Simplified Planner Selection

Patrick Ferber1,2

1University of Basel, Switzerland
2Saarland University, Germany

Workshop on Heuristics and Search for Domain-independent Planning

October 21, 2020
Motivation
Motivation
Motivation
Motivation
Motivation

SymBA*
Motivation

SymBA*
Complementary
Motivation

SymBA*

Complementary

Symple-1
Motivation

SymBA*

Complementary1

Symple-1

...
Portfolios

Given:

\[P = \{\text{SymBA*}, \text{Complementary1}, \text{Symple-1}\} \]
\[T = 1800s \]

Schedule:

<table>
<thead>
<tr>
<th>SymBA*</th>
<th>Complementary1</th>
<th>Symple-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

Mapping:

\[f : Task \mapsto P \]
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

- Problem Description Graph (Pochter, Zohar, and Rosenschein, 2011)
- Abstract Structure Graph (Sievers et al., 2019)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

128x128 pixels

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)

- Convolutional Neural Network (CNN)

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Samuel Dion-Girardeau (brain)
Delfi (Katz et al., 2018)
Contribution

- **Simpler techniques** and **simple features** have a **similar performance**.
- Our approach is **robust** to data changes.
- We identify **important features**.
- We investigate which planners are selected.
Graph Encodings

Problem Description Graph

```
\begin{align*}
\text{op}_1 & \quad \text{eff}_{1,1} \\
\text{val}_{1,1} & \quad \text{val}_{1,2} \\
\text{var}_1 & \quad \text{var}_2 \\
\text{s}_0 & \quad \text{s}_{\ast}
\end{align*}
```

Abstract Structure Graph

```
\begin{align*}
\Pi \\
L_1 & \quad L_2 \\
O & \quad A \\
\ldots & \quad \ldots
\end{align*}
```
Machine Learning Techniques

Linear Regression

\[X \times W = 0 \]

Multi-Layer Perceptron

Decision Tree
Training

- data set of Ferber et al. (2019)
 - tasks, graphs, runtimes
- extract properties
- labels: time, logtime, coverage
- 10 repetitions

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Becris (Linear Regression), Knut Synstad (Decision Tree), Samuel Dion-Girardeau (brain)
Training

- data set of Ferber et al. (2019)
 - tasks, graphs, runtimes
- extract properties
- labels: time, logtime, coverage
- 10 repetitions

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Becris (Linear Regression), Knut Synstad (Decision Tree), Samuel Dion-Girardeau (brain)
Training

- data set of Ferber et al. (2019)
 - tasks, graphs, runtimes
- extract properties
- labels: time, logtime, coverage
- 10 repetitions

Images from the Noun Project: RomStu (file), Agni (network), Alfa Design (image), Becris (Linear Regression), Knut Synstad (Decision Tree), Samuel Dion-Girardeau (brain)
Features

Graph:
- #nodes
- #edges
- density
- #connected components
- $\max_{c \in \text{ConnComp}} |c|$

Node:
- eccentricity
- degree
- in-degree
- out-degree

Feature augmentations: log-scale, normalize
Delfi Setting

<table>
<thead>
<tr>
<th></th>
<th>Grounded</th>
<th></th>
<th>Lifted</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LR</td>
<td>RF</td>
<td>MLP</td>
<td>Delfi</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Coverage</td>
<td>57.0</td>
<td>86.2</td>
<td>82.1</td>
<td>84.8</td>
</tr>
<tr>
<td>Log</td>
<td>62.8</td>
<td>67.6</td>
<td>89.0</td>
<td>80.7</td>
</tr>
<tr>
<td>Time</td>
<td>56.4</td>
<td>55.2</td>
<td>55.2</td>
<td>52.4</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Coverage</td>
<td>65.5</td>
<td>66.2</td>
<td>70.3</td>
<td>64.8</td>
</tr>
<tr>
<td>Log</td>
<td>58.6</td>
<td>69.7</td>
<td>69.7</td>
<td>69.7</td>
</tr>
<tr>
<td>Time</td>
<td>65.5</td>
<td>74.5</td>
<td>71.0</td>
<td>69.7</td>
</tr>
<tr>
<td></td>
<td>CNN</td>
<td>GNN</td>
<td>CNN</td>
<td>GNN</td>
</tr>
<tr>
<td>Coverage</td>
<td>73.1</td>
<td>80.7</td>
<td>86.9</td>
<td>87.6</td>
</tr>
<tr>
<td>Log</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Time</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Delfi Setting

