
Neural Network Heuristics for Classical Planning:
A Study of Hyperparameter Space

Patrick Ferber1 and Malte Helmert 1 and Jörg Hoffmann2

Abstract. Neural networks (NN) have been shown to be powerful
state-value predictors in several complex games. Can similar suc-
cesses be achieved in classical planning? Towards a systematic ex-
ploration of that question, we contribute a study of hyperparameter
space in the most canonical setup: input = state, feed-forward NN,
supervised learning, generalization only over initial state. We inves-
tigate a broad range of hyperparameters pertaining to NN design and
training. We evaluate these techniques through their use as heuristic
functions in Fast Downward. The results on IPC benchmarks show
that highly competitive heuristics can be learned, yielding substan-
tially smaller search spaces than standard techniques on some do-
mains. But the heuristic functions are costly to evaluate, and the
range of domains where useful heuristics are learned is limited. Our
study provides the basis for further research improving on current
weaknesses.

1 Introduction

Heuristic search [26, 6] is among the most successful approaches to
classical planning, both in the satisficing (e.g., [20, 27, 14]) and in
the optimal setting (e.g., [18, 19, 28]). The key ingredient in plan-
ning as heuristic search are efficiently computable evaluation func-
tions, heuristics, that map states of the planning tasks to numerical
estimates of the distance or cost of reaching the nearest goal state.
Roughly speaking, the closer these estimates are to the true distance,
the better we can expect a heuristic search algorithm to perform.

Similar evaluation functions have long been used in the context of
board games (e.g., [24]), where they are used to estimate the win-
ning chances of a given player from a given game position. Recently,
the AlphaGo [30] system has shown that highly accurate evaluation
functions for Go can be represented as neural networks (NN) that are
learned automatically through self-play. Later work has successfully
extended the approach to the games of chess and shogi [31], and re-
cent work has successfully tackled several single-agent puzzles [2].
These successes raise the question whether heuristics based on NN
can be equally successful in the context of classical planning.

There are several challenges that make it non-trivial to apply this
methodology to AI planning. Firstly, game boards typically have a
grid topology, akin to images, allowing to naturally leverage NN ar-
chitectures originating in image processing [13, 12, 16], a critical
aspect of many recent breakthrough achievements. In contrast, gen-
eral AI planning tasks usually do not have a similar grid structure,
and when they do it is not apparent from their representation.

1 University of Basel, Switzerland, email: firstname.lastname@unibas.ch
2 Saarland Informatics Campus, Saarland University, Germany, email:

hoffmann@cs.uni-saarland.de

Secondly, games like Go tend to end with a win or loss compar-
atively quickly even with random or almost random play,3 which is
critical for reinforcement learning techniques that rely on meaningful
feedback on good or bad action sequences. In contrast, it is unclear
which meaningful feedback can be obtained from random or almost
random action sequences in a planning task: if they lead to a goal
state, the planning task was easy to solve in the first place.

Thirdly, systems like AlphaGo work with a fixed state space and
fixed objective: the rules of Go do not change, and therefore it pays
off to invest enormous computational resources into an accurate
value function for a single state space. In contrast, AI planning is
traditionally focused on domain-independent technology, capable of
dealing with a wide variety of different planning tasks.

Despite these difficulties, NN state estimators or policy func-
tions have successfully been learned for classical planning and re-
lated problems. In some approaches [4, 34], most of the difficulties
are circumvented by training a neural network to combine heuris-
tic estimates, which is easier than learning heuristics from scratch.
Other works focus on NN learning for probabilistic planning tasks
[9, 21, 33], which makes it easier to achieve competitive perfor-
mance. As for games like Go, the solution to probabilistic planning
tasks are policies whose size is often prohibitive for exhaustive meth-
ods; and strong domain-independent state estimators are not avail-
able to the same extent as in classical planning. Toyer et al. [33]
demonstrated that it is possible to learn useful policies also at the
level of planning domains, i.e., for infinite families of planning tasks
of scaling size. However, while the approach works very well in do-
mains with a simple repetitive structure, it can also be fooled easily
[32], and the applicability to more complex domains remains chal-
lenging.

Here, we address the problem of learning NN heuristic functions
for classical planning. Like prior work on probabilistic planning, we
use the raw state description as input to the NN, employ feed-forward
NN to process that generic input, and use supervised learning to train
these NN. Like prior work except that by Toyer et al., we consider
generalization only over states, i.e., an NN is trained for a fixed state
space with a fixed goal. Arguably, this is the most canonical setup
for NN heuristic learning in classical planning, addressing the above
stated three challenges in the simplest possible way.

We choose this setup on the rationale that simple problems need
to be properly understood before one can hope to understand more
complex ones. In particular, while Toyer et al.’s approach applies also
to classical planning, generalization over an entire planning domain
means that information about an individual planning task must be
compressed to an extent that, in general, complex policies cannot be

3 In its initial stages, AlphaGo and Alpha Zero use a random evaluation func-
tion combined with Monte-Carlo tree search (e.g., [25, 8]).



represented. Our research strategy hence is to address the problem
from the ground up, understanding step-by-step what NN heuristics
can or cannot do in classical planning.

Furthermore, while simple, generalization over states can still pay
off in practice, when the goal is fixed but exogenous behavior fre-
quently affects the system state so that a new search for the same
goal but on a different starting state needs to be launched. A common
setting where this occurs is re-planning. Also, some applications are
characterized by repetitive tasks under volatile conditions, like pa-
trolling (which is volatile e.g. for autonomous aerial or underwater
vehicles).

We contribute a comprehensive study of hyperparameter space in
the canonical setup. We investigate a broad range of hyperparameters
pertaining to NN design and training: classification vs. regression,
number of hidden layers, activation functions, regularization, how
to select training states, training data balancing, and pruning. We
evaluate points in this parameter space through the performance of
the resulting heuristic functions when used for search in Fast Down-
ward [17]. We use IPC benchmarks where dead-ends don’t exist and
thus goal-distance estimation does not encompass dead-end detec-
tion (which is a qualitatively different problem).

