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Abstract

State space search solves navigation tasks and many other real world problems.
Heuristic search, especially greedy best-first search, is one of the most successful
algorithms for state space search. We improve the state of the art in heuristic
search in three directions.

In Part I, we present methods to train neural networks as powerful heuristics
for a given state space. We present a universal approach to generate training
data using random walks from a (partial) state. We demonstrate that our heuris-
tics trained for a specific task are often better than heuristics trained for a whole
domain. We show that the performance of all trained heuristics is highly com-
plementary. There is no clear pattern, which trained heuristic to prefer for a
specific task. In general, model-based planners still outperform planners with
trained heuristics. But our approaches exceed the model-based algorithms in the
Storage domain. To our knowledge, only once before in the Spanner domain, a
learning-based planner exceeded the state-of-the-art model-based planners.

A priori, it is unknown whether a heuristic, or in the more general case a plan-
ner, performs well on a task. Hence, we trained online portfolios to select the
best planner for a task. Today, all online portfolios are based on handcrafted
features. In Part II, we present new online portfolios based on neural networks,
which receive the complete task as input, and not just a few handcrafted features.
Additionally, our portfolios can reconsider their choices. Both extensions greatly
improve the state-of-the-art of online portfolios. Finally, we show that explain-
able machine learning techniques, as the alternative to neural networks, are also
good online portfolios. Additionally, we present methods to improve our trust in
their predictions.

Even if we select the best search algorithm, we cannot solve some tasks in
reasonable time. We can speed up the search if we know how it behaves in the
future. In Part III, we inspect the behavior of greedy best-first search with a fixed
heuristic on simple tasks of a domain to learn its behavior for any task of the same
domain. Once greedy best-first search expanded a progress state, it expands only
states with lower heuristic values. We learn to identify progress states and present
two methods to exploit this knowledge. Building upon this, we extract the bench
transition system of a task and generalize it in such a way that we can apply it to
any task of the same domain. We can use this generalized bench transition system
to split a task into a sequence of simpler searches.

In all three research directions, we contribute new approaches and insights to
the state of the art, and we indicate interesting topics for future work.
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Zusammenfassung

Viele Alltagsprobleme können mit Hilfe der Zustandsraumsuche gelöst werden.
Heuristische Suche, insbesondere die gierige Bestensuche, ist einer der erfolg-
reichsten Algorithmen für die Zustandsraumsuche. Wir verbessern den aktuellen
Stand der Wissenschaft bezüglich heuristischer Suche auf drei Arten.

Eine der wichtigsten Komponenten der heuristischen Suche ist die Heuristik.
Mit einer guten Heuristik findet die Suche schnell eine Lösung. Eine gute Heuris-
tik für ein Problem zu modellieren ist mühsam. In Teil I präsentieren wir Me-
thoden, um automatisiert gute Heuristiken für ein Problem zu lernen. Hierfür
generieren wird die Trainingsdaten mittels Zufallsbewegungen ausgehend von
(Teil-) Zuständen des Problems. Wir zeigen, dass die Heuristiken, die wir für
einen einzigen Zustandsraum trainieren, oft besser sind als Heuristiken, die für
eine Problemklasse trainiert wurden. Weiterhin zeigen wir, dass die Qualität aller
trainierten Heuristiken je nach Problemklasse stark variiert, keine Heuristik eine
andere dominiert, und es nicht vorher erkennbar ist, ob eine trainierte Heuris-
tik gut funktioniert. Wir stellen fest, dass in fast allen getesteten Problemklassen
die modellbasierte Suchalgorithmen den trainierten Heuristiken überlegen sind.
Lediglich in der Storage Problemklasse sind unsere Heuristiken überlegen.

Oft ist es unklar, welche Heuristik oder Suchalgorithmus man für ein Problem
nutzen sollte. Daher trainieren wir online Portfolios, die für ein gegebenes Pro-
blem den besten Algorithmus vorherzusagen. Die Eingabe für das online Portfo-
lio sind bisher immer von Menschen ausgewählte Eigenschaften des Problems. In
Teil II präsentieren wir neue online Portfolios, die das gesamte Problem als Ein-
gabe bekommen. Darüber hinaus können unsere online Portfolios ihre Entschei-
dung einmal korrigieren. Beide Änderungen verbessern die Qualität von online
Portfolios erheblich. Weiterhin zeigen wir, dass wir auch gute online Portfolios
mit erklärbaren Techniken des maschinellen Lernens trainieren können.

Selbst wenn wir den besten Algorithmus für ein Problem auswählen, kann es
sein, dass das Problem zu schwierig ist, um in akzeptabler Zeit gelöst zu werden.
In Teil III zeigen wir, wie wir von dem Verhalten einer gierigen Bestensuche
auf einfachen Problemen ihr Verhalten auf schwierigeren Problemen der gleichen
Problemklasse vorhersagen können. Dieses Wissen nutzen wir, um die Suche zu
verbessern. Zuerst zeigen wir, wie man Fortschrittszustände erkennt. Immer wenn
gierige Bestensuche einen Fortschrittszustand expandiert, wissen wir, dass es nie
wieder einen Zustand mit gleichem oder höheren heuristischen Wert expandieren
wird. Wir präsentieren zwei Methoden, die dieses Wissen verwenden. Aufbauend
auf dieser Arbeit lernen wir von einem Problem, wie man jegliches Problem der
gleichen Problemklasse in eine Reihe von einfacheren Suchen aufteilen kann.
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1. Introduction
Planning is the art of finding sequences of actions which transform the current state
of a problem into a state which satisfies some desired properties. For this purpose,
planning is concerned with modelling real world problems with appropriate formalisms
and finding solutions for these task. A planning task describes the possible states of
the problem and the actions to move from one state to another state. We can frame
many real world problems as planning tasks. Examples are satellite controls, elevator
schedules, road navigation, and warehouse automation.

Over the long history of planning (McCarthy, 1958; Newell and Simon, 1963; Fikes
and Nilsson, 1971) many formalisms to model problems were devised. A planning task
can model deterministic and non-deterministic effects. It can model full, as well as,
partial knowledge about the world. It can model single and multi-agent problems. It
can model tasks with instantaneous and with durative effects, and much more. This ver-
satility makes planning powerful, but makes it also difficult to solve arbitrary planning
tasks. We restrict ourselves to classical planning. That means, we have full knowledge
of the world, our actions are deterministic, there is a single agent executing the actions,
and we have a condition, which describes the goal states. But even classical planning is
EXPSPACE-complete (Erol, Nau, and Subrahmanian, 1995).

We have complete algorithms for classical planning, i.e., we have algorithms that find
a solution if one exists and otherwise tell us if no solution exists. But these algorithms
can take eons until they terminate. Researchers actively develop new algorithms, so
called planners, to solve common planning tasks faster. On many tasks, today’s algo-
rithms are much faster than humans. But there are still many tasks, which they cannot
solve within an acceptable time frame.

Predictive machine learning is the art of identifying patterns in data and using them
to make predictions. Many machine learning techniques are trained on a set of obser-
vation - effect pairs. Afterwards, they are used to predict the effect of a new, unseen
observation. Machine learning also has a long history. There exists a rich set of well
established techniques to predict the future using the past, e.g., linear regression (Gal-
ton, 1886) and decision trees (Breiman et al., 1984). In recent years, neural networks
made huge progress. Two decades ago, neural networks deciphered handwritten digits
(LeCun et al., 1998). Today, they recognize images (Russakovsky et al., 2015), synthe-
size natural language (Shen et al., 2018), communicate in a dialog (Serban et al., 2016),
and recently convert text to visually appealing images (Ramesh et al., 2021).

These advances kindled the idea of incorporating machine learning to improve our
planning algorithms. Roberts and Howe (2009) predict for a set of planners their run-
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1. Introduction

times on a task. Then, they pick and execute the best predicted planner for that task.
Many planners are guided by a heuristic function. Arfaee, Zilles, and Holte (2011)
trained a simple neural network to combine multiple heuristic functions into one more
powerful heuristic function. The showdown between AlphaGo (Silver et al., 2016) and
the 9. Dan Go master Lee Sedol in 2016 showed that neural networks itself can even be
trained as heuristic function for incredible difficult tasks using only the state as input.
This sparked a new rush on using machine learning and especially deep learning in plan-
ning (Toyer et al., 2018; Agostinelli et al., 2019; Sievers et al., 2019a; Ma et al., 2020;
Shen, Trevizan, and Thiébaux, 2020; Ferber, Helmert, and Hoffmann, 2020; Rivlin,
Hazan, and Karpas, 2020; Yu, Kuroiwa, and Fukunaga, 2020; Karia and Srivastava,
2021; Speck et al., 2021; Nir, Shleyfman, and Karpas, 2021; Sudry and Karpas, 2022;
Ferber and Seipp, 2022; Ferber et al., 2022a,b; Bhatia et al., 2022).

In this thesis, we delve into three directions to improve planning with machine learn-
ing. Many successful planners use heuristic search. It is commonly assumed that
heuristic search with a better informed heuristic finds a solution faster than heuristic
search with a worse informed heuristic. One key ingredient of AlphaGo (Silver et al.,
2016) is a neural network which is trained to become a good heuristic for a specific task.
Inspired by the successes of AlphaGo, we asked ourselves: Can we autonomously train
neural networks as powerful and competitive heuristics for arbitrary classical planning
state spaces? In Part I, we train feed-forward networks as competitive heuristics. The
networks receive as input just a description of the current state. A key difference to
Silver et al. (2016) is that we do not have a large team and incredible computational
resources to train a heuristic for a single task. Instead, our framework runs almost au-
tonomously while using a reasonable amount of computational power and still trains
good heuristics. We evaluate parameter choices, identify difficulties, and present solu-
tions. Furthermore, we compare our frameworks against another recent learning-based
heuristic and against state-of-the-art model-based planners on tasks of interesting dif-
ficulties. We observe that learning-based planners are highly complementary and that
the model-based planners still outperform all learning-based planners. There is a sole
exception, our second framework performs best in one domain. Up to now, it was only
once reported for a single domain that a learning based method exceeded model-based
methods Karia and Srivastava (2021).

Not only learning-based heuristics, but also model-based planners have complemen-
tary strengths. It is not obvious, which planner to choose for a task. A planner portfolio
is a schedule of planners which is executed to solve a task. In Part II, we train neural
networks as online portfolios, i.e., the schedule is constructed specifically for the task
to solve. Until now, all online portfolios use handcrafted input features. We present
new online portfolios, which do not rely on handcrafted features. In our first step, we
convert the given task to an image. A neural network identifies by itself important fea-
tures. In our second step, we encode the task as graph and fed it to a graph neural
network. This allows the neural network to learn arbitrary features of the task. Until
today, no online portfolio considers for selection of the i-th planner in their schedule the
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1.1. Structure

previous i − 1 unsuccessfully executed planners, although, this knowledge is essential
to disregard planners which are similar to already executed planners. Finally, we show
that switch to a second planner based on the knowledge that the first selected planner
did not terminate successfully after half the time limit is beneficial. Each step improves
the state of the art. In our last phase, we revisit simple machine learning methods and
simple handcrafted features and show that they can learn online portfolios comparable
to the current state of the art. We show how to inspect the explainable portfolios to
increase our trust in their choices.

Even if we select the best planner for a task, the planner might be too slow to solve
the tasks within a given time limit. Thus, we have to improve it. Every task induces a
state space. In combination with a heuristic, this state space forms a topology (Hoff-
mann, 2005). If we know the topology for a heuristic during search, we can exploit
it in many ways. Unfortunately, this knowledge is only available after the search. In
Part III, we build upon the theory of Heusner (2019) and our expectation that related
tasks share similarities in their topologies. We use description logic to learn formulas,
which describe progress states, a feature of the topology. We show that these formulas
generalize to other tasks from the same domain and how to use them during search.
Furthermore, we present our current work, which learns for similar tasks how to split
them in a set of subtasks. Therefore, we learn from a single simple task a graph struc-
ture which we call generalized bench transition system. We demonstrate how this could
be used to solve a task by a sequence of simpler searches.

Our journey started in the middle of the hype around neural networks. We consid-
ered neural networks in each of our research directions. But, just because a technique is
hyped, it does not mean that it is the right tool. In each of our research directions we use
or considered using neural networks, and we evaluate how well other machine learn-
ing techniques perform. In Part III, we disregard neural networks completely and use
decision trees, because neural networks could not provide the explanations we seeked.

1.1. Structure
In the first four chapters we explain the necessary background. Chapter 2 introduces our
mathematical notation. Chapter 3 provides an introduction to classical planning, to the
formalisms we use, and to the most important techniques we apply. Chapter 4 provides
a short introduction to machine learning and presents an overview of the methods we
use, especially of neural networks. Chapter 5 introduces description logic and presents
a way to construct description logic interpretations for planning tasks. This chapter is
mostly necessary for Part III.

Afterwards, the three main parts follow: Part I Learning Heuristics, Part II Learning
Portfolios, Part III Learning State Space Topologies. Each part has the same structure.
We introduce the topic and explain the necessary background for that part. Then we
present our methods, followed by an experimental evaluation of our methods. We con-

3



1. Introduction

clude every part with a summary of the results and describe future, as well as already
started, avenues for research.

Chapter 19 concludes the thesis. Here, we provide a last high-level summary of the
main contributions.

1.2. Experimental Setup

Some parameters stay almost unchanged over all experiments. We implemented all
methods to sample states of a task, as well as, all search algorithms in Fast Downward
(Helmert, 2006) using native C++ code. During search, the neural networks and de-
scription logic concepts and roles are evaluated in Fast Downward using the officially
C/C++ libraries. Neural Fast Downward, our extension of Fast Downward, is publicly
available1. It implements procedures to sample states or the whole states space of a
planning task. It supports the machine learning frameworks Tensorflow (Abadi et al.,
2015) and PyTorch (Paszke et al., 2019). Within each part of this thesis, we use the
same version Fast Downward.

We use Downward Lab (Seipp et al., 2017) to manage our experiments and to con-
solidate the results. Unless otherwise noted, we ran all experiments on an Intel Xeon
E5-2660 CPU with 2.2GHz. We execute a single search for at most 30 minutes and
with 3.8 GB of memory. As most planning algorithms use exactly one core, we use a
single CPU core in all search runs. Many machine learning models, especially neural
networks, profit from parallel computing power. Using two CPU cores during search,
speeds up the searches with neural networks by 50%, i.e., the search expands 50% more
states within the same time. Using four cores causes a further speed-up of 20% (Ferber,
Helmert, and Hoffmann, 2020). A GPU could further accelerate the model evaluation.

We performed all computations on the same hardware, unless otherwise stated, but
with different resource limits. We trained all neural networks with Tensorflow. We
mainly use the Keras (Chollet, 2015) front-end for describing the network architectures.
To train all other models, we used SKLearn (Pedregosa et al., 2011).

We mainly evaluate our approaches on the tasks from the International Planning
Competitions (IPC). All IPC tasks are publicly available2. We indicate whenever we
use additional tasks. All tasks are specified using the Planning Domain Description
Language (McDermott et al., 1998, PDDL). If necessary, we compile them to a FDR
(Bäckström and Nebel, 1995) representation using the translator of Fast Downward.

The code for all the experiments in this thesis, except for the unpublished ongoing
work, is publicly available. We refer the interested reader to the publication list.

1https://github.com/PatrickFerber/neuralfastdownward
2https://github.com/aibasel/downward-benchmarks
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1.3. Publications

1.3. Publications
The results in this thesis are based on my following publications. Publications marked
by * were performed during an internship at IBM Research.

Part I: Learning Heuristics

• Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural Network Heuristics for
Classical Planning: A Study of Hyperparameter Space. In De Giacomo, G., ed.,
Proceedings of the 24th European Conference on Artificial Intelligence (ECAI
2020), 2346–2353. IOS Press
Code: https://zenodo.org/record/3671553
Models: https://zenodo.org/record/4000991

• Ferber, P.; Geißer, F.; Trevizan, F.; Helmert, M.; and Hoffmann, J. 2022b. Neural
Network Heuristic Functions for Classical Planning: Bootstrapping and Compar-
ison to Other Methods. In Thiébaux, S.; and Yeoh, W., eds., Proceedings of the
Thirty-Second International Conference on Automated Planning and Scheduling
(ICAPS 2022), 583–587. AAAI Press
Code & data: https://zenodo.org/record/6303621

Part II: Learning Portfolios

• *Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Ferber, P. 2019a. Deep
Learning for Cost-Optimal Planning: Task-Dependent Planner Selection. In Pro-
ceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI
2019), 7715–7723. AAAI Press
Code: https://zenodo.org/record/6683999

• Ferber, P.; Ma, T.; Huo, S.; Chen, J.; and Katz, M. 2019. IPC: A Benchmark Data
Set for Learning with Graph-Structured Data. In Proceedings of the ICML-2019
Workshop on Learning and Reasoning with Graph-Structured Representations

• *Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020. Online Planner Se-
lection with Graph Neural Networks and Adaptive Scheduling. In Conitzer, V.;
and Sha, F., eds., Proceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI 2020), 5077–5084. AAAI Press
Code: https://github.com/matenure/GNN_planner

• Ferber, P.; and Seipp, J. 2022. Explainable Planner Selection for Classical Plan-
ning. In Honavar, V.; and Spaan, M., eds., Proceedings of the Thirty-Sixth AAAI
Conference on Artificial Intelligence (AAAI 2022), 9741–9749. AAAI Press
Code & data: https://zenodo.org/record/5767692
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1. Introduction

Part III: Learning State Space Topology

• Ferber, P.; Cohen, L.; Seipp, J.; and Keller, T. 2022a. Learning and Exploiting
Progress States in Greedy Best-First Search. In De Raedt, L., ed., Proceedings of
the 31st International Joint Conference on Artificial Intelligence (IJCAI 2022),
4740–4746. IJCAI
Code & data: https://zenodo.org/record/6496716
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1.4. Contribution to Multi-Author Papers

Results of my publications below were not included in the thesis. Workshop papers,
which are superseded by a conference paper are not listed.

• Ferber, P. 2020. Simplified Planner Selection. In ICAPS 2020 Workshop on
Heuristics and Search for Domain-independent Planning (HSDIP), 102–110
Code & data: https://zenodo.org/record/4061614

• Büchner, C.; Ferber, P.; Seipp, J.; and Helmert, M. 2022. A Comparison of Ab-
straction Heuristics for Rubik’s Cube. In ICAPS 2022 Workshop on Heuristics
and Search for Domain-independent Planning (HSDIP)
Code & data: https://zenodo.org/record/6589227

• Steinmetz, M.; Fišer, D.; Eniser, H. F.; Ferber, P.; Gros, T.; Heim, P.; Höller, D.;
Schuler, X.; Wüstholz, V.; Christakis, M.; and Hoffmann, J. 2022a. Debugging
a Policy: Automatic Action-Policy Testing in AI Planning. In Thiébaux, S.; and
Yeoh, W., eds., Proceedings of the Thirty-Second International Conference on
Automated Planning and Scheduling (ICAPS 2022), 353–361. AAAI Press
Code: https://zenodo.org/record/6323289

• Heller, D.; Ferber, P.; Bitterwolf, J.; Hein, M.; and Hoffmann, J. 2022. Neural
Network Heuristic Functions: Taking Confidence into Account. In Proceedings
of the 15th Annual Symposium on Combinatorial Search (SoCS 2022), 223–228.
AAAI Press
Code: https://zenodo.org/record/6553255

1.4. Contribution to Multi-Author Papers
In our research it is common to work as a team. Below I indicate my contributions for
the publications used for this thesis. I only add contributions without my involvement,
if incorrect expectations are possible. Not applicable (NA) means this contribution
required no work, e.g., we took it from a previous publication; None means I did not
contribute to this part; Minor means I contributed minor parts, but someone else did
most of the work; Moderate means I contributed an important portion of the work, but
someone else also contributed an important portion; Major means I contributed most of
the work. In general, all authors wrote together the paper.

Neural Network Heuristics for Classical Planning: A Study of Hyperparameter
Space

Major Training data generation
Major Training neural network heuristic functions
Major Evaluating neural network heuristic functions
Moderate Writing and editing the publication
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Neural Network Heuristic Functions for Classical Planning: Bootstrapping and
Comparison to Other Methods.

Major New Bootstrapping Approach
Major Evaluating and comparing bootstrapping approach and baselines

- Training data generation
- Training

Moderate Adapting supervised learning from Ferber, Helmert, and Hoffmann (2020) as baseline
- Training data generation
- Training

Moderate Writing and editing the publication
Minor Adapting STRIPS-HGN (Shen, Trevizan, and Thiébaux, 2020) as baseline

- Training data generation
- Training

Deep Learning for Cost-Optimal Planning: Task-Dependent Planner Selection

Major Exploring architecture and training variants and evaluating robustness
Moderate Writing and editing the publication
Minor Training data generation
None Original NN architecture and training (Katz et al., 2018)

IPC: A Benchmark Data Set for Learning with Graph-Structured Data

Major Generating Statistics
Moderate Interpreting Statistics
Moderate Writing and editing the publication
NA Generating Graphs

Online Planner Selection with Graph Neural Networks and Adaptive Scheduling

Major Adaptive scheduling approach
Moderate Training data preparation
Moderate Evaluating the GNNs
Moderate Writing and editing the publication
None Training GNNs

8



1.4. Contribution to Multi-Author Papers

Explainable Planner Selection for Classical Planning

Major Training data generation
Major Training
Major Evaluation
Moderate Writing and editing the publication

Learning and Exploiting Progress States in Greedy Best-First Search

Major Learning Formulas
Moderate Generating Features
Moderate Evaluating Formulas
Moderate Writing and editing the publication
Minor Handcrafted Formulas
None Generating States with Labels

Unpublished Work: Learning Generalized Bench Transition Systems

Major Constructing Generalized Bench Transition System
Major Visualizations Generalized Bench Transition System
Moderate Bench Walking
Moderate Writing and editing the publication
None Sampling Bench Transition System
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2. Mathematical Notation
To pre-empt confusion, we clarify our mathematical notation and some basic concepts.
This chapter is not an introduction to these concepts.

We represent a set as {x1, x2, . . . , xi} and a multi-set as {{x1, x2, . . . , xi}}. In con-
trast to a set, a multi-set can contain duplicates. Sets and multi-sets have no order. We
write ⟨x1, x2, . . . , xi⟩ to denote a tuple, an ordered collection of elements.

For scalar variables, we use lower case Latin letters, e.g., a, b. We annotate vectors
with a small arrow, e.g., a⃗. For matrices, we use upper case Latin letters, e.g., A,B.
To access the i-th element of a vector or tuple, we subscript its variable with i, e.g., x⃗i.
Let X be a 2-dimensional matrix. To access its i-th row, we write Xi. To access the
element in the i-th row and j-th column of X , we write Xi,j . We define the content of a
vector as x⃗ = [x1 x2 . . . xi]. If the content of a vector follows a clear pattern, we may
write x⃗ = [xk]k=1,...,i. We use the same abbreviations for defining tuples. By default,
all our vectors are column vectors. If clear from context, we omit the transpose symbol
for readability. Let A ∈ RN×M and B ∈ RN ′×M be two matrices. Then X = [A B] is
a matrix with N +N ′ rows and M columns.

The set of natural numbers (N) excludes zero. Any set of positive numbers (e.g., R+)
excludes zero. If we include zero, then we subscript the set with zero. We sometimes
use the Boolean values true and false in numerical expressions. In these cases, we
implicitly convert true to 1 and false to 0. We define B as the set of Boolean values.

First-Order Logic. We use formalisms based on first-order logic (FOL), also called
predicate logic. The signature of a FOL is a tuple S = ⟨V,C,F,P⟩ where

• V is a set of variable symbols,

• C is a set of constant symbols,

• F is a set of function symbols, and

• P is a set of predicate symbols.

Every function symbol f ∈ F has an arity arity(f) ∈ N0. Every predicate symbol
p ∈ P has as well an arity arity(p) ∈ N0. A term is a constant symbol, a variable
symbol, or f(t1, . . . , tk) where f ∈ F is a function symbol with arity(f) = k and all
t1 to tk are terms. Let p ∈ P be a predicate symbol with arity(p) = k and t1, . . . , tk
be terms. Then p(t1, . . . , tk) is a predicate. A grounded predicate is a predicate, which
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is constructed without variable symbols. We call a grounded predicate also a fact. The
following structures are all predicates: a formula over S, the identity of two terms
(e.g., t1 = t2), the universal or existential quantification of a variable x ∈ V for another
formula (e.g., ∀x : ϕ), the negation of a formula, the conjunction of a formula, and the
disjunction of a formula.

An interpretation I = ⟨∆I , ·I⟩ for S makes a formula interpretable. The universe
∆I is a non-empty set. ·I is a function, which assigns all constants c ∈ C an element of
the universe cI ∈ ∆I , defines all functions f ∈ F with arity(f) = k as f : ∆Ik → ∆I ,
and defines which ground predicates hold. A variable assignment is a function, which
maps variables to objects in the universe. A complete variable assignment is a function
V : V → ∆I which maps every variable to an element of the universe. We use a set
notation to represent variable assignments. Let V be a variable assignment over the
variables V . We represent V as a set {v → V(v) | v ∈ V }. Furthermore, we define
vars(V) = {v | ∃d : v → d ∈ V}. We overload this function for predicates. Let
p(t1, . . . , tk) be a predicate. vars(p(t1, . . . , tk)) is the set of variables occurring in the
terms which define the predicate.
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3. Classical Planning
Planning is about finding sequences of actions, which solve a task. Given an arbitrary
planning task, a planning algorithm, so called planner, returns a sequence of actions,
which transforms the initial state of the world as described by the tasks into a state,
which satisfies a goal condition. The formalisms to define planning tasks describe a
rich class of problems. Thus, we call a planner also a general purpose solver. The
formalism, which describes a problem, restricts the features that can be modeled. In this
thesis, we consider the feature set of classical planning. This means, all our planning
tasks have the following properties:

• single agent, i.e., there is a single controller who executes a sequence of ac-
tions. This controller does not need to be a concrete entity with a location. It is
forbidden to have multiple controllers, which execute independent sequences of
actions.

• no exogenous events, i.e., nothing except for the actions applied by the single
controller changes the world.

• fully observable, i.e., at all points, the controller knows everything about the state
of the world and all existing actions.

• deterministic, i.e., applying the same action in the same state leads always to the
same known successor state.

• instantaneous, i.e., executing an action applies all effects of the action immedi-
ately. For a real world problem, if suffices if the next action is applied after all
effects of the previous action took effect.

Furthermore, all planning formalisms describe an initial state of the problem, a goal
condition, which identifies states we want to reach, and a set of actions to transform
states. We try to find a sequence of actions, which transforms some initial state of
the world into a state which satisfies some goal condition. We name the real world
challenge a problem. We call its representation in a planning formalism a task. Related
work uses the word model as synonym for a planning task. We avoid this to prevent
confusion with machine learning models. In this thesis, a model always describes a
machine learning model, i.e., a trained or untrained concrete instantiation of a machine
learning technique.
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3.1. Planning Formalisms

3.1. Planning Formalisms
There exist many formalisms to model classical planning tasks. We use PDDL (Mc-
Dermott et al., 1998) and FDR. The latter extends SAS+ Bäckström and Nebel (1995)
with support for conditional effects. The PDDL formalism is based on first-order logic
(see Section 2, First-Order Logic). We call formalisms based on first-order logic lifted.

Definition 3.1. PDDL Planning Task
A PDDL task is a tuple ΠPDDL = ⟨O,P ,A, sI, δ⟩ where

• O = {o1, . . . , on} is a finite set of objects, which represent the universe.

• P = {p1, . . . , pn} is a finite set of predicate symbols. Let p(t1, . . . , tk) be a
predicate where ti is an object or variable. If all terms are objects (t1, . . . , tk ∈
O), then it is a grounded predicate or just fact. If at least one term is a variable,
then it is a lifted predicate. Let p(t1, . . . , tk) be a lifted predicate. Let V be
a variable assignment over the variables vars(p(t1, . . . , tk)). We can ground
p(t1, . . . , tk) using V by replacing all terms ti ∈ vars(p(t1, . . . , tk)) with V(ti). F
is the set of all facts. A literal is a fact or a negated fact. L is the set of all literals.
A set s ⊆ F is a state. S = 2F is the set of all states. We sometimes extend s to
include explicitly the remaining facts as negative literals JsK = s ∪ {¬f | f ∈
F ∧ f /∈ s}.

• A is a set of action schemas. An action schema a ∈ A is a tuple ⟨Va, prea, eff a⟩.
Va is a set of variables. prea is a set of possibly negated predicates called pre-
condition of the action. eff a is the effect of the action. The effect eff a is a list of
conditional effects V i

a , cond
i
a ▷ eff

i
a. cond i

a is a set of possibly negated predicates
and called effect condition, eff i

a is a single possibly negated predicated and is
called effect predicate. V i

a is an additional set of variables with V i
a ∩ Va = ∅ and

Va ∪ V i
a ⊇ vars(eff i

a) ∪
⋃

l∈condi
a
vars(l). Given a variable assignment V for Va,

pre can be grounded to prea,V. Given an additional assignment Vi
a, cond i

a and
eff i

a can be grounded to cond i
a,V,Vi

a
and eff i

a,V,Vi
a
.

A ground action or just action aV is an action schema a which is partially grounded
with a variable assignment Va over O. The action aV, is applicable in a state
s ∈ S, written as applicable(s, aV), if prea,V ⊆ JsK. If aV is applicable in s,
then applying it, written as sJaVK, leads to a new state (subscript a is omitted for
readability)

sJaVK = {f |f ∈ s,¬∃⟨V i : cond i
V ▷ eff i

V⟩ ∈ eff V ,Vi :

cond i
V,Vi ⊆ JsK ∧ ¬f = eff i

V,Vi}∪
{f |⟨V i : cond i

V ▷ eff i
V⟩ ∈ eff V,∃Vi :

cond i
V,Vi ⊆ JsK ∧ eff i

V,Vi ∈ F}.
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3. Classical Planning

The first set describes all facts which were previously in the state and are not
removed by the action. The second set describes all facts which are added by
the action. If a ground action has an effect which removes a fact and it has
another effect which adds a fact, then we follow the add-after-delete convention,
i.e., the deletion is ignored. Additionally, every ground aV is associated with a
non-negative cost cost(aV) ∈ R+

0 , such that for any two variable assignments
V′,V′′ we have cost(a′V) = cost(a′′V).

• sI ∈ S is the initial state.

• δ ⊆ L is a set of literals called goal. Any state JsK ⊇ δ is a goal state. SG is the
set of all goal states.

If two tasks use the same predicate symbols and the same action schemas, then we
say that they belong to the same domain.

The FDR formalisms is based on predicate logic. We call such formalisms grounded.
Both formalisms are related. Sometimes, they use the same notation, but with a slightly
different meaning. Where necessary, we indicate which meaning we use.

Definition 3.2. FDR Planning Task
An FDR task is a tuple ΠFDR = ⟨V , A, sI, δ⟩ where

• V = {v1, . . . , vn} is a finite set of state variables. Every state variable v has a
finite domain dom(v). A pair ⟨v , d⟩ with v ∈ V and d ∈ dom(v) is a fact. As
before, F is the set of all facts. A state s is a variable assignment over V , i.e.,
s = {v1 → d1, . . . , vn → dn | di ∈ dom(vi)}. A partial state is a variable
assignment over a subset of V . S is the set of all states.

• A is a finite set of ground actions. An action a ∈ A is a tuple ⟨prea, eff a⟩
where the precondition prea is a partial variable assignment and the effect eff a =
[cond1

a▷eff
1
a, . . . , cond

n
a▷eff

n
a ] is a list of conditional effects. The effect condition

cond i
a is a partial variable assignment, and eff i

a is a fact.

An action a is applicable in a state s if prea ⊆ s. If a is applicable in s, then
applying a in s, written as sJaK, leads to a new state

sJaK ={v → d | v → d ∈ s, ¬∃cond i
a ▷ eff

i
a ∈ eff a :

cond i
a ⊆ s ∧ eff i

a = v → d′ ∧ d ̸= d′}∪
{eff i

a | cond i
a ▷ eff

i
a ∈eff a, cond

i
a ⊆ s}.

The first set describes the facts which stay in the state, the second set describes
the facts which are new. We assume conflict free actions, i.e., for every state and
action it never happens that two conditional effects apply simultaneously and set
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3.2. Heuristics

different values for the same variable. More formally, for every state s ∈ S and
action a ∈ A holds:

∀cond ′ ▷ v → d′, cond ′′ ▷ v → d′′ ∈ eff a : d
′ = d′′ ∨ cond ′ ⊈ s ∨ cond ′′ ⊈ s

Every action a is associated with a non-negative cost cost(a) ∈ R+
0 .

• sI is the initial state.

• δ is a partial state, which describes the goal. Any state s ⊇ δ is a goal state. SG

is the set of all goal states.

If all actions of a task have only empty effect conditions, then we say that it has no
conditional effects. We can compile a PDDL tasks into an FDR task with up to an
exponential increase in the size of the task representation (Helmert, 2009). In practice,
many planners apply this compilation and then use the FDR task. The PDDL and FDR
tasks share some properties. Applying an action a to a state s as defined by sJaK is called
progression. The state sJaK is a successor of s. The function succ : S 7→ 2S maps states
to their successors, i.e., succ(s) = {sJaK | a ∈ A∧applicable(s, a)}. Given two states s
and s′, then s′ is reachable from s if there exists a sequence of actions π = ⟨a1, . . . , an⟩
such that every ai is applicable in sJa1K . . . Jai−1K and sJa1K . . . JanK = sJπK = s′. For
a state s, a sequence of actions π is an s-plan if the last state along π is a goal state,
i.e., sJπK ∈ SG. Let Π be a task with initial state sI. For simplicity, we call an sI-plan
just a plan. An action sequence π has a non-negative cost cost(π) =

∑
a∈π cost(a). An

optimal plan is a plan of minimal cost. For the sake of simplicity, we ignore the notion
of derived predicates.

3.2. Heuristics
A heuristic is a state-value function, i.e., a function which assigns every state to a
value. In planning, heuristics commonly estimate the cost or length of a plan for a
state. For this endeavor, they often solve a simplified version of the task (Korf, 1997;
Edelkamp, 2001; Hoffmann and Nebel, 2001; Dräger, Finkbeiner, and Podelski, 2006;
Helmert, Haslum, and Hoffmann, 2007; Katz, Hoffmann, and Domshlak, 2013; Seipp
and Helmert, 2013).

Definition 3.3. Heuristic
Let Π be a planning task with a set of states S . A heuristic for the task Π is a function
h : S 7→ R+

0 ∪ {∞}.

