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Abstract

The FD-Autotune learning planning system is based on the
idea of domain-specific configuration of the latest, highly
parametric version of the Fast Downward Planning Frame-
work by means of a generic automated algorithm configura-
tion procedure. We describe how the extremely large con-
figuration space of Fast Downward was restricted to a sub-
space that, although still very large, can be managed by state-
of-the-art automated configuration procedures. FD-Autotune
uses the well-known ParamILS configurator and was realised
using the recently developed HAL experimentation environ-
ment.

Introduction
Developers of state-of-the-art, high-performance algorithms
for combinatorial problems, such as planning, are frequently
faced with many interdependent design choices. These
choices can include the heuristics to use during search, op-
tions controlling the behaviour of these heuristics, as well as
which search techniques to use and in what combination.

Recent work in other combinatorial problem domains
such as satisfiability (SAT) and mixed-integer program-
ming (MIP) suggests that by exposing these design choices
as parameters, developers can leverage generic tools for
automated algorithm configuration to find performance-
optimizing configurations of the resulting highly parame-
terised algorithm (Hutter et al. 2007; Hutter, Hoos, and
Leyton-Brown 2010). In fact, the configurations resulting
from this process often perform substantially better than
those found manually through exploration by human ex-
perts.

These results suggest the following new approach to
building a learning planner. Given a highly-parametric, gen-
eral purpose planner P , a representative set I of planning
instances from a specific domain, and a performance metric
m to be optimised, we can obtain a configuration of the pa-
rameters of P optimised for performance on I with respect
to m using a generic automated algorithm configuration tool.

For this submission, we apply the above approach using
a new, highly-parameterised version of the Fast Downward
planning system (Helmert 2006) and the state-of-the-art
automated algorithm configuration tool ParamILS (Hut-
ter, Hoos, and Stützle 2007; Hutter et al. 2009), creating
domain-specific planning algorithms FD-Autotune.s (speed)

and FD-Autotune.q (quality). FD-Autotune.s refers to the
specific configuration of Fast Downward resulting from us-
ing mean runtime to find an initial satisficing plan as the
optimisation metric, and FD-Autotune.q is the configuration
obtained when using mean plan cost after a fixed runtime as
the optimisation metric. Due to the highly structured and po-
tentially infinite configuration space in Fast Downward, we
carefully limited the number of parameters in order to com-
ply with the requirements of ParamILS and to retain as many
potential planner configurations as possible. Our learning
approach was implemented to take advantage of HAL, a re-
cently released tool for automating the specification and ex-
ecution of common empirical algorithm design and analysis
tasks (Nell et al. 2011).

This work has been done in parallel, and sharing some
team members, with IPC submissions applying the above
approach to constructing domain-specific planners to LPG,
another heavily parameterised planning system (Gerevini,
Saetti, and Serina 2008).

The Fast Downward Planning Framework
In this section we describe the capabilities of the IPC-2011
version of the Fast Downward planning system. Since Fast
Downward incorporates many different algorithms and ap-
proaches, which have each been published separately in
peer-reviewed conferences and/or journals, we will simply
list the available components with pointers to further infor-
mation for the interested reader.

The Fast Downward planning system (Helmert 2006) is
composed of three main parts: the translator, the preproces-
sor, and the search component, which are run sequentially
in this order. The translator (Helmert 2009) is responsible
for translating the given PDDL task into an equivalent one
in SAS+ representation. This is done by finding groups of
propositions which are mutually exclusive and combining
them into a single SAS+ variable. The preprocessor per-
forms a relevance analysis and precomputes some data struc-
tures that are used by the search and certain heuristics. The
search component, whose capabilities we will describe in
detail here, searches for a solution to the given SAS+ task.

Search
The search component features three main types of search
algorithms:



• Eager Best-First Search — the classic best-first search.
The same search code is used for greedy best-first search,
A∗, and weighted A∗ by plugging in different f functions.
The multi-path-dependent LM-A∗ (Karpas and Domshlak
2009) is also implemented here.

• Lazy Best-First Search — this is best-first search with de-
ferred evaluation (Richter and Helmert 2009). Here as
well, the same search code is used for lazy greedy best-
first search and lazy weighted A∗ by using a different f
function.

