### **Temporal Fast Downward**

Using the Context-enhanced Additive Heuristic for Temporal and Numeric Planning

Patrick Eyerich Robert Mattmüller Gabriele Röger

Department of Computer Science University of Freiburg, Germany

September 21, 2009

#### Observations:

- Time and resources important in real-world problems.
- Heuristic search with context-enhanced additive (cea) heuristic successful in sequential planning.

Question: Does the approach also work with time and resources?

### Planning with Time and Resources

#### Example (Planning Task)

- Two gardening robots need to water flowers.
- Water levels, capacities and water needs are given.
- Robots can work concurrently.



- Actions have durations and may affect numeric variables.
- **Conditions** at-start, over-all, or at-end.
- Effects at-start or at-end.

#### Example (Durative Actions)

#### Walking from one location to an adjacent one.



#### Planning with Time and Resources Durative Actions

#### Example (Durative Actions, ctd.)

Watering a flower at a certain location.

$$\begin{array}{c} w_i \geq n_k - h_k \\ (\text{in } f_k \ \ell_j) \\ (\text{at } r_i \ \ell_j) & (\text{at } r_i \ \ell_j) & (\text{at } r_i \ \ell_j) \end{array} \\ \hline \left( \text{ (water } r_i \ \ell_j \ f_k) \ \left[ n_k - h_k \right] \right] \\ h_k := n_k \\ w_i - = (n_k - h_k) \end{array}$$

#### Planning with Time and Resources Temporal Plans

- Must respect causal and temporal constraints.
- May contain concurrent actions.

#### Example (Temporal Plan)

Robots robot<sub>1</sub> and robot<sub>2</sub> work concurrently.



#### Definition (Temporal Numeric SAS<sup>+</sup> Planning Task)

A temporal numeric SAS<sup>+</sup> planning task  $\Pi = \langle \mathcal{V}, s_0, s_{\star}, \mathcal{A}, \mathcal{O} \rangle$  consists of the following components:

- A finite set V of state variables. Each variable is either:
  - A numeric variable with values in  $\mathbb{R}$ .
  - A comparison variable with values in  $\{T, F\}$ .
  - A logical variable with arbitrary finite domain.
- An initial state  $s_0$ .
- A goal description  $s_{\star}$ .
- A finite set  $\mathcal{A}$  of axioms.
- A finite set  $\mathcal{O}$  of durative actions.

### Temporal Numeric SAS<sup>+</sup> Planning Tasks

Representation of Subterms via Auxiliary Variable and Axioms

- Axioms and auxiliary variables used to represent numeric and logic subterms.
- Allows sharing of subterms.
- Convenient for heuristic computation.

### Temporal Numeric SAS<sup>+</sup> Planning Tasks

Representation of Subterms via Auxiliary Variable and Axioms

#### Example (Auxiliary variables and axioms for subterms)



### Temporal Fast Downward (TFD)

#### Extends FAST DOWNWARD.

Uses FAST DOWNWARD architecture.

- Step 1: Translate PDDL to temporal numeric SAS<sup>+</sup>.
- Step 2: Preprocess temporal numeric SAS<sup>+</sup>.
- Step 3: Search for plan. [Topic of the rest of the talk]
  - Best-first search.
  - Context-enhanced additive heuristic.
  - Deferred heuristic evaluation.
  - Preferred operators.











#### Idea:

- Solve goals and
- recursively take care of subgoals/preconditions

to estimate makespan.

Return accumulated costs.

- Local contexts: Used to keep track of (side-)effects.
- Drawback inadmissibility:
  - Repeated solution of subproblems.
  - Transformation to instant-actions.
  - No concurrency-awareness.
- Advantage preferred operators:
  - By-product of heuristic.
  - Used to guide search towards better operators.

**Instant Actions** 

- Problem: Need to simplify durative actions for heuristic.
- Solution: Ignore start-end distinction for conditions and effects.
- General form: instant action = (conditions, effects, cost)

**Instant Actions** 

#### Example (Compressed-action transitions)

Pretend that action happens instantly.



Corresponding compressed-action transitions:

• 
$$cond = \{a, b\};$$
  $eff = \{c, d, \neg d\};$   $cost = 17$ 

Instant Actions



Assume that

action is currently under execution and

■ no other action can restore *a*, and we need the end-effect *goal*.

Then the other types of instant actions do not help in reaching goal, even though we can actually obtain goal by waiting long enough.

Corresponding waiting transitions:

• 
$$cond = \emptyset; \quad eff = \{goal\}; \quad cost = \Delta t$$

**Instant Actions** 

#### Example (Axiom transitions)

All axioms are interpreted as instant actions with cost 0.

