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Abstract
Classical planning tackles the problem of finding a sequence of actions that leads from an
initial state to a goal. Over the last decades, planning systems have become significantly
better at answering the question whether such a sequence exists by applying a variety
of techniques which have become more and more complex. As a result, it has become
nearly impossible to formally analyze whether a planning system is actually correct in its
answers, and we need to rely on experimental evidence.

One way to increase trust is the concept of certifying algorithms, which provide a
witness which justifies their answer and can be verified independently. When a planning
system finds a solution to a problem, the solution itself is a witness, and we can verify it
by simply applying it. But what if the planning system claims the task is unsolvable? So
far there was no principled way of verifying this claim.

This thesis contributes two approaches to create witnesses for unsolvable planning
tasks. Inductive certificates are based on the idea of invariants. They argue that the
initial state is part of a set of states that we cannot leave and that contains no goal state. In
our second approach, we define a proof system that proves in an incremental fashion that
certain states cannot be part of a solution until it has proven that either the initial state or
all goal states are such states.

Both approaches are complete in the sense that a witness exists for every unsolvable
planning task, and can be verified efficiently (in respect to the size of the witness) by
an independent verifier if certain criteria are met. To show their applicability to state-
of-the-art planning techniques, we provide an extensive overview how these approaches
can cover several search algorithms, heuristics and other techniques. Finally, we show
with an experimental study that generating and verifying these explanations is not only
theoretically possible but also practically feasible, thus making a first step towards fully
certifying planning systems.
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Zusammenfassung
Klassische Handlungsplanung befasst sich mit dem Problem, eine Folge von Aktionen
zu finden, welche von einem Startzustand zu einem Ziel führt. Planungssysteme sind in
den letzten Jahrzehnten immer besser darin geworden die Frage nach der Existenz einer
solchen Sequenz zu beantworten, indem sie eine Vielzahl von immer komplexeren Tech-
niken anwenden. Dadurch wurde es aber fast unmöglich, die Korrektheit solcher Systeme
formal zu analysieren.

Zertifizierende Algorithmen sind eine Möglichkeit, Vertrauen in einen Algorithmus zu
erhöhen. Sie rechtfertigen ihre Antwort durch ein zusätzlich generiertes Zertifikat, wel-
ches unabhängig vom Algorithmus verifiziert werden kann. Falls ein Planungssystem eine
Lösung für ein Problem findet, ist die Lösung selbst ein Zertifikat, welches durch Anwen-
dung verifiziert werden kann. Aber was, wenn das Planungssystem sagt, es gibt keine
Lösung? Bis jetzt gab es kein formales Verfahren, diese Aussage zu verifizieren.

Diese Dissertation stellt zwei Varianten zur Generierung von Zertifikaten unlösbarer
Probleme in der Handlungsplanung vor. Induktive Zertifikate basieren auf der Idee von
Invarianten. Sie zeigen Unlösbarkeit indem sie eine Menge von Zuständen finden, welche
man nicht verlassen kann und welche den Anfangs-, aber keinen Zielzustand beinhaltet.
Als zweite Variante stellen wir ein Beweissystem vor, welches schrittweise zeigt, dass
gewisse Teile des Problems nicht Teil einer Lösung sein können, bis der Beweis erbracht
ist, dass dies für den Anfangs- oder alle Zielzustände gilt.

Bei beiden Varianten kann für jedes unlösbare Planungsproblem ein Zertifikat erstellt
werden, welches unter gewissen Umständen effizient (in Bezug zur Grösse des Zertifikats)
und unabhängig verifiziert werden kann. Indem wir die Erstellung solcher Zertifikate für
eine Vielzahl von Suchalgorithmen, Heuristiken und anderen Planungstechniken vorstel-
len, zeigen wir auf, dass sie für heute gängige Planungssysteme geeignet sind. Schliesslich
demonstrieren wir anhand einer experimentellen Evaluation, dass es nicht nur theoretisch
sondern auch praktisch möglich ist, diese Zertifikate zu generieren und zu verifizieren,
und machen dadurch einen ersten Schritt zu einem vollständig verifizierenden Planungs-
system.
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1 Introduction
In planning we try to find a sequence of actions that enables us to achieve a predefined
goal from our current situation. For example, the logistic problem of distributing packages
from one location to another can be framed as a planning problem: our current situation,
called the initial state describes where all the packages and delivery trucks currently are,
our goal describes where the packages should end up, and our actions consist of loading
packages into a truck, driving a truck and unloading packages at a location. In this thesis
we focus on classical planning where we have full knowledge about our current situation
and actions are deterministic, discrete and fully observable, meaning if we apply an action
to our current situation we know exactly how it changes.

Traditionally, research in classical planning has mostly focused on finding solutions
as fast as possible. If a solution has been found, it is usually emitted and we can verify
it by applying it step by step and see if this results in achieving our goal. But what if
the problem has no solution? Currently, planning systems simply emit variations of the
phrase “no solution found” if they are unable to find one, but how can we know that no
solution exists, i.e. that the planning system is correct?

One way of providing correctness guarantees is to prove the correctness of the entire
planning system with formal theorem provers. However, due to the complexity of state-
of-the-art planning systems this approach is often infeasible. The current practice is to
provide a high-level description of the algorithm used in the planning system and prove
correctness of this high-level description. While this increases trust, it does not guarantee
that a concrete implementation is correct. Empirical testing of the implementation on
problems where the answers is known further increases trust but again does not give any
guarantees.

A more promising approach is turning planning systems into certifying algorithms (Mc-
Connell et al., 2011). The core idea of certifying algorithms is to emit a witness alongside
the answer, which serves as a proof of the answer’s correctness and can be verified in-
dependently by a so-called verifier. While this does not guarantee that the certifying
algorithm is correct on all inputs, it guarantees that the answer for a concrete input is
correct if the witness is validated by the independent checker (and if the checker itself is
correct). Planning systems nowadays are already partially certifying since they output a
plan if they find one, which in itself serves as a witness. But if the task is unsolvable, they
do not produce any form of witness.

The work presented in this thesis makes a first step in the direction of fully certifying
planning systems by investigating how such witnesses could be defined, produced by
planning systems, and verified.
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1 Introduction

1.1 Contributions
We propose two types of witnesses for unsolvable planning tasks:

• Inductive certificates. This type of witness describes a property that is preserved
through action application and that the initial state satisfies but no goal state does,
thus showing that no path from the initial state to any goal can exist.

• Proofs. We define a proof system that focuses on proving sets of states dead, i.e.
proving that they cannot be part of any solution. A proof showing that the initial
state or all goal states are dead then serves as a witness.

To analyze their suitability, we use the following properties as a guideline:

• soundness and completeness: If a witness for a planning task exists, the task must
be unsolvable; and for every unsolvable planning task we can form a witness.

• efficient generation: Generating a witness for a concrete problem should incur no
higher than polynomial overhead for the planning system.

• efficient verification: The time complexity for verifying the correctness of a wit-
ness should be at most polynomial in its size.

• generality: It should be possible for a wide range of planning systems to generate
a witness.

These properties often result in trade-offs as to which property is valued more. For
example, if a witness is very general, it might incur more overhead to the planning system
than if we used a witness that is specifically designed for exactly this planning system.
Another property in this trade-off that plays an important role in efficient verification
is the size of the witness, which can vary significantly between different witness types.
While we do not optimize for witness size and allow for sizes exponential in the problem
description, we bound it in respect to the runtime of the planner by requiring efficient
generation.

We show for both types of witnesses that they are sound and complete and under which
conditions efficient verification is possible. Furthermore, we demonstrate their generality
by describing how a variety of planning systems can be altered to emit such a witness,
and that in these cases generation is efficient as well.

Complementing our theoretical contributions, we implemented verifiers for both types
of witnesses, as well as augmented several configurations of the Fast Downward planning
system (Helmert, 2006) to emit them. These practical contributions are evaluated in an
empirical study, which showcases that both types of witnesses can feasibly be emitted and
verified.

2



1 Introduction

1.2 Outline
Before discussing our main contribution, Chapter 2 performs a literature survey detailing
how other areas in computer science increase trust in their algorithms. Chapter 3 then
formally introduces the classical planning problem, as well as several formalisms used in
our witnesses.

Chapters 4 and 5 introduce inductive certificates and the proof system respectively,
showing important theoretical results like completeness and conditions for efficient veri-
fication.

