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Abstract
Existentially quantified variables in goals and ac-
tion preconditions are part of the standard PDDL
planning language, yet few planners support them,
while those that do compile them away at an ex-
ponential cost. In this work, we argue that ex-
istential variables are an essential feature for rep-
resenting and reasoning with constraints in plan-
ning, and that it is harmful to compile them away
or avoid them altogether, since this hides part of
the problem structure that can be exploited compu-
tationally. We show how to do this by formulat-
ing an extension of the standard delete-relaxation
heuristics that handles existential variables. While
this extension is simple, the consequences for both
modeling and computation are important. Further-
more, by allowing existential variables in STRIPS
and treating them properly, CSPs can be repre-
sented and solved in a direct manner as action-less,
fluent-less STRIPS planning problems, something
important for problems involving restrictions. In
addition, functional fluents in Functional STRIPS
can be compiled away with no effect on the struc-
ture and informativeness of the resulting heuristic.
Experiments are reported comparing our native ∃-
STRIPS planner with state-of-the-art STRIPS plan-
ners over compiled and propositional encodings,
and with a Functional STRIPS planner.

1 Introduction
Modeling and computation are essential components for us-
ing planners and many other automated tools. On the one
hand, we want planners to scale up gracefully to large prob-
lems, even if the task is computationally intractable in the
general case [Bylander, 1994]; on the other, we want users
to be able to encode problems naturally and directly without
having to understand how the different planners work. In-
deed, the need to “hack” encodings to make planners work
is one of the factors that hinder the use of planners by non-
experts. Since modeling and computation are heavily cou-
pled, the problem cannot be entirely solved, yet this doesn’t
mean that progress on this front is not possible and necessary.
In this work, we focus on the use of existentially quantified

variables in goals and action preconditions in STRIPS and
the way in which they can have a positive impact on both
modeling and computation. Existential variables provide in-
deed a very simple and convenient modeling feature in prob-
lems where the goal is not a fully-specified single state but
leaves room for choices. The goal in a Sokoban-like prob-
lem, for instance, may require placing a set of packages in
different target locations without explicitly saying in which
target location to place each package; or in the blocks-world,
the goal may be to reach a state where a blue block is on a red
block, without specifying the exact block identities. While
there are other mechanisms to model such open choices, ex-
istential variables make them explicit, which is useful for rea-
soning about them. Existentially quantified variables in pre-
conditions and goals are part of the standard PDDL language
[McDermott et al., 1998] but few planners support them, and
those that do compile them away at a cost that is exponential
in their number, which is not a good option from a computa-
tional standpoint. The usual alternative is to avoid existential
variables altogether, which as we will show is not good ei-
ther, since it leads to clumsy encodings that hide structure
and result in less informed heuristics than the compilation-
based approach, not to mention the fact that coming up with
such alternative encodings is not always trivial. We illustrate
these various points below.

Consider the problem of placing a blue block on top of a
red block, and this block on top of a blue block. The problem
can be easily encoded in PDDL with a goal formula
∃z1, z2, z3. on(z1, z2)∧on(z2, z3)∧bl(z1)∧red(z2)∧bl(z3).
Modern classical planners like FF, FD, and LAMA [Hoffmann
and Nebel, 2001; Helmert, 2006; Richter and Westphal, 2010]
accept such existentially quantified formulas, but they pre-
compile the quantification away, producing in this case a goal
in disjunctive normal form (DNF) with terms

on(a, b) ∧ on(b, c) ∧ bl(a) ∧ red(b) ∧ bl(c)
for all possible combinations of blocks a, b and c. This DNF
goal is mapped in turn into an atomic dummy goal that can
be achieved with extra actions whose preconditions are those
terms [Gazen and Knoblock, 1997]. The immediate problem
with this compilation is that it blows up. The number of terms
in the compilation is exponential in the number of variables,
and thus it cannot scale up to more than a few quantified vari-
ables. This is a problem because it is not always easy to find



alternative, equivalent, and compact propositional encodings.
Do and Tran [2013], for instance, present one such encod-
ing for a similar problem, but the encoding assumes that the
goal is complete and describes a single state. In such a case,
one can actually forget about the blocks and describe the goal
by stating the desired pattern of “cell colors” as blue(3, 1),
red(2, 1), blue(1, 1), etc., which can be encoded compactly
in STRIPS without existential variables, but represents a dif-
ferent, less general problem.

