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Abstract

Hapori Explainable Decision Tree' is a portfolio planner
which participated in the optimal, satisficing, and agile tracks
of the International Planning Competition (IPC) 2023. It uses
the single-model planner selection via a decision tree by Fer-
ber and Seipp (2022) to predict over IPC 2018 planners which
planner to execute for a task.

Introduction

No planner excels at all tasks, but each has its individual
strength and weaknesses (Roberts and Howe 2009). Thus,
planner portfolios try to combine multiple planners to dip
into the strength of each one. Delfi (Katz et al. 2018b; Siev-
ers et al. 2019) is an example of an online portfolio. Given a
task, Delfi converts it to an image and then uses a convolu-
tional neural network (CNN) to predict the best planner for
the task. Delfi is highly successful and won the classical, op-
timal track of the International Planning Competition (IPC)
2018. Delfi is not only successful, but also unexplainable.
Experts understand neither which properties of a planning
tasks can be seen in the constructed images nor which rules
the CNN learned. The graph convolution based successor of
Delfi (Ma et al. 2020) improved upon the first issue, but the
second one remained. Ferber and Seipp (2022) successfully
train explainable portfolios with a similar performance to
Delfi. One of their portfolios is based on a single decision
tree which receives a set of numeric, explainable features as
input and outputs the name of the planner to execute. Here,
we retrained this portfolio using a larger set of benchmarks
tasks and the planners from the IPC 2018.

Method

Let O be the set of possible observations (in our case the set
of all possible PDDL tasks). Let F' be a list of numeric fea-
tures such that each feature f € F'is a function f : O — R.
A feature vector # € RIF! for an observation o holds the
evaluation of the features on the observation, i.e. Z; = F;(0)
for 1 < ¢ < |F|. A decision tree (Breiman et al. 1984) D

"Hapori is the Maori word for community.

Figure 1: Schema of a decision tree. Each internal node is
associated with a condition C; on the input features. Each
leaf node is associated with a prediction outcome P;.

trained on the features F' is a binary tree where every inter-
nal node i is associated with a condition C; over F' and every
leaf node [ is associated with a prediction P; (see Figure 1).
Every condition C; is a function C;(Z) = &; < ¢ where
1< j <|F|andt € R is some threshold value. To evaluate
the decision tree 1" on the feature vector Z, we set the root
node as current node n. If n is an internal node, then we tra-
verse to the first child if C, () holds and to the second child
otherwise. If n is a leaf node, the decision tree evaluates to
P,.

To train a decision 1" as portfolio, we specify the list of
numeric features F, a set of training tasks 7', and a list of
planners P. For every task ¢ € T, we compute the feature
vector & and the label vector 77, € BI”| with Yi; = 1 iff the
planner P; find a solution for the task ¢ within some resource
limits. Our training data D consits of all pairs (&, %) such
that ¢ € T and ¢, ; = T. This data representation allows us
to use any standard algorithm to train decision trees. A draw-
back of the representation is that the more planners solve a
task, the more the task appears in the training data. Thus,
tasks are not equally impactful during training. As a counter
measure, we weight every sample (Z,¢) by 1/n where n is
the number of planners which solve ¢.



Components and Training Data

As the pool of planners for our portfolios to choose from,
we use all planners from the IPC 2018 and a selection of
planners from IPC 2014. If an IPC 2018 planner is itself a
portfolio, we use its component planners instead. We only
consider each planner once. (Some IPC 2018 portfolios in-
clude planners that were also submitted separately and sev-
eral portfolios included the same planners.)

Optimal Planners. For the optimal track, we exclude the
planners MAPlan-1, MAPlan-2 and Meta-Search Planner
because they use CPLEX, and Complementary1 because it
may generate suboptimal solutions. Furthermore, the FDMS
planners and Metisl are covered by the Delfi portfolio al-
ready. This results in the following list of planners (or their
components):

* Complementary2 (Franco, Lelis, and Barley 2018)

e components of DecStar (Gnad, Shleyfman, and Hoff-
mann 2018)

e components of Delfi (Delfil and Delfi2 have the same
components; Katz et al., 2018b)

¢ Metis2 (Sievers and Katz 2018)

* Planning-PDBs (Moraru et al. 2018)

* Scorpion (Seipp 2018b)

e SymBA*1 (IPC 2014; Torralba et al., 2014)

* Symple-1 and Symple-2 (Speck, Geifler, and Mattmiiller
2018)

Satisficing Planners. All planners participating in the IPC
2018 satisficing track also participated in the agile track (ex-
cept for Fast Downward Stone Soup 2018), with an identical
code base but possibly with different configurations. We thus
only have one set of planners but multiple configurations
for these two tracks. We exclude the Alien planner because
we could not get it to run, and Freelunch-Doubly-Relaxed,
FS-blind and FS-sim because they have a large number of
dependencies which results in planner images too large to
be included in our planner pool. Furthermore, IBaCoP-2018
and IBaCoP2-2018 use a large number of planners or port-
folios of which newer and stronger versions participated in
IPC 2018 as standalone planners, or which we failed to get to
run, so we only cover the component planners Jasper, Mada-
gascar, Mercury, and Probe. This results in the following list
of planners (or their components):

