
Hapori Greedy
Patrick Ferber1, Michael Katz2, Jendrik Seipp3, Silvan Sievers1, Daniel Borrajo4, Isabel Cenamor,

Tomas de la Rosa, Fernando Fernandez-Rebollo4, Carlos Linares López4, Sergio Nuñez,
Alberto Pozanco, Horst Samulowitz2, Shirin Sohrabi2

1 University of Basel, Switzerland
2 IBM T.J. Watson Research Center, Yorktown Heights, USA

3 Linköping University, Sweden
4 Universidad Carlos III de Madrid, Spain

patrick.ferber@unibas.ch, michael.katz1@ibm.com, jendrik.seipp@liu.se, silvan.sievers@unibas.ch, dborrajo@ia.uc3m.es,
icenamorg@gmail.com, tomdelarosa@gmail.com, ffernand@inf.uc3m.es, clinares@inf.uc3m.es, sergio.nunez@repsol.com,

alberto.pozanco@gmail.com, samulowitz@us.ibm.com, shirin.sohrabi@gmail.com

Abstract

Hapori Greedy1 is a portfolio planner which participated in
the optimal, satisficing, and agile tracks of the International
Planning Competition (IPC) 2023. It uses the greedy algo-
rithm by Streeter, Golovin, and Smith (2007) to compute a
sequential static portfolio over IPC 2018 planners in an of-
fline preprocessing phase.

Definitions
Before we describe the greedy portfolio computation algo-
rithm, we give some definitions concerning planning tasks,
sequential portfolios and quality metrics.

Informally speaking, a classical planning task consists of
an initial state, a goal description and a set of operators. In
the setting of satisficing planning, solving a planning task
entails finding any operator sequence that leads from the
initial state to a goal state, with a preference for cheap so-
lutions. On the other hand, in the setting of agile planning,
the task is to find solutions as fast as possible, regardless of
the solution cost. The third setting we consider in this plan-
ner abstract is bounded-cost planning, where plans must not
be more expensive than a given bound.

We define c(A, I, t) as the cost of the solution a planning
algorithm A finds for planning task I within time t, or as
∞ if it does not find a solution in that time. Furthermore,
we let c⋆(I) denote the minimum known solution cost for
task I (approximated by a set of Fast Downward configura-
tions). Following IPC evaluation criteria, we define the solu-
tion quality qsol(A, I, t) = c⋆(I)

c(A,I,t) as the minimum known
solution cost divided by the solution cost achieved by A in
time t.

A sequential planning portfolio P is a sequence of pairs
⟨A, t⟩ where A is a planning algorithm and t ∈ N>0 is the
time limit in seconds for A. We denote the portfolio resulting
from appending a component ⟨A, t⟩ to a portfolio P by P ⊕
⟨A, t⟩.

We now define two quality scores q(P, I) that evaluate the
performance of a portfolio P on task I . In the satisficing and
bounded-cost settings we use the solution quality qsol(P, I).

1Hapori is the Maori word for community.

Algorithm 1 Greedy algorithm by Streeter, Golovin, and
Smith (2007) computing a sequential portfolio for a given
quality function q, algorithms A, instances I and total port-
folio runtime T .

1: function COMPUTEPORTFOLIO(q, A, I, T )
2: P ← ⟨⟩
3: tused ← 0
4: while tmax = T − tused > 0 do
5: ⟨A, t⟩ ← argmax⟨A′,t′⟩∈A×[1,tmax] q∆(P,A

′, t′, I)
6: if q∆(P,A, t, I) = 0 then
7: return P
8: P ← P ⊕ ⟨A, t⟩
9: tused ← tused + t

10: return P

It is the maximum solution quality any of the components in
P achieves for I , i.e.,

qsol(P, I) = max
⟨A,t⟩∈P

qsol(A, I, t).

Following IPC 2018 evaluation criteria, for the agile plan-
ning setting we define agile quality as

qagile(P, I) =


0 if t(P, I) > T

1 if t(P, I) ≤ 1

1− log10 t(P,I)
log10(T ) otherwise

,

where t(P, I) is the time that portfolio P needs to solve task
I and T is the total portfolio runtime.