In other cases, it is simpler to come up with equivalent and
compact encodings that avoid existential variables. The goal
of placing n packages pi into n different target locations lk,
for instance, can be expressed with existential quantification
and equality as

∃z1, . . . , zn.

∧
j 6=i

zi 6= zj ∧
∧
i

target(zi) ∧ at(pi, zi)

 .

The quantification and the compilation can be avoided here
by using a clear predicate over target locations that becomes
a precondition of the action of dropping a package in such
locations. The resulting encoding is equivalent to the one ob-
tained by compiling the previous formula in the sense that
both encodings result in the same set of plans (dummy ac-
tions aside), and it has the advantage that its size does not
grow exponentially with n. This compact encoding, how-
ever, is not only less clean and direct than the one with quan-
tification, but it is also certainly not equivalent from a com-
putational point of view. To see this, consider the standard
delete-relaxation heuristics used in classical planning [Mc-
Dermott, 1999; Bonet and Geffner, 2001] and a situation
where none of the packages is at a target location. In the
compilation, the heuristic would estimate the cost of tak-
ing each package to a different target location, while in the
alternative compact encoding with no variables, the heuris-
tic would estimate something different: namely, the cost of
taking each package to its closest target location. These
estimates will be different when several packages have the
same closest target location. This is easy to see for n = 2
where the compilation results in a DNF goal with terms
at(p1, l1) ∧ at(p2, l2) and at(p1, l2) ∧ at(p2, l1), but with-
out the terms at(p1, l1) ∧ at(p2, l1) or at(p1, l2) ∧ at(p2, l2)
where both packages end up at the same location. The en-
coding with clear predicates does not account for this differ-
ence, as both target locations will remain clear in the delete
relaxation as long as they are clear in the state on which the
heuristic is evaluated.

The last example illustrates that while compiling away the
variables in the goal has an exponential cost, there are also
hidden computational costs in the avoidance of existential
variables to prevent the exponential blow-up. This point can
be made more general and compelling once that we notice
that existential variables in the goal allow us to encode nat-
urally and directly constraint satisfaction problems [Dechter,
2003]. Indeed, a binary CSP with variables X1, . . . , Xn with
domain D and constraints Ri,j among all pairs of variables
Xi andXj can be naturally and directly encoded as a STRIPS
problem with no actions at all, initial facts Ri,j(a, b) for each
value pair 〈a, b〉 in the domain allowed by the constraint Ri,j ,

and an existentially quantified goal:

∃z1, . . . , zn.
∧
i,j

Ri,j(zi, zj) .

The compilation-based approach would convert such a quan-
tified goal into a grounded DNF goal whose terms are all
possible joint valuations of the CSP. Definitely, this is not
an effective way of solving the CSP, yet the delete-relaxation
heuristic for the compilation is exact: it will yield a heuristic
value of 0 for the initial state iff the CSP is actually solv-
able. Alternative STRIPS encodings of the CSP that do not
involve variables and are compact are certainly possible, yet
such compact, polynomial encodings cannot yield a (poly-
nomial) delete-relaxation heuristic equivalent to the heuristic
obtained from the compilation unless P = NP.

In other words, while dealing with existential variables
by compiling them away is exponential, avoiding them al-
together results in poorer heuristic estimates in general. In
this paper we show that there is a third option which is the
explicit handling of existentially quantified variables during
the computation of the delete-relaxation heuristic. The re-
sulting method avoids the exponential blow-up in the com-
pilation, and yet it delivers a heuristic that is equivalent to
the one that would be delivered by the delete-relaxation in
the grounded, compiled problem. For this, the construction
of the relaxed planning graph must take into account the first-
order structure of the atoms. Actually, the evaluation of any
action precondition or goal formula involving existentially
quantified variables maps into a CSP that must be solved dur-
ing the computation of the heuristic. The computation of
the heuristic is thus intractable in the worst case, but as we
will show, it can be informed and cost-effective in practice.
The consideration of the first-order structure of formulas in
the heuristic computation has a close relation with the Func-
tional STRIPS (FSTRIPS) heuristic presented in [Francès and
Geffner, 2015], which is also intractable in the worst case.
Even more interestingly, the proper handling of existential
variables in STRIPS gives a way for compiling pure FSTRIPS
into ∃-STRIPS as in [Haslum, 2008], but with no effect on the
structure and informativeness of the resulting heuristic.