• Enforced Hill-Climbing (Hoffmann and Nebel 2001) —
an incomplete local search technique. This has been
slightly generalised from classic EHC to allow preferred
operators from multiple heuristics, as well as enabling or
disabling preferred operator pruning.

Each of these search algorithms can take several param-
eters and use one or more heuristics (heuristic combination
methods will be discussed next). In addition, these searches
can be run in an iterated fashion. This can be used, for ex-
ample, to produce RWA∗ (Richter, Thayer, and Ruml 2010),
the search algorithm used in LAMA (Richter and Westphal
2010).

Heuristic Combination
As mentioned previously, the search algorithms described
above can work with multiple heuristic evaluators. There
are several heuristic combination methods available in the
Fast Downward planning system, which are implemented as
different kinds of open lists.

Some of these combination methods amount to simple
arithmetic combinations of heuristic values and can use a
standard (“regular”) open list implementation, while others
treat the different heuristic estimates 〈h1(s), . . . , hn(s)〉 as
a vector that is not reduced to a single scalar value (Röger
and Helmert 2010).1 As a result, some of these latter meth-
ods do not necessarily induce a total order on the set of open
states. The following combination methods are available in
Fast Downward, in addition to performing a regular search
using a single heuristic:

• Max — taking the maximum of several heuristic esti-
mates: max{h1(s), . . . , hn(s)}.

• Sum — taking the sum or weighted sum of several heuris-
tic estimates: w1h1(s) + · · ·+ wnhn(s).

• Selective Max (Domshlak, Karpas, and Markovitch 2010)
— a learning-based method which chooses one heuristic
to evaluate at each state: hi(s) where i is chosen on a per-
state basis using a naive Bayes classifier trained on-line.

• Tie-breaking — considering the heuristics in fixed order:
first consider h1(s); if ties need to be broken, consider
h2(s); and so on.

1To simplify discussion, this description assumes that search
algorithm behaviour only depends on heuristic values, but all
these algorithms can also take into account path costs as in A∗ or
weighted A∗.

• Pareto-optimal — all states whose heuristic value vector
is not Pareto-dominated by another heuristic value vec-
tor are candidates for expansion, with selection between
multiple candidates performed randomly.

• Alternation (Dual Queue) — heuristics are used in round-
robin fashion: the first expansion uses h1(s), the second
uses h2(s), and so on until hn(s) and then continuing
again with h1(s). Alternation can also be enhanced by
boosting (Richter and Helmert 2009).
Each combination method can take several parameters.

One important parameter is whether the open list contains
only states which have been reached via preferred operators,
or all states.

Moreover, wherever this makes sense, instead of using
different heuristics as their components, these combination
methods can also combine the results of different open lists
which can themselves employ combination methods, and
this nesting can even be performed recursively. For exam-
ple, it is possible to use alternation over one regular heuris-
tic, one Pareto-based open list, and one open list that uses
tie-breaking over various weighted sums.

Such combinations allow us to build the “classic” boosted
dual queue of Fast Downward: use an alternation approach,
which combines two standard open lists, one of which holds
all states, and the other only preferred states, both of which
are based on a single heuristic estimate. To use two heuristic
estimates as in Fast Diagonally Downward (Helmert 2006)
or LAMA (Richter and Westphal 2010), alternation over
four open lists would be used (for each heuristic, one hold-
ing all states and one holding only preferred states).

Heuristics
So far, we have discussed the search algorithms and heuristic
combination methods available in the Fast Downward plan-
ning system. We now turn our attention to the heuristics
available in Fast Downward. Due to the number of heuris-
tics, we simply list the available heuristics, with pointers to
relevant literature.

Admissible Heuristics
• Blind — 0 for goal states, 1 (or cheapest action cost for

non-unit-cost tasks) for non-goal states
• hmax (Bonet, Loerincs, and Geffner 1997; Bonet and

Geffner 1999) — the relaxation-based maximum heuristic
• hm (Haslum and Geffner 2000) — a very slow implemen-

tation of the hm heuristic family
• hM&S (Helmert, Haslum, and Hoffmann 2007; 2008) —

the merge-and-shrink heuristic
• hLA (Karpas and Domshlak 2009; Keyder, Richter, and

Helmert 2010) — the admissible landmark heuristic
• hLM-cut (Helmert and Domshlak 2009) — the landmark-

cut heuristic

Inadmissible Heuristics
• Goal Count — number of unachieved goals
• hadd (Bonet, Loerincs, and Geffner 1997; Bonet and