Comparing performance to standard planning techniques, we find
that NN heuristics are slower to evaluate than hFF, but tend to be
more informative. In some domains, the advantage outweighs the
overhead, resulting in better runtime and/or task coverage. A com-
parison to the state of the art exhibits similar behavior, and a straight-
forward combination with preferred operators from hFF yields highly
competitive performance.

The paper is organized as follows. After briefly outlining our plan-
ning framework in Section 2, we explain the fixed aspects of our
setup in Section 3. We examine the impact of using regression vs.
classification networks in Section 4, we evaluate NN architecture pa-
rameters in Section 5, and we examine parameters of NN training in
Section 6. We then run a performance comparison of our best con-
figuration against state-of-the-art planners in Section 7. We finally
compare in Section 8 NN with a collection of simpler ML models,
showing that neural networks are indeed necessary in our context
to obtain accurate heuristic functions. Section 9 concludes the paper
with an outlook on future work.

2 Planning Framework
We use the FDR planning framework [5]. A planning task is a tuple
Π = 〈V,A, sI ,G〉. V is a set of variables, A is a set of actions, the
initial state sI is a complete variable assignment, and the goal G is
a partial variable assignment. Each action a ∈ A defines a precondi-
tion prea and an effect eff a, both partial variable assignments, and a
non-negative cost ca ∈ R+

0 . An action a is applicable in a state s if
prea is satisfied in s. Applying a in s leads to a state s′ with the same
variable assignment as in s except for those variable assignments de-
fined in eff a. A fact is a variable value pair 〈v, d〉 where v ∈ V and
d ∈ Dv .

A plan is a sequence of actions π = 〈a1, . . . , an〉, such that se-
quentially applying each action in π from sI leads to a state that
satisfies G. A plan is optimal if no other plan has smaller summed-up
action costs.

3 Setup
Before we delve into the details regarding the hyperparameters con-
cerning NN architectures and training, let us first clarify some things

that are fixed in our setup.
As stated, the major limitation in our learning setting is that we

generalize only over states. We learn a heuristic function per plan-
ning task. Precisely, we consider only states reachable from the orig-
inal initial state (in particular, keeping static predicates fixed). The
generalization is to different initial states within the same reachable
state space.

Our implementation is in Fast Downward (FD). Given a task Π,
to generate training data for supervised learning, we perform ran-
dom walks from the initial state sI , a simple generic method that is
applicable in general. We fixed the walk length to 200 steps, mak-
ing the probability of generating the same state twice negligible. For
each state s sampled in this manner, we use a teacher search to solve
s, within time/memory limits of 30 minutes/3.8 GB. If a plan π is
found, we store the states along π along with their goal distance ac-
cording to π. Different subsets of this data can be used for training,
as we shall discuss below. We parallelize this process on a cluster
of 200 Intel Xeon E5-2660 cores, with a combined time-out of 400
hours (around 2 hrs/core) to allow the generation of sufficient train-
ing data even on large instances.

Our goal-distance prediction NN receive as input a Boolean vector
representing all non-static facts in the task. We use fully connected
feed-forward NN, with different output layers interpreted as heuristic
values (classification vs. regression as discussed below). The number
of hidden layers is a parameter (i.e., a hyperparameter we will inves-
tigate). We scale the number of neurons in the hidden layers in equal
size steps from input layer size to output layer size. Note that, thus,
the number of tuneable parameters (weights) in the NN grows with
the number of facts, thus adapting the NN’s learning capacity to task
size.

We perform 10-fold cross-validation, i.e., we split the data into 10
folds and we train 10 different NN. Each NN uses 9 folds as training
data and the remaining 1 fold as validation data (test instances are
generated separately, see below). We use the adam optimizer [22] on
the mean squared error (MSE) with a batch size of 100. We do so
for up to 24 hours, up to 1000 epochs, or until the loss on the vali-
dation data does not improve anymore. The training is implemented
in Python2 using the Keras framework [11] with Tensorflow [1] as
back-end. The training for each NN is run on 4 CPU cores, with a 12
GB memory limit for the training data.

Regarding benchmarks, we use unit costs only, which simplifies
the use of classification to encode heuristic values. More importantly,
as already stated, we restrict ourselves to domains without dead-
ends. We initially selected 10 IPC domains, namely Blocksworld,
Depots, Grid, NPuzzle, Pipesworld-NoTankage, Rovers, Scanalyzer,
Storage, Transport, and VisitAll. In three of these domains, no useful
heuristic functions were learned, i.e., only few test instances were
solved. These domains are not suited for hyperparameter evalua-
tion as search performance there is almost uniformly bad. We will
therefore include these domains only in our discussion of competi-
tive performance (Section 7), identifying the main reasons for lack
of performance; everywhere else, we focus on the 7 domains were
interesting results were obtained. These are Blocksworld, Depots,
Grid, Pipesworld-NoTankage, Scanalyzer, Storage, and Transport.
From these domains, we consider the subset of IPC instances that
are solved by our teacher search in > 1 second and < 900 seconds,
filtering out tasks that are too easy to be interesting or too hard to
generate training data. We end up with 60 tasks as the benchmark
collection for our experiments.

For all evaluation purposes, we use search performance on a set
of test instances generated from these benchmark tasks. Namely, on



each benchmark task we performed random walks from sI to obtain
200 states (fresh states, i.e., in the rare case that a state had already
been generated in training, it was not used). These 200 states are used
as the initial states in 200 test instances per benchmark. In our eval-
uations, each heuristic trained in one of the 10 cross-validation folds
is used to solve 20 distinct instances out of these 200. We use greedy
best-first search, a canonical search algorithm given that admissibil-
ity cannot be guaranteed. The time/memory limits for solving each
test instance are 30 minutes/3.8 GB.