The perfect heuristic h∗ is a special heuristic. It assigns every state s the cost of its
optimal plan. If no such plan exists, it assigns infinity. It is impractical to use the perfect
heuristic during search, as every state estimation is as expensive as finding an optimal
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3. Classical Planning

plan. Another important heuristic is the perfect delete-relaxed heuristic (Hoffmann and
Nebel, 2001, h+). Let Π be a PDDL task. Let Π′ be a transformation of Π where all
occurrences of negated facts are removed. The h+ value for a state s of Π is the h∗

value for the same state s of Π′. Some important properties of heuristics are defined
below.

Definition 3.4. Properties of Heuristics
Let Π be a planning task with states S and goal states SG. A heuristic h : S 7→
R+

0 ∪ {∞} is

• safe if h(s) =∞ =⇒ h∗(s) =∞ for all states s ∈ S.

• goal-aware if h(s) = 0 for all goal states s ∈ SG.

• admissible if h(s) ≤ h∗(s) for all states s ∈ S.

• consistent if h(s) ≤ cost(a) + h(s′) for all transitions s′ = sJaK.

3.3. State Spaces

Algorithm 1 Best-First Search (BFS) without (with) Reopening. For a planning task
Π, an evaluation function f , and a heuristic function h, it returns a plan or unsolvable.
BFS is complete, if h is safe. g(n) is the cost of the cheapest known path to the state of
n.

1: procedure BEST-FIRST SEARCH

2: open← Priority Queue ordered by ⟨f, h⟩
3: if h(sI) <∞ then
4: open.insert(⟨none, none, sI⟩)
5: closed← {} or new HashMap<>
6: while not open.isEmpty() do
7: n← open.pop_min()
8: _, _, s← n
9: if s /∈ closed ∨g(n) < closed[n[2]] then

10: closed.insert(s) or closed[n[2]] = g(n)
11: if is_goal(s) then
12: return trace_path(n)
13: for all ⟨a, s′⟩ ∈ succ(s) do
14: if h(s′) <∞ then
15: open.insert(⟨n, a, s′⟩)
16: return unsolvable
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3.3. State Spaces

A state space is a graph structure over a set of states, which indicates an initial state
and a set of goal states.

Definition 3.5. State Space
Let S be a set of states, sI ∈ S be an initial state, SG ⊆ S be a set of goal states, and
succ : S 7→ 2S be a function, which represents the relations between states. A state
space is a tuple X = ⟨S, sI,SG, succ⟩.

Any planning task Π with states S, initial state sI, goal states SG, and successor
function succ induces a state space X (Π) = ⟨S, sI,SG, succ⟩.

A common tool to solve planning tasks is forward state space search, also called
forward search or progression search. One group of state space search algorithms is
best-first search. Best-first search has a priority queue, called open list, of reachable
states, which is initialized with the initial state sI. It sorts the open list by an evaluation
function f . Iteratively, it pops the state s with minimal f value from the open list. Best-
first search without reopening expands the state s, if it was not yet expanded. Best-first
search with reopening expands the state s, if it was not yet expanded or a new cheaper
path to reach s was found. If the popped state s is a goal state, the search ends and
returns the cheapest known sequence of actions π which led to the goal state s. If it
is not a goal state, then the search expands the state s. That means it constructs all
successors of the state and adds them to the open list (see Algorithm 1). We use two
common instantiations of best-first search: Greedy best-first search (GBFS) and A*
search.

Definition 3.6. Greedy Best-First Search (Doran and Michie, 1966)
Let h be an arbitrary heuristic function. Greedy best-first search is a best-first search
without reopening with h as heuristic and as evaluation function.

Definition 3.7. A∗ Search (Hart, Nilsson, and Raphael, 1968)
Let h be an arbitrary heuristic function and g be the function which returns for a search
node n the cost of the cheapest known path to n. A∗ search is a best-first search with
reopening with h as heuristic and f(n) = h(n.state) + g(n) as evaluation function.

Given an admissible and consistent heuristic h, A∗ finds optimal plans. GBFS has no
guarantee of the plan quality. In practice, it often finds plans faster. If we relate to A∗

without a concrete heuristic, we assume the heuristic is admissible and consistent. We
assume that all our heuristics are safe.

An alternative to forward search is backward search, also called regression search. In
forward search, we start at the initial state and keep track of already reached states. We
iteratively increase this set until we find a goal state. In backward search, we start at the
goal condition, a partial state. We keep track of the already reached partial states. In
every iteration, we take one partial state and reason from which other partial states we
can reach it. We stop once we find a partial state p which includes initial state sI, i.e.,
p ⊇ sI. The key component of this search is the regression operator, which performs
the reasoning. We do not perform regression search, but we use the regression operator.

17



3. Classical Planning

Definition 3.8. Regression Operator
Let Π = ⟨V , A, sI, δ⟩ be an FDR planning task without conditional effects. We simplify
the effect of an action a to eff ′

a = {eff i
a | ∅ ▷ eff i

a ∈ eff a}.
Let p be a partial state and let a ∈ A be an action. p is regressable over a if

1. eff ′
a ∩ p ̸= ∅,

2. ¬∃v ∈ V : v ∈ vars(eff ′
a) ∩ vars(p) ∧ eff ′

a(v) ̸= p(v), and

3. ¬∃v ∈ V : v /∈ vars(eff ′
a) ∧ v ∈ vars(prea) ∩ vars(p) ∧ prea(v) ̸= p(v).

If p is regressable over a, then its regression is

regr(p, a) = {v → p(v) | v ∈ vars(p), v /∈ vars(eff ′
a)} ∪ prea.

3.4. Metrics
To compare planners in our experiments, we use the expansions, time, and coverage
metrics. Given a single planning task, the number of expansions expresses the number
of states best-first search expands until it finds a goal state. Let the task have unit-
cost actions, i.e., all actions have a cost of one. Then we assume that a better informed
heuristic, causes GBFS to expand fewer states. GBFS with the perfect heuristic, the best
informed heuristic possible, expands only the states along one optimal plan. This is also
the minimum number of expansions possible with GBFS. To deduce the informedness
of a heuristic from the expansions on a single task is too simplistic. The heuristic
could be well-informed on most parts of the state space, but uninformed on the fraction
required to solve the given task. To use the number of expansions as a proxy for the
informedness, the heuristic should be evaluated on a set of diverse tasks.

Informedness is not the only important metric. Given two heuristics, the first one
is better informed, and the second one is faster to evaluate. It is not obvious which
heuristic we to prefer. For the less informed heuristic, the time required for additional
expansions might exceed the time saved due to the faster evaluation. Thus, we also
measure the time an algorithm takes to find a plan.

The blind heuristic predicts the same value for all states. It is the least informed,
but also the fastest to evaluate. GBFS with the blind heuristic expands states quickly.
For simple tasks, it quickly finds a solution. On harder tasks, it often fails, because
GBFS keeps track of all reachable states and all expanded states. This quickly exceeds
the available memory. In practice, we have to work with finite resources. Given a set
of tasks and a resource limit, the coverage of a planner is the number of tasks solved
within the limits.
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4. Machine Learning
For humans, it is natural to observe an event, predict its effects and act on this knowl-
edge. If we play football, we see how the ball moves, we predict where it will be in
the future, and we know where to run. We can do this, because we already observed
moving balls for uncountable times and learned how balls travel. But there are effects,
especially in high-dimensional data, which we do not grasp that easily. Thus, we devel-
oped mathematical tools to identify patterns in data and to predict the effects of these
patterns. The research area for this is machine learning. Most “tools” describe a model
and a procedure to train the model on observations with known effects. Some mod-
els are trained almost purely on the data, others are trained additionally with a human
provided bias. We use these models to predict the effects of new observations.

More formally, let O be the set of all possible observations. We define a list of input
features, in short features, F to describe the observations. Every feature f ∈ F is a
function f : O 7→ R which extracts from the observation a scalar. We do not use the
word feature to refer to intermediate outputs of a model. Instead, we call those hidden
or latent representations. We do not use the term effect. We use the more common term
label. L is the set of all possible labels. For an observation o ∈ O, we construct a
feature vector x⃗ with x⃗i = Fi(o). The label of o is a value y ∈ L. A feature vector
- label pair is a sample. The model m is a function m : R|F| 7→ L which predicts for
a feature vector a label. If it predicts values from a discrete set of labels, then we call
it a classification model. If it predicts continuous values, then we call it a regression
model. This regression is independent of the previously defined regression operator. If
it is unclear from the context, then we specify to which regression we refer.

In general, we train models on a list of samples D = ⟨⟨x⃗i, yi⟩⟩i=1..n ≈ ⟨X, y⃗⟩ called
training data. We call X the feature matrix with X = [x⃗i]

⊤
i=1..n and y⃗ the label vector

with y⃗ = [yi]
⊤
i=1..m. To predict a label for an observation, we first construct the feature

vector and then query the model.

4.1. Classical Models
Over time, many classes of models were developed. One of the earliest and simplest
is linear regression (Galton, 1886). A linear regression model is a linear combination
over the elements in the feature vector and a learned bias term. It outputs a continuous
value, i.e., L = R. For each feature, it learns a weight, which represents the positive or
negative impact of the feature on the prediction.
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Definition 4.1. Linear Regression
Let F be a list of features, x⃗ ∈ R|F| be the feature vector of an observation and m be a
linear regression model with the weight vector w⃗ ∈ R|F| and the bias b ∈ R. Then the
output of m is

m(x⃗) = w⃗⊤x⃗+ b.

When training a linear regression model m, its weight vector and bias term are
adapted to minimize a loss function. Most commonly the mean squared error (MSE) is
minimized.

Definition 4.2. Mean Squared Error
Let D = ⟨X, y⃗⟩ be a data set with N samples. X ∈ RN×M is its feature matrix and
y⃗ ∈ RN is its label vector. Let m be a function m : RM 7→ R. The mean squared error
of m on D is

MSE (m,D) =
1

N

N∑
i=1

(m(Xi)− y⃗i)
2.

If a linear regression model minimizes the mean squared error, then there exists an
analytical solution to find the optimal weight vector and bias term. Let D = ⟨X, y⃗⟩ be
a data set with N samples. X ∈ RN×M is its feature matrix and y⃗ ∈ RN is its label
vector. Let c = [1]⊤i=1..n be a vector and X ′ = [X c] be the feature matrix concatenated
with c. Then, we can calculate the optimal solution using

β⃗ = (X⊤X)−1X⊤y⃗.

The optimal weight vector is w⃗ = β⃗1..M and the optimal bias term is b = β⃗M+1.
It is expected that the models cannot perfectly capture the relation between observa-

tion and effect. Some reasons are that relevant features are missing, the effect is not
deterministic, or the model is not able to learn the true underlying function. For exam-
ple, linear regression can only predict linear combinations of the values in the feature
vector. If the true function requires a quadratic transformation of a feature value, linear
regression can never accurately learn this function. Nevertheless, the training process
minimizes the loss as much as possible. As a consequence, the training process can
use the weights of irrelevant features to minimize the loss on the training data. This
is called overfitting. On a new data set, the overfitted weights have a detrimental ef-
fect. A technique to prevent overfitting is regularization. Regularization adapts the loss
function to incorporate the weights and biases of a model. A common technique is L1
regularization, which adds the L1 norm of the weights to the MSE. (Tibshirani, 1996).
The new loss function is

(MSE + L1 )(λ,m,D) =
1

N

N∑
i=1

(m(Xi)− y⃗i)
2 + λ(|b|+

M∑
j=1

|wj|).
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Figure 4.1: (Left) Visualization of a decision tree. (Right) Conversion from a leave
node n to an internal node nn.

Alternatively or additionally, L2 regularization can be used. L2 regularization adds
the L2 norm of the weights to the loss function. The L2 norm squares the absolute value
of each weight before summation. Both techniques add a trade-off to the optimization.
Increasing the value of a weight parameter might reduce the MSE in the loss function,
but increases the L1 and L2 penalty. L1 regularization removes unnecessary weights to
zero and thus can be used for feature selection.

Another class of machine learning models are decision trees (Breiman et al., 1984).
In contrast to linear regression, a decision tree does not predict a continuous value, but
an element from a finite sets of labels.

Definition 4.3. Decision Tree
Let F be a set of features and L be a finite set of labels. A decision tree T is a bi-
nary tree with the internal nodes internal(T ), the leave nodes leaves(T ), nodes(T ) =
internal(T )∪leaves(T ), and a root node n1 ∈ nodes(T ). Every node n ∈ internal(T )
is associated with a feature fn ∈ F and a threshold τn. Every node n ∈ leaves(T ) is
associated with a label ln ∈ L.

To evaluate a decision tree (e.g., Figure 4.1) on a feature vector x⃗, we start at the root
node n1. If the current node n is a leave node, we predict the label ln associated with
n and terminate. If the current node n is an internal node and the value of the feature
associated with the node is smaller than or equal to the threshold, i.e., x⃗fn ≤ τn, then
we traverse the first child. Otherwise, we traverse the second child. Then, we repeat the
procedure until we reach a leaf node.

We greedily construct a decision tree T for some data D = ⟨X, y⃗⟩. We associate
every node n ∈ nodes(T ) with a non-exclusive subset of samples Dn = ⟨Xn, y⃗n⟩ from
D. Initially, the decision tree has only the root node n1 which is a leaf node and is
associated with the full training data D. We associate every leaf node n ∈ leaves(T )
with the most frequent label in y⃗n. Now, we iteratively convert leaf nodes to internal
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nodes (see Figure 4.1). We pick an arbitrary leaf node n ∈ leaves(T ) where y⃗n contains
different labels. Then, we create two new nodes n′ and n′′ as children of n. n′ and n′′ are
leave nodes, n is now an internal node. We associate a feature fn ∈ F and a threshold
τn ∈ R with n and we construct two new data sets Dn′ and Dn′′ . Dn′ contains all
samples from Dn with Xn,fn ≤ τn. Dn′′ contains all samples from Dn with Xn,fn > τn.
We stop converting leaf nodes to internal nodes, once all leaves are associated with a
single label.

The final question is how to pick a feature fn and threshold τn node n? The simplest,
frequently used solutions enumerate and evaluate all or a random subset of possibilities.
To evaluate an ⟨fn, τn⟩ pair, the children resulting from this pair are evaluated using an
impurity metric, and the quality of the split is a weighted average over the impurity of
the children. A common impurity metric is the Gini impurity (Breiman, 1996).

Definition 4.4. Gini Impurity
Let y⃗ ∈ LN be a label vector with N entries. For every l ∈ L, let

pl =
1

N

N∑
i=1

1y⃗i=l .

The Gini impurity for y⃗ is

Gini(y⃗) = 1−
∑
l∈L

p2l .

Given a label vector y⃗, Gini(y⃗) denotes the probability that a sample is misclassified
if the samples have the same label distribution as y⃗. Thus, lower values are better.

A straight forward extension of decision trees are random forests (Breiman, 2001).
A random forest is an ensemble method. Ensemble methods use internally multiple
models and combine their prediction into a single new prediction.

Definition 4.5. Random Forest
Let T1, . . . , Tn be decision trees for the features F . T = {T1, . . . , Tn} is a random
forest. Let x⃗ ∈ R|F| be a feature vector and P = {{T (x⃗) | T ∈ T }} be the multi-set
containing the predictions of every tree of the random forest. T (x⃗) predicts the most
frequent label in P .

4.2. Neural Networks

The fundamental building block of a neural network (NN) is the neuron (see Figure
4.2a). A neuron computes a linear combination of its inputs and transforms this result
with an activation function α.
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Figure 4.2: Basic concepts of neural networks.

Definition 4.6. Neuron
Let w⃗ ∈ RN be a weight vector, b ∈ R be a bias term, and α : R 7→ R be an activation
function. Let x⃗ ∈ RN be some input. A neuron n is a function n : RN 7→ R with

n(x⃗) = α(x⃗ ∗ w⃗ + b).

In general, the weights and bias of a neuron are trainable parameters. The activation
function introduces non-linearity. A single neuron is the simplest neural network. A
layer is a set of neurons with the same input dimensionality and the same activation
function. The dense layer, also called fully connected, is one of the most used layer
types.

Definition 4.7. Dense Layer
Let N = {n1, . . . , nN} be a set of neurons with M inputs each. Let w⃗i ∈ RM and
bi ∈ R be the weight vector and bias of neuron ni. All neurons use the same activation
function α. The weight matrix of the dense layer d is W = [w⃗1 . . . w⃗N ] and the bias is
b⃗ = [b1 . . . bN ]. A dense layer d is a function d : RM 7→ RN with

d(x⃗) = α(Wx⃗+ b⃗).

A common and simple neural network is a feed-forward network (FFN, see Figure
4.2b, see Goodfellow, Bengio, and Courville, 2016). An FFN consists of a sequence
of layers. The last layer is called output layer. All others are called hidden layers.
Proposition 4.1 shows the importance of the activation function for FFNs.

Proposition 4.1.
Let m : RM 7→ RN be an FFN where all layers use the identity function f(x) = x
as activation. Then, there exists an FFN m′ consisting of a single dense layer with N
neurons such that for all possible input vectors x⃗ ∈ RM it holds m(x⃗) = m′(x⃗).
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Proof:
The function represented by the FFN m with l layers and α(x) = x is

m(x⃗) = α(α(. . . α(α(x⃗W1 + b⃗1)W2 + b⃗2) . . .)Wl + b⃗l)

= (((x⃗W1 + b⃗1)W2 + b⃗2) . . .)Wl + b⃗l

= x⃗W1 . . .Wl + b⃗1W2 . . .Wl + b⃗2W3 . . .Wl + . . .

= x⃗

l∏
i=1

Wl +
l∑

i=1

b⃗i

l∏
j=i+1

Wj

= x⃗W ′ + b⃗′

with

W ′ =
l∏

i=1

Wl b′ =
l∑

i=1

b⃗i

l∏
j=i+1

Wj

□

We can replace an FFN with multiple layers without non-linear activation functions
by an FFN with a single layer. If we can merge those networks to a single layer, do we
require networks with multiple layers? In theory, no! By the universal approximator
theorem, any continuous function can be approximated to arbitrary precision by an
FFN with a single layer and sufficiently many neurons with sigmoid activation function
(Cybenko, 1989). But why do we use then FFN with multiple layers? A single layer
FFN is sufficient to represent any function f , but this single layer FFN might require
significantly more neurons than a neural network with multiple layers. In general, the
more neurons an NN has, the harder it is to train.

Describing the information flow as in Figure 4.2b is infeasible for large networks and
describing it in textual form can be tedious. The architecture of a network is regularly
visualized in a flow chart as in Figure 4.2c. When a network is trained, its parameters,
i.e., the weights and biases of its neurons are updated such that the network approxi-
mates a desired function. In most network architectures, the parameters approximate
the desired function. He et al. (2016) showed that it can be easier for a network to learn
the residuals between the input and the desired outcome. A residual block (see Figure
4.2d) approximates the difference between its input and the desired output. The output
of a residual block is the sum of the input and the approximated difference. A residual
network is a subgroup of FFN.

Definition 4.8. Dropout Layer
Let L be a layer with n outputs. Let D be a layer with n inputs, n outputs, and a
dropout probability of p. Every input of D is connected to a different output of D.
During training, the value received by an input is replaced by 0 with probability p.
With probability 1 − p the input is forwarded. After training, all inputs are forwarded
to their outputs. Then D is called a dropout layer.
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Figure 4.3: (Left) Visualization of a convolution filter and (Right) a single application
of that filter.

Another type of layers are dropout layers. During training, they randomly suppress
some outputs of their previous layer. Thus, the NN cannot put too much focus on single
neurons. This can improve the robustness of the final model.

Feed-forward networks accept only inputs of a fixed dimensionality. Many data sets
violate this constraint. For example, if the inputs are images, then the width and height
of the images can vary. We only know that images have a 2d grid structure. Convo-
lutional neural networks (CNNs, see LeCun, Bengio, and Hinton, 2015) can be con-
structed for arbitrary d-dimensional grid structured inputs. For a concrete CNN the
dimensionality of this grid structure is fixed, but the size of each grid dimension can
vary. For this purpose, a CNN has a convolution layer with convolution filters. Each
convolution filter is a neuron that is reused on multiple parts of the input (see Figure
4.3a). We call this reusing weight sharing. If the CNN accepts d-dimensional inputs,
then the convolution filter has a d dimensional weight matrix. As a side effect of the
weight sharing, the number of trainable weights to process a concrete d-dimensional
input is a lot smaller than the number of weights necessary if a dense layer would be
used for the same image. The reduced number of features means the filter is easier to
train, faster to evaluate, and requires less memory.

Definition 4.9. Convolution Filter
Let W ∈ RN1×...×Nd be the weight matrix, b ∈ R be the bias term, and α : R 7→ R
be the activation function of a convolution filter f . Let X ∈ RM1×...×Md be some
input with Mi ≥ Ni and Oi = Mi − Ni + 1. The filter f applied on X is a function
f : RM1×...×Md 7→ RO1×...×Od .

Let E = [0, N1] × . . . × [0, Nd] be the set of indices for all individual weights in W
and p⃗ ∈ Nd with 1 ≤ p⃗i ≤ Oi be the indices in the filter output. The application of f is
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defined as

f(X)p⃗ = α(b+
∑
e⃗∈E

Xe⃗+p⃗ ∗We⃗+p⃗).

Figure 4.3b visualizes for a 2×2 filter on a 4×4 input the computation of the output
value at position ⟨1, 3⟩. The filter is “in” the top left corner of the input. The “covered”
values are multiplied by the weights covering them. These products are summed up,
and the sum is transformed with the activation function α. The output of the activation
function is the output of the convolution filter for that position. Afterwards, the filter is
shifted to a new location. We described convolution filters with outputs that are smaller
than their inputs. Using a technique called padding, the input and output size can be
the same. For brevity, we do not explain it here.

We often use pooling in combination with convolution filters. A pooling layer com-
bines spatially neighboring inputs to a single output. A simple example is a 2× 2 max
pooling. Like the convolution filter, it moves a 2× 2 square over its inputs. The output
of each pooling calculation is the maximum over the inputs “covered” by the square.

CNNs proved useful for many applications, like text or object recognition from im-
ages. But they are restricted to grid-structured inputs. Many use-cases have data with
arbitrary graph structures, i.e., the data is represented by a graph G = ⟨V,E⟩ where V
are the vertices of the graph and E the edges. There is a set of features F and each
vertices v is annotated with a feature vector x⃗v ∈ R|F|. Thus, graph neural networks
(GNNs) emerged as a generalization of CNNs (Bruna et al., 2014; Defferrard, Bresson,
and Vandergheynst, 2016; Li et al., 2016; Kipf and Welling, 2017; Hamilton, Ying, and
Leskovec, 2017; Gilmer et al., 2017; Veličković et al., 2018).

Remember, let G = ⟨V,E⟩ be a graph. Then it has an adjacency matrix A ∈ B|V |×|V |

with Ai,j = 1 iff ⟨i, j⟩ ∈ E and Ai,j = 0 otherwise. The in-degree of the i-th node
d(i) =

∑
j Aj,i denotes the number of incoming edges of the node. The degree matrix

D ∈ N|V |×|V |
0 is a diagonal matrix with Di,i = d(i) and Di,j = 0 otherwise. The identity

matrix I ∈ B|V |×|V | has Ii,i = 1 and Ii,j = 0 otherwise.
A convolution filter combines the features of neighboring nodes in the grid-graph

to construct its output. A layer in a GNN follows the same idea, but generalized to
arbitrary graphs. One instance of such a generalization are AC-GNN layers.

Definition 4.10. AC-GNN layer (Hamilton, 2020)
Let G = ⟨V,E⟩ be an arbitrary graph. Let F be a set of features and for every v ∈ V
let x⃗v ∈ R|F| be the feature vector of vertex v. The output ov of a AC-GNN layer for a
vertex v is

ov = COMBINE(fv, AGGREGATE({{fv′ | v′ ∈ N (v)}}))
where N : V 7→ 2V defines the neighborhood of a vertex, AGGREGATE aggregates
multiple feature vector into one, and COMBINE computes the new feature vector ov for
v by combining its old feature vector with the aggregated feature vector.
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Countless realizations for N , AGGREGATE, and COMBINE exist. We refer the inter-
ested reader to Hamilton (2020). An example is

N (v) = {v′ | (v′, v) ∈ E}
AGGREGATE(v) =

∑
v′∈N (v)

x⃗v′

COMBINE(v) = x⃗vWself + AGGREGATE(v)Wothers + b

where Wself and Wothers are two trainable weight matrices and b is a trainable bias term.
We call a GNN consisting only of AC-GNN layers an AC-GNN.

4.3. Training Paradigms
Remember, a model which predicts a continuous value is a regression model. In con-
trast, a model that predicts one label out of a finite set of labels is classification model.
In the setting of classification, we use the words “label” and “class” interchangeably.
A neural network can have multiple continuous value outputs. We call this multi-target
regression. Nevertheless, if we have a finite set of labels L, the network has one output
ol for each l ∈ L, and we interpret the output of the network such that the prediction
of the network is the label with the greatest value ol, then we call it a classification
network. A common loss function for a classification network is the cross entropy.

Definition 4.11. Cross Entropy (Rubinstein, 1997)
Let D = ⟨X, y⃗⟩ be a data set with N samples for a classification task with K classes.
X ∈ RN×M is its feature matrix and y⃗ ∈ {1, . . . , K}N is its label vector. Let Y ∈
RN×K be a one-hot encoding of the label vector, i.e., Y i,k is 1 iff y⃗i = k. Otherwise
Y i,k is 0. Let m be a function m : RM 7→ ∆K where ∆ is the K-simplex. The cross
entropy loss of m on D is

CE (m,D) = − 1

N

N∑
i=1

K∑
c=1

Yi,c log(m(Xi)c).

Throughout this thesis, we train all models using supervised learning. That means,
we train the model using feature vector - label pairs. This is in contrast to unsuper-
vised learning where the model is trained using only feature vectors without labels or
reinforcement learning where the network receives for a feature vector - prediction pair
a reward signal. Curriculum learning is a special form of supervised learning. The
network is initially trained on “simple” examples and over time the difficulty of the
samples increases.

We use the terms training, validation, and test data to refer to three different data sets.
The training data is used during training to update the parameters of the model. The
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validation data is used during training to monitor the training progress or afterwards to
select hyperparameters. The test data is used for the final performance evaluation of the
trained model.

If the training process is non-deterministic, like with neural networks, then the train-
ing has to be repeated multiple times and the final test performance is the average over
the individual test performances. Furthermore, the individual test performances depend
on the training and test data. Repeating the training with the same data sets does not
show how reliable the model performs. k-fold cross validation solves this problem. It
takes a data set D and splits it in k folds D1, . . . , Dk each containing approximately
the same number of samples. It trains k models. For the i-th model, the i-th fold is
used as test data and the (i + 1) mod k fold is optionally used as validation data. All
other folds are used as training data. The final test performance is an average over the
k individual test performances.
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5. Description Logic
Description logic (DL) is a family of knowledge representation formalisms related to
FOL (see First-Order Logic). We use DL to represent knowledge about a world. In
our setting, the world is a state of a PDDL planning task. We do not use the ability of
description logic to reason about the world.

5.1. Concepts, Roles & Individuals
Description logic describes the world using individuals, concepts, and roles. An indi-
vidual represents an object and relates to a constant in FOL; a concept describes a set
of objects, which share some property and relates to a unary predicate in FOL; a role
describes a binary relation between objects and relates to binary predicates in FOL.

At the heart of every description logic are atomic concepts and atomic roles. Atomic
concepts describe the fundamental properties of the objects and atomic roles describe
the fundamental relations between objects. An interpretation assigns meaning to the
individuals, atomic concepts, and atomic roles. Let NI be the set of all individuals, NC

be the set of all atomic concepts, and NR be the set of all atomic roles. Let I = ⟨∆I , ·I⟩
be an interpretation, then ∆I is the universe. ·I defines for all individuals I ∈ NI a
constant value II ∈ ∆I , for all atomic concepts C ∈ NC a set of objects CI ⊆ ∆I , and
for all atomic relations R ∈ NR a relation RI ⊆ ∆I × ∆I . We call the interpretation
of an individual II , a concept CI , and a role RI a denotation.

Furthermore, a specific description logic fragment defines rules to inductively con-
struct new concepts and roles and to evaluate their denotations. We call these con-
structed concepts and roles complex. Let C and C ′ be concepts, then negation (¬C)
and intersection (C ⊔ C ′) are two examples for such rules (Baader et al., 2003).

5.2. Description Logic for Planning
If we want to use description logic for a planning task, then we have to define the
individuals, atomic concepts, atomic roles, and the rules to use. Furthermore, we have
to define a method to construct interpretations for the states of the planning task. For
this purpose, we follow the instructions of Drexler, Francès, and Seipp (2022).

Let ΠPDDL = ⟨O,P ,A, sI, δ⟩ be a PDDL planning task with a set of states S and a
state s ∈ S. We construct an interpretation I = ⟨∆I , ·I⟩ for s with ∆I = O. For every
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Name Syntax Complexity K Denotation

Top ⊤ 1 ∆I

Bottom ⊥ 1 ∅
One-of a 1 {a}
Negation ¬C 1 +K(C) ∆I \ CI

Intersection C ⊓D 1 +K(C) +K(D) CI ∩DI

Union C ⊔D 1 +K(C) +K(D) CI ∪DI

Existential ∃R.C 1 +K(C) +K(R) {a | ∃b : ⟨a, b⟩ ∈ RI ∧ b ∈ CI}
Value restriction ∀R.C 1 +K(C) +K(R) {a | ∀b : ⟨a, b⟩ ∈ RI → b ∈ CI}
Role-value-map R ⊆ S 1 +K(R) +K(S) {a | ∀b : ⟨a, b⟩ ∈ RI → ⟨a, b⟩ ∈

SI}
Composition R ◦ S 1 +K(R) +K(S) {⟨a, c⟩ ∈ ∆I×∆I | ⟨a, b⟩ ∈ RI ∧

⟨b, c⟩ ∈ SI}
Inverse R−1 1 +K(R) {⟨b, a⟩ ∈ ∆I ×∆I | ⟨a, b⟩ ∈ RI}
Transitive closure R+ 1 +K(R)

⋃
n≥1(R

I)n

Table 5.1: The rules we use to construct complex concepts and roles with their syntax,
their complexity, and the explanation to calculate their denotations.

predicate symbol p ∈ P with k = arity(p) and every value 1 ≤ i ≤ k we define an
atomic concept Cp,i with the denotation

CI
p,i = {oi | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ s}.

Furthermore, for every predicate symbol p ∈ P with k = arity(p) and every pair i, j
with 1 ≤ i, j ≤ k we define an atomic role Rp,i,j with the denotation

RI
p,i,j = {⟨oi, oj⟩ | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ s}.

Often it is insufficient to reason only about the state. We also have to reason about
the goal. Thus, we define additional atomic concepts CI

pg ,i and an atomic roles RI
pg ,i,j

which consider the goal instead of the current state:

CI
pg ,i = {oi | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ δ}

RI
pg ,i,j = {⟨oi, oj⟩ | ∃o1, . . . , ok s.t. p(o1, . . . , ok) ∈ δ}.

Whether and which individuals we define depends on the task.
To construct complex concepts and roles, we use the rules shown in Table 5.1. We

use the same measure as Drexler, Francès, and Seipp (2022) for the complexity K of
concepts and roles. The complexity of an atomic concept or role is 1. For the complex
ones, it is recursively calculated (see Table 5.1).
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Boolean Features. Later, we learn formulas in disjunctive normal form using the
generated concepts and roles. Thus, we convert the denotation of a concept or role to
a Boolean value following Drexler, Francès, and Seipp (2022). Let X be a concept or
role, we define a description logic feature (in short just feature) |X| > 0, which checks
if the denotation of X is not empty. Furthermore, let C1, C2 be concepts and R be a
role. The concept distance between C1 and C2 using R is the smallest n ∈ N0 such
that x0 ∈ CI

1 , xn ∈ CI
2 , and ⟨xi, xi+1⟩ ∈ RI for 0 ≤ i < n. The complexity of the

size features is K(|X| > 0) = 1 + K(X) and the complexity of the concept distance
features is K(concept_distance(C1 ,R,C2 )) = 1 +K(C1) +K(R) +K(C2).

5.3. Relationships
Most description logics express a fragment of first-order logic (FOL). Given an inter-
pretation for such a description logic, we can express their concepts and roles as FOL
formulas. This especially holds for a description logic which uses the rules, except for
the transitive closure, from Table 5.1.

Theorem 5.1. Conversion from Description Logic to FOL (Baader et al., 2003)
Let C be a concept constructed with the rules from Table 5.1 except for the transitive
closure, and I = ⟨∆I , ·I⟩ be an interpretation. Then we can efficiently construct a
formula ϕC(x) such that x ∈ CI iff ϕC(x).

Proof sketch:
The universe for the FOL formula ϕC(x) is ∆I . If C is an atomic concept, then we
define an unary predicate symbol ϕC with ϕC(x) holds iff x ∈ CI . Let D,E be two
concepts. If C = D⊓E is constructed using the intersection rule, then we first construct
ϕD and ϕE and define ϕC(x) = ϕD(x)∧ϕE(x). The construction for negation and union
can be done analogously.

Let R be an atomic role. We define a binary predicate symbol ϕR with ϕR(x, y) holds
iff ⟨x, y⟩ ∈ R. If C = ∃R.D is a complex concept using the existential rule, then we
first construct ϕR and ϕD and define ϕC(y) = ∃x : R(y, x) ∧ ϕC(x). For all complex
rules a translation exists. We refer the interested reader to Baader et al. (2003).

□

Counting-variable logic introduces counting quantifiers. A counting quantifier ∃≥Nϕ
expresses that there exists at least N distinct objects, which satisfy ϕ. In k-variable logic
(Ck) counting quantifiers with N ≤ k can be used. Counting variable logic is a subset
of FOL (Grädel, Otto, and Rosen, 1997).

Barceló et al. (2020) showed AC-GNN can represent a fragment of C2 logic, which
is equivalent to ALCQ description logic. ALCQ description logic also corresponds to
graded model logic (de Rijke, 2000). Furthermore, let us introduce a global aggregate
function AGGREGATEGLOBAL which aggregates the feature vectors over all vertices
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in the graph and change the COMBINE function to

ov = COMBINE(fv, AGGREGATE({{fv′ | v′ ∈ N (v)}}), AGGREGATEGLOBAL()).

