
Temporal Fast Downward
Using the Context-enhanced Additive Heuristic for

Temporal and Numeric Planning

Patrick Eyerich Robert Mattmüller Gabriele Röger

Department of Computer Science
University of Freiburg, Germany

September 21, 2009



Motivation
Planning with Time and Resources

Observations:
Time and resources important in real-world problems.
Heuristic search with context-enhanced additive (cea) heuristic
successful in sequential planning.

Question: Does the approach also work with time and resources?



Planning with Time and Resources

Example (Planning Task)

Two gardening robots need to water flowers.

Water levels, capacities and water needs are given.

Robots can work concurrently.

ℓ0ℓ1ℓ2 ℓ3
d01 = 70d12 = 40 d03 = 100

flower1

h1 = 10

n1 = 100flower2

h2 = 20

n2 = 70

flower3

h2 = 13

n2 = 80
robot2

w2 = 0

c2 = 150

robot1

w1 = 0

c1 = 150

reservoir∞



Planning with Time and Resources
Durative Actions

Actions have durations and may affect numeric variables.

Conditions at-start, over-all, or at-end.

Effects at-start or at-end.

Example (Durative Actions)

Walking from one location to an adjacent one.

(walk ri ℓj ℓk) [djk]

(connected ℓj ℓk)

(at ri ℓj)

(not (at ri ℓj)) (at ri ℓk)



Planning with Time and Resources
Durative Actions

Example (Durative Actions, ctd.)

Watering a flower at a certain location.

(water ri ℓj fk) [nk − hk]

(at ri ℓj)

(in fk ℓj)
wi ≥ nk − hk

(at ri ℓj) (at ri ℓj)

hk := nk

wi − = (nk − hk)



Planning with Time and Resources
Temporal Plans

Must respect causal and temporal constraints.

May contain concurrent actions.

Example (Temporal Plan)

Robots robot1 and robot2 work concurrently.

(refill r1 ℓ0)

150

(walk r1 ℓ0 ℓ1)

70

(water r1 ℓ1 f1)

90

(walk r1 ℓ1 ℓ2)

40

(water r1 ℓ2 f2)

50

(refill r2 ℓ0)

150

(walk r2 ℓ0 ℓ3)

100

(water r2 ℓ3 f3)

67

t = 0 t = 400 + 5ε



Temporal Numeric SAS+ Planning Tasks

Definition (Temporal Numeric SAS+ Planning Task)

A temporal numeric SAS+ planning task Π = 〈V, s0, s⋆,A,O〉
consists of the following components:

A finite set V of state variables. Each variable is either:
A numeric variable with values in R.
A comparison variable with values in {T, F}.
A logical variable with arbitrary finite domain.

An initial state s0.

A goal description s⋆.

A finite set A of axioms.

A finite set O of durative actions.



Temporal Numeric SAS+ Planning Tasks
Representation of Subterms via Auxiliary Variable and Axioms

Axioms and auxiliary variables used to represent
numeric and logic subterms.

Allows sharing of subterms.

Convenient for heuristic computation.



Temporal Numeric SAS+ Planning Tasks
Representation of Subterms via Auxiliary Variable and Axioms

Example (Auxiliary variables and axioms for subterms)

Consider the condition

(w − n
︸ ︷︷ ︸

aux1

≥ 0)

︸ ︷︷ ︸

aux 2

∧(at r ℓ)

︸ ︷︷ ︸

aux 3

aux3

(at r ℓ)

nw

aux1

aux2

0

∧

≥

−



Temporal Fast Downward (TFD)

Extends FAST DOWNWARD.

Uses FAST DOWNWARD architecture.
Step 1: Translate PDDL to temporal numeric SAS+.
Step 2: Preprocess temporal numeric SAS+.
Step 3: Search for plan. [Topic of the rest of the talk]

Best-first search.
Context-enhanced additive heuristic.
Deferred heuristic evaluation.
Preferred operators.