The rest of the paper is organized as follows. We present
the ∃-STRIPS language that extends STRIPS with existen-
tially quantified variables, and formulate a version of the
delete-relaxation heuristic for such a language. We then eval-
uate the resulting native ∃-STRIPS planner, which we call
ES, by comparing it with state-of-the-art STRIPS planners
run on existentially-quantified encodings and on alternative,
compact propositional encodings that avoid the compilation,
and also with an extension of the FSTRIPS planner FS0.

2 ∃-STRIPS Language
We briefly review the language and semantics of STRIPS with
existential quantification in action preconditions and goals.
The classical planning model S = 〈S, s0, SG, A, f〉 is made
up of a finite set of states S, an initial state s0, a set of goal
states SG, and actions a ∈ A(s) that deterministically map
one state s into another s′ = f(a, s), where A(s) is the
set of actions applicable in s. A solution or plan is a se-
quence of actions a0, . . . , am that generates a state sequence



s0, s1, . . . , sm+1 such that ai ∈ A(si), si+1 = f(ai, si), and
sm+1 ∈ SG.

A classical planning problem P defines a classical model
in compact form. In STRIPS, P is a tuple 〈F, I,O,G〉, where
F is the set of atoms, I is the set of atoms characterizing the
initial situation, O is the set of actions, and G is the set of
goal atoms. The actions a in STRIPS are given by three sets
of atoms: Pre(a), Add(a), and Del(a).

A STRIPS problem P = 〈F, I,O,G〉 defines a classical
model S(P ) = 〈S, s0, SG, A, f〉 where the states in S are
subsets of F that represent truth valuations where an atom p
is true in s iff p ∈ s. The other elements in S(P ) are s0 = I ,
SG that is given by the states that satisfy G, A(s) that stands
for the actions a ∈ O whose preconditions Pre(a) are true in
s, and f(a, s) that stands for s′ = (s \Del(a)) ∪Add(a).

STRIPS is used as a propositional language even if it was
originally a first-order language [Fikes and Nilsson, 1971].
Indeed, while in PDDL, STRIPS problems are given in a lan-
guage featuring action schemas, and predicate and variable
symbols, modern planners ground all these schemas using the
object names and their types if available. A resulting ground
atom like on(a, b) is then treated propositionally, but the addi-
tion of existential quantification to the language requires that
we look into the structure of such atoms.

In ∃-STRIPS, a problem is also a tuple P = 〈F, I,O,G〉,
with the same semantics given by the state model S(P ), but
with one difference: in addition to ground atoms, precondi-
tions and goals may feature e-formulas. An e-formula is a
first-order formula of the form ∃x1, . . . , xn. φ, where φ is a
conjunction of atoms p(t1, . . . , tn) with the terms ti being
constant symbols or variable symbols xi from the quantifica-
tion prefix. The e-formula ∃x1, . . . , xn. φ is true in a state
s if the variable symbols xi can be consistently replaced by
constant symbols ci so that the resulting grounded formula φ′
is true in s. This definition extends naturally when the quan-
tified variables xi and the constant symbols ci in the instance
have types — in such a case, variables have to be replaced
by constants of a compatible type. When x is a tuple of vari-
ables, we write the e-formula ∃x. φ as ∃x. φ[x] so that the
ground conjunction of atoms φ′ that results from the substitu-
tion x 7→ c in φ can be written as φ[x 7→ c] or simply φ[c]. For
example, for the formula ∃x1, x2, x3. p(x1, x2) ∧ p(x2, x3),
if φ is p(x1, x2) ∧ p(x2, x3), φ[x1, x2, x3 7→ c, d, c] denotes
the variable-free formula p(c, d) ∧ p(d, c).

