
Planning with State Constraints and its Application to
Combined Task and Motion Planning

Jonathan Ferrer-Mestres
Universitat Pompeu Fabra

Barcelona, Spain
jonathan.ferrer@upf.edu

Guillem Francès
Universitat Pompeu Fabra

Barcelona, Spain
guillem.frances@upf.edu

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain
hector.geffner@upf.edu

Abstract

Most of the key computational ideas in planning have been
developed for planning languages where action preconditions
and goals are conjunctions of propositional atoms. These re-
strictions make the definition and computation of planning
heuristics easier but limit the expressive capabilities of the
resulting planners. As a result, standard planners are unable
to capture the type of geometrical reasoning that is critical in
robotics domains where both robots and objects have geomet-
rical dimensions and collisions are to be avoided. Such prob-
lems are addressed in robotics by combining task planners
that handle the symbolic reasoning part with motion planners
that check the geometrical feasibility of the plans output by
the task planners. This decomposition however may result in
a lot of backtracking as the symbolic and geometrical compo-
nents are not independent. The aim of this work is to provide
an alternative integration of task and motion planning where
the symbolic and geometrical components are addressed in
combination, with neither part taking the back seat. For this,
we build on the recent planner FS0 that is able to handles an
expressive variable-free, first-order planning language called
Functional STRIPS where constraints, functions and numeri-
cal variables are accommodated, and extend it to handle also
state constraints — namely, formulas that must be true in all
states. We then use functions for encoding the geometrical
dimensions and poses of objects, and state constraints to ex-
press that no pair of objects, including the robot, can overlap
in space. We illustrate the functionality and performance of
the planner over a number of examples.

Introduction
Classical AI planners are currently able to solve problems
over very large state spaces. In classical planning, the ini-
tial state is fully known and actions are assumed to have de-
terministic effects. The main techniques rely on the use of
heuristics that are derived automatically in order to guide
a state-space search or on translations into propositional
satisfiability (Russell and Norvig 2002; Ghallab, Nau, and
Traverso 2004; Geffner and Bonet 2013). However, the re-
strictions in planning modeling languages that have facili-
tated these developments, have also limited the scope of the
resulting planners. In particular, standard planners do not
appear to be suitable for capturing the type of geometrical
reasoning that is critical in robotics where both robots and
objects have geometrical dimensions and collisions are to

be avoided. Such problems are addressed instead through
a combination of two types of planners: task planners that
handle the high-level, symbolic reasoning part, which cor-
respond to the AI planners, and motion planners (LaValle
2006) that plan the movements in space and handle the ge-
ometrical constraints (Cambon, Gravot, and Alami 2004;
Wolfe, Marthi, and Russell 2010; Lagriffoul et al. 2012;
Lozano-Pérez and Kaelbling 2014). The symbolic and the
geometrical components, however, are not independent, and
hence, by giving one of these two parts the secondary role
of verifying feasibility, approaches based on task and mo-
tion decomposition are doomed to produce lots of back-
tracks. The problem of excessive backtracks is well-known
in constraint satisfaction when constraints are used passively
(Mackworth 1977; Dechter 2003). The computational solu-
tion to this problem is the interleaving of search with forms
of constraint propagation that make the constraints an active
part in the search. The situation is similar when searching
for a goal in a graph: blind-search methods where the goal
plays a passive role cannot scale as well as methods where
the goal directs the search by means of a heuristic function.

The aim of this work is to provide an alternative integra-
tion of task and motion planning where the symbolic and
geometrical components in robot planning are addressed in
combination and both parts play an active role in directing
the search for plans. For this, we build on the recent plan-
ner FS0 (Francès and Geffner 2015) that handles an ex-
pressive variable-free, first-order planning language called
Functional STRIPS (Geffner 2000) which naturally accom-
modates constraints, functions, and numerical variables both
in the specification of the problem and in the computa-
tion of the heuristics. On top of that, we extend FS0 and
Functional STRIPS with the ability to handle state con-
straints, i.e. formulas that must be true in all states encoun-
tered through the execution of a plan. We use functions for
encoding the geometrical dimensions of objects and their
poses, and state constraints to express that no two objects,
including the robot, can overlap in space. State constraints
are not a standard feature of planning languages, although
their convenience has been thoroughly discussed in the lit-
erature on reasoning about actions (Lin and Reiter 1994;
Son et al. 2005), sometimes under the name of plan invari-
ants.1 In our case, state constraints can be thought of as a

1State constraints should not be confused with state invariants: a



convenient way to express preconditions that are implicit for
all actions (i.e. actions leading to the violation of a state con-
straint are deemed not applicable), states to be avoided (e.g.,
states where a formula p ∧ q is true),2 and dead-end condi-
tions, that is conditions that if ever achieved preclude reach-
ing the goal. Functions are then used in the planner to encode
the geometrical dimensions of objects and their poses, and
state constraints to express that objects should not overlap
in space. The functionality and performance of the planner
will be illustrated over some examples.

The rest of the paper is organized as follows. We first re-
view the Functional STRIPS planning language, whose ex-
pressivity is key for handling “motion planning” as a partic-
ular form of “task planning”, and the recent planner FS0,
which handles a large fragment of Functional STRIPS. We
then show how to extend this planner for handling state con-
straints. Finally, we use the resulting planner for modeling
and solving planning problems with state constraints, and in
particular, problems that combine motion and task planning.
Preliminary experimental results are reported, and simula-
tions of the resulting plans can be seen in videos.3

Functional STRIPS
Functional STRIPS (FSTRIPS) is a general modeling lan-
guage for classical planning based on the quantifier-free
fragment of first-order-logic involving constant, function
and relational or predicate symbols but no variable symbols.
We review it following (Geffner 2000).