Temporal Fast Downward
Search

Example (Time-stamped State)

Scheduled over-all conditions Scheduled end conditions

0 ts

c1
⊣

c2
⊣

c↔

e⊣

State Time stamp Scheduled effects



Temporal Fast Downward
Search

Example (Time-stamped State)

0



Temporal Fast Downward
Search

Example (Time-stamped State)

0



Temporal Fast Downward
Search

Example (Time-stamped State)

0



Temporal Fast Downward
Search

Example (Time-stamped State)

0



Context-Enhanced Additive Heuristic

Idea:
Solve goals and
recursively take care of subgoals/preconditions

to estimate makespan.
Return accumulated costs.

Local contexts: Used to keep track of (side-)effects.

Drawback – inadmissibility:
Repeated solution of subproblems.
Transformation to instant-actions.
No concurrency-awareness.

Advantage – preferred operators:
By-product of heuristic.
Used to guide search towards better operators.



Context-Enhanced Additive Heuristic
Instant Actions

Problem: Need to simplify durative actions for heuristic.

Solution: Ignore start-end distinction for conditions and effects.

General form: instant action = (conditions, effects, cost)



Context-Enhanced Additive Heuristic
Instant Actions

Example (Compressed-action transitions)

Pretend that action happens instantly.

(action) [17]

a a b

c ∧ d ¬d

Corresponding compressed-action transitions:

cond = {a, b}; eff = {c, d,¬d}; cost = 17



Context-Enhanced Additive Heuristic
Instant Actions

Example (Waiting transitions)

(action) [17]

a

¬a goal

Assume that

action is currently under execution and

no other action can restore a, and we need the end-effect goal .

Then the other types of instant actions do not help in reaching goal ,
even though we can actually obtain goal by waiting long enough.

Corresponding waiting transitions:

cond = ∅; eff = {goal}; cost = ∆t



Context-Enhanced Additive Heuristic
Instant Actions

Example (Axiom transitions)

All axioms are interpreted as instant actions with cost 0.



Context-Enhanced Additive Heuristic
Local Problems

A local problem answers the question:
“What does it cost to change the value of v from w to w′?”



Context-Enhanced Additive Heuristic
Example

Causal graph

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Comparison axiom

c

n1 n2

n4n3

≥

+

Current state: g = F

Goal: g = T



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

0

h = accumulated cost Queue

n1 = −10 c = F

n2 = +5 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

g = F g = T
ℓ1 = w3 ∧ c = T

10



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

0

h = accumulated cost

ℓ1 = w1

Queue

n1 = −10 c = F

n2 = +5 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

ℓ1 = w1 ℓ1 = w2

ℓ1 = w3

10

15
10



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

0

h = accumulated cost

ℓ1 = w2 ℓ1 = w3

Queue

n1 = −10 c = F

n2 = +5 l1 = w2

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

ℓ1 = w1 ℓ1 = w2

ℓ1 = w3

10

15
10



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

15

h = accumulated cost

ℓ1 = w3

Queue

n1 = −10 c = F

n2 = +5 l1 = w3

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

ℓ1 = w1 ℓ1 = w2

ℓ1 = w3

10

15
10



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

15

h = accumulated cost Queue

n1 = −10 c = F

n2 = +5 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

c = F c = T

n3 ≥ n4

n3 < n4



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

15

h = accumulated cost Queue

n1 = −10 c = F

n2 = +5 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

n4 = x



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

15

h = accumulated cost Queue

n1 = −10 c = F

n2 = +5 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

n3 = xn3 = x + inc(n1, x) n3 = x + inc(n2, x)
change(n1) change(n2)



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

15

h = accumulated cost Queue

n1 = −10 c = F

n2 = +5 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

n1 = xn1 = x − 10 n1 = x + 10
l2 = w3

10

l2 = w3

10



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

15

h = accumulated cost Queue

n1 = −10 c = F

n2 = +5 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

ℓ2 = w1 ℓ2 = w2

ℓ2 = w3

c = T

10

c = T

15

c = T

10



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

15

h = accumulated cost Queue

n1 = −10 c = F

n2 = +5 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

c = F c = T

n3 ≥ n4

n3 < n4



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

15

h = accumulated cost

n2 = +15

Queue

n1 = −10 c = F

n2 = +5 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

n2 = xn2 = x − 10 n2 = x + 10
10 5



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

20

h = accumulated cost

n3 = +5

Queue

n1 = −10 c = F

n2 = +15 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

n2 = xn2 = x − 10 n2 = x + 10
10 5



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

20

h = accumulated cost

c = T

Queue

n1 = −10 c = F

n2 = +15 l1 = w1

n3 = +5 l2 = w1

n4 = 0 g = F

Local context of active node

n3 = xn3 = x + inc(n1, x) n3 = x + inc(n2, x)
change(n1) change(n2)