The following three chapters show how the witnesses can be used in current planning
systems; with Chapter 6 focusing on different search algorithms, Chapter 7 on heuristics
and Chapter 8 on other prominent planning techniques.

Afterwards, Chapters 9 and 10 perform an empirical study on the practical usage of
inductive certificates and proofs individually, before comparing the two in Chapter 11.

Finally, Chapter 12 gives an outlook on ideas how the proposed witnesses could be
enhanced and used to cover more planning techniques, before Chapter 13 concludes the
thesis by summarizing the results of our contribution.

1.3 Relation to Published Work
A majority of the work presented in this thesis has been published in conference proceed-
ings of major conferences on automated planning and artificial intelligence:

• The paper Unsolvability Certificates for Classical Planning (Eriksson, Röger, and
Helmert, 2017) introduces inductive certificates and its variations. It then demon-
strates the application of inductive certificates to blind search, heuristic search and
the Trapper algorithm, and performs a preliminary experimental evaluation. Its con-
tributions form a majority of Chapter 4, and are discussed in Chapters 6, 7 and 8.1.
The experimental evaluation in Chapter 9 and 11 is based on the same implementa-
tion as was used in the paper.

This paper won the ICAPS 2017 best student paper award.

• The paper Inductive Certificates of Unsolvability for Domain-Independent Plan-
ning (Eriksson, Röger, and Helmert, 2018a) was invited for submission to the Best
Papers From Sister Conferences Track at IJCAI and is based on Eriksson, Röger,
and Helmert (2017), providing a more accessible introduction to inductive certifi-
cates.

• The paper A Proof System for Unsolvable Planning Tasks (Eriksson, Röger, and
Helmert, 2018b) introduces the proof system for unsolvable planning tasks. It ex-
amines the relationship of the proof system to inductive certificates and discusses its
application to heuristic search with multiple heuristics, clause learning state-space

3



1 Introduction

search and iterative dead pairs calculation. Finally, it also offers an experimental
evaluation and comparison to inductive certificates. Contributions from this paper
form a large part of Chapter 5, and are discussed in Chapter 6, 8.2 and 8.3. The
implementation used in Chapters 10 and 11 is based on the one from the paper.

1.4 Experimental Setup
For our experimental study, we implemented a verifier for each type of witness presented.
Furthermore, we augmented the Fast Downward planning system (Helmert, 2006) as well
as the planning system used in Steinmetz and Hoffmann (2017) to emit witnesses for
a selection of configurations. For the representation of Binary Decision Diagrams, we
utilized the CUDD library (Somenzi, 2015). As a framework for running the experiments
we used the Downward Lab toolkit (Seipp et al., 2017). The code for the two verifiers as
well as for the augmented planning systems is publicly available (Eriksson, 2019a).

The planning problems used in the experiments originate from (a) the benchmarks used
in the Unsolvability IPC 20161 and (b) Hoffmann, Kissmann, and Torralba (2014).2 Since
we are only interested in unsolvable problems, we removed all solvable problems from
the benchmark set. Some domains and problems overlap: The problems in the two direc-
tories bottleneck and unsat-pegsol-strips from (b) are identical to the ones in bottleneck
and pegsol from (a) and thus omitted. The resulting benchmark set is published online
(Eriksson, 2019c). We assume that problems in folders unsat-nomystery, unsat-rovers
and unsat-tpp from (b) also overlap with those in folders over-nomystery, over-rovers and
over-tpp from (a). We kept all problems from those folders, but report them jointly under
domain name nomystery, rovers and tpp. Furthermore we removed several tasks from di-
agnosis3 from the experimental evaluation since they contained conditional effects, which
we do not consider.

All experiments are run on a cluster consisting of Core Intel Xeon Silver 4114 proces-
sors with a clock speed of 2.2 GHz. For generating witnesses, the planning systems were
given 30 minutes time and 3584 MiB memory. For verification, the same memory limit
was used but the verifiers were given 4 hours of time. Both generation and verification use
a single CPU core. All generated experiment data is available online (Eriksson, 2019b).

1https://unsolve-ipc.eng.unimelb.edu.au (accessed 18.01.2019).
2http://fai.cs.uni-saarland.de/downloads/unsat-benchmarks.tar.bz2,

(accessed 18.01.2019).
3The diagnosis problems we omit are #07,08,10,12,15,17 and 19.
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2 Related Work
While correctness is important in every area of computer science, the emphasis put on
proving it varies widely. Almost every algorithm is at least proven correct in a hand-
crafted proof for its high-level description, as it is invaluable not only for trust but also
for understanding the algorithm itself. Concrete implementations of an algorithm on the
other hand are usually only tested by means of unit tests and empirical evaluation on
benchmarks. For many algorithms this level of correctness guarantee is already sufficient,
especially if the benchmarks used in the empirical evaluation are diverse. For other al-
gorithms, stronger guarantees are necessary, such as witnesses (proving correctness for a
specific input) or a formal proof (proving correctness for any input).

In this chapter we investigate how different areas of computer science and specifically
Artificial Intelligence handle correctness guarantees. We first cover Automated Theorem
Proving, which is the strongest proof of correctness for an algorithm, and is employed
in several research areas across all of computer science. We then study the Boolean Sat-
isfiability Problem, a fundamental AI problem which influences almost all areas of AI
research. Next, we examine Model Checking, an area related to planning whose focus
it is to verify the correctness of hardware and software systems. Finally, we investigate
existing work in proving correctness of Classical Planning algorithms, and highlight how
the contributions of this thesis provide stronger correctness guarantees for planning sys-
tems.

2.1 Automated Theorem Proving
Automated Theorem Proving aims to automatically generate proofs for theorems within
a given theory. A prover is built on an underlying logic in which the theory must be
specified, and a deduction system which is used to reason about the theory. For example,
if we define a theory based on propositional logic stating “it is day or it is night” and “it is
not night”, a theorem prover with resolution as its deductive system can prove “it is day”.

The choice of the underlying logic and deduction system trades expressiveness versus
efficiency or even ability of finding a proof. We showcase this here for three commonly
used logics, propositional, first order (FOL) and higher order (HOL). For propositional
logic, deduction systems exist that are sound (if a theorem is proven, it is valid) and
complete (if a theorem is valid, it can be proven), and following Cook (1971) we know that
deciding whether a proof exists is co-NP-complete (although concrete proofs might have
exponential size). FOL is more expressive but even though deduction systems maintaining

5



2 Related Work

soundness and completeness exist they are only semi-decidable (Gödel, 1929), i.e. while
finding a proof for a valid theorem is guaranteed to terminate, the theorem prover might
run forever on invalid theorems. Finally, HOL is the most expressive logic of the three, but
according to Gödel’s incompleteness theorem (Gödel, 1931) there can be no computable
deduction system for it that is also sound and complete. However, this does not disqualify
HOL as an underlying logic, since a sound but incomplete theorem prover can still find
many proofs, just not all. HOL is in fact successfully used in several state-of-the-art
theorem provers such as HOL41, Isabelle2 or PVS3.

A theorem prover attempts to find a proof by searching for a sequence of applicable
inference rules that result in the desired theorem. This search can span an enormous
space of logical inferences, possibly even an infinite space. To speed up the search, an
interactive theorem prover enables the user to give additional input in the form of hints
on which area the prover should focus. For example, one might specify which inference
rules might be particularly useful, or which sub-theorems might be needed. An interactive
theorem prover can also be used to verify the correctness of an existing proof by simply
specifying all proof steps.

Automated theorem provers are used in both mathematics and computer science. They
have for example been successfully used to prove the Robbins conjecture (McCune,
1997), several decades after the conjecture had been postulated but was never proven
by humans. In computer science, a widespread commercial use is integrated circuit de-
sign (Russinoff, 2000), which became especially relevant after a bug in the floating point
unit of Pentium Processors had been discovered in 1994. In terms of software verification,
some examples include the verification of the OS kernel seL4 (Klein et al., 2009) or the
verified C compiler CompCert4.

2.2 Boolean Satisfiability Problem
The Boolean Satisfiability Problem (SAT) addresses the question if a given propositional
formula can be satisfied by at least one assignment. It was the first problem shown to be
NP-complete (Cook, 1971). As such, many hard problems like Hamilton paths, Vertex
Covers and Graph Coloring can be reduced to SAT. More exactly, the proof shows that
any NP-complete problem can be reduced to a special case of SAT where the formula is
given in Conjunctive Normal Form (CNF). For this reason, research in this area usually
only considers CNF formulas and we will restrict our discussion to this case as well.

