
Hapori MIPlan
Patrick Ferber1, Michael Katz2, Jendrik Seipp3, Silvan Sievers1, Daniel Borrajo4, Isabel Cenamor,

Tomas de la Rosa, Fernando Fernandez-Rebollo4, Carlos Linares López4, Sergio Nuñez,
Alberto Pozanco, Horst Samulowitz2, Shirin Sohrabi2

1 University of Basel, Switzerland
2 IBM T.J. Watson Research Center, Yorktown Heights, USA

3 Linköping University, Sweden
4 Universidad Carlos III de Madrid, Spain

patrick.ferber@unibas.ch, michael.katz1@ibm.com, jendrik.seipp@liu.se, silvan.sievers@unibas.ch, dborrajo@ia.uc3m.es,
icenamorg@gmail.com, tomdelarosa@gmail.com, ffernand@inf.uc3m.es, clinares@inf.uc3m.es, sergio.nunez@repsol.com,

alberto.pozanco@gmail.com, samulowitz@us.ibm.com, shirin.sohrabi@gmail.com

Abstract

Hapori MIPlan1 is a portfolio planner which participated in
the optimal, satisficing, and agile tracks of the International
Planning Competition (IPC) 2023. It uses the Mixed-Integer
Programming approach by (Núñez, Borrajo, and Linares
López 2015) to compute a sequential static portfolio that
achieves the best achievable performance with a linear com-
bination of planners.

Definitions
Before we describe the greedy portfolio computation algo-
rithm, we give some definitions concerning planning tasks,
sequential portfolios and quality metrics.

Informally speaking, a classical planning task consists of
an initial state, a goal description and a set of operators. In
the setting of satisficing planning, solving a planning task
entails finding any operator sequence that leads from the
initial state to a goal state, with a preference for cheap so-
lutions. On the other hand, in the setting of agile planning,
the task is to find solutions as fast as possible, regardless of
the solution cost. The third setting we consider in this plan-
ner abstract is bounded-cost planning, where plans must not
be more expensive than a given bound.

We define c(A, I, t) as the cost of the solution a planning
algorithm A finds for planning task I within time t, or as
∞ if it does not find a solution in that time. Furthermore,
we let c⋆(I) denote the minimum known solution cost for
task I (approximated by a set of Fast Downward configura-
tions). Following IPC evaluation criteria, we define the solu-
tion quality qsol(A, I, t) = c⋆(I)

c(A,I,t) as the minimum known
solution cost divided by the solution cost achieved by A in
time t.

A sequential planning portfolio P is a sequence of pairs
⟨A, t⟩ where A is a planning algorithm and t ∈ N>0 is the
time limit in seconds for A. We denote the portfolio resulting
from appending a component ⟨A, t⟩ to a portfolio P by P ⊕
⟨A, t⟩.

We now define two quality scores q(P, I) that evaluate the
performance of a portfolio P on task I . In the satisficing and

1Hapori is the Maori word for community.

bounded-cost settings we use the solution quality qsol(P, I).
It is the maximum solution quality any of the components in
P achieves for I , i.e.,

qsol(P, I) = max
⟨A,t⟩∈P

qsol(A, I, t).

Following IPC 2018 evaluation criteria, for the agile plan-
ning setting we define agile quality as

qagile(P, I) =


0 if t(P, I) > T

1 if t(P, I) ≤ 1

1− log10 t(P,I)
log10(T ) otherwise

,

where t(P, I) is the time that portfolio P needs to solve task
I and T is the total portfolio runtime.

A portfolio’s score on multiple tasks A is defined as the
sum of the individual scores, i.e., q(P, I) =

∑
I∈I q(P, I),

and the score of the empty portfolio is always 0.

Components and Training Data
As the pool of planners for our portfolios to choose from,
we use all planners from the IPC 2018 and a selection of
planners from IPC 2014. If an IPC 2018 planner is itself a
portfolio, we use its component planners instead. We only
consider each planner once. (Some IPC 2018 portfolios in-
clude planners that were also submitted separately and sev-
eral portfolios included the same planners.)