All benchmarks and test instances, as well as our source code,
can be accessed at https://doi.org/10.5281/zenodo.
3671553.

The remainder of this paper evaluates hyperparameters in our
framework, and the overall competitive performance of the result-
ing learned heuristic functions. As default settings, if not otherwise
specified, the teacher search is greedy best-first search with hFF [20];
for training we randomly select one state from each plan generated
by that search; the NN have 3 hidden layers with sigmoid activation
functions; and we do not use any regularization.

Domain #samples teacher values #parameters
blocks 504K 145/327 570K
depots 98K 46/414 722K
grid 123K 72/112 3M
pipes-nt 87K 91/411 1.4M
scanalyzer 43K 19/100 225K
storage 10K 107/133 662K
transport 152K 56/130 940K

Figure 1. Statistics about the training setup: Median number of training
samples; smallest and largest maximal teacher value over all tasks in a

domain; and median number of tuneable parameters in the default network
architecture.

Figure 1 shows some statistics elucidating key aspects of our
setup. First, “#samples” highlights the amount of training data (us-
ing a single state per plan, as discussed in detail below). The number
of training states ranged from 3K to 500K, and was less than 20K
only on three tasks. Second, we assess the range of heuristic values
to be predicted, which is relevant for the output size of classification
NN (see below). We see that the maximum heuristic value is often
moderate, but can sometimes be large. Third, column “#parameters”
shows the number of tuneable parameters in our NN, which varies
between 200K and 3000K. Grid has by far the largest number of pa-
rameters, due to its large input size where every key object and the
robot can be moved to each tile on the grid.

4 Classification vs. Regression
The way the network output is modeled has a huge impact on its
performance: should we use regression or classification? Regression
is the most obvious choice as heuristics values are numbers. On the
other hand, often classification networks perform unexpectedly well.

We explore three kinds of output models, one using regression
and two different ones using classification. The regression networks
have a single output neuron, whose output can directly be used as the
heuristic estimate. That neuron uses a rectified linear unit (ReLU) ac-
tivation function, which takes the maximum of the input and 0 so that
non-negative heuristic estimates are returned. In each of the two clas-
sification models, there are n+ 1 output units where n is the largest
teacher value during training (cf. Figure 1). The difference between

the two lies in how these outputs are interpreted. First, in the one-hot
encoding, the heuristic value h is represented during training by set-
ting output number h to 1 and all others to 0. Hence the i-th class
in the classification represents that the heuristic value is i. The out-
put layer uses a softmax activation function to obtain a probability
distribution over the classes. The heuristic estimate is the class with
the highest probability. Second, in the unary encoding [10], heuristic
value h is represented during training by setting all outputs ≤ h to
1 and those > h to 0. In other words, here the i-th class represents
that the heuristic value is ≥ i. The output layer uses a sigmoid ac-
tivation function, mapping into the open interval (0, 1). To interpret
this output as a heuristic function, neuron outputs > 0.01 are treated
as 1, others as 0. The heuristic estimate is the highest index i so that
all outputs ≤ i are set to 1. For example, the output vector 1101 is
interpreted as h = 1. (The threshold 0.01 consistently performed
better than higher or lower thresholds in preliminary experiments, so
we fixed it to that value.)

clsOH clsU reg
blocksworld 93.4 97.2 65.3
depots 87.7 76.2 77.3
grid 44.8 93.2 71.0
pipes-nt 84.3 89.6 82.0
scanalyzer 96.2 94.6 80.3
storage 14.5 95.5 98.5
transport 92.2 99.1 88.9
Average 73.3 92.2 80.5

Figure 2. Coverage (% of test instances) of classification with one-hot
encoding (clsOH) vs. classification with unary encoding (clsU) vs. regression

(reg). All networks have 3 hidden layers.

Figure 2 shows coverage data when using the resulting heuristic
functions in FD. Regression networks (“reg” column) are inferior to
classification (“clsOH” and “clsU” columns) except in Storage where
they yield a small advantage over classification with the unary en-
coding (“clsU”). Comparing the classification networks to each other,
there is some per-domain variance, but generally the unary encoding
is more robust and yields clearly superior performance overall. These
observations motivate the use of classification with a unary encoding,
and we shall henceforth stick to that setting.

5 Hidden Layers, Activation, Regularization

We now shed light on NN architecture hyperparameters, specifically
the number of hidden layers, the activation functions used in the hid-
den layers, and regularization methods. Figure 3 shows all the data.
We discuss this for each hyperparameter in turn.

Regarding the number of hidden layers, the leftmost part of Fig-
ure 3 shows that networks with 1 and 3 hidden layers perform best.
Using 5 layers still performs well, while 0 hidden layers result in
much worse performance. In preliminary experiments, networks with
more than 5 hidden layers solved hardly any test instances. To shed
some light on these differences, the next part of the figure shows
search space size data for NN with 1, 3, and 5 hidden layers. We can
see that overall the NN heuristics get more informed for more hidden
layers. The downside of using more hidden layers is increased NN
evaluation time, i.e., slower heuristic functions. The median number
of states expanded per second for 1, 3, and 5 hidden layers is 1010,



coverage median #expansions coverage
#hidden layers #hidden layers activation dropout rate L2 regularization weight

