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3 Linköping University, Sweden
4 Universidad Carlos III de Madrid, Spain

patrick.ferber@unibas.ch, michael.katz1@ibm.com, jendrik.seipp@liu.se, silvan.sievers@unibas.ch, dborrajo@ia.uc3m.es,
icenamorg@gmail.com, tomdelarosa@gmail.com, ffernand@inf.uc3m.es, clinares@inf.uc3m.es, sergio.nunez@repsol.com,

alberto.pozanco@gmail.com, samulowitz@us.ibm.com, shirin.sohrabi@gmail.com

Abstract

The cost-optimal planner Delfi has successfully participated
in the International Planning Competition (IPC) 2018. Its suc-
cess can be attributed to two main factors: the use of state-of-
the-art cost-optimal planners in its portfolio and the ability to
predict which of these planners is a good fit for a given plan-
ning task. Following that prior success, here we extend the
set of planners in the portfolio. The learning methodology is
adapted according to the prior work, applied now not only to
cost-optimal, but also to agile and satisficing planning.

Introduction
The cost-optimal planner Delfi (Katz et al. 2018b) was rated
first in the cost-optimal track of the International Planning
Competition (IPC) 2018. It uses a so-called online portfo-
lio approach (Cenamor, de la Rosa, and Fernández 2016;
Sievers et al. 2019a) to overcome the limitations of any in-
dividual planner, predicting which out of the collection of
planners will work well on the planning task at hand. That
collection included 17 planners of mostly similar configu-
rations, varying mostly in the heuristic used. The predic-
tion was done with the help of a deep learning tool, specifi-
cally convolutional neural network (CNN) (LeCun, Bengio,
and Hinton 2015), predicting whether a planner will solve
a planning task, represented by an image, within the prede-
fined time limit of 30 minutes. The image representation was
obtained based on a structural representation of a planning
task called abstract structure graph (ASG) (Sievers et al.
2019b), casting the graph as an adjacency matrix, condens-
ing and turning into a grayscale image.

In this work, we construct a new, community based ver-
sion of Delfi, which we now call Hapori Delfi 1. We extend
the collection of planners in the portfolio and adopt the best
performing learning methodology and architecture accord-
ing to the post-IPC 2018 investigation (Sievers et al. 2019a).
Specifically, we discretize the time interval into three equal
size intervals and predict whether the planner will solve the
task within that time interval. We use the same image-based
planning task representation as in the original Delfi and re-

1Hapori is the Maori word for community.

train the CNN for the new collection of planners. Addition-
ally, we go beyond just cost-optimal planning, preparing ver-
sions of Hapori Delfi also for the agile and satisficing tracks.
In the rest of the paper we describe the differences from the
original Delfi for each of the tracks we participate in, specif-
ically in the components used and the training data.

Components and Training Data
As the pool of planners for our portfolios to choose from,
we use all planners from the IPC 2018 and a selection of
planners from IPC 2014. If an IPC 2018 planner is itself a
portfolio, we use its component planners instead. We only
consider each planner once. (Some IPC 2018 portfolios in-
clude planners that were also submitted separately and sev-
eral portfolios included the same planners.)

Optimal Planners. For the optimal track, we exclude the
planners MAPlan-1, MAPlan-2 and Meta-Search Planner
because they use CPLEX, and Complementary1 because it
may generate suboptimal solutions. Furthermore, the FDMS
planners and Metis1 are covered by the Delfi portfolio al-
ready. This results in the following list of planners (or their
components):

• Complementary2 (Franco, Lelis, and Barley 2018)
• components of DecStar (Gnad, Shleyfman, and Hoff-

mann 2018)
• components of Delfi (Delfi1 and Delfi2 have the same

components; Katz et al., 2018b)
• Metis2 (Sievers and Katz 2018)
• Planning-PDBs (Moraru et al. 2018)
• Scorpion (Seipp 2018b)
• SymBA∗1 (IPC 2014; Torralba et al., 2014)
• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller

2018)

Satisficing Planners. All planners participating in the IPC
2018 satisficing track also participated in the agile track (ex-
cept for Fast Downward Stone Soup 2018), with an identical
code base but possibly with different configurations. We thus
only have one set of planners but multiple configurations



for these two tracks. We exclude the Alien planner because
we could not get it to run, and Freelunch-Doubly-Relaxed,
FS-blind and FS-sim because they have a large number of
dependencies which results in planner images too large to
be included in our planner pool. Furthermore, IBaCoP-2018
and IBaCoP2-2018 use a large number of planners or port-
folios of which newer and stronger versions participated in
IPC 2018 as standalone planners, or which we failed to get to
run, so we only cover the component planners Jasper, Mada-
gascar, Mercury, and Probe. This results in the following list
of planners (or their components):