¢ Cerberus and Cerberus-gl (Katz 2018)

e components of DecStar (Gnad, Shleyfman, and Hoff-
mann 2018)

» components of Fast Downward Remix (Seipp 2018a)

e components of Fast Downward Stone Soup 2018 (Seipp
and Roger 2018)

* Jasper (IPC 2014; Xie, Miiller, and Holte, 2014)

e Dual-BFWS, BFWS-preference, BFWS-polynomial and
DFS* (Frances et al. 2018)

* Madagascar (IPC 2014; Rintanen, 2014)
* Mercury2014 (Katz and Hoffmann 2014)
« MERWIN (Katz et al. 2018a)

OLCEFF (Fickert and Hoffmann 2018)
Probe (IPC 2014; Lipovetzky et al., 2014)

* Grey Planning configuration of Saarplan (Fickert et al.,
2018; rest covered by DecStar)

* Symple-1 and Symple-2 (Speck, Geiller, and Mattmiiller
2018)

Benchmarks and Runtimes. For training the portfolios,
we use all tasks and domains from previous IPCs, from
the Delfi training set (Katz et al. 2018b), and from the Au-
toscale 21.11 collection Torralba, Seipp, and Sievers (2021),
leading to a set of 92 domains with 7330 tasks. We use
Downward Lab (Seipp et al. 2017) to run all planners across
all benchmarks on AMD EPYC 7742 2.25GHz processors,
imposing a memory limit of 8§ GiB and a time limit of
30 minutes for optimal planners and 5 minutes for satisfic-
ing and agile planners. For each run, we store its outcome
(plan found, out of memory, out of time, task not supported
by planner, unexpected error), the execution time, the maxi-
mum resident memory, and if the run found a plan, the plan
length and plan cost. This data set is available online.” As
training data for our optimal (respectively satisficing/agile)
portfolios, we select from each domain the 30 tasks which
are solved by the fewest optimal (or satisficing/agile) plan-
ners, which results in 1926 (optimal) and 2377 (satisfic-
ing/agile) tasks.

Features. Ferber and Seipp (2022) showed that their
models performed best when trained on the 49 PDDL
features of Fawcett et al. (2014). Thus, we also train
our models on those features. Among others, those in-
clude the number of objects, the number of actions, and
the mean number of parameters per predicate. For each
task in our benchmark collection, the PDDL features are
available at https://github.com/ipc2023-classical/planner19/
tree/latest/learners/explainable_planner_selection in the files
features_opt.csvand features_sat.csv.

Executing Predictive Portfolios

Given a task, the portfolio selector computes the values of
its input features. Then, it evaluates the output of the trained
model with respect to the values of the features. Next, it in-
terprets the model output, e.g., if the model directly predicts
a planner, then this planner is selected; if it predicts for each
planner the probability that it solves the given task, then the
planner with highest probability is selected. Finally, it exe-
cutes the the selected planner for the whole time limit.

Post-IPC Analysis

The IPC 2023 used 7 domains with 20 tasks each, resulting
in a benchmark set of 140 planning tasks, for all three tracks.
Each planner was limited to 30 minutes of CPU time and 8
GiB of memory.

Zhttps://github.com/ipc2023-classical/planner19/tree/latest/
experiments/data/01-opt-planners-eval and https://github.com/
ipc2023-classical/planner19/tree/latest/experiments/data/02-sat-
planners-eval



In the optimal track, there were 22 competing planners.
The objective was to optimally solve the tasks. The best
planner solved 77 tasks, the blind baseline 50, the LM-cut
baseline 34, and our portfolio only 31 tasks, ranking 20th.
Unfortunately, our planner had many technical problems,
such as writing to inaccessible temp directories. In those
cases where it could run, it selected only four out of all avail-
able component planners.

In the satisficing track, there were 22 competing plan-
ners. The objective was to find plans of high quality. The
best planner achieved a summed score of 71.86, only closely
beating the baseline LAMA with a score of 68.76, and our
planner scored 33.57, ranking 17th. Here, too, our planner
had some bugs that lead to selecting a planner by the wrong
name or choosing a planner which did not support some
PDDL features. In the successful cases, our planner selected
only five out of all available component planners.

In the agile track, there were 22 competing planners. The
objective was to find plans as quickly as possible. The best
planner achieved a score of 40.25, closely below the base-
line LAMA-first with a score 40.28, and our planner scored
13.03, ranking 16th. Since the tasks used for the agile track
are identical to those of the satisficing track, and the set of
component planners available to our portfolios is identical
for both tracks, we faced the exact same problems as in the
satisficing track and selected the same component planners.

Compared to Hapori Linear Regression, our planner made
a better selection in the satisficing and agile tracks, but not
in the optimal one.

We are actively working on fixing the bugs of our plan-
ners, and aim to do a thorough comparison of the Hapori
portfolios in a journal article.
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