formal semantics of processes in PDDL. In ICAPS Workshop
on PDDL, pages 87–94, 2003b.

McDermott, D. and Hendler, J. Planning: What it is, what it could be, an intro-

http://www-formal.stanford.edu/jmc/elaboration.pdf
http://www-formal.stanford.edu/jmc/elaboration.pdf

bibliography 141

duction to the special issue on planning and scheduling. Artificial Intelligence, 76
(1):1–16, 1995.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., and Wilkins, D. PDDL – The Planning Domain Definition Language. Technical
Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and
Control, New Haven, CT, 1998.

McGeoch, C. C. Toward an experimental method for algorithm simulation. IN-
FORMS Journal on Computing, 8(1):1–15, 1996.

Minker, J. Introduction to logic-based artificial intelligence. In Minker, J., editor,
Logic-based artificial intelligence, pages 3–33. Kluwer, 2000.

Miura, S. and Fukunaga, A. Automatically extracting axioms in classical planning.
In AAAI Conference on Artificial Intelligence, pages 4973–4974, 2017.

Montanari, U. Networks of constraints: Fundamental properties and applications to
picture processing. Information sciences, 7:95–132, 1974.

Nareyek, A., Freuder, E. C., Fourer, R., Giunchiglia, E., Goldman, R. P., Kautz,
H., Rintanen, J., and Tate, A. Constraints and AI planning. IEEE Intelligent
Systems, 20(2):62–72, 2005.

Nebel, B. On the compilability and expressive power of propositional planning for-
malisms. Journal of Artificial Intelligence Research, 12:271–315, 2000.

Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., and Tack, G. Minizinc:
Towards a standard CP modelling language. Principles and Practice of Constraint
Programming, pages 529–543, 2007.

Newell, A. and Simon, H. GPS: a program that simulates human thought. In
Feigenbaum, E. and Feldman, J., editors, Computers and Thought, pages 279–293.
McGraw Hill, 1963.

Newell, A. and Simon, H. A. Computer science as empirical inquiry: Symbols and
search. Communications of the ACM, 19(3):113–126, 1976.

Newell, A., Shaw, J. C., and Simon, H. A. Report on a general problem solving
program. In International Conference on Information Processing, page 64, 1959.

Nilsson, N. Principles of Artificial Intelligence. Tioga Press, 1980.

Nilsson, N. The physical symbol system hypothesis: status and prospects. In 50
years of artificial intelligence, pages 9–17. Springer, 2007.

Novick, L. R. and Bassok, M. Problem solving. In Holyoak, K. and Morrison, R.,
editors, Cambridge handbook of thinking and reasoning, pages 321–349. Cambridge
University Press, 2005.

Ohrimenko, O., Stuckey, P. J., and Codish, M. Propagation via lazy clause genera-
tion. Constraints, 14(3):357–391, 2009.

OpenAI. Universe software platform. https://universe.openai.com/, 2016.

Papadimitriou, C. H. Computational complexity. Addison-Wesley, 1994.

Pearl, J. Heuristics. Addison Wesley, 1983.

Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, 1988.

Pednault, E. P. Formulating multiagent, dynamic world problems in the classical
planning framework. In Georgieff, M. P. and Lansky, A. L., editors, Reasoning
About Actions & Plans, pages 47–82. Cambridge University Press, 1986.

142 bibliography

Pednault, E. P. ADL: Exploring the middle ground between STRIPS and the situa-
tion calculus. International Conference on Principles of Knowledge Representation
and Reasoning, 89:324–332, 1989.

Pednault, E. P. ADL and the state-transition model of action. Journal of logic and
computation, 4(5):467–512, 1994.

Penberthy, J. and Weld, D. UCPOP: A sound, complete, partial order planner for
ADL. In International Conference on Principles of Knowledge Representation and
Reasoning, pages 103–114, 1992.

Pennachin, C. and Goertzel, B. Contemporary approaches to artificial general intel-
ligence. In Pennachin, C. and Goertzel, B., editors, Artificial general intelligence,
chapter 1, pages 1–30. Springer, 2007.

Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T., and Lucas, S. General
video game AI: Competition, challenges and opportunities. In AAAI Conference
on Artificial Intelligence, pages 4335–4337, 2016.

Pohl, I. Heuristic search viewed as path finding in a graph. Artificial intelligence, 1
(3-4):193–204, 1970.

Porco, A., Machado, A., and Bonet, B. Automatic polytime reductions of NP prob-
lems into a fragment of STRIPS. In International Conference on Automated Plan-
ning and Scheduling, pages 178–185. AAAI Press, 2011.