Optimal Planners. For the optimal track, we exclude the
planners MAPlan-1, MAPlan-2 and Meta-Search Planner
because they use CPLEX, and Complementary1 because it
may generate suboptimal solutions. Furthermore, the FDMS
planners and Metis1 are covered by the Delfi portfolio al-
ready. This results in the following list of planners (or their
components):

• Complementary2 (Franco, Lelis, and Barley 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Delfi (Delfi1 and Delfi2 have the same

components; Katz et al., 2018b)



• Metis2 (Sievers and Katz 2018)
• Planning-PDBs (Moraru et al. 2018)
• Scorpion (Seipp 2018b)
• SymBA∗1 (IPC 2014; Torralba et al., 2014)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

Satisficing Planners. All planners participating in the IPC
2018 satisficing track also participated in the agile track (ex-
cept for Fast Downward Stone Soup 2018), with an identical
code base but possibly with different configurations. We thus
only have one set of planners but multiple configurations
for these two tracks. We exclude the Alien planner because
we could not get it to run, and Freelunch-Doubly-Relaxed,
FS-blind and FS-sim because they have a large number of
dependencies which results in planner images too large to
be included in our planner pool. Furthermore, IBaCoP-2018
and IBaCoP2-2018 use a large number of planners or port-
folios of which newer and stronger versions participated in
IPC 2018 as standalone planners, or which we failed to get to
run, so we only cover the component planners Jasper, Mada-
gascar, Mercury, and Probe. This results in the following list
of planners (or their components):

• Cerberus and Cerberus-gl (Katz 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Fast Downward Remix (Seipp 2018a)
• components of Fast Downward Stone Soup 2018 (Seipp

and Röger 2018)
• Jasper (IPC 2014; Xie, Müller, and Holte, 2014)
• Dual-BFWS, BFWS-preference, BFWS-polynomial and

DFS+ (Francès et al. 2018)
• Madagascar (IPC 2014; Rintanen, 2014)
• Mercury2014 (Katz and Hoffmann 2014)
• MERWIN (Katz et al. 2018a)
• OLCFF (Fickert and Hoffmann 2018)
• Probe (IPC 2014; Lipovetzky et al., 2014)
• Grey Planning configuration of Saarplan (Fickert et al.,

2018; rest covered by DecStar)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

Benchmarks and Runtimes. For training the portfolios,
we use all tasks and domains from previous IPCs, from
the Delfi training set (Katz et al. 2018b), and from the Au-
toscale 21.11 collection Torralba, Seipp, and Sievers (2021),
leading to a set of 92 domains with 7330 tasks. We use
Downward Lab (Seipp et al. 2017) to run all planners across
all benchmarks on AMD EPYC 7742 2.25GHz processors,
imposing a memory limit of 8 GiB and a time limit of
30 minutes for optimal planners and 5 minutes for satisfic-
ing and agile planners. For each run, we store its outcome
(plan found, out of memory, out of time, task not supported
by planner, unexpected error), the execution time, the maxi-
mum resident memory, and if the run found a plan, the plan

length and plan cost. This data set is available online.2 As
training data for our optimal (respectively satisficing/agile)
portfolios, we select from each domain the 30 tasks which
are solved by the fewest optimal (or satisficing/agile) plan-
ners, which results in 1926 (optimal) and 2377 (satisfic-
ing/agile) tasks.

MIPLAN

MIPLAN portfolios have been generated using Mixed-
Integer Programming (MIP), which computes the portfolio
with the best achievable performance with respect to a selec-
tion of training planning tasks (Núñez, Borrajo, and Linares
López 2015). The resulting portfolio is a linear combination
of candidate planners defined as a sorted set of pairs <plan-
ner, time>. Our MIP model considers an objective function
that maximizes a weighted sum of different parameters in-
cluding overall running time and quality.

Since we consider two different criteria (time and qual-
ity), it could be viewed and solved as a multi-objective max-
imization problem. Instead, we solve two MIP tasks in se-
quence while preserving the cost of the objective function
from the solution of the first MIP. Specifically, we first run
the MIP task to optimize only quality, i.e., qsol or qagile de-
pending on the track. If a solution exists, then a second ex-
ecution of the MIP model is performed to find the combi-
nation of candidate planners that achieves the same quality
(denoted as Q) while minimizing the overall running time.
To enforce a solution with the same quality an additional
constraint is added:

∑n
i=0 qualityi ≥ Q − ϵ, where ϵ is

just any small real value used to avoid floating-point errors.
Clearly, a solution is guaranteed to exist here, since a first so-
lution was already found in the previous step. Pseudocode 1
shows the steps followed to generate all the submitted port-
folios where quality was maximized first, and then running
time was minimized among the combinations that achieved
the optimal quality. In our experiments, ϵ = 0.001.