We call a GNN which such layers an ACR-GNN. Barceló et al. (2020) also showed that
such a GNN can represent any C2 formula.
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6. Introduction to Learning Heuristics
Heuristic search, especially greedy best-first search (GBFS) and A∗ search, is one of
the most successful approaches for solving classical planning tasks. The heuristic es-
timates for every state the cost of length of a path to the next goal state. The search
uses these estimates to order the encountered states. Greedy best-first search orders the
encountered state solely on the heuristic estimates. It expands first states with lower
estimates. The performance of heuristic search depends strongly on the quality of the
used heuristic. Over the years, many powerful, admissible heuristics were designed to
find optimal plans with A∗ search (Helmert and Domshlak, 2009; Helmert et al., 2014;
Seipp, 2017). Often, optimal plans are not required, but any plan suffices. We call this
setting satisficing planning. Many strong heuristics were designed for satisficing plan-
ning (Hoffmann and Nebel, 2001; Richter and Westphal, 2010; Domshlak, Hoffmann,
and Katz, 2015). For satisficing planning, the heuristics can be indadmissible or even
accurate. Especially for GBFS holds, if the state ordering of a heuristic is consistent
with the state ordering of the perfect heuristic, then GBFS behaves identical with both
heuristics (up to random tie-breaking).

Besides predicting accurate estimates or correct state orderings, a second important
property is the evaluation speed. GBFS commonly generates millions or more states
during search. The heuristic is computed on each generated state. In practice, a better
informed heuristic can perform worse because it is too slow to evaluate. Designing a
well-informed and fast heuristic is a difficult endeavor. The LAMA planning system
Richter and Westphal (2010) participated already in the International Planning Compe-
tition 2008 and is still used as a baseline.

It is easier to design a heuristic if it does not need to perform well on all domains, but
only on a single domain or even on a single task from a domain. This restriction could
enable a human to reason about the properties of a concrete task and design a specific
heuristic. In practice, even a single task can be too complex for a human and human
labor is valuable. With the breakthroughs in machine learning in the last decades, the
question arose whether we can automatically learn heuristics. Early approaches evalu-
ated existing heuristics in a domain and learned to combine them into more powerful
heuristic (Arfaee, Zilles, and Holte, 2011; Virseda, Borrajo, and Alcázar, 2013).

Heuristics are not only used in planning, but also in many classical games like chess
(Knuth and Moore, 1975) as well as in computer games (Sturtevant, 2012). In the
last decades, we witnessed breakthroughs in training and applying neural networks.
Recently, Silver et al. (2016) trained neural networks as heuristics for the game of Go
and combined this with other planning techniques. The product is AlphaGo. AlphaGo
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is an AI agent, which plays not only the game of Go, but also won against Lee Sedol,
one of the best Go players at that time. From these results sprung a series of research in
which trained neural networks as heuristics (Silver et al., 2017, 2018; Agostinelli et al.,
2019). In all of these projects, they have a single task (or a small set of tasks) which
they want the computer to solve. They manually design and tune every step in the
pipeline (input representation, network architecture, . . . ) for this task. This contradicts
our perspective in planning. In planning, we want to design a general purpose solver.
Give it any task, and it finds a solution without human interaction.

Nevertheless, those projects show the potential of well-trained neural networks as
heuristics. In the last few years, research was inspired by the hand-tailored NN ap-
proaches. Planning researchers designed workflows for training and using NN on any
domain and task without human interaction. A key difficulty is to sample good training
data. In contrast to reinforcement learning, we do not get rewards after every step. In
classical planning, we receive a single reward, after solving the task. Simply apply-
ing random actions is unlikely to end in a goal state. Furthermore, it is unclear which
network architecture is beneficial for planning. Every published paper uses a new ar-
chitecture.

Some research uses GNN (Issakkimuthu, Fern, and Tadepalli, 2018; Toyer et al.,
2020; Garg, Bajpai, and Mausam, 2019; Rivlin, Hazan, and Karpas, 2020; Shen, Tre-
vizan, and Thiébaux, 2020) to learn knowledge, which generalizes across a whole do-
main. Many of those works are situated in probabilistic planning instead of classical
planning (Issakkimuthu, Fern, and Tadepalli, 2018; Toyer et al., 2020; Garg, Bajpai,
and Mausam, 2019). A possible reason is that probabilistic planning tasks in the RDDL
formalism (Sanner, 2010) provides a reward after every action. This facilitates training
policies with reinforcement learning. Indeed, most of them learn policies on RDDL
tasks (Issakkimuthu, Fern, and Tadepalli, 2018; Garg, Bajpai, and Mausam, 2019).
Only Rivlin, Hazan, and Karpas (2020) and Shen, Trevizan, and Thiébaux (2020) use
classical planning. We compare the performance of our networks against the networks
of Shen, Trevizan, and Thiébaux (2020) 1.

1Rivlin, Hazan, and Karpas (2020) informed us that they were unable to reproduce their results and
recommended not to use their framework as comparison.
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We limit ourselves to reset problems1. That means we train NN as heuristics for a
single state space with a fixed goal. Examples of reset problems are Rubik’s cube, the
sliding tile puzzle, and scenarios in which a system has to be reset to a default state.
Restricting ourselves to reset problems, allows us to tackle the challenge of learning
heuristics from its base. Starting with FFNs avoids the biases and parameter choices of
CNNs and GNNs before we even know that learning good heuristics is possible. The
FFN for a reset problem receives a Boolean input for each fact of the task. In a given
state, the input of a fact is true if the fact is in that state and false otherwise. Our initial
study evaluates the feasibility and the hyperparameter options of such an FFN. Building
upon this, we present new approaches, which solve some observed limitations.

Our learned heuristics have almost no guarantees on the predictions. They are safe,
because our neural networks simply cannot express infinity. They are goal-aware, be-
cause we check for every evaluated state if it is a goal state and only if it is not a goal
state, we evaluate the network. They are neither admissible nor consistent. Thus, all our
evaluations use the satisficing setting, i.e., we accept any plan, not just optimal plans.
Our methods can be applied to unit and to non-unit cost tasks. In general, solving the
unit cost version of a non-unit cost task terminates faster. Thus, we transform all our
tasks to their unit cost version. Consequently, all goal cost estimators are also goal
distance estimators.

We evaluate our methods against each other, against Shen, Trevizan, and Thiébaux
(2020)’s state of the art in learning heuristics, and against model-based heuristics.

7.1. Progression Heuristics
We present now our initial framework and list parameter options. The framework con-
sists of two steps. First, we generate the training data. Then, we train the heuristics.
Afterwards, we can use the heuristic in search. A key property is that it uses a pro-
gression random walk to generate the training data. In our experiments we evaluate the
possible parameter choices.

Sampling Data. Once per task Π, we train an FFN as heuristic with supervised train-
ing. We require state, goal cost pairs as training data. Thus, we have two challenges:

1Thanks to Rob Holte for suggesting this name.
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How to sample states? How to label sampled states with their cost to the goal? For
many domains, there exists no tool to generate new states, which we could use as sam-
ples. Furthermore, in a real world scenario a user might provide a planning task, but
they might be unable to describe the distribution of valid states and how to generate
them. Additionally, to obtain good goal cost estimates is expensive.

To solve the first challenge, we take inspiration from Arfaee, Zilles, and Holte (2011).
In their setting, the goal δ of a task Π is a valid state and all actions are reversible, i.e.,
for every action a there exists an action a′ which reverses the changes caused by a.
Starting from the goal, they apply a random sequence of applicable actions and end in
a state s. If they apply a sufficiently long sequence of actions, then any state can be
reached, and the chance of ending in the same state twice is negligible. In our setting,
the goal is not a valid state, but a partial state. Thus, we start our random walks from
the only known valid state, the initial state sI. Furthermore, actions are not necessarily
reversible. Thus, we cannot generate states which are not reachable from the initial
state. We do not expect our heuristics to generalize on those states.

Now we can sample a states. Our next challenge is to label them. Let s be a sampled
state. It would be simplest, if we pick an existing heuristic h, evaluate it on s, and
use this value as label. If we do this, the FFN will just imitate h. It would be more
sophisticated to choose a set of admissible heuristics H and label the state s by the
maximum estimate h(s) over the heuristics h ∈ H . Again, the network imitates just a
function, which is the maximum over a set of heuristics, and we could replace it by the
maximum over these heuristics. Instead, we choose a planner, which we call teacher.
For every sampled state s we execute the teacher. If the teacher finds an s-plan π =
⟨a1, . . . , an⟩ within some resource limits, then we add all states si = sJ⟨a1, . . . , ai⟩K
along the plan to our data set (for 0 ≤ i ≤ n). Each state si is labeled by the remaining
cost ci =

∑n
j=i+1 cost(aj). This has the advantage that the relatively fast to evaluate

FFN imitates a slow function, which produces high quality labels.

Input and Output Representations. Knowing our training data, we specify the con-
crete network architecture. Let Π be a planning task with a set of facts F . Many tasks
contain facts which never change their value. A task from the Transport domain has
facts, which describe a road map. For a specific Transport task the road map is static.
There is no need to inform the FFN about the road map in every state. The road map
does not change and the FFN should learn it during training. We identify for every task
Π the set of dynamic (non-static) facts FD. Our FFN for Π has |FD| input neurons, one
per dynamic fact. To evaluate the network on a state s, we check for every fact f ∈ FD

if it is in the current state (f ∈ s). If it is in the current state, we set the associated
neuron to 1, otherwise we set it to 0.

The output representation has a huge impact on the success of the NN. We require
an output, which represents an integer. Intuitively, we would use a regression encod-
ing, i.e., a single output neuron with ReLU activation. The learning objective does not

38



7.1. Progression Heuristics

sound like a classification task, but classification networks often perform unexpectedly
well. Thus, we additionally evaluate classification networks. Let H be the maximum
heuristic value in the sampled data. Our classification networks have H+1 output neu-
rons, each one is associated with an observed heuristic value 0 ≤ h ≤ H . Almost all
classification networks encode the labels using a one-hot encoding and softmax activa-
tion for the output neurons. During training, the heuristic value h is encoded as a vector
⟨y0, . . . , yH⟩ where yh is set to 1 and all other entries are set to 0. When evaluating, the
predicted heuristic value h is the output yh with maximal value.

The one-hot encoding does not represent the relationship between the classes. For a
classification network with one-hot encoding the difference between the classes h = 0
and h = 1 is the same as the difference between the classes h = 0 and h = 100.
But there is a relation between our classes. The heuristic value of 1 is closer to the
value of 2 than it is to the value of 100. If we use a unary encoding with sigmoid
activation on the output neurons, then this relation is preserved (Cheng, Wang, and
Pollastri, 2008). During training, the unary encoding for a heuristic value of h is a
vector ⟨y0, . . . , yH⟩ where all entries yi with i ≤ h are set to 1 and all other entries
are set to 0. When evaluating, all outputs with a value greater than a threshold t are
interpreted as 1. All other outputs are interpreted as 0. The prediction of the FFN is the
number of consecutive ones at the beginning of the output vector minus one.

Network Layers. We specified the network input and listed possible output encod-
ings. But also the inner layers provide options for tweaking. Anything that can be done
in an FFN is possible. We present and evaluate later only the most common parame-
ters. First, we evaluate different numbers of hidden layers. We expect that more difficult
tasks require more powerful FFN to learn their heuristics. Thus, we adapt the number
of neurons in the hidden layers to the task. We scale the number of neurons in each
network layer in equally sized steps down from the input layer, which has one neuron
per dynamic fact, to the output layer, which has either 1 or H + 1 neurons. Secondly,
different activation functions like sigmoid and ReLU can be used for the hidden layers.
To prevent overfitting, regularization can be incorporated. One common option is to
add a dropout layer after each hidden layer. Remember a dropout layer has a dropout
probability p. With p probability, a neuron of the dropout layer does not forward its
value to the next layer during training. This prevents the FFN from relying too much
on a single neuron. A second regularization option adds the L2 norm of the trainable
weights as loss to the objective function to prevent overfitting with large weight values.

Data Distributions. The final set of knobs we propose and evaluate concern the data
distribution during training. While generating training data, we solved planning tasks
and stored all states along the entire plan found. This is the largest data set we have. It
has some drawbacks. The states extracted from a single plan highly correlate. Between
two consecutive states of a plan, only a few facts differ. This could introduce a bias to
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the network. Thus, we propose to train on a subset of the sampled data, which consists
of one random state per plan. Every plan ends in a goal state. Thus, the entire plan data
set contains for every plan a goal state, a state which is one step away from the goal, a
state which is two steps away from the goal, and so forth. There will be approximately
the same number of goal states than states of intermediate distance to the goal or states
far away from the goal. At the same time, most tasks have significantly fewer states
around the goal than states far away from the goal. Thus, states close to the goal will
appear multiple times in the training data and are more important during training. To
counteract this bias, we suggest a third data set consisting of only the initial state of
every plan.

Another option to solve the overrepresetation of few states (especially those close
to the goal) is to prune duplicates in the training data. It is likely that this stronger
affects states with low heuristic value. Thus, the higher heuristic values will now be
overrepresented. This could also be problematic. To solve this overrepresentation, the
samples can be weighted. Let Nh be the number of samples in the training data labeled
with h. If we weight all samples with a label of h by 1/Nh, then all heuristic classes
have the same impact. Because pruning and weighting influence each other, we evaluate
them in combination.

7.2. Regression Heuristics
We observe that the data generation is a bottleneck. Sampling states via a progression
random walk from an initial state results in new states, which are far away from the goal.
We are especially interested in learning heuristics for difficult tasks, but for those tasks
the teacher will frequently be unable to find plans for the sampled states. A solution
could be a better teacher. But this changes only our definition from hard tasks to even
harder tasks. Then we again need a better teacher. At one point, there is no better
teacher to pick.

As a remedy, we propose to iteratively scale the difficulty of the training samples, as
in curriculum learning, and to use the current state of the network together with some
other techniques to generate the labels. While we train our FFN they become better
informed. Thus, they can solve harder tasks. Thus, we get training data from harder
tasks. Thus, we can further improve our FFNs. To scale the difficulties of the samples,
we propose a new sampling procedure.

Sampling States. Let Π be an FDR task for which we train an FFN as heuristic. In
the beginning, our FFN is too uninformed to find plans for most states. Thus, we need to
generate states which are close to the goal. The better informed the network becomes,
the more difficult should be the state we sample. Our sampling procedure requires a
parameter which influences the difficulty of the sampled states. Arfaee, Zilles, and
Holte (2011) suggest to sample states with random walks from the goal. The walk
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length correlates loosely with the difficulty of the sampled state. In their setup, the
goal is a state. Thus, they can apply actions on it. In our setup, the goal is a partial
state. We cannot apply actions to partial states. Instead, we regress over actions (see
Definition 3.8). If we regress over a partial state p, like the goal, with an action a,
the result is another partial state p′. For all states s′ ∈ S described by p′ (s′ ⊇ p′), it
is guaranteed that a is applicable in s′ and that applying it leads to a state s which is
described by p (s′JaK ∈ SP ). In this way, we can use the length of the regression random
walk to influence the difficulty of our samples. The maximum distance of a sampled
partial state to the goal is the length of the walk. Using the regression operator resolves
the limitation of the forward random walk that all valid states have to be reachable from
the initial state.

For training, we do not require partial states, but states. Thus, we have to pick a state
s from the set of states Sp described by the sampled partial state p. Remember, an FDR
task has a set of finite-domain variables. A state is an assignment to all variables, a
partial state is an assignment to a subset of those variables. To get a state s described by
a partial state p, we can randomly assign facts to the variables without assignment. This
can produce unintended states. For example, a task has two robots, which can never
be at the same location. The FDR representation of this task has one variable for each
robot to represent its location. If we randomly assign a value to each variable, it can
happen that both robots are at the same location in our completed state. In practice, it is
often possible to identify mutexes, i.e., groups of facts which are mutually exclusive. A
state which contains two mutually exclusive facts is an invalid state. We uniformly at
random assign facts to the unassigned variables such that no known mutex is violated.

Labeling States. Next, we present three methods to use the current state of an FFN
to label the sampled states. The first two are based on bootstrapping, i.e., we use the
FFN during actual searches to generate labels. The last one uses approximate value
iteration.

Our first method labels a sampled state with an estimated cost to the goal. Let s be a
sampled state and h be the heuristic modeled by the current state of our FFN. Then we
execute a GBFS with the heuristic h. If it finds a plan within a resource limit, then we
add all states along the plan together with their costs along the plan to the training data.
If it does not find a plan within the resource limit, we ignore the state. If we train the
FFN on these samples, then it learns to estimate the cost from a state to the goal. If the
task has unit-costs, then it learns to estimate the distance to the goal.

We want to find plans quickly. If two heuristics are equally fast to evaluate, then we
prefer the one which requires fewer expansions with GBFS. Thus, we do not want the
network to predict for a state its goal-cost or goal-distance, but the number of states
GBFS has to expand until it finds a plan. As a second method, we propose to label a
sampled state s with the number of states expanded by a GBFS which uses as heuristic
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h the FFN.

L(s) =

{
#expansions of GBFS(s, h) if s is solvable
∞ otherwise

In practice, we have to enforce a resource limit on these GBFS. We cannot label ev-
ery state for which we fail to find a solution by infinity. This label would be widely
inaccurate for solvable states. The simplest option is to ignore these states. In ex-
ploratory experiments, we observed that the information that a state is solvable, but still
too difficult to solve is beneficial. Thus, we label those states by the number of expan-
sions GBFS performed until the resource limit was reached. This number is often much
higher than the labels for samples with solutions.

Under mild assumptions, training the FFN as search space size estimator converges
to the perfect heuristic.

Theorem 7.1. Convergence of Search Space Size Estimators
Let Π be a unit cost task with the set of states S. If a heuristic uses a lookup-table G ∈
N|S| to store its heuristic estimates and updates the table for all states simultaneously
using the equation above, then it converges to the perfect heuristic.

Proof:
Denote by H∗

n the set of states whose heuristic value is their perfect heuristic value after
n updates: H∗

n := {s | s ∈ S, Gn(s) = h∗(s)}. For convenience, we start counting the
update iterations with n = 0. The initial lookup-table G0 is arbitrarily initialized. We
show by induction that H∗

n ⊇ {s|s ∈ S, h∗(s) ≤ n}.
Induction basis: After iteration n = 0, all goal states have the value 0, so, H∗

0 ⊇ {s |
s ∈ S, h∗(s) = 0}
Induction step: s is a state with h∗(s) = n. Then s has a successor s′ with h∗(s′) = n−
1. By induction hypothesis, we have H∗

n−1 ⊇ {s | s ∈ S, h∗(s) ≤ n−1} and s′ ∈ H∗
n−1.

Thus, there is a path P from s′ to the goal with Gn−1 decreasing by 1 in each step. A
GBFS run on s generates s′ when expanding s, and afterwards follows P (or another
path of the same length) resulting in n expansions. Hence H∗

n ⊇ {s|s ∈ S, h∗(s) = n}.
Because of the induction assumption, the same argument applies to all states t where
h∗(t) < n: GBFS follows a direct path to the goal. So we have t ∈ H∗

n, and hence
H∗

n ⊇ {s|s ∈ S, h∗(s) ≤ n} as desired.
In all updates, GBFS executed on a dead-end state s proves that s is a dead-end.

Thus, all states s with infinite h∗ value also satisfy h∗(s) = Gn(s), for all n. This
proves the claim.

Proof taken from Ferber et al. (2022b)
□

Inspired by Agostinelli et al. (2019) our final method uses approximate value it-
eration (Bertsekas and Tsitsiklis, 1996, AVI). Approximate means we use a function
approximator, like an FFN, instead of a lookup table to store the estimates for a state.
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Value iteration means that we calculate in every iteration i new estimates for our states
using the current estimates. As the update function, we use the Bellman update:

hi+1(s) = max
a∈A,applicable(s,a)

R(s, a) + γ
∑
s′∈S

P (s, a, s′)hi(s
′)

where R(s, a) is a reward for applying action a in state s and P (s, a, s′) is the prob-
ability that applying action a in state s ends in the state s′. γ is a discount factor to
determine the trade-off between current rewards R(s, a) and future rewards h(s′).

We can simplify the Bellman update in the context of classical planning. We have
no rewards which depend on ⟨state, action⟩ tuples, but negative reward (action costs)
which depend only on the action. Furthermore, the outcome of an action is not proba-
bilistic, but deterministic. Let a be an action and s, s′ be states. If a is applicable in s
and applying a in s results in s′, then P (s, a, s′) is 1, otherwise P (s, a, s′) is 0. Thus,
we can simplify the equation to

hi+1(s) = max
a∈A,applicable(s,a)

−cost(a) + γhi(sJaK).

As we work only with negative rewards, we can replace the maximization by a min-
imization and the negative reward by the cost. Furthermore, we have no trade-off be-
tween current costs and future costs. All costs are the same for us. Thus, we do not
discount future costs. Without discounting the future costs, the updates can increase the
values indefinitely. As a remedy, we introduce a ground truth. The resulting formula is

hi+1(s) =

{
0 if s ⊇ δ

min
a∈A,applicable(s,a)

cost(a) + hi(sJaK) otherwise.

AVI does not require a plan for the sampled states, thus, it is significantly faster
to evaluate, but also every update is less informative. As with the state-space size
estimator, the heuristic function represented by an FFN trained with AVI converges to
the perfect heuristic (Bertsekas and Tsitsiklis, 1996).

Workflow. In the previous workflow, we first sampled and labeled data and then
trained our networks. Now, both happen in parallel. One process samples and la-
bels states using the FFN with its current weights. Another process updates the FFN.
Because a maximum heuristic value is unknown during training, the FFN requires a
regression output. We can neither use classification networks with one-hot encoding
nor with unary encoding. For both bootstrapping methods, the sampling has to start
with short random walks. Once GBFS consistently solves the sampled states, the maxi-
mum random walk length is increased. For AVI, the walk length is irrelevant. Thus, we
always allow a long maximum random walk length. When sampling, the actual walk
length is randomly picked between 0 and the maximum walk length.
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Validation. We observe that the performance of our FFN is not robust. Retraining an
FFN for the same tasks can drastically change the number of tasks it solves. Thus, we
sample a set of validation states from the same distribution as the test states. After train-
ing, we evaluate the performance of the FFN as heuristic for GBFS on the validation
states. If it solves too few tasks, we retrain the FFN.
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We presented our methods to train a neural network as a heuristic for reset problems.
For our first method, we list many parameter choices. These choices are at least partially
applicable for the later methods. In the following, we first explain the setup of our
experiments. Then, we show that simple machine learning models are not powerful
enough to represent good heuristics and that neural networks are required. Afterwards,
we evaluate the parameter choices for the progression heuristic. Building upon this,
we train and evaluate our regression heuristics and finally compare them against other
state-of-the-art techniques. For readability, we say “the coverage for h” instead of “the
coverage for GBFS when using h as heuristic”.

8.1. Setup

Tasks. We use the following nine domains from the IPC: Blocksworld, Depots, Grid,
Pipesworld-NoTankage, Rovers, Scanalyzer, Storage, Transport, VisitAll, as well as
the NPuzzle domain. All those domains are dead-end free. Thus, our forward sampling
approach cannot generate unsolvable states. If a task has non-unit action costs, we
transform it to unit action costs. We classify the published tasks of these domains into
the categories trivial, moderate, and hard. If GBFS with the FF heuristic (Hoffmann
and Nebel, 2001, hFF) solves a task in less than a second, it is trivial. If the search
requires at least a second, but less than 900 seconds, then we say the task has a moderate
difficulty. Otherwise, the task is hard. We ignore all trivial tasks. We remark that these
classifications are only guidelines. Rerunning the searches on different hardware, with
different implementations, or even just with a different random seed, produces different
results.

For all non-trivial tasks, we use the forward sampling approach with a walk length of
200 to generate 200 test states. Even though it is unlikely that we sample a state twice,
we verified that this indeed never happens.

Planners & Heuristics. In our experiments, we use our progression heuristic (hP )
and our regression heuristics (goal-distance estimator hGD, search-space size estimator
hSE , and approximate value iteration hAV I). As a learning-based comparison, we use
the STRIPS-HGN heuristic (Shen, Trevizan, and Thiébaux, 2020). STRIPS-HGN is
trained on a few simple tasks of a domain and generalizes to any task of the same
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Teacher Values
Domain # Samples Min Max Max Max

Blocksworld 504K 145 327
Depots 98K 46 414
Grid 123K 72 112
Pipesworld-NT 87K 91 411
Scanalyzer 43K 19 100
Storage 10K 107 133
Transport 152K 56 130

Table 8.1: For each domain, the median number of data samples generated on the mod-
erate tasks. Furthermore, the minimal over the maximal teacher values (min
max) observed on the moderate tasks and the absolute maximum over the
observed teacher values (max max).

domain. As a model-based comparison, we use the FF heuristic. We evaluate each
heuristic in a GBFS.

Furthermore, we compare against Mercury (Domshlak, Hoffmann, and Katz, 2015)
and the first iteration of LAMA (Richter and Westphal, 2010), two strong planners from
previous IPCs.

To generate the training data for our progression heuristic, we perform a forward
random walks with a maximum length of 200. We note that in practice some steps
undo previous steps, thus, the effective walk length may be shorter. We use GBFS with
the FF heuristic as the teacher. We execute the teacher for at most 30 minutes with
3.8 GB of memory on a sampled state. We use a generous time limit of 400 hours
for each task to generate the training data. In most tasks, this time limit is excessive,
but in some tasks it is expensive to generate enough training data. Table 8.1 shows
the median number of samples generated on the moderate tasks of each domain. The
number of training states generated per task ranges from 3,000 to 500,000. Only in
three tasks we generated fewer than 20,000 states. Furthermore, Table 8.1 shows over
all moderate tasks of a domain, the minimal maximal teacher value, and the maximal
maximal teacher value. This shows that in almost all tasks the range of heuristic values
to predict is large.

To train our supervised learning heuristics, we split the sampled data into 10 folds,
and we train ten models. Each model uses a different fold as validation data and is
trained on the remaining folds. During training, we optimize for the mean squared er-
ror using a batch size of 100. The training stops after at most 48 hours, at most 1,000
epochs, or once the error on the validation data converged. For training, we use 12 GB
of memory and 4 CPU cores. All our NN have only fully connected layers. If not other-
wise specified, the NNs have 3 hidden layers with sigmoid activation function without
any regularization, pruning, or weighting. We select from every sampled plan a single
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random state for training. At the end of this chapter, we compare multiple learning-
based heuristics. To make their computational resources comparable, we reduce the
sampling time to 56 hours and the training time to 2.8 hours. We observed that for most
tasks, fewer training data is sufficient, and the training finishes long before the time
limit (see Table 8.11).

For our regression heuristics, sampling runs in parallel to training. For the bootstrap-
ping based approaches, we start with a maximum regression random walk length of 5.
On every sampled state, we execute GBFS with a time limit of 10 seconds. Whenever
we observe that GBFS using the current network as heuristic solves at least 95% of
the sampled states, then we double the maximum walk length. We double the walk
length at most 8 times. Thus, we walk for at most 1, 280 steps. We observe that fur-
ther extending the walk does not lead to new states. Instead, it only costs time. For
the approximate value iteration approach, iteratively extending the walk length is not
necessary. Thus, we start with a maximum walk length of 1, 280. To complete the
partial states, we use those mutexes identified by Fast Downward (Helmert, 2006). Fur-
thermore, we extend the Bellman update to check not only the direct successors of the
sampled state, but to propagate the estimates from the successors of the successors.
Using this two-step lookahead turned out to be beneficial. As the predictions of the net-
work become better over time, the labels of old samples become deprecated. Thus, we
use experience replay, i.e., the sampled data is pushed into a first-in-first-out buffer of
size 25,000. In each training epoch, we randomly pick batches of 250 samples from the
buffer. We optimize the network using the mean squared error. To prevent instabilities
during training, we update the model for labeling if at least 50 epochs passed and the
validation error is below 0.1. We train for 28 hours on 4 cores. Training cannot stop
early. Like Agostinelli et al. (2019), we use residual neural networks. Our networks
consist of two dense layers, followed by two residual blocks, followed by a single out-
put neuron. Each residual block contains two dense layers. Each dense layer has 250
neurons with ReLU activation.

STRIPS-HGN (Shen, Trevizan, and Thiébaux, 2020) learns a network, which gener-
alizes across a domain. To enable this generalization between state spaces of different
sizes, STRIPS-HGN uses internally a generalization from GNN to hypergraphs. In con-
trast to a normal graph, the edges in a hypergraph can have multiple start and multiple
end points. Because STRIPS-HGN generalizes across all tasks within a domain, it is
trained on a set of simple tasks. Thus, labeling states from these tasks is quick. In the
original setup, it samples and trains for 90-1,200 seconds. To account for the computa-
tional resources required by our approaches, we carefully tune its parameters to benefit
from the extended resource limits. We generate data for 10 hours and then train a single
model for 2.8 hours on 4 cores. We sample training states from the moderate and hard
tasks using regression random walks. The length n of the regression random walks is
randomly chosen from the interval ñ ≤ n ≤ n̄. We initialize ñ to 50 and n̄ to 500. Like
Shen, Trevizan, and Thiébaux (2020) we execute on every sampled state A∗ with the
LM-Cut heuristic. We enforce a time limit of 30 minutes for the search. If the search
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finds a solution, we use all states along the plan as training data together with their cost
along the plan and training samples. As A∗ with LM-Cut produces optimal plans, we
know that all states are labeled with their true goal distance. Whenever the search finds
a solution in less than 5 minutes, the sampled state was too easy. Thus, we increase
the minimum walk length ñ = (ñ + 3n)/4. If the search times out, the state was too
hard. Then, we decrease the maximum walk length n̄ = (n̄ + n)/2. We observe in
the Blocksworld, Scanalyzer, and Transport domains that the original training setting
performed better than ours. Thus, we use the original setting for those domains.

We additionally compare to well-established model-based planners. First, we use
GBFS with the FF heuristic. This is also the teacher for our supervised learning heuris-
tic. The FF heuristic is a delete relaxation heuristic, i.e., internally it uses a simplified
version of the actions where all delete effects are removed. Mercury is a planner based
on partial delete relaxation. It uses a heuristic, which removes only some delete effects.
Furthermore, it uses a short-cut technique. This short-cut technique recognizes relaxed
plans which successfully execute, or which can be repaired to execute successfully. Fi-
nally, we use the first phase of the LAMA planning system. This phase is a GBFS with
4 open lists. One open list for the FF heuristic, one for the LM-Count heuristic, one for
the preferred operators of hFF, and one for the preferred operators of LM-Count. Röger
and Helmert (2010) showed that alternating between multiple open lists for selecting
the next state to expand is beneficial. If one heuristic is uninformed at the current part
of the state space, the other heuristic can continue to progress. Some heuristics com-
pute preferred operators in addition to the heuristic value for a state. Those are actions,
which the heuristic deems important (Hoffmann and Nebel, 2001). The preferred op-
erators queue of the FF heuristic (resp. LM-Count) is also sorted by the FF heuristic
(resp. LM-Count), but contains only states reached via actions marked as preferred
operators.

8.2. Simple Machine Learning Models
Neural networks and deep learning are trending buzzwords. However, they are complex
models and expensive to train. Simpler machine learning techniques require fewer
data, require fewer computational resources, and are simpler to understand. Following
Occam’s Razor, if they work equally well, they should be preferred. Thus, we first
evaluate if FFNs are needed at all.

As simple models, we use linear regression (LR) without regularization, random
forests (RF), and support vector regression (Drucker et al., 1996, SVR) with radial
basis function as kernel. An SVR fits a line to the data points by minimizing the L2
norm of the line and ensuring that the error for each data point is smaller than ϵ. As
this is not always possible, there is a slack parameter C. The error of data points can be
larger than ϵ, but this additional error is weighted by C, and added to the L2 norm. The
larger C, the fewer impact has the L2 norm of the fitted line on the minimization. Large
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Reg LR RF SVRC=10 SVRC=100

Reg - 71 62 69 50
LR 7 - 21 26 14
RF 16 57 - 50 42
SVR10 9 52 28 - 0
SVR100 28 64 36 78 -

Table 8.2: Pairwise comparison between regression networks (Reg), linear regression
(LR), random forests (RF), and support vector regression (SVR) with a C
value of 10 and 100. For each moderate task, a model of each technique is
trained using 35,000 samples and evaluated using the MSE on 5,000 sam-
ples. Each row indicates on how many tasks out of 78 a technique is better
than the other techniques.

C values lead to overfitting. As FFN, we use our default setting for the progression
heuristics, but with a single regression output.

We train a model for every moderate task. As the training time of SVRs scales cu-
bically in the number of samples, we train all models with at most 35,000 samples.
We train the simple models on all training samples. We train the FFN on 30,000 train-
ing samples and use the remaining 5,000 samples as validation data. We evaluate the
models on another 5,000 samples using the mean squared error.

Table 8.2 shows how often a technique is better than another. The regression FFN is
significantly better at predicting the right heuristic estimates than any other technique.
Furthermore, it is not only more accurate, but also faster. Except for the linear regres-
sion model, evaluating the FFN is always faster than evaluating the other models. We
note that the evaluation speed could partially be due to the libraries used. As conclusion,
it is justified to use complex machine learning models like FFNs.

8.3. A Survey in Hyperparameter Space

We showed that it makes sense to use NN. Now, we study the hyperparameters to pick.
It is computationally too expensive to generate enough data for all tasks. Thus, we
restrict ourselves to the moderate tasks. For each task and parameter setting, we train
ten models. Each model uses a different part of the sampled data for validation. For
each task, we generated 200 test states. It is also too expensive to evaluate each of
the ten models on each test state. Thus, we partition the test states into ten sets and
evaluate each model on a different set. This still produces results, which are robust
with respect to retraining the model and changing test states. To evaluate the quality
of a model, we use it as heuristic in a GBFS to solve the test states. If it solves the
test state within 30 minutes and 3.8 GB of memory, we count this as success. The
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Domain clsOH clsU reg

Blocksworld 93.4 97.2 65.3
Depots 87.7 76.2 77.3
Grid 44.8 93.2 71.0
Pipesworld-NT 84.3 89.6 82.0
Scanalyzer 96.2 94.6 80.3
Storage 14.5 95.5 98.5
Transport 92.2 99.1 88.9

Average 73.3 92.2 80.5

Table 8.3: Coverage (in %) of the progression heuristic with regression (reg), one-hot
(clsOH), and unary (clsU ) output encoding on the moderate tasks.

NPuzzle, Rovers, and VisitAll domain are especially difficult for our approach. In
none of these domains, we learned meaningful heuristics. Thus, we exclude them for
the hyperparameter evaluation and evaluate them at the end with the final parameter
setting. We do not have the computational resources to evaluate the combination of all
parameter choices. Thus, we evaluate each parameter choice individually and use the
result of the previous evaluations for the next one. For each experiment, we report for
each domain the percentage of test states solved. Remember that a domain has for each
task 200 test states, and we have multiple tasks for each domain. The absolute average
over all domains is calculated by equally weighting all domains.