SAT is an integral part in many areas of AI such as constraint programming and plan-
ning, and is also widely used in industrial settings such as railways, avionics and automo-
tive (Hammarberg and Nadjm-Tehrani, 2005; Pěnička, 2007). In many of these areas it is

1https://hol-theorem-prover.org (accessed 01.02.19).
2https://isabelle.in.tum.de (accessed 01.02.19).
3http://pvs.csl.sri.com (accessed 01.02.19).
4http://compcert.inria.fr/research.html (accessed 31.01.2019).
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2 Related Work

vital that the used SAT solver is correct (i.e. does not give any wrong answers), necessi-
tating some form of verification of the SAT solver.

While verified SAT solvers exist (e.g. Blanchette et al., 2018), they typically are de-
veloped from a theoretical perspective in order to formally verify general concepts in
SAT. For practical applications in performance critical environments an optimized SAT
solver is better suited. However, as an optimized implementation moves further away
from theoretically proven pseudo code, bugs tend to occur and verification becomes more
important. In this setting, a certifying SAT solver which generates a witness for its output
can combine the best of both worlds with only marginal losses: having a proof (albeit
only for a concrete output), and maintaining an optimized performance (albeit inducing
some overhead for creating the witness).

Generating a witness for a positive answer in SAT is easy: A SAT solver reports a
formula as satisfiable if it finds an assignment that satisfies the formula. This assignment
directly serves as a witness for satisfiability, and can be verified efficiently by evaluating
the formula under this assignment, which takes time linear in the formula size. Defining
and generating a suitable witness for a negative answer (i.e. the formula is unsatisfiable) is
harder. With the advancements of SAT solvers in the last decades, several proof formats
have been developed, often augmenting or complementing previous ones to cover new
arising techniques used in the solvers.

Once a witness has been generated, it needs to be checked by a separate verifier pro-
gram. The most commonly used verifiers are normal algorithms, usually developed along-
side the proof format itself. But since running a verifier is usually not as time critical and
it is equally important that the verifier itself is not faulty, verified verifiers have also been
implemented (e.g. Lammich, 2017). We will however focus our discussion here on the
evolution of proof formats rather than concrete verifier implementations.

2.2.1 DPLL and Resolution Proofs
The most influential algorithm in SAT is the Davis-Putnam-Logemann-Loveland algo-
rithm (DPLL). Its origins lie in a sub procedure of the Davis-Putnam algorithm (Davis
and Putnam, 1960). While the Davis-Putnam algorithm was used for testing validity of
first-order logic formulas, the purpose of the sub-procedure was to determine unsatisfia-
bility of a propositional formula. Davis, Logemann, and Loveland (1962) replaced this
sub-procedure with what eventually came to be known as the the DPLL algorithm, which
is still today a core part of state-of-the-art SAT solvers.

The first technique of extracting a proof from a DPLL based SAT solver is based on the
resolution rule. It states that if a CNF φ formula contains two clauses c1 = (l1∨· · ·∨ln∨l)
and c2 = (l′1 ∨ · · · ∨ l′m ∨ ¬l) where one variable occurs positively in one clause and
negatively in the other, the clause c = (l1 ∨ · · · ∨ ln ∨ l′1 ∨ · · · ∨ l′m) is implied by c1 ∧ c2
and thus also by φ. When applying a resolution rule we say we resolve c1 and c2 on l.

A resolution proof (Gelder, 2002) shows that a CNF formula is unsatisfiable by repeat-
edly applying the resolution rule to original and already inferred clauses until the empty
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clause can be derived by applying the rule to two clauses l and ¬l. This proves unsatisfi-
ability of the formula since a disjunction over zero elements corresponds to falsity, and if
a formula implies falsity, the formula must be unsatisfiable.

For example, consider formula χ = (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬z) ∧ (x ∨ ¬y) ∧ z. We
denote the four clauses by c1 to c4. Resolving c1 with c2 on x yields c5 = (y ∨ ¬z), and
resolving c2 with c3 on x results in c6 = (¬y ∨ ¬z). We now can resolve c5 with c6 on
y, leading to c6 = (¬z). Finally, resolving c6 and c4 on z results in an empty clause, thus
showing that χ is unsatisfiable.

Resolution proofs are complete in the sense that for any unsatisfiable CNF formula at
least one resolution proof exists (Robinson, 1965). Additionally, they are easy to check in
relation to their size. Two major drawbacks however are that proofs can grow very large
and that generating a proof often requires major modifications to the solvers.

2.2.2 CDCL and (D)RUP proofs
The aforementioned drawbacks of resolution based proofs became even more pronounced
with the rise of conflict driven clause learning (CDCL), the most influential augmentation
of the DPLL algorithm to date. To combat the ever growing size of proofs and complicated
changes to SAT solvers, Goldberg and Novikov (2003) introduced a new paradigm of
verifying unsolvability with the help of unit propagation, a technique already used in the
DPLL algorithm. Given a formula φ, unit propagation iteratively picks a clause consisting
of only one literal l and assigns the corresponding variable. It then simplifies the formula
by removing all clauses containing l, and removes all occurrences of ¬l in all clauses.
The resulting formula together with the variable assignments is equivalent to φ.

Similar to resolution proofs, reverse unit propagation (RUP) proofs (Gelder, 2008) it-
eratively add new clauses implied by φ until the empty clause is added. However, the new
clause c does not need to be the result of a resolution application. Instead the implication
must be proven with unit propagation: If the unit propagation of φ∧¬c contains the empty
clause, φ must imply c5. As with resolution proofs, clauses that already have been proven
to be implied by φ are used to strengthen φ, which allows for later clauses to be verified
with unit propagation.

While the unit propagation of φ ∧ ¬c for a c implied by φ does not necessarily result
in an empty clause, it is the case for all clauses obtained by resolution: given resolvent
c = A∨B from clauses c1 = l ∨A and c2 = ¬l ∨B, the unit propagation of ¬c∧ c1 ∧ c2
will reduce c1 to l and c2 to ¬l, and then either reduce c1 or c2 to the empty clause.
Thus, any resolution proof can be emulated by a RUP proof, meaning RUP proofs are
complete. Additionally, we can conclude that RUP proofs are at least as compact as
resolution proofs.

5Note that unit propagation does not offer a complete implication check, i.e. a clause not proven to be
implied φ by unit propagation might still be implied by φ nonetheless. A polynomial complete check
can only exist if P = NP, since checking if the empty clause is implied by φ is equivalent to answering
the question whether φ is unsatisfiable.
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RUP proofs excel where resolution proofs struggle: both DPLL and CDCL allow for
an easy extraction of the implied clauses relevant for the proof without major changes to
the code. Furthermore, proof sizes are generally significantly smaller than corresponding
resolution proofs. However, verifying a clausal proof is in contrast more expensive in re-
lation to the proof size. To combat the cost of verification, delete reverse unit propagation
(DRUP) proofs (Heule, Hunt, and Wetzler, 2013a) additionally allow to specify the dele-
tion of input or learned clauses at any point, meaning unit propagation checks performed
afterwards do not consider this clause anymore. This preserves correctness because if
φ |= c holds then φ ∧ c′ |= c must hold as well.

2.2.3 Preserving Satisfiability and (D)RAT Proofs
As a newer trend in SAT, techniques that alter the input formula such that only satisfiabil-
ity (but not equivalence) is preserved became more popular. Both resolution and clausal
proofs cannot directly support these techniques.

A proof that adds clauses that guarantee preservation of satisfiability is a valid way of
proving unsatisfiability, but as with adding implied clauses, showing that a clause addi-
tion preserves satisfiability is in general NP-complete. However, Järvisalo, Heule, and
Biere (2012) introduced a property called resolution asymmetric tautology (RAT) which
can identify certain clauses whose addition preserves satisfiability and can be tested in
polynomial time. Given a clause c and formula φ, c is RAT for φ if either (a) reverse unit
propagation on φ ∧ ¬c results in the empty clause or (b) some literal l in c exists such
that for all clauses c′ obtained by resolving c with a clause from φ on l, we have that RUP
on φ ∧ ¬c′ results in the empty clause. Clauses added by RUP proofs all have the RAT
property since they satisfy (a), and many new techniques not covered by RUP proofs can
produce RAT clauses.