Syntax
FSTRIPS assumes that fluent symbols, whose denotation
may change as a result of the actions, are all function sym-
bols. Fluent constant symbols can be seen as arity-0 function
symbols, and fluent relational symbols as boolean function
symbols of the same arity plus equality. For example, typical
blocksworld atoms like on(a, b) can be encoded in FSTRIPS
as on(a, b) = true, by making on a functional symbol, or
in this case, more conveniently, as loc(a) = b where loc is a
function symbol denoting the block location.

Constant, functional and relational symbols whose de-
notation does not change are called fixed symbols. Among
them, there is usually a finite set of object names, and con-
stant, function, and relational symbols such as ‘3’, ‘+’ and
‘=’, with the standard interpretation. Terms, atoms, and for-
mulas are defined from constant, function, and relational
symbols in the standard way, except that in order for the rep-
resentation of states to be finite and compact, the symbols,
and hence the terms are typed. A type is given by a finite
set of fixed constant symbols. The terms f(t) where f is a

state constraint enforces a formula to be true in all reachable states,
while a state invariant is a formula that can be proven to hold in
all reachable states. For example, block A not being on top of two
blocks at the same time is a typical state invariant in blocksworld,
whereas A not being on top of block B might be a particular state
constraint that we want to enforce.

2State constraints φ used this way model the class of extended
temporal goals “never φ” (Dal Lago, Pistore, and Traverso 2002).

3www.bitbucket.org/ferrerj/ctmp

fluent symbol and t is a tuple of fixed constant symbols are
called state variables, as the state is actually determined by
the value of such “variables”.

An action a is described by the type of its arguments and
two sets: the precondition and the effects. The precondition
Pre(a) is a formula, and the effects are updates of the form
f(t) := w, where f(t) and w are terms of the same type,
f is a fluent symbol, and t is a tuple of terms. The updates
express how fluent f changes when the action is taken. Con-
ditional effects C → f(t) := w, where C is a formula (pos-
sibly C = true), can be defined in a similar manner.

A FSTRIPS problem is a tuple P = 〈F, I,O,G〉 where I
and G are the initial and goal formulas, O is a set of actions,
and F describes the symbols and their types. The formula
I along with the external procedures must define a unique
initial denotation for each of the symbols in F .

Semantics
States represent logical interpretations over the language of
FSTRIPS. The denotation of a symbol or term t in the state
s is written as ts. The denotation rs of fixed symbols r does
not depend on the state and is written r∗. The denotation of
standard fixed symbols like ‘3’, ‘+’, ‘=’ is assumed to be
given by the underlying programming language, while ob-
ject names c are assumed to denote themselves i.e. c∗ = c.
The denotation of fixed (typed) function and relational sym-
bols can be provided extensionally, by enumeration in the
initial situation, or intensionally, by attaching actual func-
tions (external procedures) to them (Dornhege et al. 2009).

Since the only fluent symbols are function symbols, and
the types of their arguments are all finite, the (dynamic part
of the) state can be represented as the value of a finite set
of state variables f(t), where f is a functional fluent and t
is a tuple of fixed constant symbols. From the fixed denota-
tion r∗ of fixed symbols r, and the changing denotation of
fluent symbols f captured by the values [f(t)]s of the state
variables f(t) associated with f , the denotation of arbitrary
terms, atoms, and formulas follows in the standard way. The
denotation ts of any term not involving functional fluents,
expressed also as t∗, is c∗ if t is a constant symbol or, re-
cursively, g∗(t∗1) if t is the compound term g(t1) where t1
is a tuple of terms. Similarly, the denotation ts of a term
f(t1) where f is a fluent functional symbol is defined re-
cursively as the value [f(c)]s of the state variable f(c) in s
where c is the tuple of constant symbols that name the tuple
of objects ts1; i.e., c∗ = ts1. In the same way, the denotation
[p(t)]s of an atom p(t) is true/false iff the result of apply-
ing the boolean function p∗ to the tuple of objects ts yields
true/false. The truth value Bs of the formulas B made up
of such atoms in the state s follows then the usual rules.

An action a is applicable in a state s if [Pre(a)]s = true.
The state sa that results from the action a in s satisfies the
equation fsa(ts) = ws for all the updates f(t) := w that
the action a triggers in s, and is otherwise equal to s. This
means that the update changes the value of the state variable
f(c) to ws iff the action triggers an update f(t) := w in the
state s for which c∗ = ts. For example, if X = 2 is true
in s, then the update X := X + 1 increases the value of
X to 3 without affecting other state variables. Similarly, if



loc(b) = b′ is true in s, the update clear(loc(b)) := true in
s is equivalent to the update clear(b′) := true.

A plan for a problem P = 〈F, I,O,G〉 is a sequence of
applicable actions from O that maps the unique initial state
where I is true into one of the states where G is true.