Output Encoding. The output encoding of our FFN is one of the most fundamental
architecture choices. To interpret the output of a classification network with unary
encoding, we use a threshold of 0.01. We found this value in exploratory experiments.
Table 8.3 shows the fractional coverage results.

The regression encoding is in general inferior to both classification encodings. Only
twice it is better than the one-hot encoding and only twice better than the unary encod-
ing. The one-hot encoding performs well in most domains, but there are two outliers
where it does not work well at all. This reduces its average coverage drastically. Using
a classification output and still encoding the numeric relationship between the classes
performs best. With one exception, the unary encoding is always best or close to best.
In the remaining experiments, we consider the unary encoding.

Architecture. Next, we evaluate possible choices in the network architecture. In-
creasing the number of hidden layers adds more trainable weights to the network. Thus,
it can approximate a larger set of functions. But more weights make it harder to train
and slower to evaluate. Our networks with one hidden layer evaluate on average 1,000
states per second. Our networks with three hidden layers evaluate around 370 states per
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Coverage # Expansions
Domains 0 1 3 5 1 3 5

Blocksworld 30.7 100.0 97.2 83.3 585 899 2122
Depots 70.7 80.6 76.2 75.9 499 182 129
Grid 41.8 94.0 93.2 47.8 14K 373 2761
Pipesworld-NT 70.9 88.9 89.6 74.8 818 697 699
Scanalyzer 49.0 88.2 94.6 83.2 360 173 160
Storage 100.0 100.0 95.5 55.0 7155 1917 25K
Transport 58.3 98.3 99.1 99.7 47K 2910 719

Average 60.2 92.9 92.2 74.3 - - -

Table 8.4: Coverage (in %) and median number of expansions of the progression
heuristics with varying number of hidden layers on the moderate tasks.

Activation Dropout Rate L2 Weight
Domain Base ReLU 0.2 0.4 0.1 1 10

Blocksworld 97.2 100.0 95.7 90.9 0.0 0.0 0.0
Depots 76.2 77.6 81.2 77.8 0.2 0.2 0.2
Grid 93.2 78.2 77.0 72.2 0.0 0.0 0.0
Pipesworld-NT 89.6 84.2 89.3 90.1 7.2 7.2 7.4
Scanalyzer 94.6 96.5 81.8 73.8 15.4 15.4 15.4
Storage 95.5 99.5 56.0 31.5 0.0 0.0 0.0
Transport 99.1 89.6 99.9 99.9 0.0 0.0 0.0

Average 92.2 89.4 83.0 76.6 3.3 3.3 3.3

Table 8.5: Coverage (in %) of the progression heuristics with ReLU activation function
on the hidden layers, dropout layers, and L2 regularization on the moderate
tasks.
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Domain Init-State Random-State Entire-Plan Random-State [# Plans]

Blocksworld 0.0 97.2 81.6 42.2
Depots 28.6 76.2 71.2 78.6
Grid 12.2 93.2 48.0 71.5
Pipesworld-NT 90.6 89.6 75.8 63.8
Scanalyzer 16.8 94.6 79.4 60.0
Storage 13.5 95.5 52.0 21.0
Transport 17.8 99.1 93.7 96.1

Average 25.6 92.2 71.7 61.9

Table 8.6: (Column 2–4) Coverage (in %) of the progression heuristics on the moder-
ate tasks when using different sample selection strategies. (Right) Coverage
(in %) on the moderate tasks of the random-state sample selection strategy
when selecting the same number of samples as the entire-plan strategy.

second. Our networks with five hidden layers evaluate only 160 states per second.
Table 8.4 shows the coverage for networks with 0, 1, 3, and 5 hidden layers. Net-

works without hidden layers perform worst in almost all domains. They obtain an
average coverage of just 60%. Networks with 1 or 3 hidden layers perform best with
an average coverage of around 92%. In some domains the former is better, in other
domains the latter is better. Networks with 5 hidden layers are again worse with only
74% average coverage. Table 8.4 also shows the median number of expansions per
hidden layers and domain. Increasing the number of hidden layers from 1 to 3 reduces
the required number of expansions in all except for one domain. The increased network
complexity can be used to better approximate the perfect heuristic. Further increasing
the number of hidden layers is beneficial in some domains, but is detrimental in others.
In the later course, we train networks with 3 hidden layers, because they perform almost
as good as the networks with 1 hidden layer, and they are much better informed.

Another architectural choice is the activation function used in the hidden layers.
Switching from sigmoid to ReLU activation has a minor detrimental impact (see Ta-
ble 8.5). Thus, we keep using the sigmoid activation function. Finally, we also add
regularization to the network in the form of dropout layers or an L2 penalty for the
weights. Neither of both performs consistently better than no regularization (see Ta-
ble 8.5). Thus, we conclude our networks do not overfit in a manner that regularization
prevents.

Data Distribution. Our final parameter set concerns the training data distribution. We
proposed three strategies to select training states from sampled plans. Table 8.6 shows
the average coverage for each strategy when training on the same number of states. The
random state strategy clearly outperforms the other two. Thus, using uncorrelated states

52



8.3. A Survey in Hyperparameter Space

Domain P+W+ P+W- P-W+ P-W-

Blocksworld 60.1 0.0 66.5 97.2
Depots 45.2 76.7 39.8 76.2
Grid 88.8 70.0 89.5 93.2
Pipesworld-NT 83.9 87.0 89.9 89.6
Scanalyzer 72.8 81.5 76.6 94.6
Storage 24.5 45.0 24.5 95.5
Transport 99.8 99.8 99.7 99.1

Average 67.8 65.7 69.5 92.2

Table 8.7: Coverage (in %) of the progression heuristics with and without pruning and
sample weighting on the moderate tasks.

is indeed advantageous. The initial state strategy is clearly inferior. Taking a closer look
at the data reveals that it performs best when there are states with small heuristic values
in the data. Our assumption that we should focus on states far away from the goal is
wrong. The network is now lacking states with low heuristic values. It remains future
work to evaluate if a mixture of strategies improves performance.

Although the random state strategy performs best, the experiments hide that using
only a single state per generated plan reduces the number of samples by a factor of 10–
138. To generate the same number of samples, the random state strategy requires much
more computational power. Thus, we train additional models with the random state
strategy. This time, random states are only picked from those plans previously used as
training data by the entire plan strategy. This simulates the performance of the random
state strategy when the computational resources for sampling are a limiting factor. We
see that the new models perform worse than the entire plan strategy. Thus, if we cannot
generate enough plans to fill the memory with uncorrelated states, then using the entire
plan is the best choice.

Table 8.7 shows the results when using pruning or weighting. If we prune duplicate
states from the training data, this reduces the performance in half of the domains and
in the other half it has almost no effect. There are much fewer states close to the goal
than far away from the goal. Thus, most duplicates will have a low heuristic value.
If we prune duplicates, states with low heuristic value become underrepresented. We
observe that this is detrimental. This observation is also in line with our observation
regarding the initial state strategy. We also observe that just weighting the samples such
that all heuristic values are equally impactful during training does not work either. We
know that for the high heuristic values, there are very few samples, sometimes only
one. If each heuristic value has the same influence, then only a few states have almost
all impact on the training outcome, and the network cannot generalize.
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Coverage Median # Expansions
Domain hP hFF LAMA Mercury hP+ hP hFF LAMA Mercury hP+

Blocksworld 97.2 100.0 100.0 100.0 98.8 1381 12665 465 516 442
Depots 76.2 92.1 100.0 99.2 91.0 182 47731 8734 8746 65
Grid 93.2 93.2 100.0 100.0 94.0 493 2439 150 183 493
Pipesworld-NT 89.6 63.6 98.7 92.5 97.9 354 832 1676 138 103
Scanalyzer 94.6 97.8 100.0 100.0 98.2 269 482 208 217 97
Storage 95.5 94.5 96.0 97.0 98.0 4208 2089 24712 16055 4145
Transport 99.1 100.0 100.0 100.0 100.0 3002 4586 192 0 122

Average 92.2 91.6 99.2 98.4 96.8 1413 10118 5162 3693 781

Table 8.8: Coverage (in %) and median number of expansion for the progression
heuristic (hP ), the teacher (hFF), LAMA, Mercury, as well as the progression
heuristic extended with the preferred operators of the FF heuristic (hP+) on
the moderate tasks.

Median # Exp. Per Second Median Runtime
Domain NN hFF LAMA Mercury NN hFF LAMA Mercury hP+

Blocksworld 857 14536 19593 14875 1.7 0.8 0.1 0.8 0.9
Depots 530 1490 4792 3749 0.4 17.9 1.1 3.4 0.3
Grid 125 1810 4525 1739 4.1 1.5 0.2 4.9 3.2
Pipesworld-NT 295 752 3563 1640 1.2 1.5 0.6 2.7 0.8
Scanalyzer 183 38 1403 725 1.4 5.7 0.7 8.3 1.1
Storage 51 722 7309 5283 83.9 3.0 3.4 4.5 39.5
Transport 458 799 3415 0 8.0 6.3 0.2 2.8 1.1

Average 357 2940 6616 4116 14.4 5.2 0.9 3.9 6.7

Table 8.9: Median number of expansions per second and median runtime (in seconds)
for the progression heuristic (hP ), the teacher (hFF), LAMA, Mercury, as
well as the progression heuristic extended with the preferred operators of
the FF heuristic (hP+) on the moderate tasks.
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(a) Blocksworld (b) Depots (c) Grid

(d) Pipesworld-NT (e) Scanalyzer (f) Storage

(g) Transport

Figure 8.1: Runtime comparison between the progression heuristic and the teacher on
the moderate tasks. Every test state is a data point. The runtimes of the
progression heuristic is on the x-axis, the runtimes of the teacher is on the
y-axis. Data points left of the diagonal indicate a better runtime for our
progression heuristic.
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Performance Comparison. Now that we have our final parameter setting, we com-
pare GBFS with our heuristic against some state-of-the-art model-based planners. Ta-
ble 8.8 and Table 8.9 show the results. The first obvious question is whether our
heuristics solve more tasks than the teacher, which generated the data. In Pipesworld-
NoTankage, we perform better than our teacher. In Depots, we perform worse. In the
other domains, the results are approximately the same. If we take a look at the median
number of expansions for each domain, which we use as a proxy for the informedness
of the heuristics, we see that our trained heuristics are significantly better informed.
Why are they not solving more tasks if they are better informed? We observe that our
NN heuristics require a factor of 2–36 more time to evaluate a single state than our
teacher. Often this additional time offsets the advantage of being better informed. Fig-
ure 8.1 provides a comparison between the runtime of GBFS with hP and our teacher.
Every test task is a point in the scatter plot. In Blocksworld and Storage, the teacher
is in general faster. In Transport, our heuristic is faster on simple tasks, but on aver-
age, the teacher is faster. For Pipesworld-NoTankage the picture is not that clear, but
it is inverted. The teacher is faster on simpler tasks, and our heuristic is faster on the
harder tasks. For Scanalyzer and Depots our heuristic is fastest, and in Grid, the picture
is mixed. These results can also be seen in the summarized median runtime values of
Table 8.9. We conclude that our heuristic is better informed, but too slow to evaluate
on a single CPU core.

And how do we compare against other state-of-the-art planners like LAMA and Mer-
cury? Table 8.8 shows that our learned heuristics solve in general fewer tasks than those
planners. It should be noted that both of them are not just GBFS with a heuristic, but
incorporate other techniques. Mercury has a technique, which detects if it can extend
a delete relaxed plan to a valid plan and LAMA combines two heuristics and their pre-
ferred operators (PO) using four open lists (also called queue). For a fair comparison,
we also evaluate our heuristic in a dual queue approach. The second queue is filtered
by the preferred operators of the FF heuristic. Whenever we extend a method with a
second queue using the preferred operators of the FF heuristic, we extend its abbre-
viation by a “+”. The dual queue approach improves the coverage in all domains. In
two domains, we now solve more tasks than Mercury. Furthermore, we are now faster
than Mercury in five out of seven domains. Although this extension shrinks the gap to
LAMA, LAMA is still supreme in all domains. It solves more tasks, and it is faster.
Our learning-based heuristic is not yet ready to be used in the real world.

Until now, we skipped the NPuzzle, Rovers, and VisitAll domains, because prelim-
inary experiments did not learn meaningful heuristics on them. Table 8.10 shows the
final test results for those three domains. Even with the optimized parameter setting, our
heuristics do not work on these domains. They are less informed than even the teacher
and slower to evaluate. Consequently, they solve only a few test states. A reason for
NPuzzle and VisitAll could be that the teacher also performs badly in those domains.
The teacher produces excessively large plans, sometimes with more than 2,500 actions,
which leads to samples with low quality labels. A solution could be to use a differ-
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Coverage # Expansions # Exp. Per Sec. Runtime
Domain NN hFF NN hFF NN hFF NN hFF

npuzzle 0.0 97.3 – – – – – –
rovers 53.0 73.9 3543 1165 43 1800 82.8 0.5
visitall 0.2 94.1 1065K 93K 893 35354 1251.5 2.6

Average 17.7 88.4 – – – – – –

Table 8.10: Coverage (in %), median number of expansion, median number of ex-
pansions per second, and median runtime (in seconds) for the progression
heuristic (hP ) and the teacher (hFF).

Coverage Median # Expansions
100 75 50 25 2.5 100 75 50 25 2.5

Blocksworld 97.2 96.2 94.2 87.8 45.3 409 265 230 364 93K
Depots 76.2 89.3 90.6 90.8 82.8 181 78 94 150 883
Grid 93.2 64.2 70.8 70.8 72.5 367 1005 1266 1302 1948
Pipesworld-NT 89.6 95.4 93.6 93.1 78.4 462 121 136 215 3501
Scanalyzer 94.6 95.1 93.2 82.9 57.4 86 50 45 45 208
Storage 95.5 18.5 59.5 32.5 1 626 222K 37K 228K -
Transport 99.1 99.8 99.0 97.7 94.4 2686 146 165 248 910

Average 92.2 79.8 85.8 79.4 61.7 688 32K 6K 33K -

Table 8.11: Coverage (in %) and median number of expansions for the progression
heuristic trained on fractions of the available training data.

ent teacher, e.g., a bounded suboptimal teacher. Indeed, exploratory experiments with
weighted A∗ as teacher increased the coverage from 0% to 40%. We learn that if the
quality of the labels is too low, then the network does not learn a good heuristic.

We used a generous amount of time to generate our training samples. This computa-
tional cost should amortize if we use our learned heuristic frequently. Nevertheless, is it
necessary to generate this much training data? Table 8.11 shows that in most domains
a fraction of the training data is sufficient to learn high quality heuristics. In many
domains, 50% or even 25% of the training samples suffice. In Transport the heuristic
quality drops only slightly when training on 2.5% on the training data. In other words,
for Transport we do not need to sample data for 400 hours, but only for 10 hours. In a
concrete setting, the amount of training data to sample should be adapted to the domain.
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Moderate Tasks
w/o Validation with Validation

Domain hGD hSE hAV I hGD hSE hAV I hP hHGN hFF LAMA

blocks 0 0 0 18 0 0 80 100 99 100
depots 32 18 44 60 33 55 90 0 98 100
grid 100 100 51 100 100 51 93 0 96 100
npuzzle 27 0 1 28 0 1 0 0 98 100
pipes-nt 36 51 21 58 68 50 92 8 82 99
rovers 36 15 34 48 22 45 26 14 84 100
scanaly. 33 60 67 33 71 67 83 11 98 100
storage 89 61 67 89 58 70 24 0 48 38
transport 84 80 70 100 100 88 99 95 98 100
visitall 17 0 0 55 0 0 0 100 93 100

Table 8.12: Coverage (in %) comparison between our goal-distance estimator (hGD),
our search space size estimator (hSE), our approximate value iteration
heuristic (hAV I), our progression heuristic (hP ), STRIPS-HGN (hHGN ),
the teacher (hFF), and LAMA on the moderate tasks with validation and
between hGD, hSE , hAV I on the moderate tasks without (w/o) validation.

8.4. Regression Heuristics and Comparisons

To circumvent the computational bottleneck of the data generation, we proposed three
methods, which use regression random walks to sample states, and label the states using
the current state of the network. We now evaluate these three methods and compare
them to STRIPS-HGN (hHGN ) and LAMA.

Because our new approaches avoid the data generation bottleneck, we also include
the hard tasks in our evaluation. We previously showed that our NN are slow at evalu-
ating a state on a single core. The evaluations could be sped up with parallel computing
power, but the model-based planners do not support parallel computing. To make up
for this disadvantage, we set a search time limit of 10 hours for all planners. This al-
lows the NN heuristics to profit from their better informedness without being punished
for running on a single core. Consequently, we use only 50 instead of 200 test states
for each task. For the hard tasks, we generate those test states in the same manner as
before: progression random walks from an initial state with a walk length of 200.

Validation. Preliminary experiments showed that the performance of our new ap-
proaches is brittle. For every task, we sample ten validation states from the same dis-
tribution as the test states and evaluate a trained model on them. If GBFS using those
models finds plans for less than eight validation states, then we retrain the model. We
retrain at most three times.
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8.4. Regression Heuristics and Comparisons

Hard Tasks with Validation
Domain hGD hSE hAV I hP hHGN hFF LAMA

blocks 0 0 0 0 50 62 97
depots 8 4 13 35 0 36 83
grid 88 95 70 60 0 53 100
npuzzle 0 0 0 0 0 33 86
pipes-nt 23 19 8 49 0 27 69
rovers 3 1 6 2 0 14 100
scanaly. 3 0 61 60 0 98 100
storage 27 13 16 0 0 14 12
transport 0 0 2 0 0 0 93
visitall 28 0 0 0 100 74 100

Table 8.13: Coverage (in %) comparison between our goal-distance estimator (hGD),
our search space size estimator (hSE), our approximate value iteration
heuristic (hAV I), our progression heuristic (hP ), STRIPS-HGN (hHGN ),
the teacher (hFF), and LAMA on the hard tasks with validation.

Table 8.12 shows the effect of the validation for the moderate tasks. For all our
heuristics and most domains, using validation increases the coverage significantly. For
example, in the Depots domain, the coverage of hGD increases from 31.7% to 60.3%.
Thus, we use the validation approach for all further learning-based experiments. To be
fair to the other learning-based heuristics, we train 10 STRIPS-HGN models for each
domain and 10 progress heuristic models for each task and evaluate the performance of
those models on the same validation states. Then we pick the model which solves most
of the validation states. If there is a tie, we prefer the network which fastest solves the
validation states.

Performance. Table 8.12 shows the coverage on the test states for the moderate tasks.
If we compare our regression heuristics, we observe that no approach dominates any
other approach. hGD is better than the other two in 8 domains, hSE is best in 4 do-
mains, and hAV I is closest to the best in 3 domains. Adding our progression heuristic
to the mix, it performs better than our other approaches in 4 domains, but worse in
6. Noteworthy, hGD is able to learn something in all three domains where hP cannot
learn reasonable heuristics. STRIPS-HGN learns heuristics, which generalizes across
the whole domain. It excels in Blocksworld and VisitAll and solves all test samples.
In Transport, it also performs very well. In all other domains, it solves no or almost
no task. At the core of STRIPS-HGN is a hypergraph. We identify this hypergraph
as a main issue in the other domains. Either the hypergraph is so large that it exceeds
the memory limits (Depots, Storage, Grid) or it is still so large that the network is very
slow to evaluate. In the Blocksworld and VisitAll domains where STRIPS-HGN excels,
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8. Experiments

we observe that the hypergraph stays small (less than 1,000 nodes and less than 1,500
edges). If we compare all learning-based heuristics, we observe that they are highly
complementary. No heuristic dominates the others. It depends on the domain, which
method performs best. Due to the issue with the hypergraph size, learning a heuristic
which generalizes only over the states of a task is often superior to learning a heuristic
which generalizes across the domain.

If we add GBFS with the FF heuristic and LAMA to the comparison, we see that
model-based approaches are still superior. Especially LAMA performs well on all do-
mains. Only in the Storage domain, learning-based heuristics are able to solve more
tasks than LAMA and hFF. LAMA solves 38% of the test samples, GBFS with hFF

solves 48%, hP and STRIPS-HGN are worse, but all three regression heuristics exceed
the model-based heuristics. hGD solves even 89% of the moderate Storage tasks.

Figure 8.2 compares the expansions required by the different methods. We see again
that all network based heuristics are highly complementary. Sometimes, one is better.
Sometimes, another one is better. LAMA is often good, and we already know that it
quickly expands states. Thus, LAMA performs well in most domains.

As we used a long time limit of 10 hours, we also evaluate how the coverage changes
over time. Figure 8.3 shows that coverage superiority persists over time. For every
domain holds if a method is better than another one after 30 minutes, then it is also
better after 2 hours. On the other hand, LAMA quickly expands states. Thus, it solves
a state quickly or reaches the memory limit and terminates without a solution. On
the other hand, the neural network based heuristics are slower to evaluate and still solve
tasks after multiple hours have passed. Nevertheless, even the neural network heuristics
rarely solve a task after five hours. Cutting the maximum search time in half would not
have changed the results significantly.

Finally, let us take a look at the coverage results for the hard tasks (see Table 8.13).
The hard tasks are more difficult for all techniques. The coverage numbers decrease
in general, but the results are qualitatively the same. STRIPS-HGN still excels in Vis-
itAll, but solves only half the Blocksworld states. It fails on all other domains. Our
progression heuristic still generates enough training data to solve some tasks, but fails
in most tasks. The coverage numbers of our regression heuristics also decreased, but
in some domains they still work. As with the moderate tasks, our regression heuristics
still exceed the coverage of hFF and LAMA in Storage. As before, we improve our
heuristics with a second queue, which uses the preferred operators of the FF heuristic.
They almost always improve the performance significantly. Our advantage in storage
increases, and our disadvantage in the other domains decreases, but LAMA is still su-
perior in nine out of ten domains.
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8.4. Regression Heuristics and Comparisons

Hard Tasks with Validation
domain hGD hGD+ hSE hSE+ hAV I hAV I+ hP hP+ hFF hFF+

blocks 0 + 0 0 + 0 0 + 0 0 + 0 62 + 9
depots 8 +16 4 +13 13 + 1 35 +22 36 +31
grid 88 +11 95 + 4 70 +10 60 +19 53 +24
npuzzle 0 + 0 0 + 0 0 + 0 0 + 0 33 - 2
pipes-nt 23 + 6 19 +10 8 + 3 49 +10 27 +37
rovers 3 +34 1 + 5 6 + 0 2 +35 14 +82
scanaly. 3 + 5 0 + 3 61 + 6 60 +29 98 + 1
storage 27 + 5 13 + 6 16 + 6 0 + 0 14 - 5
transport 0 + 0 0 + 0 2 +30 0 + 1 0 +26
visitall 28 + 4 0 + 0 0 + 0 0 + 0 74 + 4

Table 8.14: Coverage (in %) comparison between our goal-distance estimator (hGD),
our search space size estimator (hSE), our approximate value iteration
heuristic (hAV I), our progression heuristic (hP ), and the teacher (hFF), on
the hard tasks with validation without and with (“+”) the preferred opera-
tors of the FF heuristic.

61



8. Experiments

hGD

hSE

hAV I

hP

hHGN

hFF

LAMA
102 103 104 105 106 107

(a) blocks

102 103 104 105 106 107

(b) depots

102 103 104

(c) grid
hGD

hSE

hAV I

hP

hHGN

hFF

LAMA
104 105 106

(d) npuzzle

101 103 105

(e) pipes-nt

100 101 102

(f) rovers
hGD

hSE

hAV I

hP

hHGN

hFF

LAMA
101 102 103 104

(g) scanalyzer

102 103 104 105 106

(h) storage

102 103 104 105 106

(i) transport
hGD

hSE

hAV I

hP

hHGN

hFF

LAMA
102 103 104 105 106

(j) visitall

Figure 8.2: Expansion comparison between our goal-distance estimator (hGD), our
search space size estimator (hSE), our approximate value iteration heuristic
(hAV I), our progression heuristic (hP ), STRIPS-HGN (hHGN ), the teacher
(hFF), and LAMA on the commonly solved moderate tasks. Algorithms
which solved fewer than 10% of the tasks in a domain are skipped, to keep
the number of the commonly solved tasks sufficiently large. The black line
in the middle indicates the median, the boxes the interval between the 25
and 75 percentile. the whiskers extent to the 5 and 95 percentile.
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Figure 8.3: Coverage (in %) over time (in hours) for our goal-distance estimator (hGD),
our search space size estimator (hSE), our approximate value iteration
heuristic (hAV I), our progression heuristic (hP ), STRIPS-HGN (hHGN ),
the teacher (hFF), and LAMA on the moderate tasks.
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9. Summary and Future Work
We presented four approaches to train neural networks for reset problems. The first
uses progression random walks to generate the training states. However, it is expen-
sive to label to states with a teacher. The latter three circumvent the expensive labeling
by using approximate value iteration or by slowly scaling the difficulty of the samples
and using the network itself as teacher heuristic. We observe that the performance of
the three regression walk heuristics is brittle. We introduce a validation approach to in-
crease robustness. We identified the effect of important hyperparameters on our NN and
compare our approaches against STRIPS-HGN, a state-of-the-art learning-based plan-
ner, and some model-based planners on tasks of interesting difficulties. We show that
all learning-based approaches are highly complementary. They excel in some domains
and perform badly in others. It is a priori unclear how they perform in a new domain.
In general, all learning-based heuristics perform worse than LAMA, a state-of-the-art
model-based planner. A notable exception is that all our regression based heuristics
solve more tasks than LAMA in the Storage domain. Until now, this was only achieved
once by Karia and Srivastava (2021) on the Spanner domain. Furthermore, we want
to remember that the neural networks were executed on a single CPU core, although
their computations can easily be parallelized and sped up using multiple cores or even
a GPU.

A first future step speeds up the network evaluation. Agostinelli et al. (2019) showed
that evaluating multiple states at once improves the evaluation speed. Furthermore, we
can adapt the implementation to GPUs.

Secondly, we can introduce better sampling techniques. We can replace the indepen-
dent random walks by a search like algorithm with duplicate detection. Every new ran-
dom walk starts at the same goal and walks over the same few states close to the goal.
The unnecessary work of generating the same states multiple times will be skipped.
Furthermore, identifying duplicates prevents us from choosing actions which reverse
previous actions. Thus, leading us deeper in the state space. As we know how many
steps we used to generate a sample, we have an upper bound on the goal distance. We
could use this upper bound as label like Yu, Kuroiwa, and Fukunaga (2020) or at least
use it to label a state if we are unable to find a plan for it with GBFS.

In satisficing planning, it is not relevant to predict an accurate goal distance or goal
cost, but it suffices if the heuristic produces a similar state order as the perfect heuristic.
Thus, we can also train a network by showing it two states and telling it which one
is closer to the goal. Learning to rank states might be an easier task than predicting
the correct goal distance. We implemented a prototype of such an approach using the
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DirektRanker architecture of Köppel et al. (2019). The DirektRanker has one main
network, which accepts a state and transforms it into a latent representation. To evaluate
if one state is closer to the goal than another one, it transforms both states into the latent
representation and then compares the representations to make its decision. With minor
adaptions, we can split the network after training such that we can evaluate it on a single
state and interpret the output as heuristic. In contrast to our definition, this heuristic
can output negative values. As we use those values only to order states, this has no
consequences.

Finally, we consider training a network, which generalizes across a domain. This
allows us to train the network on simple tasks where we can generate the true labels.
Most previous approaches do this with GNN (Shen, Trevizan, and Thiébaux, 2020;
Rivlin, Hazan, and Karpas, 2020). Karia and Srivastava (2021) use canonical abstrac-
tions instead. We can show that their fragment of canonical abstraction is a subset of
the description logic we use in later parts of this thesis. We refer the interested reader
to Section A.1 of the appendix. Our idea is to build upon our experience with descrip-
tion logic and learn automatically description logic features on which the state ranking
builds its decisions. GNNs and description logic can express similar functions (Barceló
et al., 2020). The advantage of GNNs is that they learn by themselves what is important
in the input, but we observed that the size of the underlying graphs make GNNs hardly
usable on large tasks. If we use description logic, we do not have the scalability issue.
Instead, we need a good procedure to build meaningful inputs for the network.
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Part II.

Learning Portfolios
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10. Introduction to Portfolios
Solving classical planning tasks is difficult, EXPSPACE-complete difficult (Erol, Nau,
and Subrahmanian, 1995). Thus, the planning community developed many sophisti-
cated techniques to solve planning tasks. While the community constructed new plan-
ners, we observed that no single planner dominates all other planners. In fact, even
though modern planners perform better and better on our benchmark sets, older plan-
ners still have their unique characteristics, which are useful for some tasks (Roberts and
Howe, 2009). Prior work observed that given a time limit a planner solved a task either
quickly or it exceeds the time limit (Helmert et al., 2011). We also observe that most
tasks in our experiments are solved quickly or not at all (see Figure 13.1). Consequen-
tially, the idea emerged that we can combine multiple planners to add their strengths.
We call the combination of multiple planners into a single planning system a portfolio
(Vallati, 2012). A portfolio is again a planner.

The idea of portfolio planners opens a new research direction. Which planners should
be combined? How should they be combined? Which properties influence the best
combination of planners?

The first emerging class of portfolios executes sequentially a fixed schedule of plan-
ners (Helmert et al., 2011; Núñez, Borrajo, and Linares López, 2014; Seipp et al., 2012;
Seipp, Sievers, and Hutter, 2014a,b,c; Seipp, 2018a,b). The schedule is pre-computed
and does not adapt to the task to solve. We call such a portfolio offline portfolio.

Definition 10.1. Offline Portfolio
Let P = {P1, . . . , Pn} be a set of planners and T be a time limit. An offline portfolio is
a schedule S = ⟨⟨p1, t1⟩, . . . , ⟨pk, tk⟩⟩ of planner pi ∈ P , time limit ti ∈ R+ pairs with∑

i=1..k ti ≤ T .

Fast Downward Stone Soup is an example offline portfolio (Helmert et al., 2011).
Given a set of planners P and a set of training tasks T , it evaluates the performance,
e.g., coverage, of every planner on every task. It splits the time limit T into equally
sized fragments and initially assigns every planner zero seconds of runtime. Iteratively,
it assigns one additional time fragment to the planner which improves the overall per-
formance of the portfolio the most. Once all time fragments are assigned, the final
schedule is constructed. Ties are broken using an arbitrary preference order between
the planners.

Offline portfolios have the advantage that they are easy to execute and require a
negligible overhead during execution, but they do not adapt to the current situation. If
we want to solve a specific task, it is beneficial to adapt the schedule for that task. If we
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10. Introduction to Portfolios

know that some planners will perform poorly on the given task, we can remove those
planners from the schedule and assign longer runtimes to the other planners. We call a
portfolio which adapts its schedule to the current situation an online portfolio (Roberts
and Howe, 2006; Cenamor, de la Rosa, and Fernández, 2013, 2014, 2016, 2018; Seipp
et al., 2015).

Definition 10.2. Online Portfolio
Let P = {P1, . . . , Pn} be a set of planners and T be a time limit. Given a task Π and
some history H, an online portfolio is a function s(Π,H) = ⟨p, t⟩ which predicts the
next planner p ∈ P to run and a time limit t for this planner.

A simple online portfolio predicts a performance for each planner in the portfolio
and selects the planner with the best predicted performance. As almost all non-portfolio
planners are sequential algorithms, most competitions also execute planners only on a
single core. Thus, most portfolios, as well as ours are sequential portfolios.

In the last years, dynamic algorithm configuration (DAC) was introduced for heuris-
tic search (Speck et al., 2021; Biedenkapp et al., 2022). DAC executes a single search,
but its parameters can change on the fly. For example, if the controller realizes that the
current heuristic is not the best choice anymore, it changes the heuristic without starting
a new search. Many of the planners in our portfolio differ only by their heuristic. For
those planners, using DAC is more general than an online portfolio. We can switch at
any point during search and keep the current search progress. This ability comes with
an overhead. Every optional heuristic requires bookkeeping. This costs time and mem-
ory. The more heuristics DAC uses, the more expensive it becomes. Portfolios cannot
switch between planners and keep the search progress, but they require no bookkeep-
ing. Furthermore, portfolios allow combining arbitrary planners. For DAC, this is
difficult, but not necessarily impossible, to combine fundamentally different planners,
like a heuristic search planner and a SAT based planner.

In our work, we will train sequential online portfolios.
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11. Competitive Online Portfolios

A few online portfolios for planning exist. All of them use a set of complicated, hand-
crafted features (Roberts and Howe, 2006; Cenamor, de la Rosa, and Fernández, 2014,
2016, 2018). Given a planning task, they extract the values for those features and use
them as input to their model. Handcrafting features is problematic for two reasons.
First, the selection of features introduces a bias for the model. Secondly, we can forget
important features. Thus, we asked ourselves, can we reduce the bias of handcrafted
features? Can we reduce the burden of coming up with good features? And can we
solve the problem of forgetting important features?

The answers to all these questions is “yes”. By changing the encoding of the planning
task, we can directly apply machine learning techniques to the task without manually
extracting features. That means, the machine learning model learns the features and
how to weight them by itself.

In an initial endeavor, we show how to convert a planning task to a graph and then to
an image and use this as input for a CNN. The CNN automatically extracts features from
the images and predicts a single planner to run. The conversion from graph to image
is ad hoc, loses information, and still introduces a human bias. Thus, we improve the
approach and feed the graphs directly to a GNN. It rarely happens, but it can happen
that our models select the wrong planner. We enable our portfolio to reconsider its first
choice and optionally switch to a second planner. The choice of the second planner
depends only on the first chosen planner. We do not yet include additional features
from the run of the first planner.

Π

0 1 0 0 0
1 0 1 1 0
0 1 0 0 0
0 0 0 0 1
1 1 0 1 0

encode extract interpret shrink

Figure 11.1: Workflow to convert a planning task Π into an image. First, the task is
encoded as graph. Then, its adjacency matrix is extracted and interpreted
as image. Finally, this image is postprocessed.
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11.1. Graph Representations
Let P = ⟨P1, . . . , Pn⟩ be the set of planners we include in our online portfolio. We
train our online portfolios on the data set D = {⟨Π1, y⃗1⟩, . . . , ⟨Πk, y⃗k⟩} where Πi is a
PDDL planning tasks, and y⃗ij indicates the time the planner Pj requires to solve task
Πi. Most machine learning techniques do not accept a planning task as input. Thus,
all previous online portfolios settle for a set of handcrafted features, which describe a
planning task. They extract for each task Πi the value of their features. To remove the
need of handcrafting features, we encode a PDDL task in such a way that the machine
learning model can parse it. If this encoding is lossless, then the model parses the full
task and identifies on its own the important features.