As discussed in the introduction, determining if an e-
formula holds in a state s is an NP-complete problem. This
means that plan verification in ∃-STRIPS is NP-complete,
and that any heuristic h able to distinguish between goal and
non-goal states (i.e., such that h(s) = 0 iff s is a goal state)
will be intractable. This however does not imply that such
heuristics cannot be cost-effective.

3 ∃-STRIPS Heuristics
Adapting the relaxed planning graph (RPG) heuristic from
STRIPS to ∃-STRIPS is simple, even if the resulting heuris-
tic is no longer polynomial. Recall that the RPG heuristic
h(s) for STRIPS is given by the number of actions in a plan
π+(s) obtained from the delete-free relaxation by following

a 2-step procedure [Hoffmann and Nebel, 2001]. In a first
forward phase, the procedure incrementally builds a layered
graph with propositional layers Pi and action layersAi. Start-
ing with i = 0 and with a proposition layer P0 that contains
the ground facts that hold in s, action a makes it into layer Ai

if each precondition atom in Pre(a) is in Pi, and similarly an
atom p makes it into layer Pi+1 if there is an action a ∈ Ai

with p in Add(a). The procedure stops on the first proposi-
tional layer Pi such that the goals G are in Pi, or G 6∈ Pi

and Pi = Pi+1. In addition, an action a ∈ Ai is deemed a
supporter of an atom p if p appears in layer Pi+1 for the first
time and p ∈ Add(a). The heuristic h(s) is set to ∞ when
the graph construction finishes without reaching the goal G,
and is otherwise given by the number of different actions in a
plan π+(s) for the delete-relaxation obtained backward from
the goal. The plan includes a supporter for each goal atom
that is not in s, and recursively, a supporter for each precon-
dition of such supporter that is not in s either. The relaxed
plan and the heuristic are not unique, as an atom may have
more than one support.

Extending the RPG heuristic from STRIPS to ∃-STRIPS
simply requires to define how to deal with e-formulas in pre-
conditions and goals. While a ground atom p is deemed to
be satisfiable in a propositional layer Pi when p belongs to
Pi, we take an e-formula ∃x.φ[x] to be satisfiable in Pi when
there is a substitution x 7→ c such that all ground atoms in
φ[c] belong to Pi. If, for instance, φ is p(x1, x2) ∧ p(x2, x3),
then the formula ∃x1, x2, x3. φ is satisfiable in a layer Pi

that contains the atoms p(c, d), p(c, e), and p(d, c), through
the substitution [x1, x2, x3 7→ c, d, c]. On the other hand, the
same formula would not be satisfiable in that layer if only the
first two atoms were contained in Pi.

Extending the RPG construction to take into account e-
formulas is simple to state but potentially complex to com-
pute: the satisfiability test for e-formulas in a state or in a
propositional layer Pi amounts to solving a CSP with vari-
ables that correspond to the variable symbols in the prefix,
domains given by the sets of constant symbols (respecting
type-consistency when types are used) and constraints given
by the atoms p(t1, . . . , tn) in φ such that the the predicate
symbols represent the tables that contain the tuples of con-
stants c1, . . . , cn for atoms p(c1, . . . , cn) in layer Pi only. A
substitution x 7→ c satisfies φ if c is a solution to this CSP.

For plan extraction, the supporters of an e-formula ∃x.φ[x]
that is satisfied in a layer Pi with substitution x 7→ c are
identified with the supporters of the atoms in φ[c]. Thus the
plan extraction procedure that works backward from the goal
does not see e-formulas at all, just ground atoms, as in the
standard RPG procedure.

We call the relaxed plans and the heuristic that result from
this procedure for the ∃-STRIPS language πe

FF(s) and heFF(s)
respectively. If instead of counting the actions in the relaxed
plan we count the number of propositional layers, we get a
variant of the hmax heuristic, hemax, that can be shown to be
admissible for ∃-STRIPS. The heuristic heFF(s) is not admis-
sible, in the same way that hFF is not admissible for STRIPS.
The consistency check for e-formulas in each layer Pi is
delegated to the standard Gecode CP solver [Gecode Team,
2006].