0 1 3 5 1 3 5 ReLU 0.2 0.4 0.1 1 10
blocks 30.7 100.0 97.2 83.3 585 899 2122 100.0 95.7 90.9 0.0 0.0 0.0
depots 70.7 80.6 76.2 75.9 499 182 129 77.6 81.2 77.8 0.2 0.2 0.2
grid 41.8 94.0 93.2 47.8 14K 373 2761 78.2 77.0 72.2 0.0 0.0 0.0
pipes-nt 70.9 88.9 89.6 74.8 818 697 699 84.2 89.3 90.1 7.2 7.2 7.4
scanalyzer 49.0 88.2 94.6 83.2 360 173 160 96.5 81.8 73.8 15.4 15.4 15.4
storage 100.0 100.0 95.5 55.0 7155 1917 25K 99.5 56.0 31.5 0.0 0.0 0.0
transport 58.3 98.3 99.1 99.7 47K 2910 719 89.6 99.9 99.9 0.0 0.0 0.0
Average 60.2 92.9 92.2 74.3 - - - 89.4 83.0 76.6 3.3 3.3 3.3

Figure 3. Coverage (%) for different number of hidden layers, activation functions, dropout rates, and L2 regularization weights. Median #expansions
computed over commonly solved tasks. (Recall that the default configuration has 3 hidden layers, uses a sigmoid activation function and no regularization

technique; its coverage data is given here in column “3” of the leftmost part.)

365, 159 respectively. Overall, 3 hidden layers provide the most ro-
bust trade-off between informedness and speed, so we fix this as de-
fault value.

Regarding the activation functions, up to now all neurons in the
hidden layers use the sigmoid activation function. A popular alterna-
tive to use the aforementioned ReLU function instead. As Figure 3
shows, however, this performs worse than sigmoid activation here.

Regularization methods are a means to avoid overfitting. We ex-
periment with two such methods here, (1) dropout and (2) L2 regular-
ization. Regarding (1), in dropout every hidden neuron is assigned a
dropout probability. During training, nodes are omitted from the net-
work evaluation with their dropout probability, making the network
less reliant on just a few nodes. Regarding (2), L2 regularization adds
the L2 norm of the network parameters to the loss during training,
to punish large network parameters. Thus only performance-critical
weights will remain large, creating a bias to “simpler” models. The
strength of this bias is adjusted by a weight for the L2 norm. As the
results in Figure 3 show, unfortunately neither of the two methods
tends to be useful in our context (with the single mild exception of
Depots where performance improves slightly with dropout).

6 Training

Next, we examine different ways to use the available data for train-
ing. In the first part, we experiment with different strategies to select
samples from the generated data to be used during training. In the
second part, we evaluate weighting the samples to counter-act unbal-
anced distributions of heuristic values in the training data; we discuss
this alongside with pruning which avoids training data duplication.

During data generation we store for every solved task all
states si along the plan found with their cost ci to the goal
〈(s1, c1), (s2, c2), . . . , (sn, 0)〉. A straightforward choice is to train
on all available state-cost pairs. We call this sample selection strategy
entire-plan. This approach provides the largest possible number of
training states. A potential issue though is that these states are often
highly correlated, with small changes from one state to the next (e.g.
the position of a single block in Blocksworld). Furthermore, as the
space of states close to the goal is typically small, those states tend to
be frequently visited so that the training data set is highly repetitive
in that region (such states are often visited thousands to hundreds of
thousands of times). An alternative that addresses both issues is to
select a single randomly chosen pair (si, ci) per plan; we call this
the random-state selection strategy. The training states thus selected
tend to be less close than in entire-plan, and they tend to contain less
repetitions. The disadvantage of course lies in the amount of training

data – given the same set of teacher plans, the number of training
states is reduced by a factor of 10 to 138 in our benchmarks.

For both entire-plan and random-state, small teacher values will
frequently occur in the data. This might be an issue as, for the ef-
fectiveness of heuristic search, what matters most are the states far
from the goal – the heuristic function should yield crucial guidance
there, while close to the goal usually search can easily find the so-
lution anyhow. Motivated by this intuition, we experimented with a
third strategy, aimed at emphasizing states with large goal distance
during training: we selected only the initial state (s1, c1) of each
plan. We call this the init-state selection strategy. This changes the
teacher value distribution dramatically, with most of the weight near
the maximum teacher value.

The three leftmost columns in Figure 4 (top) show the perfor-
mance of the three sample selection strategies, each trained on the
same number of training states. As the data shows, random-state is
consistently better then entire-plan, clearly showing an advantage
of training on uncorrelated states. The performance of init-state is
mostly bad. A closer look at the data reveals that coverage tends to
be higher on tasks where the training data contains small heuristic
values, indicating that our hypothesis motivating this variant – a sup-
posed advantage of emphasizing states far from the goal in the train-
ing data – is wrong.

The observed advantage of random-state over entire-plan should
be weighed against the larger effort for data generation, resulting
from the selection of only a single state per generated plan. The
“random-state[#plans]” column in Figure 4 (top) shows performance
for random-state when using the same number of training plans as
entire-plan, i.e., to select a single training state from each training
plan used by entire-plan. As we can see, the much reduced train-
ing data is insufficient to achieve top performance, so entire-plan is
in the advantage when the computational resources for training data
generation are limited. That said, performance remains at top level in
Depots, Grid and Transport. So, for some domains, less training ef-
fort is needed. We will discuss this point in more detail in Section 7.