Loreggia et al. (2016) solve the input representation question for SAT and CSP prob-
lems by taking the textual description of a task, reading it character by character, in-
terpreting every character as a pixel where its ASCII code represents its gray-scale
color, and arranging the pixels in a grid. Then, they scale the resulting image down
to a fixed size. The image can easily be processed by a CNN. Inspired by this, we
set up the pipeline (see Figure 11.1) for our first online portfolio. First, we encode a
task as graph using either the abstract structure graph (Sievers et al., 2019b, ASG) or
the problem description graph (Pochter, Zohar, and Rosenschein, 2011, PDG). These
graphs contain meaningful information about the task. Then we extract the adjacency
matrix of the graphs and interpret them as black and white images. Finally, we apply
some post-processing (see Section 11.3)

Abstract Structure Graph. The ASG is used to find structural symmetries and en-
codes a PDDL tasks. Because the ASG encodes a lifted planning formalism, we call it
a lifted encoding. An abstract structure is an inductively defined concept.

Definition 11.1. Abstract Structure (Sievers et al., 2019b)
Let T be a set of symbol types, S be a set of symbols, and t : S 7→ T be a function,
which associates every symbol with a type.

• A symbol s ∈ S is an abstract structure.

• A tuple A = ⟨A1, . . . , An⟩ of abstract structures Ai is an abstract structure.

• A set A = {A1, . . . , An} of abstract structures Ai is an abstract structure.

We can easily turn any abstract structure into a graph.

Definition 11.2. Abstract Structure Graph (Sievers et al., 2019b)
Let A be an abstract structure over a set of symbols S with symbol types T and a
function t : S 7→ T . Let G = ⟨V,E⟩ be its abstract structure digraph.

• If A ∈ S, then V contains a single node nA for the symbol A and E is empty.
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• If A = ⟨A1, . . . , An⟩, then V contains a main node nA. Furthermore, G contains
the nodes and edges for the ASG of A1, . . . , An and an auxiliary node n′

A,i for
every structure Ai. Let nA,i be the main node for the ASG of Ai. E contains
edges n′

A,i → nA,i. Finally, E contains an edge nA → n′
A,1 and for 1 ≤ i < n an

edge n′
A,i → n′

A,i+1.

• If A = {A1, . . . , An}, then V contains a main node nA. Furthermore, G contains
the nodes and edges for the ASG of A1, . . . , An. Let nA,i be the main nodes for
the ASG of Ai. For every Ai, there is an edge nA → nA,i.

If multiple sub-structures use the same symbol s ∈ S, then N contains exactly one node
ns for the symbol s. The ASG is acyclic.

Additionally, we define a node coloring function color . If A ∈ S, then color(A) =
t(A); if A = ⟨A1, . . . , An⟩, then color(A) = tuple; if A = {A1, . . . , An}, then
color(A) = set; and if A is an auxiliary node, then color(A) = auxiliary .

Now, we show how to recursively construct an abstract structure for a PDDL task
Π = ⟨O,P ,A, sI, δ⟩ and how to derive a graph. For simplicity, we skip the notion
of functions and axioms of a PDDL task. We refer to Sievers et al. (2019b) for the
complete definition. The abstract structure for a planning task has the symbol types

T = {Object, V ariable, Predicate,Negation} ∪ N

and the symbols

S ={so | o ∈ O} ∪ {sa,v | ⟨V, pre, eff ⟩ ∈ A, v ∈ V }∪
{sa,v | ⟨V, pre, eff ⟩ ∈ A, ⟨V i : cond i ▷ eff i⟩, v ∈ V i} ∪ {sp | p ∈ P}∪
{sa | a ∈ A} ∪ {s¬} ∪ N

where N is the finite set of all costs c ∈ N which are assigned by the cost function to
an action. The construction rules are:

• AS(Π) = ⟨AS(A), AS(sI), AS(δ)⟩

• AS(A) = {AS(a) | a ∈ A)} where a is an action schema

• AS(sI) = {AS(f) | f ∈ sI} where f is a fact

• AS(δ) = {AS(l) | l ∈ δ} where l is a literal

• AS(f) = ⟨sp, AS(o1), . . . , AS(on)⟩ where f = p(o1, . . . , on) is a fact with p ∈
P and oi ∈ O

• AS(l) = AS(f) where f ∈ F and l = f

• AS(l) = ⟨s¬, AS(f)⟩ where f ∈ F and l = ¬f
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11. Competitive Online Portfolios

• AS(a) = ⟨cost(a), AS(Va), AS(prea), AS(eff a)⟩ where
a = ⟨Va, prea, eff a⟩ is an action schema

• AS(Va) = {sa,v | v ∈ Va} where Va is a set of variables

• AS(prea) = {AS(l) | l ∈ prea} where l is a literal p(o1, . . . , on) or
¬p(o1, . . . , on) and all oi are either in O or in Va

• AS(eff a) = ⟨AS(eff i
a) | eff i

a ∈ eff a⟩

• AS(eff i
a) = ⟨AS(V i), AS(cond i

a), AS(e
i
a)⟩ where eff i

a = V i
a : cond i

a ▷ e
i
a

• AS(V i
a ) = {sa,v | v ∈ V i

a} where V i
a is a set of variables

• AS(cond i
a) = {AS(l) | l ∈ cond i

a}where l is a literal p(o1, . . . , on) or¬p(o1, . . . , on)
where all oi are either in O, Va, or V i

a

Problem Description Graph. Alternatively to the ASG which encodes a PDDL task,
we use the PDG. The PDG can also be used to detect structural symmetries (Shleyfman
et al., 2015). It encodes an FDR task. As FDR is a grounded formalism, we call
this graph a grounded encoding. For the PDG we should keep in mind that we need a
function, which compiles the given PDDL task to an FDR task. This introduces the
bias of the function and requires time and memory. Especially for some tasks of the
2018 International Planning Competition (IPC 2018) this is problematic. The IPC 2018
included some tasks which take a lot of time and memory to ground.

Definition 11.3. Problem Description Graph (Pochter, Zohar, and Rosenschein, 2011)
Let Π = ⟨V , A, sI, δ⟩ be an FDR task. The problem description graph of Π is a digraph
PDG(Π) = ⟨V,E⟩ with nodes

V =VI ∪ Vδ ∪ Vv ∪ Vd ∪ Va ∪ Ve, where
VI = {nI}
Vδ = {nδ}
Vv = {nv | v ∈ V}
Vd = {nd

v | v ∈ V , d ∈ dom(v)}
Va = {na | a ∈ A}
Ve = {ne

a | a ∈ A, e ∈ eff a}
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11.2. Label Representations

(a) Grounded (b) Lifted

Figure 11.2: Visualization of a grounded and lifted graph including node coloring for
the same task from the VisitAll domain.

and edges

E ={⟨nI , n
d
v⟩ | v ∈ V , d = sI(v)}∪

{⟨nδ, n
d
v⟩ | v ∈ vars(δ), d = δ(v)}∪

{⟨nv, n
d
v⟩ | v ∈ V , d ∈ dom(v)}∪

{⟨na, n
d
v⟩ | a ∈ A, v ∈ vars(prea), prea(v) = d}∪

{⟨na, n
e
a⟩ | a ∈ A, e ∈ eff a}∪

{⟨nd
v, n

e
a⟩ | a ∈ A, e ∈ eff a, e = cond i

a ▷ eff
i
a, v ∈ vars(cond i

a), cond
i
a(v) = d}∪

{⟨ne
a, n

d
v⟩ | a ∈ A, e ∈ eff a, e = cond i

a ▷ v → d}.

Every node set Vx is associated with a color. The color of a node n ∈ V is the color of
the set Vx for which holds n ∈ Vx.

Both graph encodings are lossless, i.e., given the graph and node coloring, we can
reconstruct the initial PDDL respectively FDR task. Figure 11.2 shows an example
graph for each formalism.

11.2. Label Representations

We showed how to represent a task as a graph. For our CNN based approach, we later
convert these graphs to images. For our GNN based approach, we use these graphs
directly. Now we explain possible output encodings for our NN and how we act on
them. Let P be the set of planners, I be the input to our model and X the output. Our
model is the function f : I 7→ X . We propose five different output encodings.
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1. For every planner p ∈ P the model predicts the time p requires to solve the task
Π. The model has one regression output per planner. Thus, f : I 7→ R|P |. We
refer to this encoding as time.

2. For every planner p ∈ P the model predicts a normalized runtime for p to solve
Π. The model has one regression output per planner. Thus, f : I 7→ [0, 1]|P |. We
refer to this encoding as normalized.

3. For every planner p ∈ P the model predicts a log-scaled runtime for p to solve Π.
The CNN has one regression output per planner. Thus, f : I 7→ R|P |. We refer
to this encoding as logtime.

4. For every planner p ∈ P the model predicts whether p requires between 0−600s,
601 − 1200s, 1201 − 1800s, or does not solve the task. The model has four
sigmoidal outputs for each planner. Thus, f : I 7→ [0, 1]4×|P |. We refer to this
encoding as discretized.

5. For every planner p ∈ P the model predicts whether p solves Π. The model has
a single sigmoidal output per planner. Thus, f : I 7→ [0, 1]|P |. We refer to this
encoding as binary.

The time encoding is intuitive, but predicting the exact runtime could be too difficult
for the model. To simplify the task, we normalized the runtimes into the range 0 to 1.
We observe that the runtime distribution is heavily skewed towards short runtimes (see
Figure 13.1), to counter-act this imbalance, we include the logtime encoding.

On a first glance, our discretized encoding is counter-intuitive, but there are reasons
to include it. First, NN have shown that phrasing a regression problem as a classification
problem can perform well. Second, the training data might be insufficient to learn the
nuances need to predict the exact time, but it is sufficient to differentiate four classes.
Thirdly, the training labels are noisy and discretization hides this noise. Lastly, there is
no relevant difference whether a planner took 5 s or 10 s. As long as the runtime has
the same magnitude, it does not matter.

Finally, the binary encoding seems to contain less information, but it most closely
encodes the final metric. We do not want the fastest planner, but any planner which
solves the task. This is a minor detail, but one planner could be slower in general, but
more robust than the other planners.

We act on the predictions of our models. For the first three encodings, our online
portfolio executes the planner p with minimum predicted runtime. For the discretized
encoding, let o1, . . . , o4 be the four outputs of a planner p. We calculate a weighted
sum

∑
i=1,...,4 i ∗ oi and execute the planner with the smallest weighted sum. For the

binary encoding, we execute the planner p with the highest expected chance of solving
the task.

Remember, we have a set P = {P1, . . . , Pk} of planners and every sample ⟨Π, y⃗⟩ ∈
D has a label y⃗ where y⃗i describes the time Pi takes on Π. In practice, we have a time
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(a) Grounded
Airport

(b) Grounded
Barman

(c) Lifted Airport (d) Lifted Barman

Figure 11.3: Example of the grounded and lifted images we construct for a task from
the Airport and the Barman domain.

limit T . If a planner Pi did not solve Π within T , we count the task as unsolved. We
convert for each output encoding the runtime y⃗i as training label as follows:

y⃗ time
i =

{
y⃗i, if y⃗i ≤ T ,

2T, otherwise

y⃗ logtime
i =

{
log(t), if y⃗i ≤ T ,

log(2T ), otherwise

y⃗ normalized
i =

{
t
T
, if y⃗i ≤ T ,

2, otherwise

y⃗ discretized
i = [e1, e2, e3, s] with ei :=

(i− 1)T

3
< y⃗i ≤

iT

3
, s := y⃗i > T

y⃗ binary
i := y⃗i ≤ T

11.3. Image Based Planner Selection
Our initial online portfolio uses CNNs. Thus, we need to convert the graphs to images.
Let G = ⟨V,E⟩ be a graph, which encodes a planning task. We extract its adjacency
matrix A ∈ B|V |×|V |. The nodes of a graph have no order. Nevertheless, we sort the
nodes by their color. The sorting has a recognizable effect on the images and could
affect portfolio quality. The adjacency matrix is a two dimensional grid like structure.
We interpret it as a black & white image of size |V | × |V |. Next, we bolden the picture,
i.e., every pixel adjacent (left, right, above, below) to a black pixel is also drawn black.
Now, we shrink the image. We partition it into 3×3 squares and replace every square by
its average grayscale value. Then, we simply shrink the resulting image down to 128×
128 pixels. Those images are the input to our CNNs. Figure 11.3 shows two examples
for each graph encoding. In all images, we recognize structures. For the grounded
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MAX

Input Image 128 Conv. Filter Max Pooling Dropout Dense Output

Figure 11.4: Visualization of the network architecture of our image based portfolios.

encodings, the structures are more diverse; for the lifted encodings the structures show
more similarities.

Our CNNs consist of a convolution layer with 128 filters, a max pooling layer, a
dropout layer, a dense layer and finally the output layer. Our CNNs are small. This
makes them quick to train and evaluate and reduces the chance of overfitting. Fig-
ure 11.4 visualizes the CNN architecture. Delfi, a preliminary version of this online
portfolio was submitted to the optimal track of the IPC 2018 (Katz et al., 2018)1.

11.4. Graph Based Planner Selection
The image based approach should remove the need for handcrafting features. Although
our approach relies less on handcrafted features, the conversion from graph to image
is a handcrafted feature. We decided how the image loses data. In recent years, the
machine learning community focused on graph neural networks (GNN). As the name
suggests, GNNs receive graph-structured data as input. This achieved great successes
in many applications. In our next step, we replace the CNN with a GNN. This allows
us to skip the conversion from graph to image. Instead, we feed the graph to the NN.

In our experiments, we use the two previously defined graph encodings. For the
ASG, we change the node colors in such a way that all nodes representing a number
have the same color assigned. Let C be the list of all colors assignable to graph nodes.
Then every node v ∈ V has the initial feature vector x⃗v = [Ci = color(v)]i=1,...,|C|.
We use Graph Convolution Networks (Kipf and Welling, 2017, GCN) and Gated Graph
Neural Networks (Li et al., 2016, GGNN).

Definition 11.4. Graph Convolution Layer (Kipf and Welling, 2017)
Let G = ⟨V,E⟩ be a graph with an adjacency matrix A, a degree matrix D, and an
identity matrix I . Let F be a set of (implicit) node features. The input to the GCN layer
is a matrix X ∈ R|V |×|F| which contains for every node a row with its feature values.
The layer has a matrix W ∈ R|F|×|F ′| of trainable weights and outputs a new matrix
H ∈ R|V |×|F ′|. Let Ã = A + I , D̃ ∈ B|V |×|V | with D̃i,j = 0 except for D̃i,i =

∑
j Ãj,i,

and α be an element-wise activation function. Then a GCN layer is defined as
1This was before I joined the project.
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H = α(D̃− 1
2 ÃD̃− 1

2XW ).

A GCN consists of one or more GCN layers placed after another. Each layer with its
own trainable weights.

Definition 11.5. Gated Graph Neural Network Layer (Li et al., 2016)
Let G = ⟨V,E⟩ be a graph with in(v) = {v′ | (v′, v) ∈ E} is the set of nodes leading
to v and out(v) = {v′ | (v, v′) ∈ E} is the set of nodes directly reachable from v.
Let Win and Wout be two matrices of trainable weights, which are used to combine the
feature vectors of the in-coming and out-going nodes. Let v ∈ V be a node. A GGNN
layer first combines the feature vectors of the neighbors of v. Then, it forwards these
values to a Gated Recurrent Unit (Cho et al., 2014, GRU). For every vertex v ∈ V , the
vector h⃗v is initialized with its feature vector.

m⃗v =
∑

u∈in(v)

Winh⃗u +
∑

u∈out(v)

Wouth⃗u

h⃗v = GRU(Xi, m⃗v)

A GGNN has a single GGNN layer, which is repeated a fixed number of times, i.e.,
it has one layer with one set of trainable weights. The output of the layer is passed as
new input to the same layer, and this repeats.

Both types of GNN produce for every node v ∈ V as output a vector h⃗v. We do not
need one output vector for each node, but a single vector h⃗g for the graph. Thus, we
combine the individual vectors. For every node v ∈ V , we calculate an attention av =
w⃗gate[x⃗v h⃗v], where w⃗gate is a trainable weight vector, x⃗v is the initial feature vector for
v and h⃗v is the output of the GNN for v. The combined output features for the graph
are h⃗g =

∑
v∈V avh⃗v. To get one output per planner p in our portfolio, we add a single

dense layer with sigmoid activation at the end of our GNN: ⃗̃o = sigmoid(Wlogith⃗g).

11.5. Adaptive Planner Selection
Ideally, our models pick the best planner for a task. But even good models pick wrong
planners. As we select only a single planner, this can be fatal. Offline portfolios are
more robust, because they always execute a set of complementary planners. If one
planner is bad for the current task, another planner of the schedule is hopefully better.
We improve our online portfolios such that they reconsider their choices and select a
second planner.

The simplest idea is to switch after half the time limit passed to the planner with the
second best predicted performance. Our experiments show that this is a bad idea. In-
stead, we train a second model to pick a complementary planner. We train a first model
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11. Competitive Online Portfolios

as before. If the initially selected planner finds no solution within half the time limit,
then the second model decides to keep the initial planner running or to switch to another
planner. Our second model receives as additional input a vector c⃗ = [c1 . . . c|P |] with
ci = 1 if the first model chose the planner Pi and ci = 0 otherwise. The final layer
has a new trainable weight matrix Wfail to incorporate the knowledge of the previously
executed planner:

o⃗ = sigmoid(Wlogith⃗g +Wfailc⃗)

Let D = {⟨Π1, y⃗1⟩, . . . , ⟨Πk, y⃗k⟩} be our original data set, P = {P1, . . . , Pn} be our
set of planners, and T be our time limit. Then we construct a new data set D′ to train
the second model. For every task Π and every planner Pi ∈ P which does not solve
the task Π within half the time limit T , we construct a sample. The new sample has as
features the task Π and the planner p. For all planners Pj other than Pi we increase their
stored runtime y⃗j by T/2. This time passed when the second planner will start. For Pi,
we do not change its runtime, because the time T/2 passed, but Pi was also executed
during this time. Formally, we define D′ as

D′ = {⟨Π, i, y⃗ ′

i ⟩ | ⟨Π, y⃗⟩ ∈ D,Pi ∈ P, y⃗i > T/2}

with

y⃗
′

i = ⟨y⃗1 +
T

2
, . . . , y⃗i−1 +

T

2
, y⃗i, y⃗i+1 +

T

2
, . . . , y⃗n +

T

2
⟩.

To train our second model, we convert for each sample the task Π to a graph, we
construct for the planner index i the vector c⃗, and we construct the appropriate output
encoding from the planner runtimes y⃗′.
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In the previous chapter, we got rid of handcrafted features and optimized our portfolios
for coverage. But we lost all explainability. Why do we select a certain planner? Which
features are important for the selection? Which properties of a task are detrimental for
a given planner? Sometimes trust is more important than coverage. If all planners in
our portfolio are complete, then we can always trust them to find a solution. But if
we require a solution within limited resources, we want to know if we can trust the
predicted planner to find that solution within the resource limit or if it is better to use a
backup planner. There exist methods to explain the shapes the filters in a CNN identify,
but even if we know the shapes, which the filters detect it is unclear how to interpret
them for our images. For GNNs there exist even fewer methods to explain its features.

Rudin (2019) stated, explainability is needed to build trust and we should not try
to explain a black-box model. Instead, we should use an interpretable model. Thus,
we return to classical, explainable machine learning techniques. We revisit the idea of
handcrafted features. We restrict ourselves to simple ones. We show that simple models
with simple features are competitive and additionally explainable. The explainability
opens doors for future applications.

12.1. Building Trust

Simple Features & Models. We use four feature sets. Fawcett et al. (2014) crafted a
huge set of features to describe planning tasks and to predict the runtime of a planner
on a task. Their feature set contains simple PDDL related features like the number of
actions in a task, more complicated features related to the compilation from PDDL to
FDR, like the number of mutex groups, complicated features related to the conversion
of a task to a SAT formula, and more. We call this feature set FAWCETT. The PDDL
related features are simple, understandable, and easy to calculate. They count things
in the task, e.g., the number of actions. We call the PDDL related features of Fawcett
et al. (2014) FPDDL. As we deemed some PDDL related features missing, we con-
struct a feature set PDDL. This set extends FPDDL by adding ratios between some
PDDL features and more information about the distribution of PDDL features, e.g.,
the minimum, mean, and maximum number of prevail conditions over all actions. For
completeness, the UNION feature set contains the features of all three previous feature
sets.
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As simple models, we use linear regression (LR) and random forests (RF). Further-
more, we train FFNs. FFNs are not explainable, they are a middle ground between the
simple ML models and the CNNs. Both, linear regression and random forests, output a
single value per model. Thus, they learn internally one model per planner.

Single Decision Tree. Let Π be a task and A,B be two planners. If we want to know
why our model prefers A over B for Π, we cannot answer the question. We can only
say that we predict for A a better value than for B. We present a new procedure, which
trains a single decision tree. The resulting tree outputs the planner to execute, and the
decision trajectory informs the user why that planner is preferable over the others.

The standard decision tree training procedures expect one label per sample. We
have for each sample one label per planner in the portfolio. Thus, we have to trans-
form our training data. We first describe the training procedure, which corresponds
to the binary label encoding. Let P = {P1, . . . , Pk} be our set of planners, D =
{⟨Π1, y⃗1⟩, . . . , ⟨Πk, y⃗k⟩} be our training data, and T be the time limit. For every sample
⟨Π, y⃗⟩ ∈ D we define P(y⃗) = {Pi | y⃗i < T} the set of planners which solve the task
Π within the time limit. Our new data set duplicates a sample for every planner which
solves the sample D′ = {⟨Π, p⟩ | ⟨Π, y⃗⟩ ∈ D, p ∈ P(y⃗)}. Training on D′ favors tasks
which are solved by many planners, as they are more frequent in the training data. To
counteract this, we weight the samples D′′ = {⟨Π, p, 1

|P(y⃗)|⟩ | ⟨Π, y⃗⟩ ∈ D, p ∈ P(y⃗)}.
Now, we can use D′′ in combination with any standard decision tree learning algorithm.

If we want to incorporate the runtime information (like time, normalized, or logtime),
then we add a second factor f to the sample weight. Let ⟨Π, y⃗⟩ ∈ D be a sample with
p1, p2 ∈ P(y⃗). Let t1 (resp. t2) be the time p1 (resp. p2) takes to solve Π and f1 (resp.
f2) be their additional factor. If p1 is n times faster than p2, then f1 is n times greater
than f2: f1/f2 = t2/t1. Additionally, the runtime factors f for samples associated with
the same task are scaled to sum up to 1. The new data set is D′′′ = {⟨Π, p, 1

|P(y⃗)| ∗fy⃗,p⟩ |
⟨Π, y⃗⟩ ∈ D, p ∈ P(y⃗)}.

Building Trust. To build trust into a model, it helps to know which features it uses
and to understand whether this makes sense. Let F be a set of features and m be a
model. To understand whether m requires a feature f ∈ F , we retrain m, but exclude
f and all other features which correlate with it. The stronger the model depends on f ,
the more its performance drops.

A further method to understand the model and to build trust checks if the model
correctly picks a planner. Let D be some test data and m be a model with a set of
planners P . For every planner p ∈ P we can calculate the fraction of tasks it solves
from the test data (CovD). Furthermore, we can calculate the fraction of tasks it solves
on those tasks for which it is chosen (CovC). If m picks a planner p randomly, then
CovD and CovC are approximately the same. On the other hand, if the model m learned
when to use p, then CovC is larger than CovD. If we show that a model correctly
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identifies when a planner p performs well, then we can trust its predictions in p. On the
other hand, if we see that it does not know when to use p, then we can intervene and
maybe execute another planner instead.

Intuitively, tasks from the same domain are structurally similar. We would expect
that a planner which works well on one task also works well on the other tasks. As a
consequence, we would expect that an online portfolio which correctly learns why a
planner is good for a domain predicts the same planner for all tasks within the domain.
Of course, the tasks in a domain have some varying parameters and there can be a phase
transition. When increasing some parameters, another planner could be preferable, but
we would expect this to be rare. If we show that an online portfolio identifies domains,
then this builds further trust in its learned rules. If a model does not identify domains,
then this does not mean its rules are bad, but this does not increase our trust in them.
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13. Experiments

In the previous chapter, we suggested many approaches to train online portfolios. Now,
we train, evaluate, and compare them. In most parts, our evaluation metric is the cov-
erage on the test tasks. A few times, we use the metric from the IPC 2018, which is
similar to the coverage.

13.1. Data

Planners. The most important ingredient of a portfolio is the set the planners. If the
portfolio contains only well performing planners, then the performance of the portfolio
will be good. Even if it selects planners at random. At the same time, a planner with
bad average performance has its place in a portfolio, if the portfolio selects it at the
right moment.

We experiment with three planner collections. The Delfi collection CD was curated
for the planner Delfi (Katz et al., 2018) which participated in the IPC 2018. It in-
cludes 17 Fast Downward based planners. 16 planners are forward A∗ searches (Hart,
Nilsson, and Raphael, 1968). All of them prune states using strong stubborn sets (Alk-
hazraji et al., 2012; Wehrle and Helmert, 2014). If less than 10% of the first 1,000
states are pruned, then pruning is disabled. All searches use either DKS structural
symmetry pruning (Domshlak, Katz, and Shleyfman, 2012; Shleyfman et al., 2015) or
orbital space search (OSS) structural symmetry pruning (Domshlak, Katz, and Shleyf-
man, 2015). Those searches use one of the following eight heuristics: blind heuris-
tic, LM-Cut (Helmert and Domshlak, 2009), iPDB (Haslum et al., 2007) with a time
limit of 900s for the pattern generation, a zero-one cost partitioning pattern database
(ZO-PDB) which generates the patterns using a genetic algorithm (Edelkamp, 2006),
and four Merge-And-Shrink (M&S) heuristics (Dräger, Finkbeiner, and Podelski, 2006;
Helmert et al., 2014). All M&S heuristics use full pruning (Sievers, 2017) and exact
label reduction using Θ-combinability (Sievers, Wehrle, and Helmert, 2014). Some
M&S heuristics use exact bisimulation (BS, Nissim, Hoffmann, and Helmert, 2011) for
shrinking. The others use a greedy variant of bisimulation (GBS). All M&S heuristics
base their merging either on DFP (Sievers, Wehrle, and Helmert, 2014), strongly con-
nected components (Sievers, Wehrle, and Helmert, 2016, SCC), MIASM (Fan, Müller,
and Holte, 2014), or score-based MIASM (Sievers, Wehrle, and Helmert, 2016). Addi-
tionally, most configurations use the h2 mutexes to prune actions (Alcázar and Torralba,
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13.1. Data

Structural Symmetry Pruning h2 BS GBS Heuristic

OSS x LM-Cut
OSS x iPDB
OSS x ZO-PDB
OSS x Blind
OSS x x M&S, MIASM, DFP
OSS x x M&S, sb-MIASM
OSS x M&S, SCC, DFP
OSS x x M&S, SCC, DFP
DKS x LM-Cut
DKS x iPDB
DKS x ZO-PDB
DKS x Blind
DKS x x M&S, MIASM, DFP
DKS x x M&S, sb-MIASM
DKS x M&S, SCC, DFP
DKS x x M&S, SCC, DFP

Table 13.1: List of Fast Downward configurations in the Delfi planner collection CD.
CD contains additionally the planner SymBA∗.

2015). Table 13.1 lists the exact 16 configurations. The 17th planner is SymBA∗ (Tor-
ralba et al., 2017), a symbolic bi-directional A∗ search.

Intuitively, adding new planners to the portfolio, which solve additional tasks should
be beneficial. Thus, we define a second collection CA which includes additionally the
planners from the optimal, classical track of the IPC 2018. Those are Complemen-
tary1 (Franco et al., 2018), Complementary2 (Franco, Lelis, and Barley, 2018), DecStar
(Gnad, Shleyfman, and Hoffmann, 2018), FDMS1 and FDMS2 (Sievers, 2018), Metis
2018 1 and Metis 2018 2 (Sievers and Katz, 2018), Planning-PDBs (Moraru et al.,
2018), Scorpion (Seipp, 2018b), and SYMPLE 1 and SYMPLE 2 (Speck, Geißer, and
Mattmüller, 2018). This is our largest planner set CA.

On the other hand, increasing the set of planners makes the learning objective more
difficult. There are now more planners and for each one, we have to learn a perfor-
mance profile. Thus, we define a last planner collection CC which consists of the min-
imum set of planners which covers the tasks solved by all planners from CA. This set
contains SymBA∗, iPDB with OSS pruning, M&S MIASM with DFP and DKS prun-
ing, Complementary1, Complementary2, Metis 2, Planning-PDBs, Scorpion, and the
symbolic-bidirectional baseline.

Planning Tasks. The quality of a machine learning model depends heavily on the
quality of the training data. Thus, we train our models on a diverse collection of plan-
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Figure 13.1: Density distribution of the runtime in seconds over all planners and those
tasks which terminate within 1,800 seconds.

ning tasks. We select our training tasks from the following sources:

• all domains from the classical tracks of the International Planning Competitions
(IPCs) until (including) 2018

• some domains from the learning tracks of the IPCs until (excluding) 2018

• BriefcaseWorld, Ferry, and Hanoi from the IPP benchmark collection (Köhler,
1999)

• genome edit distance (GEDP) domain (Haslum, 2011)

• domains from the conformant-to-classical planning compilation (Palacios and
Geffner, 2009)

• domains from the finite-state controller synthesis compilation (Bonet, Palacios,
and Geffner, 2009)

Some IPCs reused domains from previous iterations, but generated new tasks. In
this case, we use only the tasks from the latest IPC. For some domains, a generator to
generate new tasks exists. If necessary, we generated additional tasks for a domain.
This leaves us with 2439 tasks in total.

The IPC 2018 introduced ten new, independent domains, each with 20 tasks. To
simplify the grounding of two domains, the organizers included for each task within
those domains a reformulation. This results in 240 tasks from 12 domains from the IPC
2018. The IPC score counts how many independent tasks a planner solved, i.e., if there
are two tasks which are reformulations. If a planner solves at least one of them, then
this is counted once.
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Figure 13.2: Distributions of graph size and graph diameter for the grounded and lifted
graphs generated from our task set. The gray line in the center is the
median, the cross the mean, the box spans from the 25 percentile to the 75
percentile, the whiskers extent to the 5 percentile and the 95 percentile.

Labels. To train and evaluate our portfolios, we require the runtime of each planner
on our tasks. We execute each planner on a single core of an Intel Xeon Silver 4114
with 7744 MiB of memory for up to 1,800 s for each task. If the planner finds a solution,
we store its runtime, otherwise we store that it failed. When we evaluate our portfolios,
we do not run the predicted planners on the test tasks. Our data sets contain the runtime
every planner required on every test task. We just look up if the planner solves the task
within the time limit.

We observe that in 31% of all planner - task pairs the search ends unsuccessfully.
Only in 69% of the pairs it finds a solution within the time limit of 1,800s. Figure 13.1
shows the density distribution of the runtimes for those data points where we find a
solution. Like Helmert et al. (2011), we observe that most tasks are quickly solved. Our
data show that a significant number of tasks is solved right after 900 seconds. Some
planners perform up to 900 seconds of precomputations. Once their precomputation
phase ends, their search phase starts and again they either quickly find a solution, or
they find no solution.

Features. For every task we construct their PDG and ASG. From those graphs, we
construct their image representations as described in Section 11.3. Furthermore, we
extract the handcrafted features described in Section 12.1 from the tasks.

We observe that the generated graphs are large. For the PDG, 39% of the graphs
contain more than 1,000 nodes. For the ASG even 63% of the graphs contain more than
1,000 nodes. Furthermore, the size distribution is heavily skewed. Most graphs are
large, but some graphs are huge (see Figure 13.2). Compared to other graph data sets
used in combination with GNNs our graphs are significantly larger (see Figure B.1).
This leads to difficulties when training the GNNs.

Figure 13.3 shows for all tasks the size of their ASG relative to the size of their PDG.
The tasks are sorted by the size of their PDG. For most tasks, the ASG is significantly
larger than the PDG. But the larger the PDGs are, the more the ratio changes in favor
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Figure 13.3: Size of the lifted graphs relative to the size of the grounded graphs over
all tasks.

of the ASGs. At some point, the ASGs are smaller than their PDG counterpart. This
suggests that for difficult tasks the ASG is smaller, and thus, preferable.

The diameter of a graph is the longest shortest path between any two of its nodes.
In contrast to the enormous graph sizes, we observe that the diameters of our graphs
are reasonably small (see Figure 13.2) and comparable to other graph data sets (see
Figure B.2). As GNNs pass information between neighboring nodes, a short diameter
ensures that the information of every node quickly spreads through the network.

Data Splits & Robustness. To evaluate our online portfolios, we require training,
optionally validation, and test data. We split our data set in multiple parts. The IPC
split resembles the setting of the IPC 2018. All tasks published before the IPC 2018
belong to the training data and all tasks from the IPC 2018 belong to the test data. We
optionally split some validation data from the training data.

In machine learning, there is often the assumption that the samples in the data sets
(training, validation, test) are independent and identically distributed. For planning,
this does not hold. Tasks from different domains differ greatly, and even within a do-
main tasks are not identically distributed. Especially for the IPC 2018, the organizers
curated a challenging set of domains, which differs greatly from previous domains. For
example, some new domains have an especially high number of conditional effects and
other domains are especially hard to ground. Nevertheless, we evaluate a random split,
which assigns the samples randomly to the training, validation, and test sets.

The random split resembles closest the machine learning practice, but does not reflect
the use case in planning. In planning, we train on tasks from some set of domains and
during evaluation we expect the user to provide us a tasks from an unseen domain.
Thus, we suggest a domain-preserving split. In the domain preserving split the data is
split such that all tasks from the same (or closely related) domains are assigned to the
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same new data set.
Our experiments verify that our approaches are robust, i.e., the reported values are

not due to chance. Chance has two facets. First, the training of many ML techniques
contains non-deterministic elements. Secondly, the performance of a model depends on
the training and test data. If we use the IPC 2018 split, then we cannot change the test
data. To show robustness with respect to non-determinism, we train all models 10 times
and report the average performance. For the other two splits, we tackle both facets with
cross-validation. For every reported performance metric, we split the data set into 10
parts using either the random or the domain-preserving split. We train and evaluate our
models 10 times. Every time a different part of the data is used as test data.

All our data sets and data splits are publicly available1.