Geffner 1999) — the relaxation-based additive heuristic



• hFF (Hoffmann and Nebel 2001) — the relaxed plan
heuristic

• hcg (Helmert 2004) — the causal graph heuristic

• hcea (Helmert and Geffner 2008) — the context-enhanced
additive heuristic (a generalisation of hadd and hcg)

• hLM (Richter, Helmert, and Westphal 2008; Richter and
Westphal 2010) — the landmark heuristic

Apart from Goal Count, all heuristics listed above are
cost-based versions (that is, they support non-unit cost ac-
tions). This also allows another option for these heuristics:
action-cost adjustment. It is possible to tell the heuristics
(as well as the search code) to treat all actions as unit-cost
(regardless of their true cost) or to add 1 to all action costs.
This has been found to be helpful in tasks with 0-cost actions
(Richter and Westphal 2010).

Configuration Space

Algorithm Categorical Numeric Total Configurations
FD-Autotune.s 40 5 45 2.99 × 1013

FD-Autotune.q 64 13 77 1.935 × 1026

Table 1: The number of categorical and numeric parameters
in the reduced configuration space for both FD-Autotune.s and
FD-Autotune.q, as well as the total number of distinct configura-
tions for each.

The configuration space of Fast Downward poses a chal-
lenge in formulating the parameter space to be explored by
a parameter-tuning algorithm: structured parameters. For
example, it is possible to configure an alternation open list
which alternates between two internal alternation open lists,
each of which alternates between their own internal alter-
nation open lists, and so on. Since ParamILS (Hutter et al.
2007) does not handle structured parameters, we had to limit
the configuration space somewhat.

The configuration space used for the competition contains
a boolean parameter for each heuristic (all heuristics for
satisficing planning, only admissible heuristics for optimal
planning), indicating whether that heuristic is in use or not.
The other parameters of the heuristic (if any) are conditional
on the heuristic being used.

For optimal planning, the search algorithm is predeter-
mined (A∗), and so our only other choice is, when more
than one heuristic is used, how the heuristics are combined
(the relevant options are max or selective max). This is con-
trolled by another parameter, which is conditional on more
than one heuristic being chosen.

For satisficing planning, the setting that applies to the
planning and learning competition, the theoretical config-
uration space is much more complex, since combination
methods such as alternation and weighted sums introduce
an infinite set of possibilities.

To keep the configuration space manageable, we only al-
low one layer of alternation, and its components must be
standard open lists (sorted by scalar ranking values), one
for each heuristic that was selected, and possibly more if

preferred operators are used. In addition, we can combine
search algorithms using iterated search as in RWA∗. Here,
we limit the number of searches to a maximum of 5, in order
to avoid an infinitely large structured configuration space.
As shown in Table 1, FD-Autotune.s and FD-Autotune.q
have many parameters, with 2.99 × 1013 and 1.935 × 1026

distinct configurations, respectively. (The difference is due
to the fact that iterated search is not very useful for the
“speed” setting, and hence is not enabled there.) The con-
figuration space of FD-Autotune.q is one of the largest ever
experimented with using automated algorithm configuration
tools.

Domain-specific Configuration
While our approach could in principle utilise any sufficiently
powerful automatic configuration procedure, we have cho-
sen the FocusedILS variant of ParamILS (Hutter, Hoos,
and Stützle 2007; Hutter et al. 2009). At the core of the
ParamILS framework lies Iterated Local Search (ILS), a
well-known and versatile stochastic local search method that
iteratively performs phases of a simple local search, such as
iterative improvement, interspersed with so-called perturba-
tion phases that are used to escape from local optima. The
FocusedILS variant of ParamILS uses this ILS procedure to
search for high-performance configurations of a given algo-
rithm by evaluating promising configurations, using an in-
creasing number of runs in order to avoid wasting CPU time
on poorly-performing configurations. ParamILS also adap-
tively limits the amount of runtime allocated to each algo-
rithm run using knowledge of the best-performing configu-
ration found so far.