Example
A simple planning problem involving a set of integer vari-
ables X1, . . . , Xn and actions that allow us to increase or
decrease the value of any variable by one within the [0, n] in-
terval, can be modeled in Functional STRIPS by treating the
variablesXi as 0-arity fluent functional symbols with values
ranging in the [0, n] interval. TheseXi symbols represent the
state variables in the problem. If I = {X1 = 0, . . . , Xn =
0}, and G = {X1 < X2, . . . , Xn−1 < Xn}, the problem is
about changing the value of the Xi variables from 0 to final
values that increase monotonically with i. The precondition-
free action inc(Xi) has the effect Xi := min (Xi + 1, n),
whereas dec(Xi) has the effect Xi := max (Xi − 1, 0).

A Functional STRIPS Planner
The FS0 planner (Francès and Geffner 2015) deals with a
large fragment of the Functional STRIPS language where
preconditions and goal formulas must be in CNF and each
clause may involve two state variables at most, with the
exception of atoms expressing global constraints (van Ho-
eve and Katriel 2006; Rossi, Van Beek, and Walsh 2006).
For example, the goal of arranging a set of blocks in
blocksworld into a single tower can be expressed succinctly
as alldiff(loc(b1), . . . , loc(bn)) where alldiff repre-
sents the standard all-different constraint. Like constraint
solvers, FS0 gets a computational benefit from combin-
ing the O(n2) inequality constraints loc(bi) 6= loc(bj) into
one single alldiff global constraint, as this enables more
powerful forms of constraint propagation that yield more in-
formed heuristic values. We next focus on the computation
of these heuristics in FS0, where they are used to guide a
standard greedy best-first search.

Computation of the Heuristic
As noted by several authors, some of the heuristics that
are useful in STRIPS like hmax (Bonet and Geffner 2001)
and hFF (Hoffmann and Nebel 2001) can be generalized
to more expressive languages by means of the so-called
value-accumulating semantics (Hoffmann 2003; Gregory et
al. 2012; Ivankovic et al. 2014). In this interpretation, each
propositional layer Pk of the Relaxed Planning Graph
(RPG) keeps for each state variable X a set Xk of val-
ues that are possible in Pk. Such sets are used to define
the sets yk of possible values or denotations of arbitrary
terms, atoms, and formulas y, and from them, the sets of
possible values Xk+1 for the next layer Pk+1. For layer
P0, X0 = {Xs}, s being the state whose heuristic value
is sought. From the sets of possible values Xk for the state
variables X in layer Pk, the set of possible denotations tk
of any term not involving functional fluents is tk = {t∗},
while the set of possible denotations [f(t)]k for terms f(t)
where f is a fluent symbol is defined recursively as the union

of the sets [f(c)]k where f(c) is a state variable such that
c∗ ∈ tk. In a similar way, the set of possible denotations
[p(t)]k of an atom p(t) in layer Pk includes the value true
(false) iff p∗(c∗) = true (false, respectively) for some
tuple c∗ ∈ tk. The set of possible denotation of disjunc-
tions, conjunctions, and negations are defined recursively so
that true is in [A ∨ B]k, [A ∧ B]k and [¬A]k iff true is in
Ak or in Bk, true is in both Ak and Bk, and false is in
Ak respectively. Similarly, false is in [A ∨ B]k, [A ∧ B]
and [¬A]k iff false is in both Ak and Bk, false is in Ak

or in Bk, and true is in Ak respectively. The set of pos-
sible values Xk+1 for the state variable X in layer Pk+1

is the union of Xk and the set of possible values x for X
that are supported by conditional effects of actions a whose
preconditions are possible in Pk, i.e., true ∈ [Pre(a)]k. A
conditional effect C → f(t) := w of a supports value x
of X in Pk iff X = f(c) for some tuple of constant sym-
bols c such that c∗ ∈ tk and x ∈ wk. When computing the
heuristics hmax and hFF, the computation stops in the first
layer Pk where the goal formula G is true, i.e. true ∈ Gk,
or where a fixed point has been reached without rendering
the goal true, i.e. Xk = Xk+1 for all the state variables.
A relaxed plan πFF(s) can be obtained then backward from
the goal by keeping track of the state variables X and values
x ∈ Xk that make the goal true, the actions a and effects
C → f(t) := w supporting such values first, and iteratively,
the variables and values that make Pre(a) and C true. The
heuristic hFF(s) is given by the number of different actions
a in πFF(s), each action a counted as many times as layers
in πFF(s) where it is used, in accordance with the treatment
of conditional effects in FF. The heuristic hmax(s) is given
by the index k of the first layer Pk where the goal is true.
Logical Generalization: Constrained RPG. A weakness
of RPG heuristics is the assumption that state variables can
take several values at the same time. This simplification does
not follow from the monotonicity assumption that underlies
the value-accumulating semantics but from the way the sets
of possible values Xk in layer Pk are used. The fact that
these various values are all regarded as possible in layer Pk

does not imply that they are jointly possible. The way to re-
tain monotonicity in the construction of the planning graph
while removing the assumption that a state variable can take
several values at the same time is to map the domains Xk

of the state variables into a set V k of possible interpreta-
tions over the language. Indeed, given that an interpretation
s over the language is determined by the values Xs of the
state variables (Section 2), this set V k is nothing but the
set of interpretations v that result from selecting one value
Xv for each state variable X among the set of values Xk

that are possible for X in layer Pk. As before, X0 = {Xs}
when s is the seed state, and Xk+1 contains all the values in
Xk along with the set of possible values x for X supported
by the effects of actions a whose preconditions are possi-
ble in Pk. A formula like Pre(a) is satisfiable in layer Pk

iff there is an interpretation v ∈ V k s.t. [Pre(a)]v = true.
Moreover, a conditional effect C → f(t) := w of a sup-
ports the value x of X in Pk iff there is an interpretation
v ∈ V k where [Pre(a)]v and Cv are true, x = wv , and
X = f(c) for c∗ = tv . This alternative, logical interpreta-



tion of the propositional layers Pi affects the contents and
computation of the RPG, which we now call Constrained
RPG (CRPG). The construction of the RPG stops at the
first layer Pk where the goal formula G is satisfiable, i.e.
where Gv is true for some v ∈ V k, or when a fixed point
is reached without rendering the goal true. Heuristics analo-
gous to hmax and hFF (which we name h∗max and h∗FF) can
then be obtained from such a graph in the usual way.