13.2. Image Based Planner Selection
How well performs our image based portfolio? Is it competitive? To answer the first
question, we take a look into the parameter choices. At the IPC 2018, we saw that the
Delfi planner collection (CD) performs well. We test our intuition that more planners
(CA) make the portfolio more powerful and that fewer, better planners (CC) simplify
the learning objective. Furthermore, the binary encoding resembles most closely our
evaluation metric. But it abstracts all time information. Providing time information for
training could improve the portfolio. Thus, we also evaluate the discretized, normal-
ized, and time output encoding. We do not have independent and identically distributed
data. Thus, how should we separate the data? Should we randomly split validation data
off training data or domain-preserving split better, because it resembles more closely
the final evaluation (the test set contains only tasks from unseen domains)? And finally,
should we use the lifted or grounded graphs?

To answer these questions, we train each model using an NVIDIA Tesla K80 GPU
for 250 epochs using the mean squared error for the time and normalized outputs and
the binary cross entropy for the discretized and binary outputs. During training, we
measure the training progress using validation data. We store the state of the model with
the minimum loss on the validation data. As training is a matter of minutes and never
takes longer than an hour, we train and evaluate all combinations of the enumerated
parameters.

We evaluate all planners in the setting of the IPC 2018. That means we train all mod-
els on the task known prior to the IPC 2018 and evaluate the portfolios and baselines
on all 240 tasks from the IPC 2018. We report the fraction of the maximum IPC score.

Before we start training the final models, we perform for every configuration auto-
matic hyperparameter optimization (HPO). We adapt the approach of Diaz et al. (2017).

1https://github.com/IBM/IPC-graph-data
https://github.com/IBM/IPC-image-data
https://doi.org/10.5281/zenodo.5749959
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domain-preserving split random split
validation no validation validation no validation
mean std mean std mean std mean std

time
CD 50.0 4.4 57.3 1.6 57.5 1.5 57.5 0.0
CA 48.7 4.4 49.9 2.7 50.8 3.4 48.8 0.9
CC 52.6 3.9 50.5 2.2 50.7 3.9 50.3 2.3

normalized
CD 50.9 4.4 53.8 2.0 55.4 3.1 54.9 3.1
CA 51.8 3.7 50.5 2.6 48.8 1.2 49.3 1.8
CC 49.5 5.6 50.2 2.1 50.0 1.3 50.3 1.8

discrete
CD 49.5 4.0 53.7 5.9 53.9 3.3 54.1 3.0
CA 55.4 3.4 52.7 2.2 53.9 3.8 53.7 5.1
CC 50.5 1.6 51.6 3.1 58.3 5.2 53.3 1.4

binary
CD 49.6 4.0 50.2 1.4 52.0 3.3 50.3 1.1
CA 50.4 4.7 48.9 1.8 49.9 2.2 49.6 1.5
CC 53.4 3.0 49.2 2.2 52.3 2.7 51.7 3.6

Table 13.2: IPC 2018 score for the lifted image based online portfolios trained on the
pre-IPC 2018 tasks.

For example, the dropout rate and the size of the convolution filter are hyperparameter.
The automatic optimization selects values for the hyperparameters and then performs 5-
fold cross validation using only the training data to evaluate the chosen parameters. At
the end of the process, we have for every configuration a set of good hyperparameters.
For reproducibility, we report the hyperparameters in the appendix (see Table B.1).

For every configuration c with data split s, we train 10 models using 10-fold cross
validation, i.e., the training data is split into 10 parts. In every iteration a different part
is used as validation data. The other parts are used as training data. The disadvantage
with the cross validation is that one part of the data is not used for training. Thus, we
train additionally 10 models per configuration using the full training data for updating
the model and using the full training data to select the best model after training. This
means the impact of the data split on these models is only due to the hyperparameter
optimization.

With the data on all these configurations, we observe that the lifted graphs are always
preferable over the grounded graphs. We confirm this also in later experiments (see
Table 13.6). Thus, we restrict ourselves now to the lifted configurations. The results
are qualitatively the same for the grounded configurations.

Table 13.2 shows the average IPC score for all 48 lifted configurations. Those are
too many configurations to compare them individually. Thus, we summarize the results.
For every parameter (e.g., the planner collections), we pair-wise compare its options.
Let c1, c2 be two configurations, which differ only in one parameter. If c1 performs on
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T N D B
Time - 7 5 7
Normalized 4 - 4 7
Discrete 7 8 - 10
Binary 5 5 2 -

(a) Label encodings

CD CA CC
CD - 12 10
CA 3 - 6
CC 6 10 -

(b) Planner collections

Domain-preserving Split Random split
Validation No Validation Validation No Validation

Dom-pres. Split & Val. - 5 5 5
Dom-pres. Split & No Val. 7 - 2 3
Random Split & Val. 7 10 - 8
Random Split & No Val. 7 9 3 -

(c) Data splits

Table 13.3: For the lifted image based online portfolio the pair-wise comparison be-
tween the options of its training parameters (label encodings, planner col-
lections, and data splits) using the data from Table 13.2. For each option
pair it counts how often one option (row) obtains a higher IPC 2018 score
than the other option (column).

average better than c2, then we count this as win for the option by c1 over the option
used by c2.

Table 13.3a shows the results of the pair-wise comparison for the output encodings.
We see immediately that the discretized encoding compares favorable against all other
encodings. The combination of classification network and encoding time information
is advantageous. Unexpectedly, the binary encoding, which is closest to our metric,
performs the worst on average. In two out of three comparisons, it is close to a tie.

Moving to the planner collections (see Table 13.3b), we see that the Delfi planner
collection performs best. Although more planners could improve the portfolio because
there are now more choices, it seems that the additional planners hinder the training.
This is astonishing as the larger planner collection CA has a higher average quality.
Picking random planners from CA leads to better results than picking random planners
from CD (see Table 13.4). The collection CC contains only those planners required to
cover all tasks and picking random planners from this collection is significantly better
than picking random planners from CD. Nevertheless, CC wins only against CA, but not
against CD. We learn that the initial CD collection was a lucky choice and that there is
no simple rule for selecting the right planners for our online portfolio. It is future work
to understand precisely the conditions, which make up a good planner selection.

Let us answer the last question in this series: How should we treat the training data?
Although in planning the samples are not independent and identically distributed, Ta-
ble 13.3c shows that it works best to randomly split the training data for HPO and for
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Rnd. CD Rnd. CA Rnd. CC Oracle Best
Mean Std Mean Std Mean Std CD CA CC Sym C2 Delfi1

42.8 8.3 45.0 8.8 50.3 9.8 67.9 72.1 70.8 57.1 58.3 60.0

Table 13.4: IPC 2018 score when randomly picking planners from the planner collec-
tions (Rnd. CD, Rnd. CA, Rnd. CC), when picking the best planner for each
task from the planner collections (Oracle), and for state-of-the-art planners
(Best).

the final training. Our test data from the IPC 2018 consist of new domains, which differ
greatly from the previously known domains. An explanation could be that the random
split allows us to train on as many domains as possible. Thus, the model generalizes
better. The domain-preserving split reduces the number of domains in the training set,
but has a more realistic validation loss. Remember, after training we pick the state of
the model with the smallest validation loss. The advantage of the better generalization
outweighs the advantage of a better validation loss. This explanation also fits the ob-
servation that after optimizing the hyperparameters for the domain-preserving split, it
is better not to use validation data.

Finally, we compare our image based portfolios against some baselines (see column
1-3, Table 13.2). For every planner collection, we calculate the IPC score when ran-
domly picking planners from the collection. We repeat the calculations 1,000 times and
average over the computed scores. If the models learned to select the right planners or
at least avoid bad planners, then they pass this baseline. For the Delfi and the extended
collection we see that all configurations exceed their baseline. The minimum planner
collection has a significantly higher random baseline, which makes it harder to pass.
Most configurations pass, but some do not. As summary, most models learned useful
knowledge.

If we compare our portfolios against their theoretical maximum score (see column 4,
Table 13.4) we observe that there is still room for 10-20% of improvement. We reduce
this gap in the next section.

Using hindsight knowledge, the best planner for the IPC 2018 domains in the Delfi
collection would be SymBA∗ and the best planner in the other two collections is Com-
plementary2. We see that our models rarely exceed those planners. Thus, we see again
there is room for improvement. For fairness, the IPC 2018 domains differ greatly from
the previously published domains, thus, the training data would not have suggested
executing only those planners.

Our last comparison is Delfi1. Delfi1 is a preliminary version of this approach and
was submitted to the IPC 2018 and won the optimal track. It uses the lifted graphs,
binary output encoding, a single domain-preserving split for the hyperparameter opti-
mization and does not split the final training data. Although Delfi1 used suboptimal
parameters, it dominates all shown configurations and all other planners from the IPC
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2018. At the end, we conclude that the non-determinism during training was lucky for
Delfi1.

13.3. Graph Based Planner Selection
The image based portfolios performed better than the random baselines, but worse than
some other planners and especially worse than Delfi1. This motivated us to improve
our approach. Furthermore the conversion from graph to image is ad-hoc, lossy, and in
general just not satisfying, thus, we proposed the graph based online portfolio. Addi-
tionally, we proposed an adaptive mechanism, which predicts a second planner if the
first one does not terminate within half the time limit. First, we show that both mod-
ifications perform consistently better than their predecessors. Then, we show that we
finally outperform Delfi1.

We use a parameter setting, which keeps us comparable to Delfi1. We train models
using the lifted and the grounded graphs. We use only the Delfi planner collection.
Although it did not perform best, we use only the binary output encoding, which was
used by Delfi1. Our GCNs have 4 layers and our GGNNs perform 4 repetitions. All
GNNs use 100 node features in the hidden layers. We do not perform hyperparameter
optimization, instead we execute an early exploratory experiment where we also tested
models with 2 and 6 layers, as well as, 150 and 200 node features in the hidden layers.
We train all models with binary cross entropy loss and Adam optimizer (Kingma and
Ba, 2015) for up to 300 epochs. We use early stopping. If the validation loss does
not improve for 25 epochs, then training stops prematurely. Once training stopped, we
return the state of the model with the best validation loss. Training is executed on 8
CPU cores and a GPU. We use 10 GB of memory. In general, one would train with a
fixed batch size, but some of our graphs are exceptionally huge. Thus, we dynamically
adapt the batch size. In every iteration we add graphs to the batch until the memory is
full. The training terminates within 10 minutes.

We limit our training and test data to those tasks which are solved by at least one
planner of the Delfi collection CD within the time limit. There is no reason to train on
samples which have the same signal for all planners and there is no reason to test on a
sample which we cannot solve. 145 samples remain from the IPC 2018. We use these
as test data. All reported coverage numbers are fractions of these 145 tasks.

To show that we consistently outperform the image based portfolios, we use the ran-
dom and the domain-preserving splits to partition the pre-IPC 2018 data in ten parts.
For each part, we train models using that part as validation data and the other as training
data. Table 13.5 reports for the lifted graphs the average fraction of test tasks our meth-
ods solve. As a comparison, we also list how many tasks our image based portfolio with
the same parameters solve. For both data splits, the GCNs performs a lot better than
the GGNNs. But more importantly, feeding the graph directly to a GCN solves even
more tasks than feeding the image to a CNN. If we additionally allow reconsidering the
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Domain-preserv. Random
Mean Std Mean Std

Image based, CNN 82.1% 6.6% 86.1% 5.5%
Graph based, GCN 85.6% 5.5% 87.2% 3.5%
Graph based, GGNN 76.6% 5.8% 74.4% 2.7%

Adaptive, GCN 91.1% 3.8% 92.1% 3.2%
Adaptive, GGNN 83.0% 5.8% 86.6% 2.0%

Table 13.5: Average coverage (in %) over 10 models on the solvable IPC 2018 task for
the lifted online portfolios trained using a domain-preserving or random
data split.

planner choice after half of the time limit, we see that this consistently improves the
performance even further by 5-12%. The adaptive approach on a GCN with the lifted
graphs is only 10% worse than the oracle. As a final note, we see again that the random
split performs better than the domain-preserving split.

Knowing that the graph and the adaptive approaches work, we verify that they are the
new state of the art. We train our methods again, using the exact training/validation split
used by Delfi. Table 13.6 reports the performance of our approaches against baselines
and other state of the art planners.

All shown planners are significantly better than randomly picking a planner from CD
and they are better than picking the single best planner from the training data.

The next three planners are top performers from the IPC. Some of them are better
than some of our graph based online portfolios, but all of them are worse than the port-
folio which uses GCN on the lifted graphs. The next planner is an online portfolio
described by Fawcett et al. (2014) which we trained. This portfolio performs surpris-
ingly well, but again not as the lifted GCN portfolio.

The next two planners are the Delfi portfolios from the IPC 2018. Remember, when
retraining the lifted Delfi portfolio, we did not reach similar performance values. All
graph portfolios using the grounded graphs are superior to the grounded Delfi. Our
lifted GCN portfolio is superior to the lifted Delfi.

The simplest approach to execute two planners with our online portfolios is to pick
the two planners with the best predicted performance and execute both of them for half
the time limit. The next four rows show that this simple idea does not work. The planner
with the second best predicted performance is often similar to the planner with the best
predicted performance. This approach executes two similar planners each for half the
time limit.

The final four rows of the table show the effect of the adaptive approach. We see
that reconsidering significantly improves the performance in all settings. Three out
of our four adaptive portfolios are superior to all other planners. Only the grounded
GGNN, which we expected to perform worst, is inferior to our lifted, non-adaptive
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Method Solved Eval. Time (in s)

Random planner 60.6% 0
Single planner for all tasks 64.8% 0

Complementary2 84.8% 0
Planning-PDBs 82.0% 0
Symbolic-bidirectional 80.0% 0

Enhanced features + random forest 82.1% 0.5

Delfi (CNN), grounded 73.1% 11.0
Delfi (CNN), lifted 86.9% 3.2
GCN, grounded 80.7% 23.2
GCN, lifted 87.6% 9.4
GGNN, grounded 77.9% 14.5
GGNN, lifted 81.4% 11.4

Top-2, GCN, grounded 62.1% 23.2
Top-2, GCN, lifted 65.5% 9.4
Top-2, GGNN, grounded 82.8% 14.5
Top-2, GGNN, lifted 76.6% 11.4

Adaptive, GCN, grounded 88.3% -
Adaptive, GCN, lifted 89.7% -
Adaptive, GGNN, grounded 84.8% -
Adaptive, GGNN, lifted 89.0% -

Table 13.6: Coverage (in %) on the solvable IPC 2018 tasks for our online portfolios
and comparison planners.

GCN portfolio and the lifted Delfi.
As a final note, the table also reports the evaluation time for our models. For the

adaptive models, we expect the evaluation time to be twice the non-adaptive evaluation
time. For all portfolios, their overhead is negligible compared to the time limit of 1,800
seconds.

13.4. Explainable Planner Selection

We showed that we exceed the state of the art. Now we return to explainable machine
learning models. Are they competitive? Which knowledge and trust can we extract?

As input we use the four described data sets FPDDL, FAWCETT, PDDL, and UNION.
We compare for the FAWCETT and PDDL data set, as well as the image from our ini-
tial portfolio, the resource consumption to construct the model input (see Table 13.7).
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FAWCETT PDDL Images
Min Mean Max Min Mean Max Min Mean Max

Time 0.1 0.2 10.8 0.2 0.3 11.0 0.4 0.8 50.2
Memory 16 17 200 24 25 138 26 69 3023

Table 13.7: Minimum, mean, maximum time (in seconds) and memory usage (in MB)
to extract the features from the IPC 2018 tasks.

We average the values over the IPC 2018 tasks. The handcrafted features require fewer
resources, but unless we use a resource constrained device, the difference is negligible.

As output encoding, we use again time, binary, and now also logtime. We train linear
regression models without L1 regularization (L1 weight of zero), and with L1 weights
of 0.1, 1.0, 2.0, and 5.0. Our random forests consist of 50 decision trees. We observed
a diminishing effect of adding more trees. Our FFNs have 3 or 5 hidden layers. They
use a ReLU activation function and the mean squared error loss for the time and the
logtime labels. For the binary labels, they use a sigmoid activation function and the
cross entropy loss. All FFNs are trained with Adam.

We first show that those simple ML techniques learn good models. As training these
models is a question of seconds to minutes, we train all combinations of models, feature
sets, and output encodings, leading to 60 configurations. We take the whole data set,
including IPC 2018, and split it domain preservingly to generate 10 different test sets.
We train and evaluate one model per test set.

Table 13.8 shows the average coverage for each configuration. The standard devia-
tion is large, because the tasks in the test sets are not identically distributed. For this
data set, the random baseline solves 67.2% of tasks. All configurations exceed this
baseline, i.e., all portfolios learn something useful. Selecting in every of the 10 folds
the single best planner on the training data leads to a coverage of 73.5%. Almost all
portfolios exceed this baseline. Many planners solve more than 80% of the tasks, some
up to 88%. Thus, simple ML techniques learn good portfolios.

Additionally, we proposed a single decision tree, which predicts directly the planner
to choose. We train it on the same 10 folds as described above with varying tree depth.
Figure 13.4 shows the training and test performance for increasing maximum tree depth.
Increasing tree depth increases the number of decision nodes. A tree of depth i perfectly
differentiates up to 2i samples. Thus, we quickly overfit. The coverage for the binary
encoding alternates around 80%, the coverage for the time based labels is a bit lower.
Again, the portfolio obtains a good performance and exceeds both baselines. As the
test performance for time label does not improve much with more than 2 layers, we
visualize the associated decision tree (see Figure 13.5). The tree is easy to interpret.
SymBA∗ is preferable to the other two planners whenever the number of atoms and
objects is small. In personal communications, the authors of SymBA∗ confirmed that
this matches their experience.
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Linear Regression MLP Rnd. Forest

0.0 0.1 1.0 2.0 5.0 3 5 50
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T

bin 78.6 (8.3) 77.2(10.5) 82.1 (8.7) 82.4 (9.4) 80.9 (9.4) 87.1 (6.1) 78.2(15.3) 84.8 (7.5)
logt 79.3 (9.2) 79.0(10.0) 81.5 (7.7) 81.7 (6.5) 83.6 (5.2) 82.2 (8.4) 82.2 (8.4) 84.1 (7.1)
time 78.6 (8.2) 81.8 (7.1) 80.5 (7.5) 80.4 (7.2) 80.3 (7.9) 82.2 (7.6) 85.3 (6.7) 81.8 (15.7)

F
P

D
D

L bin 87.7 (7.2) 74.3(15.1) 72.7(15.7) 74.3(16.6) 71.4(15.4) 81.0 (8.0) 81.5 (7.3) 77.5 (16.0)
logt 82.5(11.8) 84.0 (6.8) 78.5 (8.3) 77.7 (9.0) 80.3 (8.4) 78.2 (6.2) 79.7 (7.6) 82.0 (6.1)
time 86.5 (7.8) 86.5 (7.8) 86.5 (7.9) 86.6 (7.8) 86.6 (7.8) 80.2 (6.6) 81.9 (6.0) 78.8 (15.5)

P
D

D
L bin 81.4 (9.3) 75.7(12.1) 72.6(16.3) 74.1(16.6) 71.4(15.4) 78.1 (9.9) 79.8 (6.8) 80.2 (13.3)

logt 82.1 (8.4) 79.7(11.2) 80.4 (9.1) 79.8 (8.7) 77.8(13.0) 79.5 (8.2) 78.0 (7.5) 82.8 (7.0)
time 81.6 (8.9) 82.0 (9.1) 81.2(10.1) 79.0(10.9) 78.7(11.6) 77.8(11.0) 78.4(10.0) 79.7 (16.7)

U
N

IO
N bin 74.8 (9.7) 81.0 (8.3) 79.4(11.1) 82.4 (9.3) 80.9 (9.4) 84.7 (7.7) 78.3(13.6) 82.1 (8.5)

logt 75.6(10.2) 80.0 (9.2) 80.7 (7.9) 81.8 (6.7) 83.4 (5.8) 82.2 (8.4) 82.2 (8.4) 84.7 (7.6)
time 74.8 (8.8) 77.3(11.9) 75.7(11.0) 76.1(11.5) 77.1(10.3) 84.3 (6.8) 83.6 (7.7) 84.0 (13.9)

avg 80.3 79.9 79.3 79.7 79.4 81.5 80.8 81.9

Table 13.8: Mean coverage and in brackets standard deviation (in %) over ten domain-
preserving test folds for linear regression models with different L1 reg-
ularization weights, MLPs with 3 and 5 layers, and a random forest
with 50 trees trained on the features of (FAWCETT Fawcett et al., 2014)
(FAWCETT), the PDDL features of (PDDL Fawcett et al., 2014), the
extended set of PDDL features (PDDL), and the union of all features
(UNION) using the binary (bin), logtime (logt), and time label encoding.
The best setting in each column is highlighted.
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Figure 13.4: Mean coverage over 10 domain-preserving folds on training (hollow) and
test (filled) data using single decision trees trained on binary (circle) and
time/logtime labels (square) for increasing tree depth on the PDDL fea-
tures.
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#atoms / #objects ≤ 6.9

#atoms ≤ 266.5 median #objects per type ≤ 22.5

SymBA∗ h2+DKS+iPDB SymBA∗ h2+OSS+LM-Cut

yes no
ye

s no ye
s no

Figure 13.5: Example decision tree of depth two using time labels from one cross-
validation fold.

Method Solved Eval. Time (in s)

Random planner 60.6% 0
Single planner for all tasks 64.8% 0

Delfi (CNN), lifted 86.9% 3.2
GCN, lifted 87.6% 9.4
Adaptive, GCN, lifted 89.7% -

Linear Regression 86.2% 3.8
Decision Tree 82.7% 4.6
Random Forest 76.8% 4.1
MLP 70.8% 3.9

Table 13.9: Coverage (in %) on the solvable IPC 2018 tasks for some online portfolios
and our explainable machine learning models.

From the previous results, we pick the best configurations for linear regression, ran-
dom forest, FFN, and the single decision tree and train a new model using the IPC
setting. The results are shown in Table 13.9. None of the explainable ML portfolios is
superior to any of our image or graph based portfolios. The linear regression configu-
ration which performed excellent on the previous data split performs again excellent in
the IPC setting and solves almost as many tasks as Delfi! We conclude that explainable
models can be competitive.

Our further experiments inspect a single model and improve the trust. We pick the
best trained linear regression model for the domain-preserving split (FPDDL feature
set, binary output, without L1 regularization). First, we execute the procedure to iden-
tify the features on which it relies. We say two features are correlating if their absolute
Pearson correlation is greater than 0.95. This results in 47 feature groups. The Pearson
correlation captures only linear dependencies, but this is acceptable, because linear re-
gression exploits only linear correlation. Table 13.10 shows the coverage degradation
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Feature Degradation Feature Degradation

req. neg. pre. 4.4 (10.0) # goals 1.2 (7.6)
max params per pred. 2.7 (7.0) has types 1.0 (7.9)
mean neg. per eff 2.6 (10.6) min pred. per pre. 0.9 (8.2)
mean pred. per eff 2.4 (10.2) # predicate symbols 0.9 (7.2)
req. cond. eff. 2.1 (9.1) req. ADL 0.8 (6.9)
req. equality 1.8 (8.9) max neg. per eff. 0.8 (6.1)
max pred. per eff. 1.8 (8.3) min neg. per eff. 0.7 (8.0)
# types 1.6 (9.9) # actions 0.7 (7.4)
min pred. per eff 1.6 (7.7) # initial conditions 0.6 (7.0)
frac. actions w. neg. eff. 1.5 (9.8) max pred. per pre. 0.5 (8.6)
req. STRIPS 1.5 (7.7) mean pred. per pre. 0.4 (10.3)
req. typing 1.4 (8.1) req action costs 0.2 (6.8)
mean params per pred. 1.4 (8.0) # initial functions 0.1 (6.9)

Table 13.10: Mean coverage degradation and (in brackets) standard deviation (in %),
over ten domain-preserving test folds, when ignoring a single group of
correlated features of the FPDDL feature set for training a linear regres-
sion model without L1 regularization on the binary labels. Groups without
performance degradation are omitted.

when excluding feature groups. We learn that the most important feature is whether
a task uses negative preconditions. Without this feature the coverage drops by 4.4%.
Intuitively, some planner configurations in our portfolio do not work too well with neg-
ative preconditions. Another useful insight is that 21 out of 47 feature groups have
no impact on the performance and can be excluded. Excluding features speeds up the
evaluation.

Secondly, we investigate whether a model selects a planner correctly. Table 13.11
shows the planners selected by our LR model, as well for every planner its chance of
solving a task on the whole test set and its chance of solving the task when selected.
The LR model heavily relies on SymBA∗ (43% of all tasks). We see that whenever it
chooses SymBA∗, we should trust this choice. For most planners, it learned correctly
when to choose them. Thus, we can trust the model in general. Only when it chooses
the iPDB search with DKS pruning, we should ask for a second opinion. This could be
another model or just a good baseline planner.

Thirdly, if a model learned to identify a domain, this builds additional trust. Fig-
ure 13.6 shows for our portfolios from Table 13.9 for each IPC 2018 task the selected
planner. The tasks are grouped by domains and within a domain naturally sorted. The
last row “Opt” is an oracle, which selects the best planner for each domain. The oracle
solves all except for one task. This confirms our intuition that the right planner solves
all tasks within a domain. Interestingly, those are almost exclusively the same planners
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13. Experiments

Usage CovD CovC Planner

43.7 80.1 94.4 SymBA∗

12.3 82.4 89.9 h2 + OSS + LM-Cut
9.7 78.7 54.5 h2 + DKS + iPDB
9.4 78.8 88.5 h2 + OSS + iPDB
8.1 82.7 78.1 h2 + DKS + LM-Cut
5.4 67.9 74.8 DKS + M&S-MIASM-DFP
3.3 74.8 97.5 h2 + DKS + M&S-BS-sbMIASM
2.8 65.9 86.6 h2 + OSS + M&S-SCC-DFP
2.1 75.8 100.0 h2 + DKS + M&S-BS-SCC-DFP
1.0 67.7 84.0 OSS + M&S-MIASM-DFP
0.8 72.2 75.0 h2 + OSS + M&S-BS-sbMIASM
0.7 68.4 6.2 h2 + DKS + ZO-PDB
0.4 67.6 60.0 h2 + DKS + M&S-SCC-DFP
0.2 68.6 100.0 h2 + OSS + ZO-PDB
0.1 62.3 100.0 h2 + DKS + Blind
0.0 62.5 – h2 + OSS + Blind
0.0 75.2 – h2 + OSS + M&S-BS-SCC-DFP

Table 13.11: Planners selected by the linear regression model without L1 regularization
trained on the FPDDL features and optimizing the binary labels. The
columns show how often each planner is chosen (in %), the coverage (in
%) for the planner on the whole data set (CovD), and the coverage (in %)
on tasks for which the model chooses the planner (CovC). Figure 13.6
uses the assignment between planners and colors from this table.
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13.4. Explainable Planner Selection

Delfi
LR
RF
DT
MLP
Opt

o-s nurikabe settlers caldera snake

Delfi
LR
RF
DT
MLP
Opt

data-net spider termes agricola petri-net

Figure 13.6: Each row indicates for portfolios from Table 13.9 which planners they se-
lect on the solvable IPC 2018 tasks. The colors correspond to the colors
from Table 13.11. The tasks are grouped by domain and within a domain
naturally sorted. The green bar below a task indicates that the selected
planner solves the task. Opt is an oracle which picks the single best plan-
ner per domain. We abbreviate organic-synthesis with “o-s”.

that our single decision tree learned to pick (see Figure 13.5)
Delfi is the best planner which we visualize. We see in its planner choices that

it often uses many planners within a domain. Whatever it learned, it did not learn
features which discriminate domains. In contrast, our linear regression model selects
for almost all domains exactly one planner and that planner indeed solves almost all
tasks. Only in two domains it switches between two planners. The fact that it learned
features which also separate domains builds trust that those features are meaningful
for planner selection. The decision tree is another interesting example. Like the linear
regression model, it selects almost always only a single planner, but it selects across all
domains the same planner, SymBA∗. It could have learned a good set of rules, which
just evaluates on this test data to always the same planner. For the test data, this is not
a bad choice. But, it does not build additional trust.
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14. Summary and Future Work
We presented three new deep learning approaches for training online portfolios. We
list and evaluate fundamental parameter choices. The most important question is how
to feed a planning task to a neural network such that it can by itself extract the im-
portant features. We presented a lifted and a grounded graph encoding and observe in
all experiments that the lifted encoding is superior. Additionally, the lifted encoding is
cheaper to construct. Our first deep learning online portfolio method uses convolutional
neural networks (CNNs). Thus, we additionally propose a lossy translation from graph
to image. We show that our CNN portfolios learn relevant knowledge, but they are not
yet competitive against the top planners from the IPC 2018. Our second online port-
folio method uses graph convolution networks (GCNs) or gated graph neural networks
(GGNNs) and directly receive the graph encodings as input. Thus, we truly require no
handcrafted features. We show that the GCN are always superior to the GGNN and
that the lifted GCN portfolio outperforms the state of the art planners on the IPC 2018
tasks. Our third deep learning online portfolio method allows the portfolios to recon-
sider the chosen planner. The reconsideration strictly improves the portfolios. Now we
significantly outperform the state of the art.

In the last part, we showed that we can train machine learning models, which are sim-
pler than CNNs and GNNs as online portfolios. Those online portfolios are competitive
with the state of the art planners. They are not competitive with our GNN portfolios.
Additionally, we showed how we can understand these online portfolios and how we
can build trust in them.

There are two main avenues for future work, improving the online portfolios and ex-
ploiting the explainability. The coverage of our online portfolios improves significantly
if we allow them to reconsider the chosen planner once, after a fixed point in time. Re-
laxing both constraints could lead to further improvements. In the general case, the
online portfolio predicts an arbitrary sequence of planner, time limit pairs. This does
not work with our current setup. We would need to train one model per point in time
at which we want to select a new planner. A solution is to train a single model, which
receives as input the task to solve, for each planner the maximum time they were al-
ready executed, the currently executed planner, the time for which the current planner
is executed, and the remaining time. The model produces two outputs, one for the next
planner to choose and one for the time limit for the new planner. Our training data
construction would not work anymore either. We cannot construct training data for all
passed amounts of time and all combinations of planners executed. A solution is re-
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inforcement learning. If the model chooses a planner which solves the training task,
the reward is positive. If the model predicts an insufficient time limit, the reward is
reduced. If it chooses a planner which does not solve the task, the reward is negative.
If the remaining time suffices for another planner to solve the task, the absolute value
of the negative reward could be reduced.

In our current explainability setup, we only looked at complete portfolios consisting
of arbitrary planners. One could also change the scope to get knowledge of a specific
planner. For example, we could just look at the internal model relevant for a single
planner, or we could construct a new portfolio where all planners are identical except
for one parameter, e.g., A∗ search with M&S but only the merging strategy is adapted.
The latter allows us to understand when a merging strategy is especially good or bad.
If this does not match our intuition, we can inspect the strategy more closely. Either we
learn something new, or we improve the code to fix a bottleneck.
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Part III.

Learning State Space Topologies
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For this part, I collaborated with the following people (listed in alphabetical order):
Liat Cohen, Thomas Keller, Jendrik Seipp



15. State Space Topology
From understanding an algorithm comes the knowledge to improve it. A lot of research
tries to understand the properties of A∗ (Martelli, 1977; Pearl, 1984; Dechter and Pearl,
1985; Korf, Reid, and Edelkamp, 2001; Helmert and Röger, 2008; Holte, 2010). In re-
cent times, understanding the behavior of GBFS made huge progress (Wilt and Ruml,
2014, 2015, 2016; Heusner, Keller, and Helmert, 2017, 2018). Two important con-
cepts for understanding the behavior of GBFS are the state space and the state space
topology.

Let Π be a planning task and h be a heuristic. The state space X (Π) of the task Π
is a graph structure where the nodes are the states S and there is an edge between two
states s, s′ ∈ S iff there exists an action which leads from s to s′. A state space with all
states annotated by a value is a state space topology.

Definition 15.1. State Space Topology (Hoffmann, 2005)
Let Π be a task with states S which induces a state spaceX (Π). Let h : S 7→ R+

0 ∪{∞}
be a deterministic, path-independent state-value function. T = ⟨X (Π), h⟩ is a state
space topology.

Figure 15.1a shows an example state space topology. Node A corresponds to the
initial state and T to the only goal state. The behavior of GBFS within a state space
topology is analogous to water in a physical topology. A water flow starts at a source
(initial node) and flows to the deepest point of the first valley. If it cannot drain off
the deepest point, then it fills up the valley until it overflows into the next valley. The
goal node is a drain, which consumes any amount of water. Once the water reaches
the goal node, the system reached its terminal state. Without a reachable goal node,
the topology fills completely. In planning, we call a valley without goal node a crater.
If there are multiple valleys to flow into, GBFS picks one at random. In our example,
GBFS expands first A, then picks the crater of B and expands B. Next it picks the crater
of C and expands C, E, G, H. Finally, it expands the valley of D which ends in a goal
state.

Based on this intuition, Wilt and Ruml (2014) introduced high-water marks. The
high-water mark of a location is the height the water has to reach until it finds a goal. In
planning terms, the high-water mark of a state s denotes the maximum heuristic value
that GBFS has to expand to find an s-plan. Every node in Figure 15.1a is annotated
with its high-water mark.

Definition 15.2. High-water mark (Wilt and Ruml, 2014)
Let Π be a planning task with a state s ∈ S and a topology T = ⟨X (Π), h⟩. Let P be
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15. State Space Topology
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(b) Bench transition system

Figure 15.1: An example state space topology for a fictive heuristic and its induced
bench transition system. States annotated with an asterix are progress
states. States with double circles are (Left) goal states or (Right) bench
exit states.

the set of all acyclic s-plans. The high-water mark of s is

hwm(s) = min
⟨a1,...,an⟩∈P

max
i=0,...,n

h(sJa1K . . . JaiK)).

Let S ⊆ S be a set of states. The high-water mark of S is

hwm(S) = min
s∈S′

hwm(s).

Using the high-water mark, we define a progress measure for GBFS. Whenever
GBFS expanded a state s such that one successor has a lower high-water mark than
the heuristic value of s, then GBFS progressed. In simpler terms, whenever GBFS ex-
panded a progress state s, then all states expanded in the future have a lower heuristic
value than h(s).

Definition 15.3. Progress State (Heusner, 2019)
Let Π be a planning task with a state s ∈ S and a topology T = ⟨X (Π), h⟩. The state s
is a progress state iff it is a goal state (s ∈ SG) or its heuristic value is higher than the
high-water mark of its successors (h(s) > hwm(succ(s))).

Figure 15.1a indicates the progress states with an asterisk. In our example, all states
along the optimal plan are progress states. In practice, all progress states are along
a plan, but not necessarily the optimal plan. Additionally, every plan can also visit
non-progress states.