4 Relation to Compilation and Functional
STRIPS

The heuristics he formulated above for ∃-STRIPS are equiv-
alent to the corresponding heuristics h for the STRIPS com-
pilation and can be regarded as a lazy version of them. The
key difference is that the compilation requires time and space
exponential in the number of existential variables, while the
heuristics for ∃-STRIPS require only exponential time in the
worst case. The terms of the ground DNF formulas required
for compiling away e-formulas ∃x. φ[x] in preconditions and
goals correspond indeed to the conjunctions of ground atoms
φ[c] for each of the possible substitutions x 7→ c. The compu-
tation of the heuristics however does not apply these possible
substitutions all at once, and moreover, it does not explore
the space of all possible substitutions exhaustively either. In-
stead, it uses constraint propagation to search for a substitu-
tion that makes the e-formula ∃x. φ[x] satisfiable.

More interestingly, the heuristics proposed for ∃-STRIPS
have a strong relation to recently-proposed heuristics for
Functional STRIPS, a language that extends STRIPS with
(possibly fluent) function symbols [Geffner, 2000] — a fea-
ture recently incorporated to the PDDL 3.1 language stan-
dard under the name of object fluents.1 Haslum [2008]
has shown how pure Functional STRIPS (with no built-in
functions) can be compiled into ∃-STRIPS by adding exis-
tential variables and replacing functions by relations using
the principles of Skolemization in reverse. For example, a
grounded atom f(g(c1)) = c2 is replaced by the e-formula
∃x1.f ′(x1, c2) ∧ g′(c1, x1) where the relations f ′(x1, x) and
g′(c1, x) represent f(x1) = x and g(c1) = x respectively.

The heuristic hcFF developed recently for Functional
STRIPS [Francès and Geffner, 2015] is aimed at capturing
the constraints induced among state variables in precondi-
tions and goals. In the COUNTERS domain, for instance, there
is a set of integer variablesX1, . . . , Xn and actions that allow
us to increase or decrease by one the value of any variable
within the [1, n] interval. Given some initial values, the goal
is to achieve the inequalities Xi < Xi+1, for 1 ≤ i < n.
Francès and Geffner show how delete-relaxation heuristics
are not informative in this problem, as they all find that the
goal is reachable in the first propositional layer Pi that makes
each of the goals satisfiable. Yet there is a crucial difference
between making each goal satisfiable and making all goals
satisfiable at the same time. For example, a layer in which
each variable Xi can take the values 1 and 2 will make each
of the goals satisfiable but will not make the joint goal satis-
fiable. For this, each variable Xi must have the value i, for
i = 1, . . . , n. The heuristic developed by Francès and Geffner
captures such induced constraints. Interestingly, the proposed
heuristics he for ∃-STRIPS account for such constraints too.
Indeed, the problem can be represented in ∃-STRIPS in terms
of atoms val(i, k) to state that variable Xi has value k, and
static atoms less(k, k′) to express that value k is less than
value k′. The goal for the problem can then be encoded as

∃z1, . . . , zn.
∧

i=1..n

[val(i, zi)] ∧ [
∧

i=1..n−1
less(zi, zi+1)] .

1http://ipc.informatik.uni-freiburg.de/PddlExtension

This formula ∃x. φ[x] will be satisfied in a propositional layer
Pk only by the substitution that replaces the variable zi by
the value i, because the heuristic accounts for the fact that
the zi variables need to be replaced consistently in all goal
subformulas. This is interesting because it means that the
heuristic-search planner for FSTRIPS developed by Francès
and Geffner can be emulated by compiling FSTRIPS into ∃-
STRIPS through Haslum’s translation and applying then the
new heuristics. Running other planners on such translations
would not deliver the same results. It must be said , however,
that Haslum’s translation captures the core of FSTRIPS only,
leaving out the ability to use built-in functions and global con-
straints, which in certain problems can make a large differ-
ence. On the other hand, the heuristic for ∃-STRIPS is simpler
to describe and implement than the heuristic for FSTRIPS.

5 Experimental Results
We have developed a preliminary implementation of the CSP-
based approach for handling existential quantification on top
of the existing Functional STRIPS planner FS0 [Francès and
Geffner, 2015], which already integrates a CSP solver. We
call the resulting ∃-STRIPS planner ES. The planner uses the
heFF heuristic to drive a plain greedy best first search. As a
side effect of the implementation, we also obtain the ability
to deal with existential variables in the underlying Functional
STRIPS planner.