Algorithm 1 Build a portfolio optimizing quality and time
1: set weights to optimize only quality
2: portfolio1 := solve the MIP task
3: Q := the resulting value of the objective function
4: if a solution exists then
5: add constraint

∑n
i=0 qualityi ≥ Q− 0.001

6: set weights to optimize only overall running time
7: portfolio2 := solve the MIP task return portfolio2
8: else
9: exit with no solution

The MIP task used in this work does not result in any par-
ticular order to execute the planners. It only assigns an exe-
cution time to each planner, which is either zero or a positive
amount of time.

2https://github.com/ipc2023-classical/planner19/tree/latest/
experiments/data/01-opt-planners-eval and https://github.com/
ipc2023-classical/planner19/tree/latest/experiments/data/02-sat-
planners-eval



Executing Sequential Portfolios
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequen-
tial order unspecified. With the simplifying assumption that
all planners use the full assigned time and do not communi-
cate with each other, the order is indeed irrelevant. In reality
the situation is more complex since we do not know upfront
how long a selected planner will really run. Therefore, we
treat per-algorithm time limits defined by the portfolio as
relative, rather than absolute values: whenever we start an
algorithm, we compute the total allotted time of this and all
following algorithms and scale it to the actually remaining
computation time. We then assign the respective scaled time
to the run. As a result, the last algorithm is allowed to use all
of the remaining time.

In the satisficing setting we would like to use the cost of
a plan found by one algorithm to prune the search of subse-
quent planner runs (in the agile setting we stop after finding
the first valid plan). However, since we use the planners as
black boxes, this is impossible in our setting.

We use the driver component of Fast Downward (Helmert
2006) which implements the above described mechanism for
running portfolios.

Resulting Portfolios
Optimal Track
We pass the quality score qsol and execution time obtained
by the optimal planners in the benchmarks described above
to Algorithm 1, together with a time limit of 1800 seconds.
The resulting portfolio for the optimal track consists of 8
component algorithms. The minimum and maximum time
limit are 14 and 861 seconds, allocated to a Delfi configu-
ration and Scorpion, respectively. As we mentioned before,
the MIP task does not specify the execution sequence of the
generated portfolios. However, we have sorted the execution
sequence of the portfolio in decreasing order of the allotted
time.

Satisficing Track
We pass the quality score qsol and execution time obtained
by the optimal and satisficing planners in the benchmarks
described above to Algorithm 1, together with a time limit
of 1800 seconds. The resulting portfolio for the satisficing
track consists of 82 component algorithms. The minimum
and maximum time limit are 1 and 261 seconds, allocated to
two different Fast Downward components. We have sorted
the execution sequence of the portfolio in decreasing order
of the allotted time.

Agile Track
In this case, we pass the agile score qagile and execution time
obtained by the satisficing planners in the benchmarks de-
scribed above to Algorithm 1, together with a time limit of
300 seconds. The resulting portfolio for the agile track con-
sists of 37 component algorithms. The minimum and max-
imum time limit are 1 and 41 seconds, allocated to a Fast
Downward Component and LAPKT-BFWS-Preference, re-
spectively. Unlike the other tracks, execution order plays a

role in the Agile track. We defined the execution sequence
by randomly ordering the planners with non-zero execution
time assigned.

Post-IPC Analysis
The IPC 2023 used 7 domains with 20 tasks each, resulting
in a benchmark set of 140 planning tasks, for all three tracks.
Each plannerwas limited to 30 minutes of CPU time and 8
GiB of memory. Hapori MIPlan ranked average in the three
IPC 2023 tracks, being the second best performer among the
Hapori portfolios participating in these tracks.

Hapori MIPlan got the 8th place (out of 22 participants) in
the optimal track with 60 problems solved, compared to the
77 problems solved by Ragnarok, the winner planner which
was also a portfolio of base solvers. In the satisficing track,
Hapori MIPlan got the 12th place (out of 22 participants)
with a score of 60.74, compared to the 71.86 obtained by
Maidu-sat, the winner planner. Finally, in the agile track,
Hapori MIPlan got the 12th place (out of 22 participants)
with a score of 27.82, compared to the 40.28 obtained by
LAMA-first, which was used as a baseline and turned out to
beat all competitors of the track.