With the notion of progress states, Heusner, Keller, and Helmert (2018) map the
states of a state space topology into benches. A bench starts at a progress state s,
contains all nodes that GBFS could expand without reaching a progress state, and ends
at one of the next progress states GBFS could reach.
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Definition 15.4. High-Water Mark Bench (Heusner, Keller, and Helmert, 2018)
Let Π be a planning task with a topology T = ⟨X (Π), h⟩ and a non-goal progress state
s ∈ S.

The bench induced by s is B(s) = ⟨level(s), s, inner(s), exit(s)⟩. The bench level
of B(s) is level(s) = hwm(succ(s)). The bench entry state is s itself. Let P be the
set of all paths starting from s which do not contain progress states (except for s itself)
and all states s′ along the paths satisfy h(s′) ≤ level(s). The bench inner states are the
set inner(s) =

⋃
p∈P p \ {s}. The bench exit states are the set exit(s) consisting of all

successors s′ of inner(s) and s which are progress states and h(s′) = level(s).
Let s′ be a goal state. By definition s′ is a progress state. The bench induced by s′ is
B(s) = ⟨−∞, s, ∅, ∅⟩.

We use states(s) = {s}∪ inner(s)∪exit(s) to denote all states of the bench induced
by s. The bench B(s) induces a state space X (Π)|B(s) = {states(s), s, exit(s), succ ′ :
states(s) 7→ 2states(s)} where succ′ is a restriction from the successor function succ of
Π to the states states(s).

Figure 15.1b shows the four benches of our example topology and the connections
between them. We call this the bench transition system (BTS). The BTS B of a task
Π is a state space. In this state space, every bench is a node and there is an edge from
bench b to bench b′ if the entry state of b′ is an exit state of b. The initial state of B is
the bench which contains the initial state of Π as inner state. Any bench which contains
a goal state of Π as inner state is a goal node for B. By construction, the BTS of any
task is acyclic.

Both the knowledge of progress states and of bench transition systems are interesting
from a theoretical point, but are not yet practically useful. We can compute them only
after we found a plan. At this point the knowledge is futile. We change this. We show
how we can learn formulas, which identify progress states or properties of benches,
from simple tasks of a domain.
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16. Learning Structures

Ståhlberg, Francès, and Seipp (2021) showed that it is possible to learn a formula, which
identifies dead-ends in a domain using a single task of the same domain and description
logic features as literals. Inspired by this, we modify the approach to learning formulas,
which identify progress states. Our formulas are not only interesting from a theoretical
point of view. We successfully exploit them as a tie-breaker during search.

In our ongoing project, we sample the whole bench transition system of a single
task and generalize it such that it can be applied to any task of the same domain. To
allow this generalization, we describe the properties of a bench using formulas with
description logic features as literals.

16.1. Describing Progress States

First, we introduce description logic formulas. Then we use handcrafted formulas to
show that these formulas can indeed describe progress states. Finally, we propose a
workflow to automatically learn formulas for any domain and any (path-independent)
heuristic.

Feature Language. A description logic language (DL, see Chapter 5) describes in-
dividuals (constants), concepts (sets of objects), and roles (set of tuples of objects).
Furthermore, it defines a set of rules to combine those into new concepts and roles. We
follow the instruction from Drexler, Francès, and Seipp (2022) to define and interpret
atomic concepts and roles for planning (see Section 5.2) and use the rules from Ta-
ble 5.1. We use the size and concept distance function to convert denotations to Boolean
values. The PDDL language allows the definition of constant objects for a domain. In
theory, we could use these as description logic individuals. In practice, this PDDL fea-
ture is rarely used in the IPC domains. For each domain, we manually identify objects
which should be constants and use them as description logic individuals.

Our feature language F is the infinite set of all features which can be constructed
using the individuals, the atomic concepts, the atomic roles, the construction rules for
complex concepts and roles, as well as, the conversions from concept or role to Boolean.
Fk is a finite subset of F which contains only features up to complexity k. We call a
logical formula where all atomic propositions are from our feature language a descrip-
tion logic formula.
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16.1. Describing Progress States

1 2 3

Room A Room B

(a) Gripper (b) Miconic-STRIPS

Figure 16.1: Visualization of a concrete Gripper and a concrete Miconic-STRIPS task.
(Left) The robot is in room A and all balls are on the floor of room A.
(Right) The elevator is at the top floor. The orange person boarded the
elevator and wants to leave at the right floor. The green person waits at
the left floor and wants to leave at the top floor.

Handcrafted Formulas. Now that we defined our feature language, we verify that it
is expressive enough to compactly describe progress states for the Gripper and Miconic-
STRIPS domain. It depends on a heuristic whether a state is a progress state. For
our handcrafted formulas, we use the perfect delete-relaxed heuristic (h+), because it
is intuitive for humans to reason about it. We note that both domains have no local
minima (also known as craters) under the h+ heuristic (Hoffmann, 2011). For all states
in Gripper and Miconic-STRIPS, there exists a path which starts in s and ends in a
goal state such that the h+ value decreases monotonically along the path (possibly with
plateaus). Thus, for every state, its h+ value is also its high-water mark under h+.

We simplify our notation with syntactic sugar. Let s be a state and Is be the planning
interpretation induced by s. For readability, we write s instead of Is. Let p be a unary
predicate symbol. We define p(·)s = Cs

p,0 and p(o)s = (Cp,0 ⊓ {p})s = Cs
p,0 ∩ {o}. Let

p be a binary predicate symbol. We define p(·, o)s = (∃Rp,0,1.{o})s = {o′ | ⟨o′, o⟩ ∈
Rs

p,0,1}. Let X be a role or concept, we define X̄ = ¬X .
In the Gripper domain, there are two rooms, A and B, as well as some balls. Initially,

all balls are in room A. Additionally, there is a robot with two hands, which moves
between the rooms, picks up and drops balls. The goal is to move all balls from room
A to room B. Figure 16.1a shows an example state.

For every Gripper state, the perfect delete relaxed plan consists of picking up all
balls from room A and dropping all balls, which are not yet in room B at room B.
Furthermore, if the robot is in room A and there are balls missing in room B, then the
plan contains the action to move from room A to room B. If the robot is in room B and
there are balls in room A, then the plan contains the action to move to room A.

Thus, there are three kinds of actions in Gripper which make progress. (1) Picking up
a ball in room A, (2) dropping a ball in room B, and (3) moving for the last time from
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16. Learning Structures

room A to room B. Picking up a ball in room A and dropping a ball in room B removes
one action from the perfect delete relaxed plan and does not add any new actions. Thus,
the h+ value of the successor state, as well as the high-water mark, decreases. Thus,
the start state is a progress state. If the robot moves from room A to room B and there
are still balls in room A, then the successor has the same h+ value as the current state.
This is because the action to move from room A to room B is replaced by the action to
move from room B to room A in the perfect delete relaxed plan and both actions have
the same cost. Only if there is no ball left in room A, then the robot does not need to
return to room A, thus, the action to move from room A to room B is removed without
adding a new action. As a consequence, we can describe all progress states with the
following conditions:

1. There are no balls on the floor of room A: If all balls are in room B, then s is a
goal state. Thus, a progress state. If the robot is in room B and carries a ball, it
can drop the ball. If the robot is in room A and carries at least one ball, then it
moves for the last time to room B.

2. The robot is in room A, has a free hand and there are balls on the floor of room
A: The robot can pick up a ball.

3. The robot is in room B and is carries at least one ball: The robot can drop a ball.

We can describe these conditions as DNF formula in our feature language. A state is
a progress state in Gripper if

s |=(|at(·, roomA)s| = 0)∨
((|at-robby(roomA)s| > 0) ∧ (|free(·)s| > 0))∨
((|at-robby(roomB)s| > 0) ∧ (|carry(·)s| > 0)) .

In the Miconic-STRIPS domain we control an elevator to transport passengers from
their origin floor to their destin floor. The elevator moves directly from one floor to any
other floor. We say a floor is required if the elevator still needs to pick up a passenger
from this floor or deliver a passenger to this floor. Every perfect delete relaxed plan
picks up all passengers who are still at their origin floor, drops all passengers at their
destination floor, and moves to all required floors, except for the floor at which the
elevator currently is.

Thus, there are three kinds of actions which make progress. (1) Picking up a waiting
passenger, (2) dropping a passenger at its destination floor, and (3) moving to a required
floor if the current floor is not required anymore. As before, picking up and dropping
passengers at the right floor removes actions from the plan. Thus, the successor state
has a lower h+ value. Because there are no local minima, it also has a lower high-water
mark. If the elevator is at a required floor f , then moving to another floor f ′ replaces
the action to move to floor f ′ by the action to move to floor f . Thus, the h+ value stays
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16.1. Describing Progress States

constant and this causes no progress. If the elevator is at a floor which is not required
anymore, then moving to a required floor f ′, removes the action to move to floor f ′

from the perfect delete relaxed plan. Thus, the h+ value decreases, thus the high-water
mark decreases, and thus, the search progresses. If the elevator moves from a required
floor to a not required floor, then the action to return to the previous floor is added to
the plan. If it moves from a not required floor to a not required floor, the plan stays
unchanged.

Consequently, we can describe the progress states as:

1. The elevator is at a floor where a person is waiting to board: The person boards
the elevator.

2. The elevator is at a floor where a boarded person wants to leave: The person
leaves the elevator.

3. The elevator is at a not required floor: Either no floor is required, which means
all passengers reached their destination or the elevator moves to a required floor
where someone can enter or someone can leave. In the former case, the state is a
goal state, and thus, a progress state. In the latter case, the relaxed plan shrinks
by one action.

Again, we can describe these conditions as DNF. We use fE as syntactic sugar for
the floor at which the elevator is located.

s |=(|(origin(·, fE) ⊓ boarded(·) ⊔ served(·))s| > 0)∨
(|(destin(·, fE) ⊓ (served(·) ⊔ boarded(·)))s| > 0)∨
(|(destin(·, fE) ⊓ boarded(·) ⊔ served(·))s| = 0)

We empirically verified that our formulas are correct. We computed the progress
state labels on all states from multiple tasks of these domains and checked that those
labels agree with the results of our formulas. These two examples show that our feature
language is expressive enough to identify progress states in some domains. Of course,
this does not show that our feature language is expressive enough for all domains.

Training Workflow. We manually designed compact DNFs for Gripper and Miconic-
STRIPS. This hides that we tried to construct formulas for the ChildSnack and Hiking
domains and failed. Even for the intuitive h+ heuristic, it is challenging to consider
all states and to come up with a good formula. Thus, we present a workflow, which
automatically learns them. Our workflow consists of three steps: sampling and labeling
states; generating features; learning a formula.

Let Π be a planning task and h be a path-independent heuristic. Let sI be the initial
state of Π. Let s ∈ S be a state of Π, succ(s) is the set of all successors of s, pred(s)
is the set of all predecessors of s. First, we generate the set SR of states reachable from
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16. Learning Structures

sI. Next, we calculate the high-water marks. For every state s ∈ SR we initialize its
high-water mark as

hwm(s) =

{
h(s) if s ⊇ δ

undefined otherwise.

We define a priority list pq increasingly sorted by high-water mark and initialize it with
the goal states. As long as pq is not empty, we pop the next state s from it. We update
the high-water mark of all predecessors p ∈ pred(s) with undefined high-water mark
as

hwm(p) = max(h(p), hwm(s))

and add it to the priority queue. The high-water mark of a state is the maximum over its
heuristic estimate and the minimum high-water mark of its successors. Thus, it suffices
to update the high-water mark of a state once we popped its successor with minimal
high-water mark. When pq is empty, then all dead-end states have an undefined high-
water mark. For every dead-end state d we update their high-water mark to hwm(d) =
∞. In the last step, we label all goal states and all states which have a successor with
lower high-water mark as progress states and all other states as non-progress states.

Now, we have a set of labeled states. Next, we generate features to describe them.
As the size of our feature language is infinite, we cannot generate all features. Further-
more, many concepts and roles evaluate to the same denotations, e.g., let C1 and C2 be
two concepts, then the complex concepts C1 ⊓ C2 and C2 ⊓ C1 evaluate to the same
denotation.

We take a set of generated states, possibly from multiple tasks and ignore the labels.
We iteratively, construct all features of complexity K = 2, then complexity K = 3,
and so forth until we reach a predefined complexity limit or a time limit. In every
iteration, we generate all concepts and roles up to complexity K−1 and convert them to
features, which have at most complexity K. Converting a concept or role to a Boolean
feature increases the complexity by at least 1. If a generated concept or role evaluates
to the same denotation on all states as a previously generated concept or role, then it is
pruned. If a generated Boolean feature evaluates to the same value for all states, then
it is pruned. As both pruning steps operate on selected training tasks and optionally
a subset of the states of these tasks, it is possible that we incorrectly prune concepts,
roles, and features. But without pruning, the number of generated features is infeasible
large.

We now have a huge set of labeled states and a finite set of features F ′ ⊂ F . We
construct a data set D = {⟨x⃗1, y1⟩, . . . , ⟨x⃗n, yn⟩}. For every labeled state s, its feature
vector x⃗ is the evaluation of all features on s and its label y indicates whether it is a
progress state. We can use this data set with any common machine learning technique.
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|at(·, roomA)| > 0
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Figure 16.2: Example of a trained decision tree to identify progress states. The
branches which lead to positive predictions are annotated with dashed
lines).

We expect that we are not always able to perfectly separate progress states from non-
progress states. The feature generation could have terminated before a necessary feature
was generated, or our feature language is not expressive enough. Furthermore, we want
to extract a relative compact DNF formula from our model. Thus, we train a decision
tree. We do not limit the tree complexity or tree depth. If the labels can be perfectly
separated by the features, the tree will perfectly separate the labels. Figure 16.2 shows
a tree for h+ on the Gripper domain. Furthermore, it highlights all branches which
predict that a state is a progress state. To convert the decision tree to a DNF formula, we
first convert each highlighted branch to a conjunction of features. For those branches,
an internal node i becomes a literal l. If the branch takes the “no” route, at node i, then
we add ¬l to the conjunction of this branch. Otherwise, we add l. Next, we join all
branches with a logical or.

The resulting formulas can be unnecessarily complicated. We simplify them with
an automatic tool. Such a tool works only if the same idea is described with the same
feature. Whenever we construct a new internal node and two features separate the
training data equally well, we favor features, which are already used by other internal
nodes. If there are still multiple candidates, then we favor the feature with the lowest
complexity. A decision tree does not require Boolean features. Restricting the features
to Boolean also improved the ability to simplify the final formulas.

Use Cases. During search, we exploit the knowledge whether a state is a progress
state. Remember that whenever GBFS expands a progress state, it afterwards expands
only states with lower heuristic values. The open list of GBFS is sorted by heuristic val-
ues. That means whenever it expands a progress state, it will never expand a state which
is currently in the open list. Thus, we can simply clear the open list while expanding a
progress state. A planner with a fast heuristic quickly runs out of memory due to the
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size of its open list. Clearing the open list solves this issue. There is a drawback. If we
incorrectly classify a state as a progress state, then the search may become incomplete.

The previous use case is only important once the search approaches the memory
limit. We can already use the progress state information earlier. Whenever we expand
a progress state, we know that we progress. Whenever we expand another state, we
do not necessarily progress. Thus, if two states have the same heuristic values, one of
them is classified as a progress state and the other is not, then we expand first the state
labeled as progress state. This is less impactful, but GBFS stays complete.

16.2. Constructing Generalized Bench Transition
Systems

The knowledge of progress states is already useful, but knowing the bench transition
system (BTS) of a task Π, is even more powerful. Instead of finding a solution for the
task Π, we can split the search into smaller and simpler searches. Given the BTS of
Π, we identify the bench b which has the initial sI state as an inner state or entry state.
Our subtask Πb is to find a path from the initial state to an exit state of this bench. The
detected goal state of Πb becomes the initial state of our next subtask. This procedure
repeats until we end in a goal state of Π.

The GripperOne domain is equivalent to the Gripper domain, except that the robot
has only a single arm. This reduction reduces symmetries and makes the BTS of its
tasks easier to visualize. Figure 16.3 shows the first six out of eight bench levels of the
BTS from the GripperOne domain for the perfect delete-relaxed heuristic on a task with
three balls. Following the definitions, we observe that there exists one non-progress
state, which belongs to no bench (the entry state of the single bench with level seven).
We construct an exceptional bench for this state and defer the handling of these states
to a later point. In every bench, the top most state is the entry state, and the bottom
most states are the exit states. We observe that all three benches with a level of five are
symmetric, i.e., they are equivalent up to renaming the balls. The same holds for all
three benches with a level of four, for all six benches with a level of three, for all three
benches with a level of two, for all three benches with a level of one, and for all three
benches with a level of 0. Our first generalization of this BTS removes this symmetry.
There is a single bench with a level of five. Any state which has two balls in room A,
the robot in room B, and the robot is holding the third ball belongs to this bench.

Secondly, we see that the states in the benches with a level of four and six share
many similarities. The action applied to progress is the same up to renaming objects.
Our second generalization merges benches with the same “goal descriptions”. For all
those benches, we describe the goals as the robot is in room B and holds a ball. Using
these observations, we define generalized high-water mark benches.
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Figure 16.3: Bench transition system for a GripperOne task with three balls using the
perfect delete-relaxed heuristic. The last layers are omitted.
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Definition 16.1. Generalized High-Water Mark Bench
Let D be a planning domain. A generalized bench G for D is a tuple
G = ⟨ϕmembership, ϕinner goal⟩. ϕmembership and ϕinner goal are two FOL formulas. Let
Π be a task from D with states S. Any state s ∈ S for which ϕmembership holds (s |=
ϕmembership) is a member state of the bench. Any state s ∈ S which is a member
of G and for which ϕinner goal holds (s |= ϕmembership ∧ ϕinner goal = ϕouter goal) is a
goal state of the bench. Any state s ∈ S which is a member of the bench, but not a
goal state is an inner state (s |= ϕmembership ∧ ¬ϕinner goal). For simplicity, we define
ϕinner = ϕmembership ∧ ¬ϕinner goal.

Furthermore, we also generalize the notion of a bench transition system.

Definition 16.2. Generalized Bench Transition System (GBTS)
A generalized bench transition system for a domainD is a graph G = ⟨V,E⟩ with a set
of generalized benches V and a set of edges between those benches E. For all tasks Π
of the domain D and every state s ∈ SΠ holds that s is either an inner state of exactly
one bench or s is a goal state (s ⊇ δ). Let G1,G2 ∈ V be two generalized benches.
There is an edge from G1 to G2 iff there exists a task Π with a state s ∈ SΠ such that s
is a goal state of G1 and an inner state of G2.

Figure 16.4 shows a possible GBTS for GripperOne. For simplicity, we constructed
the GBTS for the perfect heuristic (h∗). For each bench, the formulas ϕmembership and
ϕinner goal are provided. For convenience, the formulas ϕinner and ϕouter goal are also
provided. The first four benches form a cycle. In every iteration of the cycle, the robot
moves one ball from room A to room B. The GBTS requires loops! Without loops, the
GBTS cannot adapt to tasks with an arbitrary number of balls.

Proposition 16.1. Loopy Generalized Bench Transition Systems
There exists a domain D and a heuristic h such that any GBTS G for them is cyclic.

Proof:
LetD be the GripperOne domain and h be the perfect heuristic. Let Πb be a GripperOne
task with b ∈ N balls and B be its bench transition system. Π has a state where all balls
are in room A and the robot is in room B. This state has an optimal plan cost of 4b. The
robot has to move b balls from room A to room B. Moving a single ball requires three
actions (picking up a ball in room A, moving to room B, dropping the ball in room B).
To pick up the first ball, the robot has to move to room A. After dropping a ball, except
for the last one, the robot is in room B and has to move back to room A. At every
step of along the optimal plan π, the heuristic value drops by one. By the definition of
progress states, every state along the optimal plan is a progress state. By the definition
of the bench transition system, each of these progress states s′ forms a bench where s′

is the entry state and its successor along the optimal plan π is an exit state. Thus, the
longest acyclic path in the BTS B has a length of at least 4b.
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Inner: robby at B ∧ ¬carry ∧ ball at A
Inner Goal: robby at A
Outer Goal: ¬carry ∧ robby at A ∧ ball at A
Membership: ¬carry ∧ ball at A

1
Inner: robby at A ∧ ¬carry ∧ ball at A
Inner Goal: carry
Outer Goal: carry ∧ robby at A
Membership: robby at A ∧ ¬carry ∧ ball at A∨

robby at A ∧ carry

2

Inner: robby at A ∧ carry
Inner Goal: robby at B
Outer Goal: robby at B ∧ carry
Membership: carry

3
Inner: robby at B ∧ carry
Inner Goal: ¬carry
Outer Goal: robby at B ∧ ¬carry
Membership: robby at B

4

Inner: ⊥
Inner Goal: ⊤
Outer Goal: ¬ball at A ∧ ¬carry
Membership: ¬ball at A ∧ ¬carry

5

Figure 16.4: Generalized bench transition system for the GripperOne domain using the
perfect heuristic.
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Assume there exists an acyclic generalized bench transition system G for Gripper-
One using the perfect heuristic. By the definition of GBTS, the number of generalized
benches n in G is finite.

Let Πb be a GripperOne task with b ∈ N balls and 4b > n. The longest acyclic path in
the B of Πb has a length of at least 4b. As G is acyclic and has fewer than 4b generalized
benches, there exists no assignment from the benches of B to the generalized benches
of G which preserves the transitions between the benches. This violates the assumption.
Thus, all G for GripperOne using h∗ are cyclic. □

Construct Generalized Bench Transition System. We propose a greedy approach,
which simplifies the BTS B of a task Π using heuristic h until it becomes a GBTS for
the domain. The process has two major assumptions. First, it assumes that the BTS B
contains all benches necessary to generalize. For example in the GripperOne domain
with the perfect heuristic, we cannot learn a GBTS, if the task contains only a single
ball. Then the information that we have to return to room A is missing. Secondly, we
assume that we have the features to represent all the necessary knowledge. In reality,
our feature language might not be expressive enough, or we are unable to generate
the necessary features within the computational limits. Our workflow consists of four
steps: sampling the BTS, generating description logic features, simplifying the BTS,
generating description logic formulas for the generalized benches.

In the first step, we construct the BTS B for Π. As previously, we sample all states
SR reachable from the initial states sI. We calculate for all of them their high-water
mark, and we label them as progress or non-progress states. Then we construct for
every progress state s its bench B(s) as described by Definition 15.4. We observe that
there are non-progress states which belong to no bench (see the entry state of the top
most bench in Figure 16.3). As long as there is a state s′ which belongs to no bench,
we construct an additional bench B(s′) relaxing the Definition 15.4. B(s′) has no entry
state. Instead s′ is added to its inner states.

In our second step, we use the set of reachable states SR to generate Boolean de-
scription logic features. We use the same iterative approach, and the same pruning
techniques which we used for learning progress state formulas. This step ends with a
finite set of features F ′ ⊂ F .

In the third step, we transform the BTS until we reach a fix point. At the beginning
of every iteration, we calculate for every bench b its inner goal formula ϕinner goal. For
this purpose, we adapt the approach from learning progress state formulas. We learn
the inner goal formula for bench b using only the member states. For all member states
of b, we construct a feature vector by evaluating every feature f ∈ F ′ on it. We label
every member state as 1, if it is an exit state of b, and as 0 otherwise. On these data, we
learn a decision tree, extract a DNF formula, and simplify it. As for the progress states,
if two features separate the training data equally well, we prefer the feature which was
already used in this iteration! Thus, the feature preference persists when learning the
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Figure 16.5: Example of the bench splitting in our generalization workflow. Inner
states have a round border. Progress states have an octagonal border.
Progress states with a double border are bench exit states. States 3 and
4 would be removed from this bench and form a new bench with the exit
state 1.

inner goal formulas for all benches of one iteration. This is important as it simplifies
merging benches based on the same inner goal formulas.

To merge benches, we relax the definition of a bench. A relaxed bench has an arbi-
trary number of levels and entry states. A relaxed bench b = ⟨levelsb, entryb, inner b, exitsb⟩
is a tuple where levelsb is a set of bench levels, entryb is a set of entry states, inner b is a
set of inner states and exitsb is a set of exit states. Every bench b ∈ B induces a relaxed
bench. Let b1, b2 ∈ B be two relaxed benches. Merging those constructs a new relaxed
bench b′ = ⟨levelsb1 ∪ levelsb2 , entryb1 ∪ entryb2 , inner b1 ∪ inner b2 , exitsb1 ∪ exitsb2⟩.
We merge any pair b1, b2 ∈ B of relaxed benches, if one of the following three condi-
tions holds:

1. The member states of b1 are a subset of the member states of b2 or vice versa.

2. The goal states of b1 are a subset of the goal states of b2 or vice versa.

3. b1 and b2 have the same goal formula.

We do not only merge benches, but we also split benches. If a relaxed bench b
contains a non-progress states s such that all paths from s to any exit state of b contain
an entry state of b, then we remove this state s from the bench b and construct a new
relaxed bench b′. The relaxed bench b′ has no entry states. All non-progress states
of b reachable from s without passing through progress states are its inner states. All
progress states of b reachable from the inner states of b′ are its exit states. If this removes
multiple states from the same bench, then the constructed benches are often similar and
can be merged. Figure 16.5 shows an example. We repeat the calculation of the goal
formulas, the merging, and the splitting until we reach a fix point.

In the last step, we learn for every bench b the membership formula ϕmembership using
all reachable states SR as training data and labeling all member states of b positively and
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all other states negatively. We learn the goal formula ϕinner goal using all member states
of b. We label all exit states of b positively and all other states negatively. Furthermore,
we explicitly learn the inner formula ϕinner using all reachable states SR and labeling
the inner states of b positively and all other states negatively. Finally, we observe that
the inner goal formula loses information, because it is implied in the membership for-
mula. To make this knowledge explicit, we learn an outer goal formula ϕouter goal using
all reachable states SR and labeling the exit states of b positively and all other states
negatively. In this last step, we do not need to merge benches with the same inner goal
formulas. Thus, we do not track the previously used features across benches, but we
track them only within a single tree. Building a decision tree is a greedy approach. It
does not always build the most intuitive trees. We evaluate the complexity of a tree as
the sum of the complexities of the used features. Furthermore, we extract the maximum
complexity k of a used feature. Now, we iteratively train new decision trees restricted to
features of complexity less than k, less than k − 1, and so forth. Whenever we obtain a
new tree which also perfectly classifies the states and has a lower sum of complexities,
we use this tree as a candidate for extracting the formula.

The final set of relaxed benches annotated with their formulas is the generalized
benches of the GBTS for the domainD of the initially provided task Π and the heuristic
h.

Formula to PDDL. We use some formulas during search. Thus, we have to convert
them to PDDL. We show how to convert a description logic feature to first-order logic
(FOL). Rephrasing them from FOL to PDDL is trivial. Let Cp,i be an atomic concept
for the predicate symbol p with arity(p) = k. The feature |Cs

p,i| > 0 expresses that the
denotation of Cp,i for state s contains at least one element.

|Cs
p,i| > 0 = |{x |∃v1, . . . , vi−1, vi+1, . . . , vk : p(v1, . . . , vi−1, x, vi+1, . . . , vk) ∈ s}| > 0

FOL
⇝ ∃x∃v1, . . . , vi−1, vi+1, . . . , vk : p(v1, . . . , vi−1, x, vi+1, . . . , vk)

The condition to have at least one x is translated into the first existential quantifier.
The quantifiers introduced by the atomic concept follow afterwards. The actual condi-
tion comes last. For an atomic role, the schema is the same. Let Rp,i,j be an atomic role
with i < j.

|Rs
p,i,j| > 0 = |{⟨x, y⟩ |∃v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk :

p(v1, . . . , vi−1, x, vi+1, . . . , vj−1, y, vj+1, vk) ∈ s}| > 0

FOL
⇝ ∃x, y ∃v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk :

p(v1, . . . , vi−1, x, vi+1, . . . , vj−1, y, vj+1, vk)

The adaption for an atomic role with i > j is trivial. For the translation in the
general case, we introduce three recursive function. f translates a feature. fC translates
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a concept and receives as an additional input the name of the variable bound on the
outside (red part in previous atomic concept example). fR translates a role and receives
as additional input the names of the two variables bound on the outside (red part in the
previous atomic role example). For every rule which constructs a complex concept, fC
requires an overload. For every rule which constructs a complex role, fR requires an
overload. Let X be either a concept or a role, D,E be concepts, and S, T be roles.
Let Cp,i be an atomic concept and Rp,i,j be an atomic role. Then we recursively define
f, fC , fR as follows:

f(¬|Xs| > 0) =¬f(|Xs| > 0)

f(|Cs| > 0) =(∃x : fC(C
s, x))

f(|Rs| > 0) =(∃x, y : fR(R
s, x, y))

fC(C
s
p,i, x) =(∃v1, . . . , vi−1, vi+1, . . . , vk : p(v1, . . . , vi−1, x, vi+1, . . . , vk))

fC(¬D, x) =¬(fC(D, x))

fC(D
s ⊓ Es, x) =fC(D, x) ∧ fC(E, x)

fC(D
s ⊔ Es, x) =fC(D, x) ∨ fC(E, x)

fC((∃S.D)s, x) =(∃v : fR(S
s, x, v) ∧ fC(D

s, v))

fC((∀S.D)s, x) =(∀v : fR(S
s, x, v) =⇒ fC(D

s, v))

fR(R
s
p,i,j, x, y) =(∃v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk :

p(v1, . . . , vi−1, x, vi+1, . . . , vj−1, y, vj+1, vk))

fR(¬S, x, y) =¬(fR(S, x, y))

We observed no further rules in our exploratory experiments. Thus, we did not yet
define further overloads. Extending the overloads is straight forward.

Bench Walking. We constructed a generalized bench transition system G for the do-
main D and the heuristic h. Let Π be a task of D. The standard way of solving Π
executes a GBFS using the heuristic h. We use our generalized bench transition system
G to split the original search into simpler subsearches. We iteratively identify to which
bench a state belongs and search for a path of the state to an exit state of the bench. At
one point, the exit state is a goal state of the original task. We call this procedure bench
walking. In practice, our GBTS can be imperfect. Thus, a state can be identified as an
inner state of multiple or even of no bench. To be more robust, we extend our algorithm
with back tracking.

Algorithm 2 shows our bench walking algorithm. We modify the given Π for the
subsearches. Thus, we remember the original goal of Π (line 2). Furthermore, we have
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Algorithm 2 Bench Walker. For a given planning task Π with an initial state sI and a
goal δ, a generalized bench transition system G, and a heuristic h.

1: procedure BENCH WALKER

2: δglobal ← Π.δ
3: πglobal ← Stack()
4: choices ← Stack()
5: inits ← Stack()
6: closed ← ∅
7:
8: inits .push(Π.sI)
9: identify ← True

10: while inits .top() ⊉ δglobal do
11: s′I ← inits .top()
12: // Find bench for next subsearch
13: if identify then
14: B ←identify_benches(s′I, G)
15: choices .push(B)
16: while choices .top().empty() do
17: choices .pop()
18: if choices .empty() then
19: return unsolvable
20: πglobal .pop()
21: inits .pop()
22: s′I ← inits .top()
23: b← choices .top().pop()
24: if ⟨s′I, b⟩ ∈ closed then
25: identify ← False
26: continue
27: else
28: closed ← closed ∪ {⟨s′I, b⟩}
29:
30: // Setup and execute subsearch
31: Π.sI ← s′I
32: Π.δ ← to_pddl(b.outer_goal)
33: avoid ← to_pddl(¬b.membership)
34: π ← GBFS(Π, avoid )
35: if π then
36: πglobal .push(π)
37: inits .push(s′IJπK)
38: identify ← True
39: else
40: identify ← False

41: return concatenate(πglobal )
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Inner: ball at A ∧ robby at B
Inner Goal: robby at A
Outer Goal: ¬carry ∧ robby at A ∧ ball at A

A
Inner: robby at A ∧ (carry ∨ ball at A)
Inner Goal: robby at B
Outer Goal: carry ∧ robby at B

B

Inner: ¬carry ∧ robby at A∧
ball at A ∧ ball at B

Inner Goal: carry
Outer Goal: carry ∧ ¬ball at A ∧ robby at A

C
Inner: carry ∧ robby at B ∧ ¬ball at A
Inner Goal: ¬carry
Outer Goal: ¬carry ∧ ¬ball at A

D

Inner: ⊥
Inner Goal: ⊤
Outer Goal: ¬ball at A ∧ ¬carry
Membership: ¬ball at A ∧ ¬carry

E

Figure 16.6: Generalized bench transition system for GripperOne using the perfect
delete-relaxed heuristic.

a stack, which keeps track of the plans of the previous subsearches; we have a stack,
which keeps track of the alternative bench options for each subsearch so far; and we
have a stack for the initial state of the subsearches (lines 3–5). To detect whether we
walk in a cycle, we remember for all subsearches their initial state - bench of pair (line
6).

The first step of our bench walker is to identify the initial state and bench to use for
the next subsearch. In the simplest case, we have the current initial state s′I, identify
exactly one bench b which has s′I as inner state (lines 14 & 22) and we did not walk in a
cycle (line 27). Then we remember that we will execute a subsearch for the pair ⟨s′I, b⟩
(line 28).

In the second step, we set up and execute the subsearch (lines 30–34). We first update
the initial state of the Π to s′I (line 31). Then we construct from the outer goal formula
of the bench the next subgoal (line 32). The inner goal formula incorrectly assumes
that the subsearch visits only member states of the current bench. Thus, it learns a
simpler formula, which falsely identifies non-member states as goal. Furthermore, the
additional information in the outer goal formula improves the guidance of the heuristic.

Example 16.1. Superiority of Outer Goal Formula over Inner Goal Formula
Figure 16.6 shows the GBTS for GripperOne under the h+ heuristic. Let s be a state
where there are balls in room A, the robot is in room B, and the robot carries a ball.
This state belongs to bench A. The intention of this bench is to drop the ball first in
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room B and then to move to room A. The inner goal formula only requires that the
robot in room A. A GBFS on this goal, ends in a state where the robot is in room A
and still carries a ball. This plan produces the opposite of progress. The outer goal
formula says additionally that the robot is not carrying a ball. As a consequence, the
robot drops its ball either in the current room B and moves then to room A or it moves
to room A and drops the ball there. Both resulting states are members of bench A. The
first state is actual progress. The second state is again a step backwards.

The example shows that even with the better guidance of the outer goal formula, the
subsearch can reverse progress. This is because multiple concrete benches b̂1, . . . , b̂n
are merged into the current generalized bench b. As long as the subsearch is allowed
to visit any state, we might start in a state of the concrete bench b̂n and end in a goal
state of another concrete bench b̂1. To prevent this, we construct an avoid condition
(Steinmetz et al., 2022b) using the negated membership formula of b (line 33). During
search, we prune all states which satisfy the avoid condition. In other words, the search
cannot leave the member states of the current bench. The issue still persist if a GBTS
has generalized benches with self-loops.