Polynomial Approximation: Constraint Propagation.
The heuristics h∗max and h∗FF correctly assign infinite heuris-
tic values to logically inconsistent goals such as (X <
3 ∧ X > 5), which get finite values in the unconstrained
heuristics hmax and hFF when each goal X < 3 and X > 5
is reachable separately. The problem with such heuristics
is that they are intractable. The two heuristics hcmax and
hcFF supported in the FS0 planner are aimed at approximat-
ing these two heuristics in an efficient, polynomial manner.
For this, it is assumed that action preconditions, conditions,
and goals are conjunction of atoms, and that fluent symbols
do not appear nested. Under these restrictions, checking
whether the goal G is satisfiable in a propositional layer Pk

boils down to solving a constraint satisfaction problem Gk

whose variables are the state variables X appearing in G,
the domain D(X) of the variables X is Xk, and the con-
straints are given by the atoms in G. In the approximation,
the goal G is deemed satisfiable simply if the local consis-
tency methods do not prove that the CSP is unsatisfiable by
leaving a variable with an empty domain. The local consis-
tency methods are node and arc consistency (Dechter 2003;
Rossi, Van Beek, and Walsh 2006). The hcmax heuristic is
defined by the index k of the first layer Pk where the goal
is deemed satisfiable in this manner. Arc consistency ap-
plies only to binary constraints, i.e. to atoms involving two
state variables. For atoms involving more variables, local
consistency algorithms that depend on the type of (global)
constraint are used instead. Currently, FS0 supports just
two types of global constraints, alldiff and sum (Rossi,
Van Beek, and Walsh 2006), but it offers the possibility of
defining new global constraints by providing their associated
local consistency algorithms.

As an illustration of these heuristics, the problem above
with variablesXi that must be increased or decreased from 0
until achieving the inequalitiesXi < Xi+1, i = 1, . . . , n−1,
yields an hmax value of 1 when the value-accumulating
semantics is used, or when the problem is compiled into
STRIPS. On the other hand, the constrained heuristic h∗max
and its polynomial approximation hcmax have the optimal
value n. This is because while each of the goal atoms Xi <
Xi+1 is reachable in one step in the RPG, their conjunction
is satisfiable in both the constrained RPG and its polynomial
approximation only after n steps.

State Constraints
By accommodating numerical variables, constraints, and
functions, it is possible to express in Functional STRIPS
problems that involve geometrical reasoning. For example,
one can easily deal with a problem involving a square ob-
ject o with side length d by using a representation in which

the function config(o) denotes its 2D location 〈x, y〉 which
can be changed through translation actions. By a suitable
discretization of the set of possible configurations, one can
then express the problem of manipulating the object o from
a given initial configuration into a final configuration where,
for example, a certain position (xc, yc) must be covered by
the object. For this, the goal G can be expressed as the for-
mula (x − d ≤ xc ≤ x + d) ∧ (y − d ≤ yc ≤ y + d) that
reduces to four atoms involving two state variables x and
y. Actually, the current version of FS0 handles the nega-
tion of such goals as well, which also involves two vari-
ables, and expresses the problem where the object must be
placed in a location where the target point is not covered.
Thus, it is simple to capture in FS0 problems where an ob-
ject must be moved in order to comply with some geometri-
cal goal constraint. What is less simple to do in Functional
STRIPS is to enforce such constraints throughout the execu-
tion of the plans which is critical in robotics. For doing this,
however, we just need to treat such constraints, not as goal
constraints, but as state constraints (Lin and Reiter 1994;
Son et al. 2005), i.e., constraints applying to all states not
just goal states. The changes required in the language and
in the derivation of heuristics for accommodating state con-
straints are minor, but the expressivity gained is significant.

Syntax and Semantics
A FSTRIPS planning problem with state constraints is a tu-
ple P = 〈F, I,O,G,C〉where the new componentC stands
for a set of formulas expressing the constraints. The syntax
for these formulas is the same as for those encoding the goal
G but their semantics is different. State constraints are used
for encoding implicit preconditions. Namely, an action a is
deemed applicable in a state s when both [Pre(a)]s = true
and the state sa that results from applying a to s is such that
cs = true for every state constraint c ∈ C. In other words,
an action a is non-executable in a state s where its precon-
dition Pre(a) holds, if its execution leads to a state sa that
violates some state constraint. In addition, the unique initial
state must satisfy all the state constraints as well. As a result,
if c ∈ C is a state constraint and s0, . . . , sn is the sequence
of states generated by a plan that solves P , then c will be
true in all the states si, i = 0, . . . , n.