A portfolio’s score on multiple tasks A is defined as the
sum of the individual scores, i.e., q(P, I) =

∑
I∈I q(P, I),

and the score of the empty portfolio is always 0.

Greedy Portfolio Computation Algorithm
We now describe the greedy algorithm by Streeter, Golovin,
and Smith (2007). Given a quality score q, a set of algo-
rithms A, a set of tasks I and the total portfolio runtime T ,
the greedy algorithm iteratively constructs a sequential port-
folio.



As shown in Algorithm 1, the procedure starts with an
empty portfolio P (line 2) and then iteratively selects an al-
gorithm A ∈ A and a time limit t ∈ [1, tmax] (discretized
to seconds) for A such that adding ⟨A, t⟩ to P improves P
the most (line 5). The quality improvement between P and
P ⊕ ⟨A, t⟩ is measured by the q∆ function:

q∆(P,A, t, I) =
∑

I∈I q(P ⊕ ⟨A, t⟩, I)− q(P, I)

t

If appending the pair ⟨A, t⟩ to P does not change the
portfolio quality anymore, we converged and can terminate
(line 6). Otherwise, the pair is appended to P (line 8). This
process iterates until the sum of the runtimes in the portfo-
lio components exceeds the maximum porfolio runtime T
(line 4).

Components and Training Data
As the pool of planners for our portfolios to choose from,
we use all planners from the IPC 2018 and a selection of
planners from IPC 2014. If an IPC 2018 planner is itself a
portfolio, we use its component planners instead. We only
consider each planner once. (Some IPC 2018 portfolios in-
clude planners that were also submitted separately and sev-
eral portfolios included the same planners.)

Optimal Planners. For the optimal track, we exclude the
planners MAPlan-1, MAPlan-2 and Meta-Search Planner
because they use CPLEX, and Complementary1 because it
may generate suboptimal solutions. Furthermore, the FDMS
planners and Metis1 are covered by the Delfi portfolio al-
ready. This results in the following list of planners (or their
components):
• Complementary2 (Franco, Lelis, and Barley 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Delfi (Delfi1 and Delfi2 have the same

components; Katz et al., 2018b)
• Metis2 (Sievers and Katz 2018)
• Planning-PDBs (Moraru et al. 2018)
• Scorpion (Seipp 2018b)
• SymBA∗1 (IPC 2014; Torralba et al., 2014)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

Satisficing Planners. All planners participating in the IPC
2018 satisficing track also participated in the agile track (ex-
cept for Fast Downward Stone Soup 2018), with an identical
code base but possibly with different configurations. We thus
only have one set of planners but multiple configurations
for these two tracks. We exclude the Alien planner because
we could not get it to run, and Freelunch-Doubly-Relaxed,
FS-blind and FS-sim because they have a large number of
dependencies which results in planner images too large to
be included in our planner pool. Furthermore, IBaCoP-2018
and IBaCoP2-2018 use a large number of planners or port-
folios of which newer and stronger versions participated in
IPC 2018 as standalone planners, or which we failed to get to

run, so we only cover the component planners Jasper, Mada-
gascar, Mercury, and Probe. This results in the following list
of planners (or their components):
• Cerberus and Cerberus-gl (Katz 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Fast Downward Remix (Seipp 2018a)
• components of Fast Downward Stone Soup 2018 (Seipp

and Röger 2018)
• Jasper (IPC 2014; Xie, Müller, and Holte, 2014)
• Dual-BFWS, BFWS-preference, BFWS-polynomial and

DFS+ (Francès et al. 2018)
• Madagascar (IPC 2014; Rintanen, 2014)
• Mercury2014 (Katz and Hoffmann 2014)
• MERWIN (Katz et al. 2018a)
• OLCFF (Fickert and Hoffmann 2018)
• Probe (IPC 2014; Lipovetzky et al., 2014)
• Grey Planning configuration of Saarplan (Fickert et al.,