Overall Hapori MIPlan behaved as expected: the sched-
ules returned by the MIP are guaranteed to be optimal for
the training set, and perform reasonably well as long as the
test distribution remains somewhat similar. There were some
engineering errors common to all the Hapori portfolios that
prevented Hapori MIPlan from achieving slightly better re-
sults. These errors are related to exceptions not handled cor-
rectly, and the scheduler calling base solvers with the wrong
name. We are actively working on fixing these bugs, and
aim to do a thorough comparison of the Hapori portfolios in
a subsequent journal article.

Acknowledgments
The success of a portfolio planner must be primarily at-
tributed to the developers of the portfolio components.
Therefore, we would like to express our gratitude to the
numerous authors of the components on which our portfo-
lios are based. We also thank Daniel Fišer and Florian Pom-
merening for organizing the competition and taking on the
time-consuming task of running our numerous planner sub-
missions.

References
Fickert, M.; Gnad, D.; Speicher, P.; and Hoffmann, J. 2018.
SaarPlan: Combining Saarland’s Greatest Planning Tech-
niques. In Ninth International Planning Competition (IPC-
9): Planner Abstracts, 11–16.
Fickert, M.; and Hoffmann, J. 2018. OLCFF: Online-
Learning hCFF. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 17–19.
Francès, G.; Geffner, H.; Lipovetzky, N.; and Ramiréz, M.
2018. Best-First Width Search in the IPC 2018: Complete,
Simulated, and Polynomial Variants. In Ninth International
Planning Competition (IPC-9): Planner Abstracts, 23–27.



Franco, S.; Lelis, L. H. S.; and Barley, M. 2018. The Com-
plementary2 Planner in the IPC 2018. In Ninth International
Planning Competition (IPC-9): Planner Abstracts, 32–36.
Gnad, D.; Shleyfman, A.; and Hoffmann, J. 2018. DecStar
– STAR-topology DECoupled Search at its best. In Ninth
International Planning Competition (IPC-9): Planner Ab-
stracts, 42–46.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Katz, M. 2018. Cerberus: Red-Black Heuristic for Planning
Tasks with Conditional Effects Meets Novelty Heuristic and
Enchanced Mutex Detection. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 47–51.
Katz, M.; and Hoffmann, J. 2014. Mercury Planner: Push-
ing the Limits of Partial Delete Relaxation. In Eighth Inter-
national Planning Competition (IPC-8): Planner Abstracts,
43–47.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2018a. MERWIN Planner: Mercury Enchanced With Nov-
elty Heuristic. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 53–56.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S.
2018b. Delfi: Online Planner Selection for Cost-Optimal
Planning. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 57–64.
Lipovetzky, N.; Ramirez, M.; Muise, C.; and Geffner, H.
2014. Width and Inference Based Planners: SIW, BFS(f),
and PROBE. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 6–7.
Moraru, I.; Edelkamp, S.; Martinez, M.; and Franco, S.
2018. Planning-PDBs Planner. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 69–73.
Núñez, S.; Borrajo, D.; and Linares López, C. 2015. Auto-
matic construction of optimal static sequential portfolios for
AI planning and beyond. Artificial Intelligence, 226: 75–
101.
Rintanen, J. 2014. Madagascar: Scalable Planning with
SAT. In Eighth International Planning Competition (IPC-
8): Planner Abstracts, 66–70.
Seipp, J. 2018a. Fast Downward Remix. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
74–76.
Seipp, J. 2018b. Fast Downward Scorpion. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
77–79.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Seipp, J.; and Röger, G. 2018. Fast Downward Stone Soup
2018. In Ninth International Planning Competition (IPC-9):
Planner Abstracts, 80–82.
Sievers, S.; and Katz, M. 2018. Metis 2018. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
83–84.

Speck, D.; Geißer, F.; and Mattmüller, R. 2018. SYMPLE:
Symbolic Planning based on EVMDDs. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
91–94.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional
A* Planner. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 105–109.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Goldman, R. P.;
Biundo, S.; and Katz, M., eds., Proceedings of the Thirty-
First International Conference on Automated Planning and
Scheduling (ICAPS 2021), 376–384. AAAI Press.
Xie, F.; Müller, M.; and Holte, R. 2014. Jasper: the art of
exploration in Greedy Best First Search. In Eighth Inter-
national Planning Competition (IPC-8): Planner Abstracts,
39–42.