Heuristics
The introduction of state constraints affects the definition of
the heuristics h∗max and h∗FF obtained from the constrained
RPG, and the polynomial approximations hcmax and hcFF
supported in the FS0 planner. The changes, however, are mi-
nor. First, recall that a layer Pk encodes sets Xk of possible
values for each state variableX , which in turn define sets V k

of possible interpretations over the language. An action a is
deemed applicable in layer Pk if one such interpretation sat-
isfies the formula Pre(a); similarly, the goalG is taken to be
true for the purpose of computing a constrained relaxed plan,
if one such interpretation satisfiesG. In the presence of state
constraints, this remains the same except that interpretations
in V k that do not satisfy a state constraint are pruned first.
In the polynomial approximation that leads to the heuristics



hcmax and hCFF, the state constraints are not used to prune in-
terpretations directly but just the domains Xk of the state
variables X in layer k through constraint propagation.

Examples
We illustrate next the usefulness of state constraints both in
terms of modeling and computation with a couple of exam-
ples, reporting their running times as well.

The Missionaries and Cannibals (M&C) problem has
received wide attention since the early days of AI (Amarel
1968) as a toy problem that is nevertheless representative of
a wider class of transportation-under-constraints problems.
In its standard version, the problem places three missionar-
ies and three cannibals on the left bank of a river which they
all want to cross. A single boat is available that can hold
only two people at a time, regardless of whether they are
missionaries or cannibals. Apparently, the missionaries do
not want to be outnumbered by the cannibals, be it on either
bank of the river or inside of the boat, for fear of the canni-
bals exercising their defining inclination.4 The goal is to find
an appropriate schedule of river crossings that transports ev-
eryone to the right bank of the river in a safe manner.

We model a generalization of the problem for n mission-
aries and n cannibals (n ≥ 3) on a complete graph. There
are fixed symbols l1, . . . , lm representing the locations, and
state variables nc(l) and nm(l) representing the number of
cannibals and missionaries at each location l. In addition, the
0-ary functional symbol X represents the current location of
the boat. The actions move(c,m, l), with 0 ≤ c,m ≤ 2,
c+m ∈ {1, 2}, move c cannibals andmmissionaries in one
boat trip from the current location to l. Their preconditions
are c ≤ nc(X ) and m ≤ nm(X ), and their effects are X :=
l, nc(l) := nc(l)+c, nc(X ) := nc(X )−c, and analogously
for the missionaries. Finally, the restriction on cannibals not
outnumbering missionaries in a location l is modeled by the
binary state constraint nm(l) ≥ nc(l)∨nm(l) = 0. The “in-
side of the boat” restriction is encoded as part of the move
action.

As a second example, consider a simple navigation with
geometrical obstacles problem in which an n × m grid
contains a robot that has to reach a goal cell while avoid-
ing obstacles. For simplicity, we assume a point robot with
no geometry, and obstacles o with rectangular shape which
can be represented by a couple of coordinate points (xo, yo)
and (x′o, y

′
o), with xo < x′o and yo < y′o (obstacles having

other shapes can be thought of as a combination of smaller
rectangles). The location of the robot is represented by two
0-arity fluent functional symbols x and y with values in
[1, n] and [1,m]. The actions move(dx, dy) with dx, dy ∈
[−1, 1] move the agent to adjacent locations, including di-
agonals, with effects x := max(0,min(x + dx, n)) and
y := max(0,min(y + dy,m)). Avoidance of obstacles o
in any plan can then be represented succinctly through the
state constraint ¬(xo ≤ x ≤ x′o ∧ yo ≤ y ≤ y′o), resulting

4A historically more accurate version of the problem has it that
it is the cannibals that do not want to be outnumbered by the mis-
sionaries for fear of being converted, but we restrict our discussion
to the first version for the sake of tradition.

Figure 1: Arm rotating to grasp an object

in a problem with as many state constraints as obstacles, and
where each of the state constraints involves the same two
state variables x and y.

We have actually tested the planner on a number of ran-
domly generated instances of increasing size for each of
these two domains.5 In the case of the M&C domain, the
planner scales up pretty well, handling problem sizes of 20-
node location graphs and 12 missionaries plus 12 cannibals
with relative ease: an instance with a 10-node graph and 9+9
missionaries and cannibals is solved in 80 sec. by finding a
plan of length 49 after expanding 637 nodes. An instance
with 20 nodes and 12 + 12 individuals takes 379 sec. and
183 node expansions to find a plan of length 45. Similarly,
the planner handles navigation problems with a linear num-
ber of geometrical obstacles in less than 0.1 sec. for 10× 10
grids and less than 15 sec. for 50× 50 grids.

Task and Motion Planning Combined
The last example illustrates how problems involving geo-
metrical constraints can be modeled in Functional STRIPS
with state constraints, and solved by the FS0 planner. We
now consider a more general type of problem involving a
robot that can translate, rotate (Figure 1), and pick and place
objects (Figure 2). Robots and objects can have arbitrary 2D
geometries, and collisions are to be avoided. In one task,
which we name moving with geometrical obstacles, the
robot must reach a goal configuration by navigating and
moving the objects that obstruct the path. In the other task,
which we name tidying up, the robot must place the objects
in some goal configuration. In both cases, the 2D space of
the environment is discretized according to a parameter r
into a regular grid of size r × r. Robots and objects have
a configuration that captures triplets 〈x, y, θ〉, where x and
y capture the center-of-mass position of the object or robot
within the discrete grid, and θ its orientation, with angles
being discretized into 45 degrees.

5Problem encodings for which empirical results are discussed
are available at www.bitbucket.org/ferrerj/ctmp.