Next, we evaluate the impact of weighting and pruning samples in
the training data. The motivation for weighting is the imbalanced na-
ture of the sample sets produced by the three sample selection strate-
gies. In all three strategies, some heuristic values may be underrepre-
sented (in particular very high or very small ones), which might not
match the data distribution during search. Weighting is a standard
method to address this kind of phenomenon. During training, one
multiplies the loss with a weight factor chosen individually per data
point, in our case per heuristic value. The weight factor for heuristic
value h is 1/Nh where Nh is the number of sample states with that



sample selection strategy pruning/weighting
init-state random-state entire-plan random-state[#plans] P+W+ P+W- P-W+ P-W-

blocksworld 0.0 97.2 81.6 42.2 60.1 0.0 66.5 97.2
depots 28.6 76.2 71.2 78.6 45.2 76.7 39.8 76.2
grid 12.2 93.2 48.0 71.5 88.8 70.0 89.5 93.2
pipes-nt 90.6 89.6 75.8 63.8 83.9 87.0 89.9 89.6
scanalyzer 16.8 94.6 79.4 60.0 72.8 81.5 76.6 94.6
storage 13.5 95.5 52.0 21.0 24.5 45.0 24.5 95.5
transport 17.8 99.1 93.7 96.1 99.8 99.8 99.7 99.1
Average 25.6 92.2 71.7 61.9 67.8 65.7 69.5 92.2

(a) Blocksworld (b) Depots (c) Grid (d) Pipesworld (e) Scanalyzer (f) Storage (g) Transport

Figure 4. Top: Coverage (%) for different configurations of training. Left part: sample selection strategies on same amount of training states, init-state
(selecting the initial state of every teacher-generated plan) vs. random-state (selecting a single random state per plan) vs. entire-plan (selecting all states along

every plan). Middle Part: random-state restricted to the same number of plans as entire-plan. Right part: combinations of enabling (+)/disabling (-) pruning and
weighting. Bottom: Exemplary learning curves, for one example task per domain. Loss on validation data plotted over the number of training epochs.

value, to the effect that every heuristic value has the same training
impact.

Pruning includes each sample state only once in the training data.
The motivation is that states may appear multiple times, especially
for the entire-plan strategy where states close to the goal may oc-
cur very often. The network might memorize those states, affecting
generalization.

Because the phenomena addressed by weighting and pruning are
correlated, we evaluate all combinations of the two methods. The
data is shown in the rightmost part of Figure 4 (top). The impact
of the two methods varies greatly per domain, but overall they are
clearly detrimental so our default is to switch them off.

To illustrate the learning process, Figure 4 (bottom) shows exem-
plary learning curves, i.e., error on validation data plotted over train-
ing epochs. We see that, in all domains, the neural networks achieve
low error after few training iterations; afterwards, they tend to start
overfitting. For most training runs, the best model (smallest valida-
tion loss) is found in less than 100 epochs. The training is stopped
after at most 1000 epochs, 24 hours, or when the validation loss stops
improving. Upon termination, we store the best model found.

7 Competitive Performance
We now evaluate our best configuration (i.e., the default setting) from
the point of view of competitive performance. First, we compare
to state-of-the-art (non-learning) planning systems. Then we exam-
ine the impact of using less training data, i.e., reducing the train-
ing overhead relative to non-learning systems. Finally, we reconsider
the three domains where no competitive heuristic functions were
learned, and highlights the reason for this lack of performance.

Comparison to Standard Planners
We are primarily interested in the comparison to the teacher search:
Can the NN we learn outperform the teacher? As the teacher uses
the hFF heuristic, this is also a comparison to the most wide-spread
standard technique. The answer to the question turns out to be “yes”,
though with weaknesses regarding heuristic evaluation speed.

Another question of interest of course is: How do the NN heuristic
functions we learn compare to the state of the art? We address this
by comparing to LAMA [27] and Mercury [14]. The answer turns
out to be more negative for NN heuristic functions on their own, but
a straightforward combination with hFF preferred operators yields a
planner competitive with the state of the art.

Figure 5 (top) shows the data. Consider first the comparison to the
teacher search, GBFS with hFF. In terms of overall coverage, our ap-
proach is comparable, winning in Pipesworld-NoTankage while los-
ing in Depots, with small losses in the other domains. In terms of
expansions, we do substantially better in 6 out of 7 domains, but that
advantage is sometimes outweighed by the disadvantage in evalu-
ation speed. In Depots, Pipesworld-NoTankage, and Scanalyzer we
get better median runtime (the picture for arithmetic mean runtime is
qualitatively similar).

Figure 5 (bottom) sheds more light on this with a per-instance
view on runtime. Blocksworld, Storage and Transport favor hFF, De-
pots and Scanalyzer favor NN heuristics. Pipesworld-NoTankage and
Grid are extremely mixed (recall here though the much higher cover-
age of NN heuristics in Pipesworld-NoTankage). Certainly, competi-
tive NN heuristics of strengths complementary to hFF can be learned.

Note that other works using NN for search guidance [30, 31, 2]
employ much more powerful resources for NN evaluation than a sin-
gle CPU core. We use the latter here for the sake of fair comparison.
But that neglects the parallelizability of NN evaluation, in particu-
lar the possible use of GPUs. As an initial exploration, we ran pre-
liminary experiments using multiple cores. With 2 cores we get a
speed-up of about 50%, with 4 cores of another 20%. It remains a
question for future work to explore this direction systematically (see
Section 9).

The comparison to LAMA and Mercury is more negative, though
NN heuristics are still competitive in some regards. More importantly
however, the advantages of LAMA and Mercury are mostly due to
their optimizations beyond heuristic functions, in particular the use
of preferred operators (and, for Mercury, of a short-cut technique
recognizing relaxed plans that work in reality). The rightmost part
of Figure 5 (top) adds preferred operators (generated by hFF) to our



coverage in % median #expansions median #exp. per second median runtime NN-POhFF

NN hFF LAM Merc NN hFF LAM Merc NN hFF LAM Merc NN hFF LAM Merc cov #exp time
blocksworld 97.2 100 100 100 1381 12665 465 516 857 14536 19593 14875 1.7 0.8 0.1 0.8 98.8 442 0.9
depots 76.2 92.1 100 99.2 182 47731 8734 8746 530 1490 4792 3749 0.4 17.9 1.1 3.4 91 65 0.3
grid 93.2 93.2 100 100 493 2439 150 183 125 1810 4525 1739 4.1 1.5 0.2 4.9 94 493 3.2
pipes-nt 89.6 63.6 98.7 92.5 354 832 1676 138 295 752 3563 1640 1.2 1.5 0.6 2.7 97.9 103 0.8
scanalyzer 94.6 97.8 100 100 269 482 208 217 183 38 1403 725 1.4 5.7 0.7 8.3 98.2 97 1.1
storage 95.5 94.5 96 97 4208 2089 24712 16055 51 722 7309 5283 83.9 3 3.4 4.5 98 4145 39.5
transport 99.1 100 100 100 3002 4586 192 0 458 799 3415 0 8 6.3 0.2 2.8 100 122 1.1
Average 92.2 91.6 99.2 98.4 1413 10118 5162 3693 357 2940 6616 4116 14.4 5.2 0.9 3.9 96.8 781 6.7