The RAT proof format (Heule, Hunt, and Wetzler, 2013b) is almost identical to RUP
proofs in that each line of the proof specifies a new clause which is added to the input
formula. If the clause has the RAT property through (b), the corresponding literal must
be the first literal of the clause. Since clauses in RUP proofs all have the RAT property
though (a), a RUP proof is thus directly also a RAT proof. As with RUP and DRUP,
DRAT proofs allow for deletion of clauses in order to make verification more efficient.

Since RAT is a generalization of RUP, verification is in general more expensive in
relation to the proof size for RAT than for RUP, but RAT proofs can instead be much
smaller than RUP proofs. Furthermore, if a RAT verifier always first checks (a) and is
given a RUP proof, performance will be similar to a RUP verifier.

SAT competitions Requiring proofs for unsatisfiability was first tested in an experimen-
tal track of the SAT competition in 2005, for which the resolution proof format (Gelder,
2002) was specifically designed. The track returned two years later but due to the huge
certificate size of resolution proofs the newly designed RUP format was used. The track
grew in the following years, often allowing different proof formats. In 2014 however, the

9



2 Related Work

organizers decided to only support DRAT proofs, since all participants in previous years
choose a variation of RUP and DRAT is backwards compatible with it. Finally, from 2016
onward proving unsatisfiability was no more confined to a special track, instead it became
mandatory in all tracks to provide certificates for unsatisfiable formulas.

2.3 Model Checking
Model checking aims to verify that a given hardware or software system is correct in
the sense that it is impossible for them to reach a property that is considered erroneous.
As an example, consider a CPU with multiple cores sharing the same memory: A state
where two CPUs would gain exclusive write access to the shared memory at the same time
would be considered an error state. A system is defined by a description of its current
state and a description on how this state can change over time. The system can also be
seen as a graph where the nodes are all possible states in which the system can be and the
edges show which changes to a state are possible and what they result in. Model checking
is thus closely related to planning, as both problems span such a graph. The two areas
complement each other in the sense that planning tries to find a path from the initial state
to any goal, while model checking tries to confirm that no path from the initial state to
any error state exists.

Model Checking in itself can be understood as a form of correctness guarantee for
the system being verified. Similar to certifying algorithms and their verifiers however,
applying model checking to a system can falsely guarantee correctness of the system if
the model checking algorithm used is faulty. To alleviate this problem, there has been
work on both implementing a fully verified and a certifying model checker.

One example of a verified model checker for systems specified in temporal logic is pre-
sented in Esparza et al. (2013). While their verified algorithm does not reach the perfor-
mance of non-verified ones, they are still able to incorporate code optimizations through
a so-called refinement framework. The main idea of this framework is to first prove that
a non-optimized abstract algorithm is correct, and then perform optimization through re-
finement steps, where it is proven that each refinement step preserves correctness. This
allows to run the model checker in the optimized version, but proving the correctness
incrementally starting from a simpler abstract algorithm.

As an example of a certifying algorithm, Conchon, Mebsout, and Zaïdi (2015) have
shown how a model checker for parameterized systems can be augmented to emit wit-
nesses when no error state can be reached, without noticeably lowering performance on
the model checker. The witness is a logical formula encoding states of the system such
that (1) the initial state is a model of the formula, (2) applying a transition step to the
formula implies the same formula and (3) the formula implies the safety property. The in-
tuition behind these properties is that the formula describes an invariant, i.e. if the system
is in a state satisfying the formula, it cannot reach a state that does not satisfy it. As we
will see in Chapter 4, the idea is very similar to our definition of inductive certificates.
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2.4 Classical Planning
In classical planning we try to find a sequence of actions (plan) that reaches a predefined
goal from a given starting point. State-of-the-art planning systems are semi-certifying in
the sense that if they find a plan they output it, but give no proof if they say a task is
unsolvable. This is because historically, emphasis has almost exclusively been on finding
plans for solvable problems, and verifying a plan given by the solver is faster and easier
than verifying the entire algorithm. Planning has thus also mostly been applied to solvable
problems; a fact also reflected by the International Planning Competitions (IPC): almost
all problems contained in competitions up to 2014 are solvable, with unsolvable problems
occurring rather by accident than by design.

For solvable planning instances, verifying whether the answer given by the planner is
correct is fairly straightforward. Planners can usually output the plan with little to no
overhead, and verifying the plan can be done in time polynomial in the size of the plan
and the problem description6 (i.e. a fraction of the time a planner normally spends on
finding the plan) by applying it to the initial state and test if the result is a goal state.
Plan validators such as VAL (Howey and Long, 2003) and INVAL (Haslum, 2017) are
thus routinely used in both research papers and the IPC. Abdulaziz and Lammich (2018)
recently also introduced a verified version of a plan validator, showing in the process that
both VAL and INVAL still contained bugs which only occurred in very rare instances and
thus remained undetected so far.

With the heavy focus on fast plan detection, state-of-the-art planners did not fare as
well when confronted with unsolvable planning tasks. Highlighting this issue, Bäckström,
Jonsson, and Ståhlberg (2013) introduced an algorithm specifically tailored to detect un-
solvability as fast as possible, based on projecting the task on a subset of variables. While
the presented algorithm is incomplete (i.e. it does not detect all unsolvable planning tasks
as unsolvable), experimental evaluation showed that it outperformed several state-of-the-
art planners when confronted with unsolvable tasks. Ståhlberg’s PhD thesis (2017) further
investigated how to find good projections.

Inspired by this new line of research, Hoffmann, Kissmann, and Torralba (2014) uti-
lized the M&S framework (a generalization of variable projections) to build a heuristic
tailored to detecting dead-end states (states from which no goal can be reached). Later,
Steinmetz and Hoffmann (2017) tailored the hC heuristic to recognize and learn from pre-
viously encountered dead-ends. The IPC reacted by holding the first unsolvability IPC in
2016. As a result, a variety of planning techniques have been adapted to become more
proficient at detecting unsolvable planning tasks, e.g. potentials heuristics (Seipp et al.,
2016), decoupled search (Gnad et al., 2016) or property directed reachability (Balyo and
Suda, 2016).

Certain techniques can be seen as a form of witness for unsolvability. For example, po-
tential heuristics for unsolvability detection try to build a function that evaluates successor

6Note that this is only true for planning problems given in the STRIPS formalism, which we consider in
this thesis.
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states with a value lower or equal than the value of their predecessor, while ensuring that
the value of the initial state is lower than the value of any goal state. The existence of such
a function shows unsolvability, since we can never reach a state with a higher function
value than the state we start from. The hC heuristic in Steinmetz and Hoffmann (2017)
can provide a formula that describes dead-end states and is transitive in the sense that any
descendant of a state satisfying the formula also satisfy it. When the heuristic learns to
prove the initial state to be a dead-end, this formula can serve as a form of witness.

However, the above witnesses can only be generated by their specific method and do
not offer a clear procedure for verification. In contrast, this thesis focuses on providing a
formal framework applicable to a wide variety of planning techniques, where witnesses
are defined by a number of properties that are proven to imply unsolvability and can be
verified efficiently.
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3 Background
The first part of this chapter formally defines classical planning tasks. While two different
definitions are commonly used in research, we restrict our discussion to one and present
a well known compilation from the other one to the one we use. The second part revolves
around propositional formulas, which are used to encode sets of states in our witnesses.
Aside from describing how state sets can be encoded, we discuss what types of operations
different formalisms used in propositional logic can efficiently perform, which will be
needed to analyze the efficiency of generating and verifying witnesses.

3.1 Classical Planning
A classical planning task informally consists of the initial state of the world, a selection
of actions we can use to alter the world and a goal which we want to achieve. As an
example, consider a Sokoban puzzle as shown in Figure 3.1. The goal of this task is to
move the box from C3 to B4, but we can only push the box, not pull it.

We consider the STRIPS formalism (Fikes and Nilsson, 1971), where the state of the
world is described with the help of propositional variables. In our example Sokoban
problem, we could for example have a variable box-at-C3 denoting whether or not the
box is currently at location C3. A state is then defined by the variables that are currently
true:

Definition 3.1 (state). Let V be a set of propositional variables. A state is a subset s ⊆ V .