Figure 2: Gripper grasping an object

The configuration config(o) of an object or robot o
is represented with the functional fluent config . Transla-
tions and rotations of the robot change the robot con-
figuration, and, if the robot is holding and object, they
change the configuration of the object too. These changes
are all expressed by means of externally defined proce-
dures. In addition, the pickup(o) action has precondition
graspable(config(r), config(o)) where r is the robot, o the
object to be picked up, and graspable is a fixed predicate
symbol whose denotation is externally defined too.

The avoidance of collisions between movable and
static objects is captured by the fixed external proce-
dures that perform the configuration updates. If, say, a
translation of the robot would make it collide with a
static object, the procedure updates the configuration to
the particular invalid value ⊥. The avoidance of col-
lisions among movable objects, on the other hand, is
handled in a pairwise fashion by the binary state con-
straints non-overlapi,j(config(oi), config(oj)), where the
fixed predicate symbol non-overlapi,j is defined by an ex-
ternal procedure that is a function of the geometries and con-
figurations of the objects i and j. The predicate is true when
there is no grid cell occupied by both objects given their
fixed geometries and current configurations. For the sake of
performance, all reasoning involving object configurations
is precompiled into extensional form, meaning that all the
fixed external functions are extensionally stored by means
of tables that are indexed by the configuration identifiers.

Illustrations showing the initial, goal, and intermediate
configurations resulting from plans computed by FS0 on
the “moving with geometrical obstacles” problem are shown
in Figure 3. Movable objects are depicted by little squares,
static objects by brown boxes, the robot is stick-shaped with
a gripper and its final configuration is shown in green.

FSTRIPS Model Details
We provide a few additional details on the model of the prob-
lems in FSTRIPS. Besides the config symbol, two auxiliary
fluent functional symbols handempty and held are used, the
first boolean, the second denoting the object being held. The
functions used to capture the changes in the configurations
are translated , rotated and o-rotated (standing for the ro-
tation of the object being held). The first function is used
in the effects of the translation action, the second in the

rotation action, and the third in the rotation action with an
object. More precisely, translated(o, c, d) is the configura-
tion that results from applying an atomic translation to the
robot or object o when in configuration c, where d is a di-
rection; i.e., one of the the fixed symbols N , NE , E , SE ,
S , SW , W , NW . In turn, rotated(o, c, d) is the result of
applying an atomic rotation with d being one of the fixed
symbols cw and ccw (clockwise, counterclockwise). Finally,
o-rotated(o, c, d) denotes the resulting configuration of the
obstacle o held by the robot when the robot performs a ro-
tation in direction d. By atomic translations and rotations
we refer to step-wise operations that translate or rotate the
object to the next cell or angle respectively, according to
the chosen discretization. Having the objects move only one
step at a time is necessary to ensure that no collisions hap-
pen along trajectories, while keeping the total number of
(grounded) actions small and independent of the total num-
ber of configurations.

The problem model requires 6 action types translate,
rotate (when the robot is holding no object),
pick-up, place, translate-with-object, and
rotate-with-object (when the robot is holding an
object). We omit the full specification and limit our descrip-
tion to the action rotate-with-object(o, d), where
d ∈ {cw , ccw}, and which has a single precondition held =
o and two effects: conf (r) := rotated(r, conf (r), d) and
conf (o) := o-rotated(o, conf (o), d). All action precondi-
tions are CNF formulas with clauses involving a single state
variable, with the sole exception of the precondition of the
pick-up action which contains a clause making use of the
graspable predicate that involves two state variables.

Experimental Results
We report next the empirical results of the FS0 planner
when run on a number of problems from the MOVING-
GEOM-OBSTACLES and TIDYING-UP domains.6 The results
are from running the planner on an AMD Opteron 6300 ma-
chine with a 2.4Ghz clock, with a time bound of 30 minutes
and a memory bound of 8GB.

Table 1 shows the per-instance results of the planner, fo-
cusing on plan length (i.e. number of actions in the plan),
total number of expanded nodes along the search, and total
runtime of the plan search. In both domains, the complex-
ity of the problem clearly grows with both the discretization
resolution and the number of movable objects as expected.
In general, the higher the value of any of these two parame-
ters, the longer the plans, because steps are smaller and more
objects may have to be moved.

MOVING-GEOM-OBSTACLES problems with 10× 10 res-
olution grids are solved by FS0 with ease, even with 5 ob-
stacles. The number of node expansions during the greedy
best-first search grows with the number of objects but is
low, suggesting that the heuristic is informative. Grid res-
olutions of 30 × 30 and 50 × 50 pose a more significant
challenge, but nevertheless the planner solves the instances
with 1 − 3 objects with a low number of node expansions.

6Simulations of the obtained plans can be seen at www.
bitbucket.org/ferrerj/ctmp.



Figure 3: The MOVING-GEOM-OBSTACLES domain in which a robot has to reach a target position but a number of obstacles
need to be picked up and moved around so that they stop blocking the robot’s path to the goal. Snapshots from top left to bottom
right show several steps of the solution, in which the robot reaches the goal configuration after clearing the path.