(a) Blocksworld (b) Depots (c) Grid (d) Pipesworld (e) Scanalyzer (f) Storage (g) Transport

Figure 5. Top: Competitive performance. NN is our best NN heuristic configuration. hFF is the teacher search (GBFS with hFF, not using preferred
operators). LAMA (LAM) and Mercury (Merc) included as a representation of the state of the art. NN-POhFF is FD’s dual-queue GBFS with the preferred
operators generated by hFF (with columns showing coverage, median #expansions, median runtime). Medians are calculated over the the commonly solved

tasks. Bottom: Per-instance runtime, best NN heuristic configuration (x-axis) vs. GBFS with hFF (y-axis); both axes log-scaled.

planner in the most straightforward fashion. In effect, the coverage
gap almost closes; we tend to do significantly better in terms of ex-
pansions; and we outperform Mercury in runtime.

Training with Less Data
Any advantages vs. purely model-based techniques must be weighed
against the training overhead incurred by NN heuristics. That over-
head pays off, in our current setting, if many different initial states
within the same state space will be encountered online. As we ar-
gued before, this is realistic in certain situations, e.g. if exogenous
behavior may unpredictably change the system state. In such a sce-
nario, an offline training overhead will eventually be amortized by a
performance advantage on online initial states.

coverage in % median #expansions
100 75 50 25 2.5 100 75 50 25 2.5

blocks 97.2 96.2 94.2 87.8 45.3 409 265 230 364 93K
depots 76.2 89.3 90.6 90.8 82.8 181 78 94 150 883
grid 93.2 64.2 70.8 70.8 72.5 367 1005 1266 1302 1948
pipes 89.6 95.4 93.6 93.1 78.4 462 121 136 215 3501
scan 94.6 95.1 93.2 82.9 57.4 86 50 45 45 208
storage 95.5 18.5 59.5 32.5 1 626 222K 37K 228K -
trans 99.1 99.8 99.0 97.7 94.4 2686 146 165 248 910
Avrg 92.2 79.8 85.8 79.4 61.7 688 32K 6K 33K -

Figure 6. Performance of NN heuristics trained on only a fraction (100%,
75%, 50%, 25%, 2.5%,) of the available data; 100% included for

comparison.

That said, it is of course a relevant question how much training
effort is required to obtain good results: How much data do we need?
Figure 6 shows performance when training our NN with less data.
As we can see, performance is relatively robust in this parameter.
In Transport, even 2.5% of the generated data suffice to obtain the

same performance. The training overhead is dominated by the ef-
fort taken to generate the data (the actual learning process is around
two orders of magnitude faster). So the above training-data fractions
translate directly into fractions of the 400 hours allocated in our setup
to training-data generation (cf. Section 3). To generate the 2.5% data
sufficient for Transport, only 10 hours instead of 400 hours are re-
quired. To benefit from these observations, training data should be
generated on demand per domain, stopping based on the develop-
ment of either MSE or search performance.

Results on the 3 Unsuccessful Domains
Figure 7 shows performance data on the three dead-end free domains
where no competitive heuristic functions were learned: NPuzzle,
Rovers, VisitAll. As is immediately apparent from the data, not only
have we the disadvantage of slow heuristic evaluation, but also infor-
mativity is mostly bad. In Rovers we have the compounded problem
of search space size and per-node effort.

coverage #expansions #exp. per sec. runtime
NN hFF NN hFF NN hFF NN hFF

npuzzle 0.0 97.3 – – – – – –
rovers 53.0 73.9 3543 1165 43 1800 82.8 0.5
visitall 0.2 94.1 1065K 93K 893 35354 1251.5 2.6
Average 17.7 88.4 – – – – – –

Figure 7. Performance comparison to GBFS with hFF on the three
dead-end free IPC domains where no competitive heuristic functions were

learned. All parts except coverage show median values over commonly
solved tasks.

In NPuzzle and VisitAll, the NN heuristics are extremely badly
informed. An explanation for this is the extremely bad quality of the
teacher plans (returned by GBFS with hFF) in these domains, produc-
ing training states with excessively overestimated values. For exam-



Reg LR RF SVR10 SVR100 Reg LR RF SVR10 SVR100

Reg - 53 44 51 42 Reg - 18 18 18 8
LR 5 - 13 21 11 LR 2 - 8 5 3
RF 14 45 - 45 38 RF 2 12 - 5 4
SVR10 7 37 13 - 0 SVR10 2 15 15 - 0
SVR100 16 47 20 58 - SVR100 12 17 16 20 -

Figure 8. Pairwise comparison of ML techniques. A figure entry row X column Y shows in how many task technique X obtains a better MSE than technique
Y. Left part: comparison for the domains Blocksworld, Depots, Grid, Pipesworld-NoTankage, Scanalyzer, Storage, and Transport where useful heuristic

functions are learned. Right part: comparison for NPuzzle, Rovers, and VisitAll where that is not the case. Data shown for regression networks (Reg), linear
regressors (LR), random forest regressors (RF), and support vector regressors (SVR) with a C value of 10, or 100 and a radial basis function as kernel.