1 2 3 4 5

A

B

C

D

E

Figure 3.1: An example of the Sokoban puzzle. Dark gray cells are walls, the brown cell
represents the box and the gray cell its goal position.
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In our example Sokoban task, V could consist of variables box-at-X and man-at-X
for all grid positions X. The state depicted in Figure 3.1 would then be defined by the set
{box-at-C3,man-at-D3}.

The goal description is also defined as a set of variables that must be true if we achieved
our goal. For example the set {box-at-B4} describes the goal of our Sokoban task.

Definition 3.2 (goal states). Let V be a set of propositional variables and G ⊆ V the
goal description. A state s ⊆ V is a goal state if s ⊇ G.

An action in STRIPS alters the state by changing the value of certain variables. In the
Sokoban task, we could define action push-C3-B3 which would push the box to B3 by
setting box-at-C3 to false and box-at-B3 to true. Additionally, an action contains
a list of preconditions which describes to which states an action can be applied to. For
example we should only be able to apply push-C3-B3 if the box is indeed currently at
C3 and the man stands in D3. Formally an action is defined as follows:

Definition 3.3 (action). An action is a tuple a = ⟨pre(a), add(a), del(a)⟩ where pre(a) ⊆
V is the precondition, add(a) ⊆ V the add-effects and del(a) ⊆ V the delete effects.

An action can be applied to a state if it satisfies all preconditions, and changes the
state by adding the add effects, removing the delete effects and leaving everything else
unaltered.

Definition 3.4 (action application). An action a is applicable in state s iff pre(a) ⊆ s.
After applying a to s, the resulting successor state s[a] is defined as follows:

s[a] =

{
(s \ del(a)) ∪ add(a) if pre(a) ⊆ s

undef. otherwise

A sequence of actions π = ⟨a1 . . . an⟩ is called applicable in s iff s[a1] . . . [ai] is defined
for all 1 ≤ i ≤ n. We use the shorthand s[π] to denote s[a1] . . . [an].

We are now ready to give the full definition of a planning task:

Definition 3.5 (STRIPS planning task). A STRIPS planning task is defined as a tuple
Π = ⟨V Π, AΠ, IΠ, GΠ⟩, where

• V Π is a finite set of propositional variables

• AΠ is a finite set of actions

• IΠ ⊆ V Π is the initial state

• GΠ ⊆ V Π is the goal description.

We write ∥Π∥ for the size of a description of Π, SΠ for the set of all states of Π (i.e. the
power set of V Π) and SΠ

G for the set of all goal states.
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Usually, planning tasks also contain a cost function denoting the cost of each action,
where solutions with lower cost are better. However, since the cost function does not
influence whether or not the problem is solvable we omit it in our definition.

A planning task implicitly induces a graph, where the nodes correspond to states and
action applications form the edges between nodes. This graph is called the search space.

Definition 3.6 (plan). Given a planning task Π and state s, a sequence of actions π =
⟨a1, . . . an⟩ is called an s-plan if π is applicable in s and s[π] ⊇ GΠ. A IΠ-plan is also
just called a plan.

Since we will usually work with sets of states rather than single states, we also define
action application to state sets:

Definition 3.7 (progression). Given a planning task Π, state set S ⊆ SΠ and action
a ∈ AΠ, S[a] = {s[a] | s ∈ S, a applicable in s} is the progression of S with a.

For a set of actions A and state set S, the progression of S with A is defined as S[A] =⋃
a∈A S[a]. The progression of S with all actions AΠ of the planning task is also just

called the progression of S.

The progression of S withA is monotonic in S andA, i.e., S[A] ⊆ S ′[A′] for all S ⊆ S ′

and A ⊆ A′.
Actions can also be applied backwards to a state set S, meaning we calculate all prede-

cessor states from which you can reach a state in S with the chosen actions:

Definition 3.8 (regression). Given a planning task Π, state set S ⊆ SΠ and action a ∈
AΠ, [a]S = {s′ | a applicable in s′, s′[a] ∈ S} is the regression of S with a.

For a set of actions A and state set S, the regression of S with A is defined as [A]S =⋃
a∈A[a]S. The regression of S with all actions AΠ of the planning task is also just called

the regression of S.

As for progression, regression is monotonic in S and A.

3.1.1 SAS+ Planning Tasks
The SAS+ planning formalism (Bäckström and Nebel, 1995) is the other commonly used
formalism for planning. Contrary to STRIPS, the variables in SAS+ are not binary but
each variable v has an associated finite domain dom(v). For the above Sokoban task for
example, we could define a variable box with a domain denoting all grid positions. A
fact is a tuple consisting of a variable and a value of its domain, such as ⟨box,B2⟩ which
denotes that the box is at B2. States are defined as follows:

Definition 3.9 (SAS+ states). Given a set of variables V , a partial function p : V →⋃
v∈V dom(v) assigning variables to values in their respective domain is called a partial

state. The variables assigned in a partial state p are denoted as vars(p).
A state s is a function that assigns all variables in V .
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A SAS+ task is now defined as follows:

Definition 3.10 (SAS+ task). A SAS+ task Π+ is a tuple ⟨V +, A+, I+, G+⟩, where

• V + is a finite set of multi-valued variables with finite domain dom(v) for each
v ∈ V +,

• A+ is a set of actions a = ⟨pre(a), eff(a)⟩ where pre(a) and eff(a) are partial states,

• I+ is a state and

• G+ is a partial state.

A state s is a goal state if it is consistent with the goal description, i.e. s(v) = G+(v)
for all v ∈ vars(G+). Action application is defined as follows:

Definition 3.11 (SAS+ action application). Given a SAS+ task Π+ with action a and state
s, a is applicable in s if s(v) = pre(a)(v) for all v ∈ vars(pre(a)). The successor state is
defined as follows:

s[a](v) =

{
eff(a)(v) if v ∈ vars(eff(a))
s(v) otherwise

Based on these definitions, the notions of s-plans and plans are defined as in the
STRIPS formalism.

In order to also cover techniques using the SAS+ formalism we use a compilation
to STRIPS planning tasks, which has the property that both tasks have an isomorphic
reachable state space. The core idea is to use one STRIPS variable for each SAS+ fact.

Definition 3.12 (SAS+ to STRIPS compilation). A SAS+ task Π+ = ⟨V +, A+, I+, G+⟩
induces a STRIPS planning task Π = ⟨V Π, AΠ, IΠ, GΠ⟩ as follows:

• V Π = {vw,d | w ∈ V +, d ∈ dom(w)},

• each SAS+ action a induces a STRIPS action a′ with

– pre(a′) = {vw,d | w ∈ V +, d ∈ dom(w), pre(a)(w) = d},
– add(a′) = {vw,d | w ∈ V +, d ∈ dom(w), eff(a)(w) = d}, and

– del(a′) = {vw,d | w ∈ V +, d, d′ ∈ dom(w), eff(a)(w) = d′ ̸= d}.
AΠ is the set of all STRIPS actions induced by an SAS+ action from A+.

• IΠ = {vw,d | w ∈ V +, d ∈ dom(w), I+(w) = d}

• GΠ = {vw,d | w ∈ V +, d ∈ dom(w), G+(w) = d}
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Every state s of the SAS+ task corresponds to a STRIPS state s′ = {vw,d | s(w) = d}.
A SAS+ action a is applicable in s iff the induced action a′ is applicable in s′. Moreover,
the successor SAS+ state s[a] corresponds to the successor STRIPS state s′[a′]. One
important consequence is that the reachable parts of the state space of both tasks are
isomorphic, hence the SAS+ task is solvable iff the STRIPS task is, and plans have a
one-to-one correspondence.

For clarity, please note that there are STRIPS states that do not correspond to any
SAS+ state, namely all states containing vw,d and vw,d′ with d ̸= d′. However, these are
unreachable from the initial state in the STRIPS task.

3.2 Representation of State Sets
Our approaches to verify unsolvability of planning tasks rely heavily on arguing over sets
of states, which raises the question of how to represent these sets. Suitable representation
formalisms should be able to describe sets compactly, as well as support certain query or
modification operations such as “Does set S contain state s?” or “Build the union of sets
S1 and S2.” efficiently.