2018; rest covered by DecStar)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

Benchmarks and Runtimes. For training the portfolios,
we use all tasks and domains from previous IPCs, from
the Delfi training set (Katz et al. 2018b), and from the Au-
toscale 21.11 collection Torralba, Seipp, and Sievers (2021),
leading to a set of 92 domains with 7330 tasks. We use
Downward Lab (Seipp et al. 2017) to run all planners across
all benchmarks on AMD EPYC 7742 2.25GHz processors,
imposing a memory limit of 8 GiB and a time limit of
30 minutes for optimal planners and 5 minutes for satisfic-
ing and agile planners. For each run, we store its outcome
(plan found, out of memory, out of time, task not supported
by planner, unexpected error), the execution time, the maxi-
mum resident memory, and if the run found a plan, the plan
length and plan cost. This data set is available online.2 As
training data for our optimal (respectively satisficing/agile)
portfolios, we select from each domain the 30 tasks which
are solved by the fewest optimal (or satisficing/agile) plan-
ners, which results in 1926 (optimal) and 2377 (satisfic-
ing/agile) tasks.

Resulting Portfolios
Passing the algorithms and benchmarks described above to
the greedy portfolio computation algorithm, together with
the quality score qsol and time limit T=1800 seconds, we ob-
tain a portfolio for the optimal track that consists of 14 com-
ponent planners, all unique, using time limits between 6s
and 703s. For the satisficing track, there are 70 component
planners, 50 of which are unique (the greedy algorithm of-
ten adds the same planner configuration multiple times with
different time limits), using time limits between 1s and 267s.

2https://github.com/ipc2023-classical/planner19/tree/latest/
experiments/data/01-opt-planners-eval and https://github.com/
ipc2023-classical/planner19/tree/latest/experiments/data/02-sat-
planners-eval



For the agile track, there are 45 component planners, 29 of
which are unique, using time limits between 1 and 251 sec-
onds.

On the training set with 1926 tasks, the optimal port-
folio solves 1663 tasks while the best planner only solves
1258 tasks. The satisficing portfolio trained on 2377 tasks
achieves an overall quality score of 2106.9 compared to
1319.3 by the best planner. The agile portfolio achieves an
overall agile score of 1400.3 compared to 1270.6 by the best
planner.

Executing Sequential Portfolios
In the previous sections, we assumed that a portfolio simply
assigns a runtime to each algorithm, leaving their sequen-
tial order unspecified. With the simplifying assumption that
all planners use the full assigned time and do not communi-
cate with each other, the order is indeed irrelevant. In reality
the situation is more complex since we do not know upfront
how long a selected planner will really run. Therefore, we
treat per-algorithm time limits defined by the portfolio as
relative, rather than absolute values: whenever we start an
algorithm, we compute the total allotted time of this and all
following algorithms and scale it to the actually remaining
computation time. We then assign the respective scaled time
to the run. As a result, the last algorithm is allowed to use all
of the remaining time.

In the satisficing setting we would like to use the cost of
a plan found by one algorithm to prune the search of subse-
quent planner runs (in the agile setting we stop after finding
the first valid plan). However, since we use the planners as
black boxes, this is impossible in our setting.

We use the driver component of Fast Downward (Helmert
2006) which implements the above described mechanism for
running portfolios.

Post-IPC Analysis
The IPC 2023 used 7 domains with 20 tasks each, resulting
in a benchmark set of 140 planning tasks, for all three tracks.
Each planner was limited to 30 minutes of CPU time and 8
GiB of memory.

In the optimal track, there were 22 competing planners.
The objective was to optimally solve the tasks. The best
planner solved 77 tasks and our planner solved 56 tasks,
ranking 10th, just above the blind baseline 50. Unfortu-
nately, in both the satisficing and the agile tracks, our plan-
ners were ill-defined and hence did not run at all.

We are actively working on fixing the bugs of our plan-
ners, and aim to do a thorough comparison of the Hapori
portfolios in a subsequent journal article.