Classification networks are not included here as the error they are trained on is incomparable (see text).

ple, in NPuzzle, some training states have teacher values of 2500 and
more. This problem may be alleviated by using a different teacher,
e.g. LAMA, a bounded suboptimal planner, or an optimal planner.
Indeed, in preliminary experiments with weighted A∗ as the teacher,
coverage in one of the NPuzzle benchmark tasks increases from 0%
to 40%. One should note that although an (bounded sub-)optimal
teacher might lead to a NN with better heuristic estimates, it does not
provide guarantees on the learned heuristic.

8 Comparison to Simpler ML Methods
We have seen that NN can learn useful heuristic functions. However,
NN are large and complex structures that are expensive to train. The
question arises whether that complexity is needed. Hence we now
compare our NN heuristic function to simpler ML methods: linear
regression, random forests [7], and support vector regression [15].
We train each technique once on each benchmark task. As support
vector regression (using the radial basis function as kernel) is not
effective in training data size (training time scales cubically in the
number of samples), we use a relatively small fragment of our data.
Specifically, we use 35,000 sample states as training data, and an-
other 5,000 as test data. For NN, we use 5,000 of the 35,000 training
data as validation data instead. With this data, the network training
times are between the training times of support vector regression,
with a C parameter of 10 and 100.4

We perform a pairwise comparison of techniques, counting for
each comparison X vs. Y on how many tasks X obtains a smaller
MSE on the test data than Y. Classification techniques are not in-
cluded here as their error is incomparable to that of all the other
techniques, where a single output represents the heuristic value. To
see this, say that a training state si has cost ci = 100 but has learned
heuristic value 1. For all methods here except classification, the MSE
results from the difference 100− 1. For both types of classification,
however, one wrongly set output (0 instead of 1 or vice versa) suffice
to obtain the wrong heuristic value.

Figure 8 shows the data. We see that regression NN are superior to
all other techniques. For those 7 domains where competitive heuris-
tics were learned (left-hand side of the figure), even the best com-
petitor, SVRs with a C parameter of 100, is better on only a small
fraction of our benchmark tasks. For the other 3 domains (right-hand
side), the SVRs with a C parameter of 100 are only slightly better.

One may wonder whether the simpler ML techniques could com-
pensate their worse informativity through increased evaluation speed,
i.e., faster heuristic functions. However that is not so: except for lin-
ear regression, evaluation is at least one order of magnitude slower
4 The C parameter penalizes misclassification of individual samples. High

values misclassify fewer training samples, but shrink the margin between
the hyperplane which shall separate the classes and the training samples.

than our regression NN. Altogether, these results indicate that the
complexity of NN is needed here to obtain good results.

9 Conclusion and Outlook
We propose to address NN heuristic function learning for classical
planning from the ground up, and we have explored the simplest pos-
sible setup here. We have identified the behavior of relevant hyper-
parameters, and we have shown that, on a collection of domains, the
state of the art can be reached and can be outperformed in terms of
heuristic informedness and runtime.

This is merely a first step on the long road towards NN heuristic
function learning in classical planning, but we believe it provides a
solid starting point for further investigations.

One issue for future work is to reduce the training effort and enable
learning on tasks infeasible for the teacher, for example by learning
in iteratively growing distances backwards from the goal as done in
some previous works [3, 4, 2]. Another issue is improving heuris-
tic evaluation speed. One possibility could be to evaluate states in
batches as done by Agostinelli et al. [2], leveraging ways to evalu-
ate a NN on multiple inputs in parallel across multiple processors
or even GPUs. An interesting avenue is to replace our output layers
with action-choice classification, and use the resulting NN as search
guidance in the style of preferred operators.

Ambitious and explorative tasks for future research remain in
NN architecture design. To reduce NN size and, therewith, improve
heuristic evaluation speed, an idea is to learn auto-encoders of states
at the NN front end, transforming the state representation into a more
compact learned representation. To facilitate learning in deeper NN,
so-called residual blocks [16] might be useful, where the output of
layer X provides additional input to layer X+2. This technique orig-
inates in image recognition, but is of a generic nature and was ex-
ploited also by the aforementioned work on Rubik’s Cube [2].

The grand challenge, of course, is stronger generalization, up to
entire domains which, given the generality of the “domain” con-
cept, constitutes a veritable “General AI” challenge. We believe this
should be approached step by step.

Generalizing over goals is straightforward in principle, simply by
making them an additional input. However, in full generality this
will massively increase the amount of training data required. So it
makes sense to distinguish different levels of goal generalization, like
a fixed number of possible goals, a fixed number of goal variables
whose value may change, or a bound on variance in the distribution
of goals.

The next step could be generalization over static predicates, e.g.
road-map graphs, while keeping the object universe fixed. Observe
that this in itself is a major challenge as it would encompass, and
vastly surpass, the special case of navigation on arbitrary fixed-size



road maps. One idea in this context might be the use of graph convo-
lution [23] at the input layers of the neural network.

Finally, domain generalization can draw on Toyer et al.’s [33]
ideas for weight sharing over predicate and action-schema instances,
or could potentially be done by structuring states into variable-
dependency patterns where weight sharing is over patterns, or by en-
coding states like Sievers et al. [29] as graph structures and training
graph convolutional networks on them. We believe that a meaning-
ful categorization of domains into easier and harder classes would be
useful to sub-structure these endeavors.

ACKNOWLEDGEMENTS

Patrick Ferber was funded by DFG grant 389792660 as part
of TRR 248 (see https://perspicuous-computing.
science). This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project Certified Correctness and
Guaranteed Performance for Domain-Independent Planning (CCGP-
Plan).

We thank Alan Fern and Scott Sanner for the insightful discus-
sions.

REFERENCES

[1] Mart’ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Man’e, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fern, a Vi’egas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015.

[2] Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre
Baldi, ‘Solving the Rubik’s cube with deep reinforcement learning and
search’, Nature Machine Intelligence, 1, 356–363, (2019).