Since we will often deal with large state sets we will consider formalisms based on
representing state sets as logical formulas φ over a set of variables vars(φ). This is an
idea commonly used in planning techniques dealing with large state sets, such as planning
as satisfiability (Kautz and Selman, 1992) and planning as symbolic search (Edelkamp
and Helmert, 2001). In this setting the STRIPS variables V Π are used as the variables
in the formulas. The states represented by a formula over V Π (or a subset thereof) then
correspond to the models of the formula:

Definition 3.13 (propositional formulas representing state sets). Let φ be a propositional
logic formula over variables V Πof a STRIPS planning task Π. The formula represents the
set states(φ) of states of Π defined as:

states(φ) = {sI | I : V Π → {⊤,⊥}, I |= φ}, where sI = {v | I(v) = ⊤}.

For example, consider a task over variables V = {x, y, z} and formula φ = (x ∨
¬y) ∧ z). The states represented by φ are {z}, {x, z} and {x, y, z}. Variables v ∈ V
not occurring in φ can be assigned either ⊤ or ⊥. For example, if V = {x, y, z} and
φ = x ∧ y, then the states represented by φ are {x, y} and {x, y, z}.

Given two state sets S and S ′ represented by formulas φ and ψ, S ⊆ S ′ holds iff φ |= ψ
does.

In order to verify our witnesses, we will often need to express the progression or regres-
sion of a state set. Traditionally, symbolic search and planning as satisfiability introduce
new variables V Π′

= {v′|v ∈ V Π} and define a transition relation τa over V Π ∪ V Π′ for
each action a:
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τa =
∧

vp∈pre(a)

vp ∧
∧

va∈add(a)

v′a ∧
∧

vd∈(del(a)\add(a))

¬v′d ∧
∧

v∈(V Π\(add(a)∪del(a))

(v ↔ v′)

Building the conjunction of τa with a formula representing a state set S results in a
formula that represents pairs of states: Non-primed variables v ∈ V Π encode those states
from S that meet the preconditions of a, and primed variables v′ ∈ V Π′ encode the
successors of these states with respect to a.

In order to obtain a formula that only encodes the successors, one needs to apply a
forget operation:

Definition 3.14 (forget, Darwiche and Marquis, 2002). Let φ be a propositional formula,
and let X be a set of variables. The forgetting of X from φ, denoted ∃X.φ, is a formula
that does not mention any variable fromX and for every formula ψ′ that does not mention
any variable from X , we have φ |= ψ precisely when ∃X.φ |= ψ.

In a final step, we rename the primed variables back to their unprimed version, i.e. we
replace each occurrence of v′ ∈ V Π′ with v ∈ V Π (denoted as φ[V Π′ → V Π]).

In summary, given formula φ with states(φ) = S and action a, S[a] is expressed with
the following formula: (

∃V.(φ ∧ τa)
)
[V Π′ → V Π] (3.1)

Torralba (2015) has shown that the computation of the successor set can be performed
without the need for bi-implications or renaming. The main idea is to only forget variables
that are changed by the action, since the other variables do not change (which is what the
bi-implications encode). By applying the forget operator on the conjunction of φ and
only the preconditions of a, and building the conjunction with the effects afterwards, no
auxiliary variables and thus no renaming is needed:

Definition 3.15 (progression as a formula). Given a formula φ representing a state set S
(i.e. S = states(φ) and action a, the progression of S with a (S[a]) is represented by(

∃(add(a) ∪ del(a)).(φ ∧
∧

vp∈pre(a)

vp)
)
∧

∧
va∈add(a)

va ∧
∧

vd∈(del(a)\add(a))

¬vd

For regression, we need to perform the steps in opposite order. We first built the con-
junction of φ and the add- and delete-effects. We then forget the effects and build the
conjunction of the obtained formula and the preconditions:

Definition 3.16 (regression as a formula). Given a formula φ representing a state set S
(i.e. S = states(φ) and action a, the regression of S with a ([a]S) is represented by(

∃(add(a) ∪ del(a)).(φ ∧
∧

va∈add(a)

va ∧
∧

vd∈(del(a)\add(a))

¬vd)
)
∧

∧
vp∈pre(a)

vp
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3.2.1 Operations
A variety of formalisms based on logical formulas exist, such as CNF formulas and BDDs.
Instead of analyzing for each formalism separately if they support efficient generation
and verification of our witnesses, we consider an abstract formalism R and denote a
formula represented in R as a R-formula. We say that R is suitable for a witness if it
supports certain operations efficiently. For example, any witness where we need to verify
if a certain state is contained in a set can only work with formalisms that can efficiently
determine if a given interpretation is a model of the formula.

In what follows we describe the set of operations we consider.1 An R-formula φ is
a particular instance of formalism R. It is associated with a set of variables vars(φ),
which is a superset of (but not necessarily identical to) the set of variables occurring
in φ. Furthermore, vars(φ) follows a strict total order ≺. We denote the size of the
representation as ∥φ∥ and the amount of models as |φ|.

MO (model testing)
Given R-formula φ and truth assignment I, test whether I |= φ. Note that I must
assign a value to all v ∈ vars(φ) (if it assigns values to other variables not occurring
in φ, they may be ignored).

CO (consistency)
Given R-formula φ, test whether φ is satisfiable.

VA (validity)
Given R-formula φ, test whether φ is valid.

CE (clausal entailment)
Given R-formula φ and clause (i.e. disjunction of literals) γ, test whether φ |= γ.

IM (implicant)
Given R-formula φ and cube (i.e. conjunction of literals) δ, test whether δ |= φ.

SE (sentential entailment)
Given R-formulas φ and ψ, test whether φ |= ψ.

ME (model enumeration)
Given R-formula φ, enumerate all models of φ (over vars(φ))

∧BC (bounded conjunction)
Given R-formulas φ and ψ, construct an R-formula representing φ ∧ ψ.

∧C (general conjunction)
Given R-formulas φ1, . . . , φn, construct an R-formula representing φ1 ∧ · · · ∧ φn.

1We do not consider the forget operator used in progression and regression since we can express all needed
queries without it, as we will see later.
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∨BC (bounded disjunction)
Given R-formulas φ and ψ, construct an R-formula representing φ ∨ ψ.

∨C (general disjunction)
Given R-formulas φ1, . . . , φn, construct an R-formula representing φ1 ∨ · · · ∨ φn.

¬C (negation)
Given R-formula φ, construct an R-formula representing ¬φ.

CL (conjunction of literals)
Given a conjunction φ of literals, construct an R-formula representing φ.

RN (renaming)
Given R-formula φ and an injective variable renaming r : vars(φ)→ V ′, construct
an R-formula representing φ[r], i.e., φ with each variable v replaced by r(v).

RN≺ (renaming consistent with order)
Same as RN, but r must be consistent with the variable order in the sense that if
v1, v2 ∈ vars(φ) with v1 ≺ v2, then r(v1) ≺ r(v2).

toCNF (transform to CNF)
Given R-formula φ, construct a CNF formula that is equivalent to φ.

toDNF (transform to DNF)
Given R-formula φ, construct a DNF formula that is equivalent to φ.

CT (model count)
Given R-formula φ, count how many models φ has.

We say an R-formula efficiently supports an operation if it can perform it in time poly-
nomial in the size of the involved R-formula(s) except for the case of ME. For ME we
only require that the operation can be performed in time polynomial in the size of φ and
the amount of models of φ (over vars(φ)). Since we still want to guarantee that the wit-
ness can be generated with polynomial overhead and verified in polynomial time in its
size, we need to pay special attention whenever we use ME and ensure that the input is
polynomial in the amount of models.

3.2.2 Specific Formalisms
While we will consider general R-formalisms when discussing our results, we also want
to focus on some concrete formalisms which are oftentimes suitable and also serve as
formalisms for concrete implementations of our verification systems. Table 3.1 shows an
overview which operations are supported efficiently by which formalism. Unless stated
otherwise, these results originate from Darwiche and Marquis (2002). For clarity we will
however still give an brief reasoning for the results.
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BDD Horn 2CNF MODS
MO yes yes yes yes
CO yes yes yes yes
VA yes yes yes yes
CE yes yes yes yes
IM yes yes yes yes
SE yes yes yes yes
ME yes yes yes yes
∧BC yes yes yes yes
∧C no yes yes no*
∨BC yes no no no*
∨C no no no no*
¬C yes no no no
CL yes yes yes yes
RN no yes yes yes
RN≺ yes yes yes yes
toDNF no no no yes
toCNF no yes yes yes
CT yes (no) (no) yes

* MODS supports ∧C, ∨BC and ∨C efficiently if all involved formulas are over the same
set of variables.