STRIPS Setup. We consider four families of problems,
each encoded both in ∃-STRIPS and in a propositional
STRIPS manual reformulation that avoids existential quan-
tifiers while preserving equivalence. On these problems, we
compare the performance of our ES planner running on the
∃-STRIPS encoding against that of the Fast-Downward
planner (FD) running on both encodings. FD is configured
with the same search strategy; namely, greedy BFS with the
hFF heuristic, a single queue, no EHC, and non-delayed evalu-
ation. All planners run a maximum of 30 minutes on a cluster
with AMD Opteron 6300@2.4Ghz nodes, and are allowed a
maximum of 8GB of memory. The source code of ES plus all
problem encodings are available on gfrances.github.
io/pubs.

Domains. The four families of domains that we test are
BW-PATTERN,VERTEX-COLORING, GROUPING and COUN-
TERS, the last two from [Francès and Geffner, 2015]. BW-
PATTERN, discussed in the introduction, is a variation of
Blocksworld with colored blocks where we want to reach any
block configuration that displays a given color pattern, such
as “a red block on a blue block on a green block”, which is
modeled with the goal e-formula ∃ b1, b2, b3. col(b1, red) ∧
col(b2, blue) ∧ col(b3, green) ∧ on(b1, b2) ∧ on(b2, b3). We
test no propositional encoding, as it is not trivial to reformu-
late this problem without existential variables.

VERTEX-COLORING illustrates how any CSP can be eas-
ily embedded in an (action-less, fluent-less) ∃-STRIPS plan-
ning problem. A classical k-VERTEX-COLORING problem
with n nodes and edges E maps into an ∃-STRIPS problem
with k color objects and (typed) goal e-formula ∃z1, . . . , zn ∈



Domain N Coverage Plan length Node expansions Time (s.)
E-FF P-FF E-ES E-FF P-FF E-ES E-FF P-FF E-ES E-FF P-FF E-ES

COUNT0 12 3 7 7 - 70.7 70.7 - 542K 70.7 - 52.6 84.9
COUNTRND 36 9 25 21 21.4 21.6 22.1 22.4 36.6 22.1 0.9 0.0 0.7
GROUPING 48 28 34 47 25.8 41.6 26.1 26.8 203K 26.2 2.1 179.5 54.6
BW-PATTERN 30 11 - 20 8.4 - 50.9 306.3 - 16.19K 0.6 - 60.9
V-COLORING 80 1 43 78 - 84.3 0 - 60.7K 0 - 87.7 0
A-COLORING 88 6 30 27 24.5 26.9 29.2 41.2 80.8 65.0 0.0 0.0 0.3

Table 1: ∃-STRIPS planning. “E-FF” is FD with FF-like configuration on ∃-STRIPS version; “P-FF” is the same planner on
a manual propositional STRIPS reformulation; “E-ES” is our ES planner on the ∃-STRIPS version; N is number of instances;
length, node expansion and time figures are averages over instances solved by all those planners that solve at least 5 instances.

Domain N Coverage Plan length Node expansions Time (s.)
P-FF E-ES EF-FS P-FF E-ES EF-FS P-FF E-ES EF-FS P-FF E-ES EF-FS

COUNT0 12 7 7 11 70.7 70.7 70.7 542K 70.7 70.7 52.6 84.9 5.6
COUNTRND 36 25 21 30 93.0 86.6 86.2 6.9K 87.2 86.2 15.8 117.9 11.2
GROUPING 48 34 47 48 42.4 23.8 24.3 150K 23.8 24.3 146.8 25.9 5.8
BW-PATTERN 30 - 20 29 - 45.1 5.7 - 9.28K 6.2 - 38.8 0.2
V-COLORING 80 43 78 78 84.3 0 0 60.7K 0 0 87.7 0 0
A-COLORING 88 30 27 38 71.9 94.9 77.9 353.3 1.82K 609.6 0.1 30.9 4.1

Table 2: ∃-STRIPS vs. Functional STRIPS planning. “P-FF” is FD with FF-like configuration on a manual propositional
STRIPS reformulation; “E-ES” is ES on ∃-STRIPS version; “EF-FS” is the extension FS of FS0 run on FSTRIPS encodings
(with existential variables, when necessary). P-FF and E-ES columns are from Table 1. N is number of instances; length, node
expansion and time figures are averages over instances solved by the three planners.