Porco, A., Machado, A., and Bonet, B. Automatic reductions from PH into STRIPS
or how to generate short problems with very long solutions. In International
Conference on Automated Planning and Scheduling, pages 342–346. AAAI Press,
2013.

Porteous, J., Sebastia, L., and Hoffmann, J. On the extraction, ordering, and usage
of landmarks in planning. In European Conference on Planning, pages 174–182,
2001.

Ramirez, M., Lipovetzky, N., and Muise, C. Lightweight Automated Planning
ToolKiT. http://lapkt.org/, 2015.

Ramirez, M., Scala, E., Haslum, P., and Thiebaux, S. Numerical integration and
dynamic discretization in heuristic search planning over hybrid domains. arXiv
preprint arXiv:1703.04232, 2017.

Rardin, R. L. and Uzsoy, R. Experimental evaluation of heuristic optimization algo-
rithms: A tutorial. Journal of Heuristics, 7(3):261–304, 2001.

Rautenberg, W. A concise introduction to mathematical logic. Springer, 2006.

Régin, J.-C. Global constraints: A survey. In van Hentenryck, P. and Milano, M.,
editors, Hybrid Optimization: The Ten Years of CPAIOR, pages 63–134. Springer,
2011.

Reiter, R. On closed world data bases. In Gallaire, H. and Minker, J., editors, Logic
and Data Bases, pages 55–76. Springer, 1978.

Reiter, R. Knowledge in action: logical foundations for specifying and implementing
dynamical systems. MIT press, 2001.

Richter, S. and Westphal, M. The LAMA planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research, 39(1):127–
177, 2010.

Richter, S. and Helmert, M. Preferred operators and deferred evaluation in satisficing
planning. In International Conference on Automated Planning and Scheduling,

bibliography 143

pages 273–280. AAAI Press, 2009.

Richter, S., Helmert, M., and Westphal, M. Landmarks revisited. In AAAI Confer-
ence on Artificial Intelligence, volume 8, pages 975–982, 2008.

Riddle, P., Barley, M., Franco, S., and Douglas, J. Analysis of bagged representations
in PDDL. In ICAPS Workshop on Heuristics and Search for Domain-independent
Planning, pages 71–79, 2015a.

Riddle, P., Douglas, J., Barley, M., and Franco, S. Improving performance by re-
formulating PDDL into a bagged representation. ICAPS Workshop on Heuristics
and Search for Domain-independent Planning, page 28, 2016.

Riddle, P. J., Holte, R. C., and Barley, M. W. Does representation matter in the
planning competition? In Symposium of Abstraction, Reformulation, and Approx-
imation, 2011.

Riddle, P. J., Barley, M. W., Franco, S., and Douglas, J. Automated transformation
of PDDL representations. In Annual Symposium on Combinatorial Search, pages
214–215, 2015b.

Rintanen, J. Impact of modeling languages on the theory and practice in planning
research. In AAAI Conference on Artificial Intelligence, pages 4052–4056, 2015.

Rintanen, J. and Jungholt, H. Numeric state variables in constraint-based planning.
In European Conference on Planning, pages 109–121, 1999.

Rintanen, J. Unified definition of heuristics for classical planning. In European
Conference on Artificial Intelligence, pages 600–604. IOS Press, 2006.

Rintanen, J. Heuristics for planning with SAT and expressive action definitions. In
International Conference on Automated Planning and Scheduling, pages 210–217.
AAAI Press, 2011.

Rintanen, J. Planning as satisfiability: Heuristics. Artificial Intelligence, 193:45–86,
2012.

Rintanen, J. Madagascar: Scalable planning with SAT. In The 2014 International
Planning Competition Booklet, 2014.

Rintanen, J., Heljanko, K., and Niemelä, I. Planning as satisfiability: parallel plans
and algorithms for plan search. Artificial Intelligence, 170(12-13):1031–1080, 2006.

Röger, G. and Helmert, M. The more, the merrier: combining heuristic estimators
for satisficing planning. In International Conference on International Conference
on Automated Planning and Scheduling, pages 246–249. AAAI Press, 2010.

Rossi, F., Van Beek, P., and Walsh, T. Handbook of constraint programming. Elsevier,
2006.

Rossi, F., Van Beek, P., and Walsh, T. Constraint programming. In Van Harmelen,
F., Lifschitz, V., and Porter, B., editors, Handbook of Knowledge Representation,
chapter 4, pages 181–211. Elsevier, 2008.

Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. Prentice Hall,
3rd edition, 2009. Original work published in 1994.

Sacerdoti, E. D. Planning in a hierarchy of abstraction spaces. Artificial intelligence,
5(2):115–135, 1974.

Sacerdoti, E. D. The nonlinear nature of plans. In International joint conference on
Artificial intelligence, pages 206–214. Morgan Kaufmann, 1975.

Scala, E., Haslum, P., Thiébaux, S., and Ramı́rez, M. Interval-based relaxation for

144 bibliography

general numeric planning. In European Conference on Artificial Intelligence, pages
655–663, 2016a.

Scala, E., Ramirez, M., Haslum, P., and Thiebaux, S. Numeric planning with dis-
junctive global constraints via SMT. In International Conference on Automated
Planning and Scheduling, pages 276–284. AAAI Press, 2016b.

Schaul, T. A video game description language for model-based or interactive learning.
In IEEE Conference on Computational Intelligence and Games, pages 1–8, 2013.

Seligman, M., Railton, P., Baumeister, R., and Sripada, C. Homo prospectus. Oxford
University Press, 2016.

Shannon, C. Programming a computer for playing chess. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 41(314):256–275, 1950.

Shleyfman, A., Tuisov, A., and Domshlak, C. Blind search for Atari-like online
planning revisited. In International Joint Conference on Artificial Intelligence,
pages 3251–3257, 2016.

Slaney, J. and Thiébaux, S. Blocks World revisited. Artificial Intelligence, 125(1-2):
119–153, 2001.

Smith, B. M. Modelling. Foundations of Artificial Intelligence, 2:377–406, 2006.

Smith, D. E. The case for durative actions: A commentary on PDDL 2.1. Journal
of Artificial Intelligence Research, 20:149–154, 2003.

Soemers, D., Sironi, C., Schuster, T., and Winands, M. Enhancements for real-time
Monte-Carlo tree search in general video game playing. In IEEE Conference on
Computational Intelligence and Games, pages 1–8, 2016.

Son, T. C., Tu, P. H., Gelfond, M., and Morales, A. Conformant planning for domains
with constraints: A new approach. In AAAI Conference on Artificial Intelligence,
pages 1211–1216, 2005.

Stuckey, P. J. Lazy clause generation: Combining the power of SAT and CP (and
MIP?) solving. In International Conference on Integration of Artificial Intelligence
and Operations Research Techniques in Constraint Programming (CPAIOR), vol-
ume 10, pages 5–9. Springer, 2010.

Subrahmanian, V. and Zaniolo, C. Relating stable models and AI planning domains.
In International Conference on Logic Programming, pages 233–247, 1995.

Tate, A. Generating project networks. In International joint conference on Artificial
intelligence, pages 888–893. Morgan Kaufmann, 1977.

Thiébaux, S., Hoffmann, J., and Nebel, B. In defense of PDDL axioms. Artificial
Intelligence, 168(1–2):38–69, 2005.

Torralba, Á., Alcázar, V., Kissmann, P., and Edelkamp, S. Efficient symbolic search
for cost-optimal planning. Artificial Intelligence, 242:52–79, 2017.

Turing, A. Computing machinery and intelligence. Mind, 59(236):433–460, 1950.

Vallati, M., Chrpa, L., Grzes, M., McCluskey, T. L., Roberts, M., and Sanner, S.
The 2014 international planning competition: Progress and trends. AI Magazine,
36(3):90–98, 2015a.

Vallati, M., Hutter, F., Chrpa, L., and McCluskey, T. L. On the effective configu-
ration of planning domain models. In International Joint Conference on Artificial
Intelligence, pages 1704–1711, 2015b.

Van Hentenryck, P. and Carillon, J.-P. Generality versus specificity: An experience

bibliography 145

with AI and OR techniques. In AAAI Conference on Artificial Intelligence, pages
660–664, 1988.

van Hoeve, W.-J. and Katriel, I. Global constraints. Handbook of constraint pro-
gramming, pages 169–208, 2006.

van Hoeve, W. The alldifferent constraint: A survey. Annual Workshop of the
ERCIM Working Group on Constraints, 2001.

Vidal, V. A lookahead strategy for heuristic search planning. In International Confer-
ence on Automated Planning and Scheduling, pages 150–160. AAAI Press, 2004a.

Vidal, V. The YAHSP planning system: Forward heuristic search with lookahead
plans analysis. In The 2004 International Planning Competition Booklet, pages
56–58, 2004b.