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

20

h = accumulated cost

g = T

Queue

n1 = −10 c = T

n2 = +15 l1 = w1

n3 = +5 l2 = w1

n4 = 0 g = F

Local context of active node

c = F c = T

n3 ≥ n4

n3 < n4



Context-Enhanced Additive Heuristic
Example

g

ℓ1 c

n1 n2

n3 n4

ℓ2

Causal Graph

20

h = accumulated cost Queue

n1 = −10 c = F

n2 = +5 l1 = w1

n3 = −5 l2 = w1

n4 = 0 g = F

Local context of active node

g = F g = T
ℓ1 = w3 ∧ c = T

10



Experiments
Setting

Planners: Six temporal planning systems.

Benchmarks: IPC 2008 deterministic temporal problems.

Evaluation Scheme: Scheme used at IPC 2008

Score(Planner ) =
∑

solved
problem π

(solution p)

min
solution p

∗ for π
makespan(p∗)

makespan(p)

Environment: 2.66 GHz Intel Xeon CPU, 2 GB memory limit,
30 minutes time limit per problem, anytime search.



Experimental Results
Planners’ Scores

Domain Base Crikey LPG Sapa SGP TFD
Crewplanning 16.19 22.59 12.76 — 22.44 28.72
Elevators 18.38 2.60 22.75 5.64 15.09 19.38
Modeltrain 11.92 — — — 11.11 0.96
Openstacks 18.14 20.67 14.35 25.90 12.49 26.66
Parcprinter 13.84 8.58 18.20 5.25 11.00 9.10
Pegsol 24.35 18.30 25.81 18.98 15.39 27.57
Sokoban 15.52 7.03 11.95 0.00 8.73 13.00
Transport 5.50 2.83 11.57 1.91 7.46 6.91
Woodworking 12.14 11.96 26.37 9.36 10.44 16.04
Overall 135.97 94.55 143.76 67.02 114.15 148.34



Experimental Results
Interpretation

TEMPORAL FAST DOWNWARD scores highest.

Reason for high score:
Not so much number of solved problems . . .
. . . but rather solution quality.



Experimental Results
How Much Longer the Plans From Other Planners Are On Average

Domain Base Crikey LPG Sapa SGP
Crewplanning (18) 14% (29) 38% (13) 1% — (28) 39%
Elevators (17) 58% (10) 200% (23) 11% (12) 126% (17) 84%
Modeltrain (1) 5% — — — (1) 1%
Openstacks (30) 55% (30) 33% (30) 166% (30) 4% (30) 144%
Parcprinter (13) 37% (13) 34% (12) -30% (5) 12% (13) 32%
Pegsol (28) 19% (28) 60% (28) 12% (24) 28% (18) 21%
Sokoban (13) 29% (9) 50% (12) 50% — (9) 22%
Transport (7) 18% (6) 79% (7) -25% (3) 54% (10) 37%
Woodworking (27) 42% (27) 44% (28) -34% (20) 37% (21) 29%
Overall (154) 36% (152) 55% (153) 31% (94) 35% (147) 60%



Summary and Conclusion

Temporal and numeric planning via forward search in space of
time-stamped states.

Heuristic guidance by extension of context-enhanced additive
heuristic.

Competitive with other approaches to temporal planning.



Future Work

Make heuristic concurrency-aware.

Use weaker relaxation of numeric features in heuristic.


	Introduction
	Motivation
	Example

	Preliminaries
	Definitions

	Temporal Fast Downward
	System Architecture
	Search

	Context-Enhanced Additive Heuristic
	Overview
	Instant Actions
	Local Problems

	Experimental Results
	Experiments
	Results

	Summary and Conclusion