Acknowledgments
The success of a portfolio planner must be primarily at-
tributed to the developers of the portfolio components.
Therefore, we would like to express our gratitude to the
numerous authors of the components on which our portfo-
lios are based. We also thank Daniel Fišer and Florian Pom-
merening for organizing the competition and taking on the

time-consuming task of running our numerous planner sub-
missions.

References
Fickert, M.; Gnad, D.; Speicher, P.; and Hoffmann, J. 2018.
SaarPlan: Combining Saarland’s Greatest Planning Tech-
niques. In Ninth International Planning Competition (IPC-
9): Planner Abstracts, 11–16.
Fickert, M.; and Hoffmann, J. 2018. OLCFF: Online-
Learning hCFF. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 17–19.
Francès, G.; Geffner, H.; Lipovetzky, N.; and Ramiréz, M.
2018. Best-First Width Search in the IPC 2018: Complete,
Simulated, and Polynomial Variants. In Ninth International
Planning Competition (IPC-9): Planner Abstracts, 23–27.
Franco, S.; Lelis, L. H. S.; and Barley, M. 2018. The Com-
plementary2 Planner in the IPC 2018. In Ninth International
Planning Competition (IPC-9): Planner Abstracts, 32–36.
Gnad, D.; Shleyfman, A.; and Hoffmann, J. 2018. DecStar
– STAR-topology DECoupled Search at its best. In Ninth
International Planning Competition (IPC-9): Planner Ab-
stracts, 42–46.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Katz, M. 2018. Cerberus: Red-Black Heuristic for Planning
Tasks with Conditional Effects Meets Novelty Heuristic and
Enchanced Mutex Detection. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 47–51.
Katz, M.; and Hoffmann, J. 2014. Mercury Planner: Push-
ing the Limits of Partial Delete Relaxation. In Eighth Inter-
national Planning Competition (IPC-8): Planner Abstracts,
43–47.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2018a. MERWIN Planner: Mercury Enchanced With Nov-
elty Heuristic. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 53–56.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S.
2018b. Delfi: Online Planner Selection for Cost-Optimal
Planning. In Ninth International Planning Competition
(IPC-9): Planner Abstracts, 57–64.
Lipovetzky, N.; Ramirez, M.; Muise, C.; and Geffner, H.
2014. Width and Inference Based Planners: SIW, BFS(f),
and PROBE. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 6–7.
Moraru, I.; Edelkamp, S.; Martinez, M.; and Franco, S.
2018. Planning-PDBs Planner. In Ninth International Plan-
ning Competition (IPC-9): Planner Abstracts, 69–73.
Rintanen, J. 2014. Madagascar: Scalable Planning with
SAT. In Eighth International Planning Competition (IPC-
8): Planner Abstracts, 66–70.
Seipp, J. 2018a. Fast Downward Remix. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
74–76.
Seipp, J. 2018b. Fast Downward Scorpion. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
77–79.



Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Seipp, J.; and Röger, G. 2018. Fast Downward Stone Soup
2018. In Ninth International Planning Competition (IPC-9):
Planner Abstracts, 80–82.
Sievers, S.; and Katz, M. 2018. Metis 2018. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
83–84.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018. SYMPLE:
Symbolic Planning based on EVMDDs. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
91–94.
Streeter, M. J.; Golovin, D.; and Smith, S. F. 2007. Com-
bining Multiple Heuristics Online. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence
(AAAI 2007), 1197–1203. AAAI Press.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional
A* Planner. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 105–109.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Goldman, R. P.;
Biundo, S.; and Katz, M., eds., Proceedings of the Thirty-
First International Conference on Automated Planning and
Scheduling (ICAPS 2021), 376–384. AAAI Press.
Xie, F.; Müller, M.; and Holte, R. 2014. Jasper: the art of
exploration in Greedy Best First Search. In Eighth Inter-
national Planning Competition (IPC-8): Planner Abstracts,
39–42.