Local Problems

A local problem answers the question: "What does it cost to change the value of v from w to w'?"

#### Causal graph



Comparison axiom



Current state: g = FGoal: g = T



 $n_2$ 

 $n_4 = \overline{0}$ 

 $g = \overline{F}$ 













 $n_4 = \overline{0}$ 

 $g = \overline{F}$ 





 $n_4 = 0$ 

 $g = \overline{F}$ 















 $n_4 = \overline{0}$ 

 $g = \overline{F}$ 

















 $n_4 = \overline{0}$ 

 $g = \overline{F}$ 





 $n_2$ 

 $n_4 = \overline{0}$ 

 $g = \overline{F}$ 



- Planners: Six temporal planning systems.
- Benchmarks: IPC 2008 deterministic temporal problems.
- Evaluation Scheme: Scheme used at IPC 2008

$$Score(Planner) = \sum_{\substack{\text{solved} \\ \text{problem } \pi \\ (\text{solution } p)}} \frac{\min_{\substack{p^* \text{ for } \pi \\ makespan(p)}} makespan(p^*)}{makespan(p)}$$

 Environment: 2.66 GHz Intel Xeon CPU, 2 GB memory limit, 30 minutes time limit per problem, anytime search.

| Domain       | Base   | Crikey | LPG    | Sapa  | SGP    | TFD    |
|--------------|--------|--------|--------|-------|--------|--------|
| Crewplanning | 16.19  | 22.59  | 12.76  | _     | 22.44  | 28.72  |
| Elevators    | 18.38  | 2.60   | 22.75  | 5.64  | 15.09  | 19.38  |
| Modeltrain   | 11.92  | —      | —      | —     | 11.11  | 0.96   |
| Openstacks   | 18.14  | 20.67  | 14.35  | 25.90 | 12.49  | 26.66  |
| Parcprinter  | 13.84  | 8.58   | 18.20  | 5.25  | 11.00  | 9.10   |
| Pegsol       | 24.35  | 18.30  | 25.81  | 18.98 | 15.39  | 27.57  |
| Sokoban      | 15.52  | 7.03   | 11.95  | 0.00  | 8.73   | 13.00  |
| Transport    | 5.50   | 2.83   | 11.57  | 1.91  | 7.46   | 6.91   |
| Woodworking  | 12.14  | 11.96  | 26.37  | 9.36  | 10.44  | 16.04  |
| Overall      | 135.97 | 94.55  | 143.76 | 67.02 | 114.15 | 148.34 |

## **Experimental Results**

Interpretation

### ■ TEMPORAL FAST DOWNWARD scores highest.

#### Reason for high score:

- Not so much number of solved problems ....
- ... but rather solution quality.

How Much Longer the Plans From Other Planners Are On Average

| Domain       | Base             | Crikey    | LPG              | Sapa            | SGP              |
|--------------|------------------|-----------|------------------|-----------------|------------------|
| Crewplanning | (18) 14%         | (29) 38%  | (13) 1%          | _               | (28) 39%         |
| Elevators    | (17) 58%         | (10) 200% | (23) 11%         | (12) 126%       | (17) 84%         |
| Modeltrain   | (1) 5%           | —         | —                | —               | (1) 1%           |
| Openstacks   | (30) 55%         | (30) 33%  | (30) 166%        | (30) 4%         | (30) 144%        |
| Parcprinter  | (13) 37%         | (13) 34%  | (12) -30%        | (5) 12%         | (13) 32%         |
| Pegsol       | (28) 19%         | (28) 60%  | (28) 12%         | (24) 28%        | (18) 21%         |
| Sokoban      | (13) 29%         | (9) 50%   | (12) 50%         |                 | (9) 22%          |
| Transport    | (7) 18%          | (6) 79%   | (7) -25%         | (3) 54%         | (10) 37%         |
| Woodworking  | (27) 42%         | (27) 44%  | (28) -34%        | (20) 37%        | (21) 29%         |
| Overall      | (154) <b>36%</b> | (152) 55% | (153) <b>31%</b> | (94) <b>35%</b> | (147) <b>60%</b> |

### Summary and Conclusion

- Temporal and numeric planning via forward search in space of time-stamped states.
- Heuristic guidance by extension of context-enhanced additive heuristic.
- **Competitive** with other approaches to temporal planning.

### **Future Work**

- Make heuristic concurrency-aware.
- Use weaker relaxation of numeric features in heuristic.