Finally, we execute the GBFS subsearch on the modified task Π with the avoid con-
dition. If we find a plan, we remember it and construct the initial state for the next
iteration (lines 35–38). If we find no plan and multiple benches where identified for the
current initial state, then we start a new subsearch for the next bench. If there are no
further benches for the current initial state, then we backtrack.

Previously, we assumed the simplest setting for the first step. The first step becomes
more complicated once we identify multiple benches for the current initial state, once
we have to backtrack, or once we detect that we walked in a circle. The following
paragraph is an explanation of these more complicated cases. Whenever we reach a
new initial state s′I (identify ← True), we first identify all benches B which have s′I as
an inner state and push this bench set as options to our choices stack (line 13-15). Let
us assume that B is not empty. Then, the next step is to select and pop the first bench b
from B (line 23). If we have already executed a subsearch for s′I on bench b (line 24),
then we select and pop the next bench b from B. This repeats until either B is empty,
or we obtain a new pair ⟨s′I, b⟩. In the former case, we backtrack (lines 16–22), i.e., we
remove the empty option set from our stack of choices . Thus, the previous set of bench
choices is revealed. As we choose a new bench for the previous choice, we remove
the plan stored for the previous choice (line 20) and also update the current initial state
(lines 21–22). If the set of previous choices is also empty, we continue to backtrack. If
it is not empty, we pick the next choice, but also check whether we walk in a cycle. At
one point, all choices are either exhausted (line 18) and we terminate without a solution,
or we found a new pair of initial state s′I and bench b.

126



17. Experiments
We proposed an approach, which learns from simple tasks of a domain a compact for-
mula to identify progress states in any tasks of the same domain. Now we evaluate
the workflow and show that the learned formulas make the search more informed. Fur-
thermore, we presented ongoing work, which constructs a generalized bench transition
system for a domain. We will present the current results. To generate the description
logic features and to evaluate them during search, we build upon the DLPlan library by
Drexler, Francès, and Seipp (2022).

17.1. Characterize Progress States
We evaluate our approach on the Barman, Blocksworld, ChildSnack, Driverlog, Floor-
Tile, Gripper, Miconic-STRIPS, and VisitAll domains. For every domain, we define a
parameter space (e.g., for Gripper a range for the number of balls) and generate tasks
for all parameter combinations in our parameter space (Seipp, Torralba, and Hoffmann,
2022). From these tasks, we randomly pick 5 as training tasks and all others become
our validation tasks. As test tasks, we use all tasks of our domains from the optimal
and satisficing Autoscale 21.11 benchmark sets (Torralba, Seipp, and Sievers, 2021).
The test tasks have strictly larger parameters than the training and validation tasks. We
execute all experiments on a single core of an Intel Xeon Silver 4114 CPU.

State Space Labeling. First, we compute the progression state labels for all states in
the state spaces of the training and validation tasks. We use a memory limit of 3.5 GB
and a time limit of 5 hours. As heuristics, we use the intuitive perfect delete-relaxed
heuristic (h+ Hoffmann and Nebel, 2001) with the operator counting implementation
of Imai and Fukunaga (2015). Due to its complexity, h+ is not practically useful. We
also use the FF heuristic (hFF Hoffmann and Nebel, 2001).

Feature Generation. In our second step, we generate the description logic features.
We use the same rules to form complex features as Francès, Bonet, and Geffner (2021),
and we use the size and the concept_distance to convert the denotation of a concept or
role to a Boolean. We generate features for 24 hours using 3.5 GB of memory. There is
no limit on the feature complexity.

When we use a single state space to generate the features, we observe that the fea-
ture generation overfits to the state space. Features, which should be distinct, are not
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17. Experiments

Max. Complexity # Features

Domain 1. 2. 3. 4. 5. Min Max

Barman 7 6 6 6 6 1218 2455
Blocksworld 10 10 10 10 10 15332 16611
ChildSnack 8 8 7 7 7 444 532
Driverlog 9 8 8 7 7 892 1313
FloorTile 8 8 7 7 7 1644 3441
Gripper 12 12 9 9 9 422 1656
Miconic-STRIPS 8 8 7 7 7 332 494
VisitAll 12 12 11 11 11 1692 2118

Table 17.1: The maximum complexity of a generated features and the maximum and
minimum number of features generated across the five training sets for each
domain and data set when using the FF heuristic.

recognized as distinct and are incorrectly pruned. Thus, we select five training tasks
per domain. For each domain, we generate five feature sets. The i-th feature set of
a domain is generated from the first i training tasks of that domain, i.e., there is one
feature set generated using only the first task, there is one feature set generated using
the first two tasks, . . . , there is one feature set generated using all training tasks.

We also observe that the feature generation is memory intensive and requires more
memory the more states are used. Furthermore, even simple planning tasks can have an
enormous number of states. Often, we cannot even execute the feature generation on
a single training task. Thus, we sample states from the training tasks. To generate the
i-th feature set, we sample up to 10,000 progress states and up to 10,000 non-progress
states from each of the first i training tasks.

Table 17.1 shows for each domain and each feature sets, the maximum complexity of
a feature generated when using the hFF heuristic to calculate the high-water mark labels.
We see that the more training tasks we used for generating the features, the lower is
the maximum complexity among the generated features. This is because every newly
generated feature is evaluated on every state. The more states we use the higher is the
computational burden. Missing features of high complexity can be problematic if the
domain requires a certain feature to encode important knowledge. On the other hand,
the fewer states we use the more features are incorrectly pruned. With too few states, an
important feature could be pruned. As a result, there is a trade-off between generating
features with higher complexity and reducing the number of incorrectly pruned features.
We also see that the number of generated features varies significantly across domains.
We generated around 15,000 features in Blocksworld, but only 300–500 in Miconic-
STRIPS. Using the FF heuristic leads to qualitatively similar results (see Table 17.1).
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17.1. Characterize Progress States

Mean Validation F1 First DNF Best DNF

Domain 1. 2. 3. 4. 5. K(F ) Clauses Literals K(F ) Clauses Literals

Barman 79 80 81 79 77 7 316 4059 6 1459 25189
Blocksworld 83 – – – – 10 72 1009 10 72 1009
ChildSnack 70 65 73 81 72 8 28 240 7 116 1243
Driverlog 81 81 89 85 85 9 95 829 8 1087 17270
FloorTile 75 85 85 85 88 8 10 91 7 65 926
Gripper 96 96 96 98 98 11 3 3 9 2 4
Miconic-STRIPS 98 98 97 98 99 8 1 1 7 23 274
VisitAll 70 70 73 73 73 12 2413 42496 11 3744 74060

Table 17.2: On the data sets using the FF heuristic. (Left) For each domain and learned
formula the F1 score on the validation data. (Middle) For the formula
trained on a single state space the maximum complexity of a used feature
as well as the number of clauses and literals in the formula. (Right) For the
best learned formula with respect to the F1 validation score the maximum
complexity of a used feature as well as the number of clauses and literals
in the formula.

Learning Formulas. In the last step, we learn for every feature set i a description
logic formula, which describes the progress states. We train the formula on the states
from the first i training tasks. Some training tasks have significantly more states than
other tasks. Thus, the influence of the other tasks on the learning objective would be
insignificant. This defeats the purpose of including multiple tasks to prevent overfit-
ting. Thus, we weight the samples such that all tasks have the same impact. If a task Π
contributes n states to the training data, then all its states are weighted by 1/n. Further-
more, we also observe that the classes are highly unbalanced, i.e., there are significantly
fewer progress states than non-progress states. We add another weight to each sample.
If a task Π contributes p progress states and m non-progress states, then every progress
state is additionally weighted with 1/p and every non-progress state is weighted with
1/m. The final weight for the progress states is 1/(n ∗ p) and for the non-progress
states is 1/(n ∗m). After extracting DNF formulas from the learned decision trees, we
simplify them with SymPy (Meurer et al., 2017).

To measure the quality of the trained formulas, we evaluate the F1 score of the for-
mulas on all states from the validation tasks of the same domain (see Table 17.2). We
see that training on a single task produces already good formulas. This is important as
it validates that our approach classifies most states correctly. If we use more tasks for
the training data, the resulting formulas improve only moderately. For Blocksworld we
generated enormous feature sets. Using the states from more than a single state space
exhausted the memory. The qualitative results are similar for the h+ heuristic. The
major difference is that the quality of the formulas is general better. In one domain, the

129



17. Experiments

Domain h+ h+
LOpt h+

L∗

Gripper (17) 137.68 57.03 57.03
Miconic-STRIPS (14) 82.17 51.07 53.15

Table 17.3: Median number of expansions across the commonly solved instance for the
Gripper and Miconic-STRIPS domain using GBFS with the perfect delete-
relaxed heuristic without tie-breaking (h+), breaking ties using the hand-
crafted, perfect progress state formulas (h+

LOpt ), and breaking ties using the
best trained formula (h+

L∗).

formulas are even perfect and in another domain the formulas are almost perfect (see
Table C.2).

Secondly, Table 17.2 shows for each domain and the formula trained on a single
state space as well for the best formula (with respect to the F1 score) the maximum
complexity of a feature in the formula, as well as the number of clauses and literals.
All except one formula use at least one feature of the maximum available feature com-
plexity. This indicates that features of higher complexity encode necessary knowledge.
Thus, improving the feature generation is a useful venue for future work. Furthermore,
we observe that the better formulas are significantly larger than the formulas trained
on a single task. As a larger formula also requires more time to evaluate, there is a
trade-off between quality of the formula and runtime.

Evaluating Formulas. We learned that our formulas identify progress states very
well. Now we show that they improve search. We compare standard GBFS with a
heuristic h against GBFS with the same heuristic and break ties in favor of progress
states (according to our formulas).

First, we verify that preferring progress state improves the search. We execute GBFS
with the h+ heuristic and use our perfect handcrafted formulas. We use the expansion
metric to compare the informedness of two searches on the same task. The fewer states
GBFS expands, the better it is informed. Table 17.3 shows the geometric means of
the expansions for Gripper and Miconic-STRIPS over all test tasks. Using the perfect
progress state information significantly reduces the number of expansions in both do-
mains. The table also shows the expansions when using the best learned formulas for
those two domains. The result for Gripper is the same, as we learned the perfect for-
mula. For Miconic-STRIPS the result is almost the same. The learned formula has just
minor mistakes. Indeed, breaking ties in favor of progress states is useful.

Next, we evaluate our formulas on all test tasks of all domains. Figure 17.1 compares
for every task the expansions of GBFS against GBFS with our tie-breaking. A data point
below the diagonal means that our version required fewer expansion on that task than
plain GBFS. We immediately observe that our tie-breaking improves the performance in
many domains. The GBFS with the FF heuristic expands fewer states than our adapted
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17.2. Constructing Generalized Bench Transition Systems
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Figure 17.1: Comparison of expansions for GBFS with (left) the FF heuristic and
(right) the perfect delete-relaxed heuristic without tie-breaking against
GBFS with tie-breaking due to our best trained formula. Every test task
is a data point. Data points below the diagonal indicate tasks in which
GBFS with our tie-breaking expands fewer states.

version in 43 tasks. On the other hand, our adapted version expands fewer states in 215
tasks. GBFS with h+ expands fewer states in 7 tasks. Our version expands fewer states
in 51 tasks. We conclude that our formulas identify sufficiently well progress states and
that using this information as a tie-breaker is useful.

Focusing on the informedness of the searches hides the aspect of time. Although,
we like an informed search, we prefer a search which quickly finds a solution. Ta-
ble 17.4 compares the runtime of the plain GBFSs against their counterparts with our
tie-breaking. For a heuristic which is slow to evaluate like h+, our tie-breaking is ben-
eficial. For a fast heuristic like hFF, our formulas are too slow to evaluate. Evaluating
the formulas costs more time than the reduced number of expansions saves. In the end,
there are two steps for the future: Making the formulas more compact and speeding
up the evaluation. The latter can be achieved by encoding our formulas as additional
knowledge in the form of axioms using our conversion from description logic concept
or role to PDDL like Steinmetz et al. (2022b).

17.2. Constructing Generalized Bench Transition
Systems

We now present preliminary results about constructing generalized bench transition
systems (GBTS). As heuristic we use h+ and as domain we use GripperOne. To sup-
port more domains, we currently improve the expressivity of our feature language. The
bench walker guides the search in GripperOne well. Further domains have to be sup-
ported for an evaluation.
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Inner: ball at A ∧ ¬ball at robby
Goal: ball at robby

A 3
Inner: ¬ball at A ∧ ¬ball at B ∧ robby at A
Goal: robby at B

B 1

Inner: robby at A ∧ ball at A
Goal: ¬ball at robby

C 2
Inner: robby at B ∧ ¬ball at A ∧ ¬ball at B
Goal: ball at A ∨ ball at B

D 0

(a) 1 ball

Inner: ball at A ∧ robby at B
Goal: robby at A

A 3,5
Inner: robby at A ∧ (carry ∨ ¬ball at B)
Goal: robby at B

B 1,4

Inner: ¬carry ∧ robby at A∧
ball at A ∧ ball at B

Goal: carry

C 2

Inner: carry ∧ robby at B ∧ ¬ball at A
Goal: ¬carry

D 0

(b) 2 balls

Inner: ball at A ∧ robby at B
Goal: robby at A

A 3,5,7
Inner: robby at A ∧ (carry ∨ ball at A)
Goal: robby at B

B 1,4,6

Inner: ¬carry ∧ robby at A∧
ball at A ∧ ball at B

Goal: carry

C 2
Inner: carry ∧ robby at B ∧ ¬ball at A
Goal: ¬carry

D 0

(c) 3 balls

Figure 17.2: Automatically constructed generalized bench transition systems for Grip-
perOne tasks with 1, 2, and 3 balls. Benches with the same label (top left)
share the same meaning. The numbers on the top right indicate the levels
of the benches merged into this generalized bench. Following the numbers
from maximal to minimal value represents the flow between the general-
ized benches during search. Inner is the inner states formula ϕinner. Goal
is the inner goal formula ϕinner goal.
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17.2. Constructing Generalized Bench Transition Systems

Domain hFF hFF
L∗ h+ h+

L∗

Barman 3.4 19.1 161 154
Blocksworld 0.3 0.5 – –
ChildSnack 3.5 6.8 88 87
Driverlog 0.1 3.2 244 252
FloorTile 0.4 0.9 11 11
Gripper 1.1 0.6 301 266
Miconic-STRIPS 0.2 1.5 103 95
VisitAll 0.0 10.7 305 303

Table 17.4: Geometric mean of the runtimes over the commonly solved test tasks of
GBFS with the FF heuristic (resp. perfect delete-relaxed heuristic) without
tie-breaking and with tie-breaking due to our best trained formula.

Generalized Bench Transition Systems. We generate three tasks Π1,Π2, and Π3.
Πi has i balls. For Πi, we use our approach to construct a GBTS Gi. We limit the
generated features to a complexity of at most 10. Figure 17.2 shows those GBTS. For
simplicity, the figure shows the formula to identify the inner states instead of the more
complicated formula, which identifies all member states.

Our first observation is that G2 and G3 are isomorphic. G1 is similar, but misses two
edges. As Π1 has only a single ball, there is no need for the robot to return to room
A and to pick up a second ball. Without this repetition, the missing edges cannot be
learned. Thus, G1 does not generalize for GripperOne. We conclude that the task from
which we construct the GBTS has to exhibit all relevant features of the domain.

Our second observation is that all three GBTS have four benches and all benches
represent a similar idea. Bench A represents that the robot is in room B and still needs
to pick up balls in room A. Thus, its goal is to move to room A. Bench B represents that
the robot is in room A and still needs to deliver balls to room B. If it already carries
a ball, it moves to B. If not it would pick up a ball and then move to B. Bench C can
be understood as a specialization of bench B. The robot is in room A and has to pick
up the last ball. Bench D represents the final step of any plan. The robot carries the
last ball and is in room B. Now it only needs to drop it. Nevertheless, we also see that
G1 is expressing some concepts differently than G2 and G3. This is because it contains
only a single ball. If there is only a single ball, then the idea that the robot carries a ball
can also be phrased as there is no ball on the floor of room A and no ball on the floor
of room B. This idea does not generalize to tasks with multiple balls. Similarly, G2

expresses some things differently than G3. In the bench B, it requires the robot to carry
a ball or that there is no ball on the floor of room B. As this task has only two balls and
the robot can carry at most one ball, having no ball on the floor of room B is the same
as having at least one ball in room A. But this does not generalize to tasks with more
than 2 balls.
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The most important part of the G2 and G3 is the loop between the benches A and B.
In every iteration of this loop the robot moves one ball from room A to room B. How
is this happening, if the goal of the benches is to move just the robot? Keep in mind
that the benches are constructed for h+ using the original goal of Πi. For the bench A,
assume that the robot is in room B and there are still balls in room A. If the robot carries
a ball, then dropping the ball reduces the value of h+. On the other hand, moving to
room A while carrying the ball does not reduce the value of h+. Thus, GBFS will first
drop any carried ball. Afterwards, it will move the robot to room A. For the bench B,
a similar reasoning applies. If the robot is in room A and carries a ball, then the robot
should move to room B. This is fine. If it does not yet carry a ball, then picking a ball
up decreases the value of h+. Moving to another room decreases the heuristic value
only if we carry the last ball.
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18. Summary and Future Work
Many features of the state space topology are known only a posteriori. We presented
first approaches to learn generalizing knowledge over properties of the state space topol-
ogy. We can classify whether a state is a progress state during search! The formulas
we learn for h+ have a high quality. The formulas for hFF are still good. Our formulas
encode useful knowledge, which decreases the number of expansions during search.
Furthermore, we presented our ongoing work where we learn the generalized bench
transition system for a whole domain from the bench transition system of a single task.
We show how the generalization works and how the generalized bench transition system
can improve search. Furthermore, we show that our method can successfully construct
generalized bench transition systems. But, there is still much to research.

Our progress state formulas are too slow to evaluate. Thus, they are not yet useful in
practice. Inspecting more closely the trade-off between quality of the formula and size
of the formula could be useful. This knowledge can also be applied to other formulas,
which we learn or want to learn. Instead of identifying progress states during search,
we could identify crater states. A crater is a set of non-goal states with incorrectly
low heuristic values. Once GBFS enters a crater, it has to expand all states within the
crater before it exits the crater. If we could prevent GBFS from entering craters, this
improves the search performance drastically. Pruning states during search is risky, as
an imperfect formula renders the search incomplete.

Bottleneck states are another class of interesting states. A state s is a bottleneck state
if it is necessary in all plans. Thus, it is a state landmark. We could learn formulas
to identify bottleneck states. Then we could use these formulas (or their conversion to
PDDL) to construct additional states or action landmarks or subgoals. If our formulas
are imperfect, then, we might generate some incorrect landmarks, but this does not
render the search incomplete and as long as most landmarks are correct it could improve
the search. Furthermore, adding landmarks could help to identify craters and thus,
GBFS might avoid them.

The main difficulty of this research is that our feature language has to be expressive
enough and that we can generate the necessary features within reasonable computa-
tional limits. Currently, our description logic formulas can reason about a current state
and about the true goal of the given task. In many domains, we observe that this is
insufficient for the inner and outer goal formulas. The goal formulas describe progress.
For this purpose, they have to additionally consider the initial state of the subsearch.
To reason about the original goal, we include the predicates of the goal in the genera-
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18. Summary and Future Work

tion of the description logic features. For all goal predicates, we suffix their predicate
symbols with an annotation for the goal (Section 5.2). We can use the same mechanism
to include knowledge about the initial state of subsearch. Every inner state can be the
start of a subsearch. Thus, we have to construct an individual set of description logic
features per bench. This is more expensive, but feasible on small tasks of a domain.

For the example of the GripperOne domain, we showed that we require a task with
at least 3 balls to learn the GBTS for the perfect delete-relaxed heuristic. Another open
question is how to pick the right task for constructing the generalized bench transition
system? If this is too difficult, we can sample benches from multiple tasks, combine
them, and to hope that they cover everything important.

We observed that the generalized bench transition system of the perfect heuristic
requires exactly one action to transform an inner state of a generalized bench to an
exit state. If we can construct a general description of the action used in every bench,
then the GBTS of the perfect heuristic could be used as policy. This could have great
potential.

136



Part IV.

Conclusion
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19. Conclusion

We used machine learning to improve the state of the art in planning in three directions.
In Part I, we asked ourselves: Can we learn powerful and competitive heuristics for

reset problems? We presented one approach based on progression random walks and
a teacher planner and three approaches based on regression random walks, which use
the current state of the neural network itself as the teacher. All our heuristics, as well
as STRIPS-HGN, exhibit highly complementary qualities on the test domains. It is a
priori unclear, which method to use for a given domain. LAMA is still the dominant
planner. For the second time ever, learning-based planners solve more tasks in a domain
than LAMA. These are our three regression random walk planners on Storage.

Not only the learning-based heuristics, but also model-based planning algorithms
have complementary strengths. Again, it is not always obvious when to execute which
planner. Portfolios learn to combine the strengths of multiple planning techniques.
In Part II, we construct new online portfolios based on CNNs which receive the task
to solve with few modifications and GNNs which receive the task to solve directly
as input. Our online portfolios are not biased by human picked input features. Both
approaches exceed the state of the art. Enabling the online portfolios to reconsider
further boosts their coverages. Finally, we showed that explainable online portfolios
are possible and comparable to the previous state of the art and how we can build trust
in their predictions.

Even if we select the best planner for a task, it might not be good enough to solve
the task within a reasonable time. Thus, we have to improve them. Can we inspect
the behavior of a planner on a simple task, identify mistakes, and learn to avoid them?
In the final Part III, we identified progress states for a heuristic search and learned
formulas, which describe them. This knowledge reduces the required expansions during
search. In our ongoing work, we generalized the whole bench transition system of a
single task to all tasks of the same domain. This can be used to solve a hard task by
solving a sequence of simpler tasks.

Our journey started during the hype around neural networks for planning. In each
project, we asked ourselves, do we need the power of neural networks? Can we pay
the explanatory price? The further we progressed, the fewer neural networks we used.
For learning progress states, we initially used neural networks, but switched to decision
trees, because they provided better opportunities for understanding and debugging the
learned models. In the end, the formulas we can extract from decision trees enabled
us to generalize the bench transition system of a task. This would be impossible with
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neural networks. Neural networks are mighty tools that should be wielded wisely.
There is still a lot of open research for improving classical planning with machine

learning. In each of our direction, we either have an ongoing project or planned one.
Numerous further directions exist.

Today, most search algorithms work on a grounded representation of the PDDL task,
but this grounding can cause an exponential blow up in the size of the task represen-
tation. As our algorithms become better and better, we solve harder and harder tasks.
Today, we observe for numerous hard tasks that we are unable to ground them. This
renders our highly engineered algorithms useless. Solving this issue is a key challenge.
A first solution to this problem improves grounding with machine learning. Gnad et al.
(2019) present an initial approach, which learns on small tasks to identify important
ground actions. On hard tasks, it generates only important ground actions. A second
solution is lifted search (Corrêa et al., 2020), i.e., the search algorithm grounds nei-
ther the action schemas nor the goal. As many traditional techniques depend on the
grounded actions, they do not work anymore. Much research is done on adapting them
to lifted search (Corrêa et al., 2021, 2022; Corrêa and Seipp, 2022; Wichlacz, Höller,
and Hoffmann, 2022). When we train machine learning techniques for planning, we
should consider supporting lifted search. Our neural network heuristics presented in
Part I require solely the state as input, thus, we can use them in grounded and lifted
search. An alternative to grounded search, which requires a grounded action model,
are policies, i.e., functions which predict for a state the next action. Much research
for learning policies started (Toyer et al., 2018; Drexler, Seipp, and Geffner, 2022;
Ståhlberg, Bonet, and Geffner, 2022). As grounded search is still the dominant tech-
nique for solving planning problems, we still need to come up with better policies. A
final solution splits the hard tasks into a sequence of simpler tasks, as we suggest in our
ongoing work of Part III.

A second key challenge is modeling planning tasks. Today, most tasks are modeled
by planning experts. To make planning widely applicable, we have to enable non-
experts to model their problems by themselves. Asai and Fukunaga (2018) presented
a neural network, which learns a planning task from observation. This network does
not output the planning task. Thus, we cannot verify the learned model. In succeeding
work, they construct a PDDL task from observations (Asai and Muise, 2020). This
PDDL task is hard to understand, but an important step to enable the layman to con-
struct and verify their planning task. Over time, the goal of a task can change. To
facilitate formalizing goals, Sharma et al. (2022) learn to formalize goals from natural
language using observations. These are first steps for automatically constructing tasks.

We recapitulate that there are key challenges in planning, and for each key challenge,
researchers came up with machine learning based solutions. But, all solutions are still
in its infancy. The future will be exciting.
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Appendix A.

Heuristics

A.1. Relation of Canonical Abstractions and
Description Logic

Karia and Srivastava (2021) used canonical abstractions (Sagiv, Reps, and Wilhelm,
1999) to formalize features for a domain which can be evaluated on any task of that
domain. They use these features to train a neural network as heuristic and as policy. We
show that we can express their fragment of canonical abstractions in description logic.

Let Π be a PDDL task with objects O, predicate symbols P , and states S. Let Pk be
the set of all predicate symbols of Π with arity k. Remember from the description logic
background that Cp,i with p ∈ P and 0 < i <= arity(p) is an atomic description logic
concept, Rp,i,j with p ∈ P and 0 < i, j <= arity(p) is an atomic description logic role,
⊤C = O is the top concept, and ⊤R = O ×O is the top role.

A canonical abstraction roleR is a set of unary predicate symbols, i.e.,R ⊆ P1. The
denotation of a canonical abstraction roleR on a state s ∈ S is the set of objects which
fulfill this role, i.e., Rs = {o | o ∈ O,∀p ∈ R : p(o) ∈ s,∀p ∈ P1 \ R : p(o) /∈ s}.
And in the other direction, the canonical abstraction role of an object o ∈ O in state
s ∈ S is the set of its unary predicate symbols, i.e., role(o, s) = {p | p ∈ P1, p(o) ∈ s}.

Let p ∈ Pk be a k-ary predicate symbol. Let Rp,i with i ∈ {1 . . . k} be the set of
all canonical abstraction roles which occur in any state at the i-th argument of p, i.e.,
Rp,i = {role(oi, s) | o1, . . . , ok ∈ O, s ∈ S, p(o1, . . . , ok) ∈ s}. The predicate symbol
p implies the set of abstract predicates {p̄(r1, . . . , rk) | r1, . . . , rk ∈ Rp,1× . . .×Rp,k}.
The evaluation of an abstract predicate p̄(r1, . . . , rk) in a state s ∈ S is defined as

p̄(r1, . . . , rk)(s) =


1 if ∀o1, . . . , ok ∈ r1(s)× . . . rk(s) : p(o1, . . . , ok) ∈ s

0 if ∀o1, . . . , ok ∈ r1(s)× . . . rk(s) : p(o1, . . . , ok) /∈ s

0.5 otherwise.

In colloquial terms, an abstract predicate describes a set of facts and if all these facts
are in a state, it evaluates to one. If none of these facts is in a state, it evaluates to zero.
And otherwise it evaluates to a half.
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In theory canonical abstraction work with predicate symbols of any arity, but Karia
and Srivastava (2021) limit themselves to unary and binary predicate symbols. They
compile higher arity predicate symbols to multiple binary predicate symbols. Thus, we
restrict ourselves to unary and binary predicates. LetR ⊆ P1 be a canonical abstraction
role. We can model theR as description logic concept such that the denotations are the
same:

R =
l

p∈R

Cpi,1 ⊓
l

p∈P1R

¬Cpi,1

Let p ∈ P1 be a unary predicate symbol and r ⊆ P1 be a role. Let p̄(r) be an abstract
predicate. The denotation of the concept Cin = Cp,1 ⊓ r describes all objects o for
which p(o) ∈ s holds and which fit the role r. The denotation of the concept Cout =
(⊤C \ Cp,1) ⊓ r describes all objects o for which p(o) /∈ s holds and which fit the role
r. We can now evaluate p̄(r) using only description logic:

p̄(r)(s) =


1 if |Cs

in| > 0 ∧ |Cs
out| = 0

0 if |Cs
in| = 0 ∧ |Cs

out| > 0

0.5 if |Cs
in| > 0 ∧ |Cs

out| > 0

Let p ∈ P2 be a binary predicate symbol and r1, r2 ⊆ P1 be two roles. Let p̄(r1, r2)
be an abstract predicate. The denotation of the role Rin = ((Rp,1,2|r2)

−1)|r1 describes
all tuples of objects o1, o2 for which p(o1, o2) ∈ s holds and which fit the roles r1, r2.
The denotation of the role Rout = ((⊤R \ Rp,1,2)|r2)

−1)|r1 describes tuples of objects
o1, o2 for which p(o1, o2) /∈ s holds and which fit the roles r1, r2. We can now evaluate
p̄(r1, r2) using only description logic:

p̄(r)(s) =


1 if |Rs

in| > 0 ∧ |Rs
out| = 0

0 if |Rs
in| = 0 ∧ |Rs

out| > 0

0.5 if |Rs
in| > 0 ∧ |Rs

out| > 0
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Appendix B.

Portfolios

B.1. Statistics About the ASG and PDG for Planning

0 50000

(a) IPC-GROUNDED

0 100000 200000

(b) IPC-LIFTED

200 400

(c) COLLAB

0 2500 5000

(d) DD

0 50 100

(e) ENZYMES

10 20

(f) MUTAG

0 50 100

(g) NCI1

0 250 500

(h) PROTEINS

0 2000

(i) REDDIT-BINARY

0 2000

(j) REDDIT-MULTI-12K

Figure B.1: Comparison of graph sizes between our grounded and lifted graphs and
other graph data sets (Kersting et al., 2016). The gray line is the median.
The box extends from the 25 to the 75 percentile. The whiskers extend to
the 5 and the 95 percentile.
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Appendix B. Portfolios

10 20
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15 20
(b) IPC-LIFTED

1.0 1.5 2.0
(c) COLLAB

25 50 75
(d) DD

0 20
(e) ENZYMES

5 10 15
(f) MUTAG

0 20 40
(g) NCI1

0 25 50
(h) PROTEINS

5 10 15
(i) REDDIT-BINARY

0 10 20
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Figure B.2: Comparison of graph diameter between our grounded and lifted graphs
and other graph data sets (Kersting et al., 2016). The gray line is the me-
dian graph sizes. The box extends from the 25 to the 75 percentile. The
whiskers extend to the 5 and the 95 percentile.
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B.2. Results of Hyper-Parameter Optimization for Image-Based Portfolios

B.2. Results of Hyper-Parameter Optimization for
Image-Based Portfolios

time normalized

domain-preserving split random split domain-preserving split random split
CD CA CC CD CA CC CD CA CC CD CA CC

β1 0.975 0.99 0.98 0.96 0.96 0.89 0.89 0.6 0.67 0.99 0.77 0.91
β2 0.99 0.99 0.99 0.99 0.99 0.999 0.999 0.99 0.995 0.99 0.99 0.99
ϵ 9.7e-9 9.9e-9 9.9e-9 4.6e-9 4.6e-9 5.1e-9 7.8e-9 5.85e-9 9.8e-9 9.99e-9 7.7e-9 9.9e-9
learning rate 7e-4 5e-4 6e-4 0.0049 0.0049 0.0041 0.0043 0.0049 0.0036 0.0015 5e-4 5e-4
batch size 124 113 53 70 70 84 85 95 89 63 58 65
conv. filter size 2 2 2 3 3 3 3 6 5 3 5 2
dropout rate 0.49 0.16 0.49 0.34 0.34 0.47 0.48 0.49 0.38 0.16 0.16 0.48
poolfilter size 1 2 1 2 2 4 3 1 2 2 5 2

discrete binary

domain-preserving split random split domain-preserving split random split
CD CA CC CD CA CC CD CA CC CD CA CC

β1 0.99 0.93 0.99 0.99 0.98 0.98
β2 0.99 0.998 0.9995 0.99 0.99 0.9998
ϵ 9.98e-9 4.5e-10 9.85e-9 9.85e-9 9.9e-9 2.5e-10
decay 0.089 0.089 0.055 4.3e-5 3.2e-5 1.5e-4
momentum 0.73 0.73 0.25 0.95 0.94 0.95
nesterov 1 1 1 1 1 1
learning rate 5e-4 8e-4 5e-4 6e-4 5e-4 5e-4 0.085 0.085 0.07 0.0058 0.0065 0.005
batch size 94 119 114 123 77 101 85 85 89 101 53 56
conv. filter size 6 5 2 2 6 6 3 3 5 6 2 2
dropout rate 0.10 0.43 0.11 0.50 0.49 0.50 0.48 0.48 0.39 0.49 0.49 0.5
poolfilter size 1 4 1 1 4 4 3 3 2 1 1 4

Table B.1: Final set of hyperparameters for the lifted CNN based online portfolios.
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Appendix C.

Topology

Max. Complexity # Features
Domain 1 2 3 4 5 Min Max

Barman 8 7 7 7 7 2726 5896
Blocksworld 10 10 9 9 9 10648 26081
ChildSnack 11 12 10 9 8 621 2611
Driverlog 9 8 8 8 8 1204 1973
FloorTile 8 8 7 7 7 1644 3907
Gripper 14 12 12 9 9 441 5950
Miconic-STRIPS 9 7 7 7 7 218 825
VisitAll 12 12 11 11 10 658 2132

Table C.1: For each domain and data set when using the perfect delete-relaxed heuris-
tic, the maximum complexity of a generated features and the maximum and
minimum number of features generated across the five training sets.

Mean Val. F1 First DNF Best DNF
Domain 1 2 3 4 5 K(F ) Clauses Literals K(F ) Clauses Literals

Barman 93 100 100 100 100 8 9 51 7 46 361
ChildSnack 54 55 73 72 71 12 4 8 10 8 34
Driverlog 95 95 90 94 95 9 27 225 9 27 225
FloorTile 84 85 88 88 90 8 5 39 7 49 659
Gripper 100 100 100 100 100 14 2 2 14 2 2
Miconic-STRIPS 99 95 99 99 99 8 1 1 8 1 1
VisitAll 85 84 79 81 81 12 777 12056 12 777 12056

Table C.2: On the perfect delete-relaxed heuristic progress state data. (Left) For each
domain and formula the F1 score on the validation data. (Middle) For the
formula trained on a single state space and (Right) for the best learned for-
mula with respect to the F1 validation score the maximum complexity of a
used feature as well as the number of clauses and literals in the formula.
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