• Cerberus and Cerberus-gl (Katz 2018)

• components of DecStar (Gnad, Shleyfman, and Hoff-
mann 2018)

• components of Fast Downward Remix (Seipp 2018a)

• components of Fast Downward Stone Soup 2018 (Seipp
and Röger 2018)

• Jasper (IPC 2014; Xie, Müller, and Holte, 2014)

• Dual-BFWS, BFWS-preference, BFWS-polynomial and
DFS+ (Francès et al. 2018)

• Madagascar (IPC 2014; Rintanen, 2014)

• Mercury2014 (Katz and Hoffmann 2014)

• MERWIN (Katz et al. 2018a)

• OLCFF (Fickert and Hoffmann 2018)

• Probe (IPC 2014; Lipovetzky et al., 2014)

• Grey Planning configuration of Saarplan (Fickert et al.,
2018; rest covered by DecStar)

• Symple-1 and Symple-2 (Speck, Geißer, and Mattmüller
2018)

Benchmarks and Runtimes. For training the portfolios,
we use all tasks and domains from previous IPCs, from
the Delfi training set (Katz et al. 2018b), and from the Au-
toscale 21.11 collection Torralba, Seipp, and Sievers (2021),
leading to a set of 92 domains with 7330 tasks. We use
Downward Lab (Seipp et al. 2017) to run all planners across
all benchmarks on AMD EPYC 7742 2.25GHz processors,
imposing a memory limit of 8 GiB and a time limit of
30 minutes for optimal planners and 5 minutes for satisfic-
ing and agile planners. For each run, we store its outcome
(plan found, out of memory, out of time, task not supported
by planner, unexpected error), the execution time, the max-
imum resident memory, and if the run found a plan, the
plan length and plan cost. This data set is available online.2
As training data for our optimal (respectively satisficing/ag-
ile) portfolios, we select from each domain the 30 tasks
which are solved by the fewest optimal (or satisficing/agile)
planners, which results in 1926 (optimal) and 2377 (satis-
ficing/agile) tasks.

2https://github.com/ipc2023-classical/planner19/tree/latest/
experiments/data/01-opt-planners-eval and https://github.com/
ipc2023-classical/planner19/tree/latest/experiments/data/02-sat-
planners-eval

Post-IPC Analysis
The IPC 2023 used 7 domains with 20 tasks each, resulting
in a benchmark set of 140 planning tasks, for all three tracks.
Each planner was limited to 30 minutes of CPU time and 8
GiB of memory.

In the optimal track, there were 22 competing planners.
The objective was to optimally solve the tasks. The best
planner solved 77 tasks, the blind baseline 50, the LM-cut
baseline 34, and our portfolio only 41 tasks, ranking 12th.
Unfortunately, our planner had some technical problems,
such as selecting a component planner which did not sup-
port some PDDL features. Furthermore, it always selected
the same component planner, namely Planning-PDBs, for all
tasks. Most likely, the fact that we did not adapt the training
setting (such as hyper parameters) compared to the previous
version of Delfi to accomodate the new scenario lead to poor
performance on the test set, i.e., the IPC 2023 benchmarks.

In the satisficing track, there were 22 competing plan-
ners. The objective was to find plans of high quality. The
best planner achieved a summed score of 71.86, only closely
beating the baseline LAMA with a score of 68.76, and our
planner scored 32.54, ranking 18th. Here, too, our planner
had some bugs that lead to selecting a planner by the wrong
name or selecting a component planner which did not sup-
port some PDDL features. In the successful cases, our plan-
ner selected eleven out of all available component planners.

In the agile track, there were 22 competing planners. The
objective was to find plans as quickly as possible. The best
planner achieved a score of 40.25, closely below the base-
line LAMA-first with a score 40.28, and our planner scored
10.83, ranking 18th. Even though the tasks used for the agile
track are identical to those of the satisficing track, and the set
of component planners available to our portfolios is identi-
cal for both tracks, our planner made a slightly different se-
lection of planners due to not being deterministic, choosing
twelve out of all available component planners, but facing
the same technical problems as in the satisficing track.

We are actively working on fixing the bugs of our plan-
ners, and aim to do a thorough comparison of the Hapori
portfolios in a subsequent journal article.
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Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional
A* Planner. In Eighth International Planning Competition
(IPC-8): Planner Abstracts, 105–109.
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