COLOR
∧

(i,j)∈E zi 6= zj . The initial (and only) state of this
planning problem will be detected as a goal iff the graph is
k-colorable. We also test AGENT-COLORING, a variation
of the domain where an agent moves around the graph pick-
ing up and dropping paint cans to paint the vertices “manu-
ally”. We use two sets of instances: first, random instances
(100 ≤ n ≤ 500, 10 ≤ k ≤ 30) where the graph results from
adding edges at random to a uniform spanning tree to reach a
certain graph density; second, standard instances from a pub-
lic compilation from the literature,2 of which we have pruned
those instances reported as not solvable in less than 1 hour
by state-of-the-art coloring methods or having a chromatic
number χ > 10. From the remaining instances, we generate
planning problems with a number of colors k ∈ {χ, χ+ 1}.

In GROUPING, several colored blocks are randomly placed
on a grid and need to be moved so that two blocks end up
on the same cell iff they have the same color. The original
FSTRIPS formulation features a goal formula with an atom
loc(bi) ./ loc(bj) for each pair of blocks bi, bj , where ./ is
= ( 6=) if the two blocks have the same (different) color. This
translates directly to ∃-STRIPS, so that the goal of a problem
with red blocks a and b and a blue block c is ∃ l, l′. l 6=
l′ ∧ at(a, l) ∧ at(b, l) ∧ at(c, l′).

Finally, COUNTERS is the problem described in Section 4
where we increase or decrease the value of certain integer
variables Xi until the inequalities X1 < . . . < Xn hold. We
use two variations, labeled COUNT0 and COUNTRND, where
variables are initially set to 0 and to random values, respec-
tively. The ∃-STRIPS encoding is the result of applying
Haslum’s compilation technique to the original FSTRIPS en-

2See https://sites.google.com/site/graphcoloring/.

coding, save for the substitution of the “<” built-in predicate
for a less predicate with extensional denotation.

Results of STRIPS Planners. Table 1 shows the results of
the ES planner running on ∃-STRIPS (“E-ES”) as well as
of Fast-Downward on both the ∃-STRIPS encoding (“E-
FF”) and the manual propositional reformulation (“P-FF”).
We next highlight the main conclusions that can be drawn
from these results.

First, the exponential time and space required to compile
away ∃-STRIPS existential variables has a huge impact on
domain coverage. In general, FD tends to either time or mem-
ory out during preprocessing. As an example, the planner
times/memories out on GROUPING instances with more than
3 colors, and on COUNTERS instances with more than 9 vari-
ables. The only domain with acceptable coverage is GROUP-
ING, but this is just because the benchmark set includes many
instances with only 2 existential variables.

Second, the heuristic that can be derived from the proposi-
tional reformulations is less informed than the one computed
from the compiled ∃-STRIPS encoding. In GROUPING or in
COUNT0, for instance, the average number of node expan-
sions is orders of magnitude higher on the propositional re-
formulation, because the delete-relaxation does not account
for certain constraints that are captured on the ∃-STRIPS ver-
sion, such as (in GROUPING) the constraint that all blocks of
the same color must be on the same position at the same time.
In spite of this, however, FD has much better performance
on these propositional reformulations, because it avoids the
exponential time and space required to compile away the ex-
istential variables and to process the result of the compilation.



Third, the constraint-based approach of ES to handle ex-
istential variables avoids the exponential time and space
penalty of the compilation approach without making the re-
sulting heuristics less informed, making it a more effective
strategy, and resulting in consistently higher coverages.

Fourth, when compared to the performance of FD on the
propositional reformulations, ES produces better coverage
on two cases and worse coverage on two other cases, ex-
cluding the BW-PATTERN domain that is not simple to en-
code propositionally. The average number of expanded nodes
is in general much lower for ES, up to one or two orders
of magnitude in some cases, but at the same time node ex-
pansion rate is also around between one and two orders of
magnitude faster in FD. Upon inspection, ES suffers a sig-
nificant overhead caused by the lack of multivalued variables
in ∃-STRIPS, which results in CSPs with too many Boolean
variables that could well be replaced by fewer multivalued
variables. This shortcoming does not appear in Functional
STRIPS, which in addition benefits from built-in functions
and constraints.