Vidal, V. YAHSP2: Keep it simple, stupid. In The 2011 International Planning
Competition Booklet, pages 83–90, 2011.

Vossen, T., Ball, M., Lotem, A., and Nau, D. On the use of integer programming
models in AI planning. In International joint conference on Artifical intelligence,
pages 304–309. Morgan Kaufmann, 1999.

Walsh, T. SAT v CSP. In Principles and Practice of Constraint Programming, pages
441–456. Springer, 2000.

Weld, D. and Etzioni, O. The first law of robotics (a call to arms). In AAAI
Conference on Artificial Intelligence, volume 94, pages 1042–1047, 1994.

Weld, D. S. An introduction to least commitment planning. AI magazine, 15(4):27,
1994.

Weld, D. S. Recent advances in AI planning. AI magazine, 20(2):93, 1999.

Wilt, C. M. and Ruml, W. Building a heuristic for greedy search. In Annual Sym-
posium on Combinatorial Search, pages 131–139, 2015.

Xie, F., Müller, M., and Holte, R. Jasper: the art of exploration in greedy best first
search. In The 2014 International Planning Competition Booklet, 2014a.

Xie, F., Müller, M., Holte, R., and Imai, T. Type-based exploration with multiple
search queues for satisficing planning. In AAAI Conference on Artificial Intelli-
gence, pages 2395–2402, 2014b.

Xie, F., Müller, M., and Holte, R. Adding local exploration to greedy best-first search
in satisficing planning. In AAAI Conference on Artificial Intelligence, pages 2388–
2394, 2014c.

Yoon, S. W., Fern, A., and Givan, R. FF-Replan: A baseline for probabilistic
planning. In International Conference on Automated Planning and Scheduling,
volume 7, pages 352–359. AAAI Press, 2007.

Younes, H. L. and Simmons, R. G. On the role of ground actions in refinement
planning. In International Conference on Artificial Intelligence Planning Systems,
pages 54–62, 2002.

	Abstract
	Resum
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Planning and Artificial Intelligence
	Contributions
	Thesis Outline

	Background
	Introduction
	The Classical Planning Model
	Classical Planning Languages
	The Situation Calculus
	STRIPS
	Action Languages and ADL
	SAS+
	PDDL
	Functional STRIPS

	Computation
	The Complexity of Planning
	Computational Paradigms in Planning
	Planning as Search
	Classical Planning Heuristics
	Informed Search Algorithms for Classical Planning
	Width-Based Search Algorithms

	State of the Art in Classical Planning
	Constraint Satisfaction and Satisfiability

	Planning with Function Symbols
	Motivation
	Overview of Results
	Value-Accumulating Relaxed Planning Graph
	First-Order Relaxed Planning Graph
	Computation of the First-Order Relaxed Planning Graph
	The Functional STRIPS Fragment FSTRIPS0
	CSP Model for FSTRIPS0 Formulas
	CSP Model for Arbitrary FSTRIPS Formulas

	Approximation of the First-Order Relaxed Planning Graph
	Language Extensions
	Global Constraints
	Externally-Defined Symbols
	State Constraints

	Empirical Evaluation
	Setup
	Results
	Other Planners and Overview

	Discussion

	Planning with Existential Quantification
	Motivation
	Effective Support for Existential Quantification
	Constraint Satisfaction in Planning

	Overview of Results
	STRIPS with Existential Quantification: E-STRIPS
	E-STRIPS Language
	E-STRIPS Heuristics

	Supporting Existential Quantification in Functional STRIPS
	Relation of E-STRIPS and Functional STRIPS
	Lifted Planning: Planning without Grounding Action Schemas
	Empirical Evaluation
	Setup
	Domains
	Results on E-STRIPS Encodings
	Results on FSTRIPS Encodings
	Results on Lifted Planning

	Discussion

	Planning with No Language
	Motivation
	Factored State Models and Simulators
	Width-Based Methods and BFWS(f)
	Simulation-Based Planning with BFWS(R)
	Empirical Results
	New Possibilities for Modeling and Control
	Modeling
	Control Knowledge: Features and BFWS(F)

	Discussion

	The FS Planner
	Design Overview
	Supported Features and Extensions
	Implementation and Optimization Details
	Grounding
	State Representation
	Optimization of the First-Order Relaxed Planning Graph
	Optimization of Width-Based Algorithms

	Conclusions
	Summary of Contributions
	Ongoing and Future Work

	First-Order Logic
	Bibliography