ParamILS has previously been applied to configure state-
of-the-art solvers for SAT (Hutter et al. 2007) and mixed in-
teger programming (MIP) (Hutter, Hoos, and Leyton-Brown
2010), along with solvers in several other combinatorial
problem domains. This work resulted in a version of the
SAT solver SPEAR that won the first prize in one category of
the 2007 Satisfiability Modulo Theories Competition (Hut-
ter et al. 2007); it further contributed to the SATzilla solvers
that won prizes in 5 categories of the 2009 SAT Competi-
tion and led to large improvements in the performance of
CPLEX on several types of MIP problems (Hutter, Hoos,
and Leyton-Brown 2010). Differently from SAT and MIP,
in planning, explicit domain specifications are available
through a planning language, which creates more opportu-
nities for planners to take problem structure into account in
parameterised components (e.g., specific search heuristics).
This can lead to more complex systems, with greater op-
portunities for automatic parameter configuration, but also
greater challenges (bigger, richer design spaces can be ex-
pected to give rise to trickier configuration problems).

Implementation using HAL
Empirical algorithm analysis and design techniques are of-
ten used in an ad-hoc fashion, relying upon informal ex-
perimentation. Furthermore, the techniques used in prac-
tice are often rather simplistic (or incorrect), as many re-
searchers and practitioners do not have sufficient knowledge



of, or easy access to, more sophisticated techniques. Even
when the best available techniques are used, the implemen-
tations of these techniques are often difficult to use, if pub-
licly available at all.

HAL (the High-performance Algorithm Laboratory) was
developed to address this need for easy access to powerful
empirical techniques (Nell et al. 2011). HAL was created
to support both the computer-aided design and the empiri-
cal analysis of high-performance algorithms, by means of
ready-to-use, state-of-the-art procedures. It should be noted
that HAL is designed to support these procedures for a wide
range of problem domains, and is not designed for or limited
to planning in any way.

In this work, we use several meta-algorithmic procedures
provided by HAL, primarily the algorithm configuration tool
ParamILS and the plug-in providing support for empirical
analysis of a single algorithm. We also leverage the robust
support in HAL for data management and run distribution
on compute clusters.

For each given planning domain, our submission uses
HAL to run ten independent runs of ParamILS on a provided
set of training instances, using a maximum runtime cutoff of
900 CPU seconds for each run of Fast Downward and a to-
tal configuration time limit of five CPU days. In the case
of FD-Autotune.s, we can leverage support in ParamILS for
adaptive runtime capping to drastically reduce the runtime
required for each run of Fast Downward.

After all ten configuration runs have completed, we run
Fast Downward with a runtime cutoff of 900 CPU seconds
on each instance in the training set in order to evaluate the
so-called training score for each of the ten incumbent config-
urations. For FD-Autotune.s, this score is the mean runtime
required to find a satisficing solution, and for FD-Autotune.q
it represents the mean plan cost, with timeouts assigned a
plan cost of 231 − 1. The incumbent configuration with the
best training score is returned as the learned knowledge for
the given domain.

Conclusions and Future Work
We believe that the generic approach underlying our work
on FD-Autotune represents a promising direction for the fu-
ture development of efficient planning systems. In particu-
lar, we suggest that it is worth including many different vari-
ants and a wide range of settings for the various components
of a planning system, instead of committing at design time
to particular choices and settings, and to use automated pro-
cedures for finding configurations of the resulting highly pa-
rameterised planning systems that perform well on the prob-
lems arising in a specific application domain under consid-
eration. We plan to further investigate modeling the highly
structured and potentially infinite space of Fast Downward
within tools for automated algorithm configuration such as
ParamILS.

We note that our approach naturally benefits from future
improvements in planning systems (and in particular, from
new heuristic ideas that can be integrated, in the form of
parameterised components, into existing, flexible planning
systems or frameworks) as well as from progress in au-
tomated algorithm configuration procedures. In principle,

planning systems developed in this way can also be used in
combination with techniques for automated algorithm selec-
tion, giving even greater performance than any single config-
uration alone (Xu et al. 2008; 2009; Xu, Hoos, and Leyton-
Brown 2010). We also see much potential in testing new
heuristics and algorithm components, based on measuring
the performance improvements obtained by adding them to
an existing highly-parameterised planner followed by auto-
matic configuration for specific domains. The results may
not only reveal to which extent new design elements are use-
ful, but also under which circumstances they are most effec-
tive – something that would be very difficult to determine
manually.
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