Comparison with Functional STRIPS. As a side effect of
our implementation of ES on top of the FS0 planner, and
following the previous observation, we have also developed
an extension of FS0, which we call FS, that is able to han-
dle FSTRIPS with existential variables by following the same
ideas that we have described for ∃-STRIPS. In addition, and
thanks to the compilation technique described in Section 4,
this new FS planner can handle nested functional terms,
which the original FSTRIPS planner FS0 cannot. Table 2
compares FD on the propositional STRIPS reformulations
(“P-FF”, which is the best option for Fast-Downward
according to Table 1, leaving aside the reformulation ef-
fort) with ES on ∃-STRIPS encodings (“E-ES”) and with
FS on equivalent FSTRIPS encodings that exploit both func-
tions and existential variables (“EF-FS”). In some cases
(COUNTERS, GROUPING), these are pure FSTRIPS encodings
that do not need existential quantification, but in the remain-
ing domains (BW-PATTERN, VERTEX-COLORING, AGENT-
COLORING) existential quantification is necessary.

When compared to ES on ∃-STRIPS encodings, FS on the
FSTRIPS encodings shows higher node expansion rates and
even a more informed heuristic in BW-PATTERN. This is be-
cause (1) FSTRIPS encodings usually need fewer grounded
actions, (2) the CSPs used during the heuristic computation
have significantly fewer variables (e.g. quadratically so in
GROUPING) (3) they benefit from custom constraint propa-
gators for FSTRIPS built-in symbols, such as the “<” symbol
in COUNTERS, and (4) certain support extraction tie-breaking
mechanisms are easily implemented for FSTRIPS, but have
not yet been implemented in the current version of the ES
planner, which might be harming the heuristic accuracy in
BW-PATTERN.

Overall, the novel FS planner working on an extension of
Functional STRIPS with existential quantification definitely
pays off, offering a coverage which consistently dominates
the other two planners, and plan length, average number of
expanded nodes and overall running time figures which are

consistently better. In particular, the extension of Functional
STRIPS with existential quantification yields better results
than the manual propositional STRIPS reformulations in all
domains.

6 Discussion
We have presented a novel view of existential quantification
in STRIPS that relates planning to constraint satisfaction and
relational databases [Gottlob et al., 1999]. A goal that in-
volves existential variables is indeed like a query; what makes
it particular in the context of planning is that we are not sim-
ply evaluating the goal “query” in a static database, but can
apply actions that modify the database in order to make the
query satisfiable, and hence the goal true.

We have also argued that the use of existential quantifica-
tion for leaving some choices open in goal and preconditions
allows for simpler and more concise models, while giving
planners the chance to reason about those choices. Instead
of compiling existential variables away with an exponential
technique or avoiding them altogether, we have shown how
delete-relaxation heuristics can be extended to deal with ex-
istential variables by using constraint satisfaction techniques,
resulting in heuristics that are more informed than those that
can be obtained from alternative propositional encodings.

This view of existential variables in STRIPS has resulted
in a new ∃-STRIPS planner implemented on top of the exist-
ing Functional STRIPS FS0 planner, plus a new Functional
STRIPS planner that completes support and extends the orig-
inal language as defined in [Geffner, 2000]. We have evalu-
ated these planners on four families of domains encoded in
STRIPS and FSTRIPS with existential variables, and when
feasible and simple enough, without them. The fact that
the best computational results have been achieved for the
more expressive language illustrates the importance of mak-
ing problem structure explicit so that it can be exploited com-
putationally [Rintanen, 2015; Ivankovic and Haslum, 2015].

Significantly enough, there is no domain featuring existen-
tial quantifiers in any of the last three international planning
competitions. This lack is arguably due to the inefficiency of
the standard compilation technique, which imposes a heavy
burden on both modelers and planners. We hope that this
work can contribute to change this situation.
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