<table>
<thead>
<tr>
<th></th>
<th>LR</th>
<th>LR+L1</th>
<th>RF</th>
<th>MLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>57.0</td>
<td>85.4</td>
<td>69.9</td>
<td>77.0</td>
</tr>
<tr>
<td>Log</td>
<td>62.8</td>
<td>79.7</td>
<td>66.6</td>
<td>64.5</td>
</tr>
<tr>
<td>Time</td>
<td>56.4</td>
<td>54.5</td>
<td>72.1</td>
<td>67.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CNN</th>
<th>GNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delfi</td>
<td>73.1</td>
<td>80.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LR</th>
<th>LR+L1</th>
<th>RF</th>
<th>MLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>65.5</td>
<td>65.7</td>
<td>70.9</td>
<td>61.4</td>
</tr>
<tr>
<td>Log</td>
<td>58.6</td>
<td>69.9</td>
<td>73.7</td>
<td>65.0</td>
</tr>
<tr>
<td>Time</td>
<td>65.5</td>
<td>71.4</td>
<td>79.6</td>
<td>69.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CNN</th>
<th>GNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delfi</td>
<td>86.9</td>
<td>87.6</td>
</tr>
</tbody>
</table>
General Setting

<table>
<thead>
<tr>
<th></th>
<th>LR</th>
<th>LR+L1</th>
<th>RF</th>
<th>MLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grounded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary</td>
<td>85.6</td>
<td>76.6</td>
<td>83.4</td>
<td>78.3</td>
</tr>
<tr>
<td>Log</td>
<td>86.7</td>
<td>81.1</td>
<td>83.4</td>
<td>84.3</td>
</tr>
<tr>
<td>Time</td>
<td>86.3</td>
<td>84.3</td>
<td>79.2</td>
<td>84.1</td>
</tr>
<tr>
<td>Lifted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary</td>
<td>81.5</td>
<td>74.8</td>
<td>77.6</td>
<td>72.5</td>
</tr>
<tr>
<td>Log</td>
<td>81.0</td>
<td>80.3</td>
<td>75.9</td>
<td>82.2</td>
</tr>
<tr>
<td>Time</td>
<td>82.4</td>
<td>75.5</td>
<td>78.9</td>
<td>80.2</td>
</tr>
</tbody>
</table>
Feature Importance

Coverage Change in %

- max. (out) degree
- #edges
- max. in-degree
- #nodes/|ConnComp|
- mean (in/out) degree

- mean (in/out) degree
- max. (in/out) degree
- median degree
- density
- #nodes/#edges

Grounded:
- Decrease
- Increase

Lifted:
- Decrease
- Increase
Planner Usage

Usage
- 39%
- 25%
- 21%
- 10%

Coverage
- SymBA*
- h2+DKS+LM-cut
- h2+OSS+iPDB
- h2+OSS+01-PDB

Percentage markers:
- 0%
- 50%
- 100%
Planner Usage

Usage
- **SymBA**: 39%
- **h2+DKS+LM-cut**: 25%
- **h2+OSS+iPDB**: 21%
- **h2+OSS+01-PDB**: 10%

Coverage
- SymBA*: 0%
- h2+DKS+LM-cut: 50%
- h2+OSS+iPDB: 100%
- h2+OSS+01-PDB: 100%
Planner Usage

Usage
39%
25%
21%
10%

Coverage

SymBA*

h2+DKS+LM-cut

h2+OSS+iPDB

h2+OSS+01-PDB

0% 50% 100%
Planner Choices

Delfi

grounded
Conclusion

Simple planner selection ...

- matches the state of the art!
- is robust!
- recognizes the strengths of individual planners!

In the future, we will ...

- use PDDL features.
- investigate why a planner is chosen.