Table 3.1: Comparison of efficient operations support for different formalisms. Entry
“(no)” means that the operation is not efficiently supported unless P = NP.
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a

b

c

⊤ ⊥

Figure 3.2: A BDD representing formula a ∧ (b ∨ c). A solid outgoing edge from a node
with variable v means that the truth assignment for v is ⊤, a dashed edge that
it is ⊥.

BDDs

Reduced Ordered Binary Decision Diagrams (Bryant, 1986) or ROBDDs represent logical
formulas as a directed acyclic graph. Besides the two terminal nodes ⊤ and ⊥, all nodes
n are associated with a variable vn and have exactly two outgoing edges, which represent
assigning ⊤ or ⊥ to v. ROBDDs follow a variable ordering ≺ in the sense that for
each edge ⟨n, n′⟩ we have vn ≺ vn′ . They are reduced because nodes that are redundant
(both outgoing edges lead to the same node) or duplicate (another node has the same true
and false children) are removed. For two equivalent formulas and a given variable order,
their ROBDD representation is isomorphic. In literature the term BDDs usually refers to
ROBDDs, and we adopt this notion in what follows.

Figure 3.2 shows a BDD for the formula a ∧ (b ∨ c) with variable ordering a ≺ b ≺ c.
All paths from the root node to ⊤ represent models of the formula. If a variable does not
occur on a path, then it can be assigned either value. For example the path following the
solid edges from a and b does not contain a node for c, thus it represents both assignments
{a 7→ ⊤, b 7→ ⊤, c 7→ ⊤} and {a 7→ ⊤, b 7→ ⊤, c 7→ ⊥}.

BDDs efficiently support MO, CO, VA, CE, IM, SE, ME, ∧BC, ∨BC, ¬C, CL, RN≺
and CT:

• MO: Follow the path corresponding to the given truth assignment and see if it leads
to ⊤, which can be done in time linear in |V |.

• CO, VA: Any inconsistent formula is represented by a BDD consisting of only ⊥
as root. If the given BDD does not have ⊥ as root, it is consistent, which we can
check in constant time. The same argument works for VA with ⊤ as root.

• ME: Bryant (1986) presents an algorithm that given a BDD B representing a for-
mula φ enumerates all models of φ in time O(n ∗ |φ|), where n is the amount of
variables in B and |φ| the amount of models of φ.

• ∧BC, ∧C, ∨BC, ∨C: Building the conjunction or disjunction of two BDDs B and
B′ is a special case of the Apply operation which has complexity ∥B∥·∥B′∥ (Bryant,
1986). Since the size of the resulting BDD is ∥B∥ · ∥B′∥ in worst case as well,
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applying n conjunctions or disjunctions is exponential in n, thus it is polynomial
for bound n but exponential in the general case.

• ¬C: Given a BDDB for some formula φ, the BDD for ¬φ is equivalent toB except
that ⊤ and ⊥ are switched, and can be built in time linear in ∥B∥. However, mod-
ern BDD implementations optimize negation by adding complement edges (Brace,
Rudell, and Bryant, 1990), making the operation constant.

• CL: If the conjunction is inconsistent (i.e. a variable occurs both positive and nega-
tive) the BDD consists only of the ⊥ leaf. Otherwise we can build the BDD in time
linear in the size of the conjunction, independent of variable ordering: Each vari-
able is represented by one node, with children ⊥ and the node of the next ordered
variable occurring in the conjunction (or ⊤ if it is the last variable). If the literal is
positive in the conjunction, then the false-edge leads to ⊥, otherwise the true-edge.

• CE, IM, SE: Testing whether φ |= ψ is equivalent to asking whether φ ∧ ¬ψ is
inconsistent. Building a BDD representing φ∧¬ψ can be done in polynomial time
with ¬C and ∧BC, and testing consistency of the result is also polynomial with
CO. In case of CE we have φ |= γ for a clause γ, meaning we need to build a BDD
for γ first, which we can do similar to CL in time linear in |γ|. In case of IM, we
have δ |= φ, where δ is a conjunction of literals and can thus be built efficiently.

• RN, RN≺: Renaming for BDDs amounts to changing the variable order. Since
different variable orders for the same formula can cause an exponential difference in
size (Bryant, 1986), general renaming cannot be performed efficiently. If however
the renaming is consistent with the variable order, the graph structure of the BDD
does not change and such a BDD can thus be built in time linear in the size of the
original BDD.

• toDNF, toCNF: The odd-parity function of n variables can be represented by a
BDD with 2n + 1 nodes, but any CNF or DNF representing this function contains
O(2n) clauses or cubes (Håstad, 1987). Thus a BDD representing this function
cannot efficiently be translated into CNF or DNF.

• CT: Bryant (1986) shows that counting can be done in time linear in the number of
nodes of the BDD.

Horn and 2CNF Formulas

Horn and 2CNF formulas are special cases of CNF formulas, where in a Horn formula
each clause contains at most one positive literal (and an arbitrary amount of negative lit-
erals), and in a 2CNF formula each clause contains at most two literals. They are two
of the maximal tractable classes in Schaefer’s dichotomy (Schaefer, 1978) for Boolean
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constraint satisfaction, meaning we can decide the satisfiability problem for them in poly-
nomial time.

The key idea of checking consistency for Horn formulas is to iteratively select a clause
consisting of only one positive literal, set this variable to true and propagate the assign-
ment to all other clauses. If at some point a clause becomes empty, the formula is un-
satisfiable. If no more unit clauses with one positive literal exist, setting all unassigned
variables to false will result in a model of the formula.

For 2CNF formulas, several polytime algorithms for deciding satisfiability are known.
Aspvall, Plass, and Tarjan (1979) describe a linear time algorithm where we first build an
implication graph from the formula with nodes v and ¬v for each variable v and edges
from ¬l to l′ and l to ¬l′ for each clause l ∨ l′. Next, we find all strongly connected
components. If any component contains v as well as ¬v for some variable v, the formula
is unsatisfiable. If this is not the case, one can find an assignment by merging the nodes
of each strongly connected component, order the nodes topologically and then iteratively
mark the lowest-ordered unmarked node and its literals with ⊤ and the node representing
the complement of the marked literals with ⊥.

Not all propositional formulas have equivalent Horn or 2CNF formulas. To see this, we
first establish that since any kind of CNF formula is a conjunction of clauses it must imply
each of its clauses. For Horn formulas, consider now the formula a ∨ b. It is not a Horn
formula, and any equivalent Horn formula φ must consist of only clauses that are implied
by a ∨ b. The only such clauses are either equivalent to true (if they contain a variable
and its negation) or must contain a and b and can thus not be a part of φ, meaning φ can
only be a conjunction of clauses equivalent to ⊤. Thus φ itself is equivalent to ⊤ and not
to a ∨ b. A similar argument can be made for formula a ∨ b ∨ c and 2CNF, since the only
clauses implied by a ∨ b ∨ c either contain more than two literals or are equivalent to ⊤.

Horn and 2CNF formulas efficiently support MO, CO, VA, CE, IM, SE, ME, ∧BC,
∧C, CL, RN, RN≺ and toCNF:

• MO: As with any propositional formula, evaluating a given assignment can be done
in linear time.

• CO: Consistency can be checked with the algorithms described above.

• VA: We can check if a CNF formula is valid by checking if each clause is valid,
which is the case iff for some variable v both v and ¬v appear in it.

• CE, IM, SE: φ |= ψ is equivalent to testing if φ∧¬ψ is inconsistent. If ψ is a clause,
its negation is a set of unit clauses and thus φ∧¬ψ is a Horn/2CNF formula if φ is,
meaning we can efficiently check consistency. If ψ =

∧
ci is a Horn formula, then

φ ∧ ¬ψ ≡ φ ∧
∨
¬ci is inconsistent iff φ ∧ ¬ci is inconsistent for each ci. Since

ci is a clause, this reduces to a number of CE checks. The same arguments can be
made for φ being 2CNF. IM is also covered through SE, since δ is a conjunction of
literals and thus both a Horn and 2CNF formula
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• ME: Algorithms for efficient enumeration for both Horn and 2CNF formulas can
be found in Dechter and Itai (1992).

• ∧BC, ∧C: In order to conjoin two Horn/2CNF formulas, we simply need to merge
the two clause sets.