Problem FSTRIPS model Solution
Type Res. Obj. vars configs actions constr. length #Exp Time (s.) #Exp per second
MGO 10× 10 1 4 212 22 3 18 19 0.16 118.75
MGO 10× 10 2 6 212 34 6 19 21 0.45 46.67
MGO 10× 10 3 8 212 46 10 23 33 1.13 29.20
MGO 10× 10 4 10 212 58 15 41 169 8.10 20.86
MGO 10× 10 5 12 212 70 21 59 397 10.56 37.59

MGO 30× 30 1 4 894 22 3 44 83 8.35 9.94
MGO 30× 30 2 6 894 34 6 49 55 16.39 3.36
MGO 30× 30 3 8 894 46 10 55 119 55.26 2.15
MGO 30× 30 4 10 894 58 15 - 1475 >1800 0.82
MGO 30× 30 5 12 894 70 21 - 2139 >1800 1.19

MGO 50× 50 1 4 2120 22 3 74 218 110.43 1.97
MGO 50× 50 2 6 2120 34 6 78 80 72.14 1.11
MGO 50× 50 3 8 2120 46 10 83 222 548.75 0.40
MGO 50× 50 4 10 2120 58 15 - 669 >1800 0.37
MGO 50× 50 5 12 2120 70 21 - 1458 >1800 0.81

TU 10× 10 2 6 226 34 6 12 14 0.06 233.33
TU 10× 10 3 8 227 46 10 35 63 0.43 146.51
TU 30× 30 2 6 908 34 6 54 143 13.24 10.80
TU 30× 30 3 8 909 46 10 112 6564 164.50 39.90
TU 50× 50 2 6 2134 34 6 47 154 5.51 27.95
TU 50× 50 3 8 2135 46 10 121 17449 1675.72 10.41

Table 1: Performance of FS0 on MOVING-GEOM-OBSTACLES (MGO) and TIDYING-UP (TU) instances, described in the text.
Instances differ on the resolution of the environment discretization (col. 2) and on the number of movable objects (col. 3).
Columns 4 to 7 report information about the characteristics of the FSTRIPS encoding, namely the number of state variables,
the number of object configurations, the number of (grounded) actions, and the number of state constraints. The four rightmost
columns respectively report (1) the length of the plan (a dash denotes that no plan was found), (2) the number of nodes expanded
along the search, (3) the total runtime until the plan is found, and (4) the rate at which nodes are expanded. Simulations of the
execution of the computed plans can be visualized at www.bitbucket.org/ferrerj/ctmp.

In turn, TIDYING-UP problems are also solved by expanding
few nodes in the simpler cases, although the heuristic is less
informative for the higher resolutions and 3 objects.

In general, the rate of nodes expanded per second de-
creases sharply with the resolution and number of objects.
This is indicative of the cost of computing the heuristic,
which is affected by the number of state variables associated
with the objects and by the total number of configurations,
which in turn depends on the chosen resolution. Indeed, the
number of object configurations in a grid discretized with
resolution r× r and k possible orientations is in the order of
k ·r2, although many of these configurations will not be fea-
sible, as they overlap with an static object in the map. The
empirical results show the feasibility of the approach, but
work is still needed to improve scalability further. In partic-
ular, one possibility to address the blowup that our approach
incurs when increasing the resolution or scaling up to a 3D
representation would be the use of an encoding along the
lines of the “navigation with geometrical obstacles” exam-
ple presented above, where configurations are modeled in
terms of three distinct state variables x, y and θ instead of
one. Particular attention should be paid to how this type of

change affects the quality of the resulting heuristics. Another
issue that deserves further consideration is the impact of the
precompilation of all external procedures into extensional
form. This offers an advantage on small-scale domains, but
it is not clear how useful it is on larger domains.

Related Work
Combined task and motion planning for grasping and ma-
nipulation is an open research problem at the intersection
of planning and robotics. The aSyMov planner (Cambon,
Gravot, and Alami 2004; Gravot, Cambon, and Alami 2005),
for instance, already aimed at integrating both symbolic and
geometric reasoning at each step of the planning process.
External procedures have also been used to avert the diffi-
culty of performing geometric reasoning within a logically-
oriented planning language (Dornhege et al. 2010), as well
as to predict the effects of actions involving complex physics
(Kunze and Beetz 2015).

Hierarchical approaches to the problem have also been ex-
plored in (Kaelbling and Lozano-Pérez 2011), where a hi-
erarchical regression-based schema is developed that com-
bines task and motion planning, and in (Wolfe, Marthi, and



Russell 2010), where Hierarchical Task Networks are used
to tackle robotic manipulation problems by modeling the
bottom actions of the hierarchy with motion planning. Ma-
nipulation planning problems are also tackled through sym-
bolic planning in (Nebel, Dornhege, and Hertle 2013).

An alternative approach is that presented in (Srivastava et
al. 2014), where off-the-shelf classical and motion planners
are integrated through the use of a planner-independent in-
terface layer. The errors in the motion planning goals have
to be identified and fed back to the symbolic planner in
the form of logic predicates, the main challenge being the
proper identification of the offending atoms that prevent the
enactment of specific high-level actions. (Garrett, Lozano-
Pérez, and Kaelbling 2014) computes an heuristic that takes
the geometrical information into account together with the
symbolic information, exploiting a conditional reachability
graph as a form of a probabilistic roadmap conditioned to the
object configurations. (Lagriffoul et al. 2012) integrates task
and motion planning proposing a technique to reduce the
geometric configuration space and thus the number of calls
to the motion planner. A key difference between all these
approaches and ours, however, is the formulation of motion
planning as an additional component of the task planner.