[3] Shahab J. Arfaee, Sandra Zilles, and Robert C. Holte, ‘Bootstrap learn-
ing of heuristic functions’, in Proc. SoCS 2010, pp. 52–60, (2010).

[4] Shahab J. Arfaee, Sandra Zilles, and Robert C. Holte, ‘Learning heuris-
tic functions for large state spaces’, AIJ, 175, 2075–2098, (2011).

[5] Christer Bäckström and Bernhard Nebel, ‘Complexity results for SAS+

planning’, Computational Intelligence, 11(4), 625–655, (1995).
[6] Blai Bonet and Héctor Geffner, ‘Planning as heuristic search’, AIJ,

129(1), 5–33, (2001).
[7] Leo Breiman, ‘Random forests’, Machine Learning, 45(1), 5–32,

(2001).
[8] Cameron Browne, Edward J. Powley, Daniel Whitehouse, Simon M.

Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego
Perez, Spyridon Samothrakis, and Simon Colton, ‘A survey of monte
carlo tree search methods’, IEEE Transactions Computational Intelli-
gence and AI in Games, 4(1), 1–43, (2012).

[9] Olivier Buffet and Douglas Aberdeen, ‘FF + FPG: Guiding a policy-
gradient planner’, in Proc. ICAPS 2007, pp. 42–48, (2007).

[10] Jianlin Cheng, Zheng Wang, and Gianluca Pollastri, ‘A neural network
approach to ordinal regression’, in 2008 IEEE International Joint Con-
ference on Neural Networks (IEEE World Congress on Computational
Intelligence), pp. 1279–1284, (June 2008).

[11] François Chollet. Keras. https://keras.io, 2015.
[12] Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber, ‘Multi-column

deep neural networks for image classification’, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3642–3649, (2012).

[13] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gam-
bardella, and Jürgen Schmidhuber, ‘Flexible, high performance convo-
lutional neural networks for image classification’, in Proc. IJCAI 2011,
pp. 1237–1242, (2011).

[14] Carmel Domshlak, Jörg Hoffmann, and Michael Katz, ‘Red-black plan-
ning: A new systematic approach to partial delete relaxation’, AIJ, 221,
73–114, (2015).

[15] Harris Drucker, Chris J. C. Burges, Linda Kaufman, Alex Smola, and
Vladimir Vapnik, ‘Support vector regression machines’, in Proceedings
of the 9th International Conference on Neural Information Processing
Systems, pp. 155–161, (1996).

[16] K. He, X. Zhang, S. Ren, and J. Sun, ‘Deep residual learning for image
recognition’, in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, (June 2016).

[17] Malte Helmert, ‘The Fast Downward planning system’, JAIR, 26, 191–
246, (2006).

[18] Malte Helmert and Carmel Domshlak, ‘Landmarks, critical paths and
abstractions: What’s the difference anyway?’, in Proc. ICAPS 2009, pp.
162–169, (2009).

[19] Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim,
‘Merge-and-shrink abstraction: A method for generating lower bounds
in factored state spaces’, JACM, 61(3), 16:1–63, (2014).

[20] Jörg Hoffmann and Bernhard Nebel, ‘The FF planning system: Fast
plan generation through heuristic search’, JAIR, 14, 253–302, (2001).

[21] Murugeswari Issakkimuthu, Alan Fern, and Prasad Tadepalli, ‘Train-
ing deep reactive policies for probabilistic planning problems’, in Proc.
ICAPS 2018, pp. 422–430, (2018).

[22] Diederik P. Kingma and Jimmy Ba, ‘Adam: A method for stochastic
optimization’, in Proc. ICLR 2015, (2015).

[23] Thomas N. Kipf and Max Welling, ‘Semi-supervised classification
with graph convolutional networks’, in 5th International Conference
on Learning Representations (ICLR 2017), (2017).

[24] Donald E. Knuth and Ronald W. Moore, ‘An analysis of alpha-beta
pruning’, AIJ, 6(4), 293–326, (1975).

[25] Levente Kocsis and Csaba Szepesvári, ‘Bandit based Monte-Carlo
planning’, in Proc. ECML 2006, pp. 282–293, (2006).

[26] Judea Pearl, Heuristics: Intelligent Search Strategies for Computer
Problem Solving, Addison-Wesley, 1984.

[27] Silvia Richter and Matthias Westphal, ‘The LAMA planner: Guid-
ing cost-based anytime planning with landmarks’, JAIR, 39, 127–177,
(2010).

[28] Jendrik Seipp, ‘Better orders for saturated cost partitioning in optimal
classical planning’, in Proc. SoCS 2017, pp. 149–153, (2017).

[29] Silvan Sievers, Michael Katz, Shirin Sohrabi, Horst Samulowitz,
and Patrick Ferber, ‘Deep learning for cost-optimal planning: Task-
dependent planner selection’, in Proc. AAAI 2019, pp. 7715–7723,
(2019).

[30] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Tim-
othy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis, ‘Mastering the game of Go with deep neural net-
works and tree search’, Nature, 529(7587), 484–489, (2016).

[31] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent
Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering Chess and
Shogi by self-play with a general reinforcement learning algorithm.
arXiv:1712.01815v1 [cs.AI], 2017.

[32] Sam Toyer, Generalised Policies for Probabilistic Planning with Deep
Learning, Master’s thesis, Australian National University, October
2017.

[33] Sam Toyer, Felipe Trevizan, Sylvie Thiébaux, and Lexing Xie, ‘Action
schema networks: Generalised policies with deep learning’, in Proc.
AAAI 2018, pp. 6294–6301, (2018).

[34] Jesus Virseda, Daniel Borrajo, and Vidal Alcázar, ‘Learning heuristic
functions for cost-based planning’, in Proceedings of ICAPS workshop
on Planning and Learning, (2013).