Summary
We have proposed an alternative integration of task and mo-
tion planning where the symbolic and geometrical compo-
nents are addressed in combination, with neither part tak-
ing the back seat. For this, we have built on an expressive
planning language, Functional STRIPS, that supports con-
straints, functions, and numerical variables, and on the plan-
ner FS0, which supports a large fragment of this language in
the specification of problems and is crucially able to exploit
its expressivity in the computation of heuristics. We have
extended this language and computational model with state
constraints: logical formulas that must hold true in every
state of a plan. In order to address motion and task planning
problems, we use functions for encoding the geometrical di-
mensions of objects and their poses, and state constraints to
express that no two objects, including the robot, can overlap
in space. The experiments reported are preliminary but illus-
trate the feasibility of the approach. There is a lot of room
for improving performance and for exploring the possibili-
ties that are afforded by this integration of motion planning
into task planning. In particular, scaling up well in the pres-
ence of large grids and many objects remains a challenge.
In principle, however, there is no need for the grids to be
regular: it would be more natural to use higher resolutions
around the current robot configuration and lower resolutions
elsewhere. Alternatively, maps obtained from random con-
figuration sampling, as in probabilistic roadmaps, could be
used instead. The strength of the integration proposed is that
it is very general and independent of these choices.

References
Amarel, S. 1968. On representations of problems of reasoning
about actions. Machine intelligence 3(3):131–171.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1–2):5–33.

Cambon, S.; Gravot, F.; and Alami, R. 2004. aSyMov: Towards
more realistic robot plans. In Proc. of ICAPS.
Dal Lago, U.; Pistore, M.; and Traverso, P. 2002. Planning with a
language for extended goals. In Proc. AAAI, 447–454.
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.; and
Nebel, B. 2009. Semantic attachments for domain-independent
planning systems. In Proc. of ICAPS, 114–121.
Dornhege, C.; Eyerich, P.; Keller, T.; Brenner, M.; and Nebel, B.
2010. Integrating task and motion planning using semantic attach-
ments. In Bridging the Gap Between Task and Motion Planning.
Francès, G., and Geffner, H. 2015. Modeling and computation
in planning: Better heuristics from more expressive languages. In
Proc. of ICAPS, 70–78. AAAI Press.
Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2014. FFRob:
An efficient heuristic for task and motion planning. In Proc. Int.
Workshop on the Algorithmic Foundations of Robotics (WAFR).
Geffner, H., and Bonet, B. 2013. A Concise Introduction to Models
and Methods for Automated Planning. Morgan & Claypool.
Geffner, H. 2000. Functional STRIPS: A more flexible language
for planning and problem solving. In Minker, J., ed., Logic-Based
Artificial Intelligence. Kluwer. 187–205.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning:
theory and practice. Morgan Kaufmann.
Gravot, F.; Cambon, S.; and Alami, R. 2005. aSyMov: a planner
that deals with intricate symbolic and geometric problems. In In-
ternational Symposium on Robotics Research, 100–110. Springer.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Planning
modulo theories: Extending the planning paradigm. In Proc. of
ICAPS.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.
Hoffmann, J. 2003. The metric-FF planning system: Translating
“ignoring delete lists” to numeric state variables. Journal of Artifi-
cial Intelligence Research 20:291–341.
Ivankovic, F.; Haslum, P.; Thiébaux, S.; Shivashankar, V.; and Nau,
D. S. 2014. Optimal planning with global numerical state con-
straints. In Proc. of ICAPS.
Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical task
and motion planning in the now. In International Conference on
Robotics and Automation (ICRA), 1470–1477. IEEE.
Kunze, L., and Beetz, M. 2015. Envisioning the qualitative effects
of robot manipulation actions using simulation-based projections.
Artificial Intelligence.
Lagriffoul, F.; Dimitrov, D.; Saffiotti, A.; and Karlsson, L. 2012.
Constraint propagation on interval bounds for dealing with geomet-
ric backtracking. In International Conference on Intelligent Robots
and Systems (IROS), 957–964. IEEE.
LaValle, S. M. 2006. Planning algorithms. Cambridge.
Lin, F., and Reiter, R. 1994. State constraints revisited. Journal of
logic and computation 4(5):655–677.
Lozano-Pérez, T., and Kaelbling, L. P. 2014. A constraint-based
method for solving sequential manipulation planning problems.
In International Conference on Intelligent Robots and Systems
(IROS), 3684–3691. IEEE.
Mackworth, A. K. 1977. Consistency in networks of relations.
Artificial intelligence 8(1):99–118.



Nebel, B.; Dornhege, C.; and Hertle, A. 2013. How much does a
household robot need to know in order to tidy up? In Proceedings
of the AAAI Workshop on Intelligent Robotic Systems.
Rossi, F.; Van Beek, P.; and Walsh, T. 2006. Handbook of con-
straint programming. Elsevier.
Russell, S., and Norvig, P. 2002. Artificial Intelligence: A Modern
Approach. Prentice Hall. 2nd Edition.
Son, T. C.; Tu, P. H.; Gelfond, M.; and Morales, A. 2005. Confor-
mant planning for domains with constraints: A new approach. In
Proc. AAAI-05, 1211–1216.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.; and
Abbeel, P. 2014. Combined task and motion planning through
an extensible planner-independent interface layer. In International
Conference on Robotics and Automation (ICRA), 639–646. IEEE.
van Hoeve, W.-J., and Katriel, I. 2006. Global constraints. Hand-
book of constraint programming 169–208.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined task and
motion planning for mobile manipulation. In Proc. of ICAPS, 254–
258.