• ∨BC, ∨C, ¬C: The disjunction of two Horn/2CNF formulas or the negation of one
is in general not a Horn/2CNF formula, and as shown above for some formulas it is
impossible to rephrase it into one. Thus ∨BC, ∨C and ¬C are not supported (not
even inefficiently).

• CL: Each literal by itself is a clause with at most one positive variable, thus their
conjunction is both a Horn and 2CNF formula.

• RN, RN≺: Renaming can be performed in time linear in the size of the formula by
simply iterating over the formula and replacing V with r(V ).

• toDNF, toCNF: Horn and 2CNF formulas are CNF formulas by design, but trans-
forming for example

∧
(¬xi ∨¬yi) (which is both Horn and 2CNF) to DNF causes

exponential blowup (Miltersen, Radhakrishnan, and Wegener, 2005).

• CT: Counting the number of models is #P-complete for both Horn (Hermann and
Pichler, 2010) and 2CNF (Valiant, 1979), and thus no efficient algorithm exists
unless P = NP.

Explicit Enumeration (MODS)

We consider explicit enumeration as an enumeration of models over a set of variables. It
can be seen as a DNF φ where each cube involves all variables vars(φ), is consistent and
is disjoint from all other cubes (i.e. ci ∧ cj ≡ ⊥ for all cubes ci, cj in φ). It is the only
considered formalism where the representation size ∥φ∥ is linear in the amount of models
|φ|.

MODS efficiently supports MO, CO, VA, CE, IM, SE, ME, ∧BC, CL, RN, RN≺,
toDNF, toCNF and CT, as well as ∧C, ∨BC and ∨C if all involved formulas are over
the same set of variables:

• MO: Evaluating a given assignment can be done in linear time by iterating over all
models and comparing them to the sought model.

• CO: As long as φ contains at least one cube the formula is satisfiable.

• VA: A MODS formula is valid if it contains 2vars(φ) cubes, and the number of cubes
can be checked in time linear in the formula size.

• CE: We can check for each cube ci in φ that it implies the given clause γ, which is
the case if at least one literal l appears in both ci and γ.
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• IM, SE: We first consider SE. If vars(φ) = vars(ψ), we can enumerate each model
of φ with ME and check if it is a model of ψ with MO (we can use ME without
introducing exponential blowup since |φ| is linear in ∥φ∥). In the general case we
can expand each model m of φ to 2(vars(ψ)\vars(φ)) models mi over vars(φ)∪vars(ψ)
(covering all possible assignments to (vars(ψ) \ vars(φ)) and then restrict each mi

to vars(ψ), resulting in m′
i. Enumerating m′

i incrementally avoids an exponential
blowup. Given m, each m′

i is distinct, and since ψ has |ψ| distinct models we will
find a m′

i that is not a model of ψ at the latest in step |ψ|+ 1 (if there are that many
m′
i) and can terminate the query. This results in overall complexity O(∥φ∥ · ∥ψ∥).

IM is covered by this as well, since δ is a conjunction of literals and thus a MODS
formula.

• ME: Each cube corresponds to exactly one model, thus we can just enumerate all
cubes.

• ∧BC, ∧C: φ ∧ ψ is an enumeration of models over vars(φ) ∪ vars(ψ) and can
be calculated by building the conjunction mi ∧ mj for all models mi of φ and
all models mj of ψ (duplicate literals are eliminated and if the resulting model is
inconsistent it is ignored), which is possible in time O(∥φ∥ · ∥ψ∥). For unbounded
conjunction, consider φ =

⋂n
i=1(xi,1 ∨ xi,2). Each clause (xi,1 ∨ xi,2) has 3 models

(over vars(xi,1 ∨ xi,2)), but φ has 3n models (over vars(φ)) and thus cannot be
built efficiently. If however all subformulas in the conjunction are over the same
variables, we can iterate over each model in the first subformula, check if it is
contained in all other subformulas and if so add it to the result.

• ∨BC, ∨C: Disjunction cannot be efficiently supported unless vars(φ) = vars(ψ):
Assume vars(φ) = {x1} and vars(ψ) = {x1, . . . , xn}, and both φ and ψ have only
one model. An enumeration of the disjunction must be over vars(ψ), meaning we
need to extend the one model from φ over {x1} to 2n−1 models over {x1, . . . xn}.
However, if vars(φ) = vars(ψ) = V , then the disjunction is also over V and we
can simply merge the cubes (while eliminating possible duplicates).

• ¬C: Consider a MODS formula over n variables with only one model. The negation
of this formula must contain 2n − 1 models, leading to an exponential blowup.

• CL: A conjunction of literals can be seen as a MODS formula over variables oc-
curring in the conjunction with only one model if the conjunction is consistent,
otherwise it can be represented by the constant ⊥ formula.

• RN, RN≺: Renaming can be performed in the same way as for Horn and 2CNF by
simply iterating over all cubes and replacing each occurrence of v ∈ V with r(v).

• toDNF, toCNF: Since a MODS-formula is already a DNF, nothing needs to be
done for toDNF. For toCNF, we first incrementally build a decision tree from the
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models. We then form the negation of each path from the root of the tree to ⊥, the
conjunction of these clauses forms a CNF representing the same formula (Darwiche
and Marquis, 2002).

• CT: Since MODS is an enumeration of models we can count the amount of models
in time linear in ∥φ∥ by simply iterating over φ.
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Witnesses

28



4 Inductive Certificates
The first type of witness we propose is based on inductive sets, which informally speaking
are sets that once entered cannot be left again. In Section 4.1 we formally define and in-
vestigate properties of inductive sets. Section 4.2 introduces and analyses a first inductive
certificate variant that argues with a single inductive set. However, this approach is quite
limited since it might not always be possible to describe a single set efficiently. In order
to extend the applicability of the concept of inductive certificates, Sections 4.3 and 4.4
introduce two variants where the inductive set is represented by a union or intersection of
a family of sets.

4.1 Inductive Sets
Proving that a planning task is unsolvable essentially requires showing that in the graph
induced by the planning task (i.e. the search space) there is no path from the initial state
to any state satisfying the goal description. Proving this path-nonexistence is easier if the
graph is acyclic. In this case, all paths from the initial state must end in a non-goal state
with no successor. We can first directly argue that no s-plan can exist for these states
since they are not goal states and no action is applicable; and then iteratively argue for
their predecessors that no s-plan can exist since they are not goal states and for all their
successors s[a] no s[a]-plan exists.

However, graphs induced from planning problems are in general not acyclic. Thus
we might lack the first step of the above recursive proof idea. For example, consider a
planning task consisting of variables V = {a, b, g}, initial state I = {a}, goal G = {g}
and two actions: a1 can be applied if a is true, deletes a and adds b, and a2 can be applied
if b is true, deletes b and adds a. The task is obviously unsolvable since the initial state
does not contain g and no action can add g. While we can only reach two states from I
(I = {a} itself and {b}), both these states have successors, making the above proof idea
inapplicable.

Instead we need to argue with sets of states. Analogously to a state with no successors
we can define a set with no successors in the sense that any successor of a state in the set
is contained within the same set.

Definition 4.1 (inductive set). A set S ⊆ SΠ of states of a STRIPS planning task Π =
⟨V Π, AΠ, IΠ, GΠ⟩ is forward inductive (or simply inductive) in Π if S[AΠ] ⊆ S, i.e., all
action applications to a state in S lead to a state that is also in S.

If Π is clear from context, we simply say S is inductive.
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Figure 4.1: Examples of inductive sets in a search space.

Figure 4.1 shows some examples of inductive sets in the search space of a planning
task. As we see from S3, states with no successors are a special case of inductive sets
where the set contains exactly one element.

Inductive sets do not correspond to connected components as we can show with the
following examples from Figure 4.1:

• S = {m} is strongly connected (and thus also weakly connected) since it consists
of only one state, but it is not inductive since m has transitions leading outside of
S.

• S ′ = {k, g} is not weakly connected (and thus also not strongly connected) but
inductive since neither k nor g have outgoing transitions.

They are however connected to strongly connected components (SCC) in the sense that
an inductive set is always a collection of SCCs, which also means that an inductive set
can never contain only part of an SCC. Furthermore, if we merge all states in the same
SCC to one node (resulting in a directed acyclic graph), an inductive set must contain all
the descendants of each node whose states are contained.

Inductive sets strongly relate to reachability. Consider an arbitrary state s and setR(s)
consisting of exactly the states reachable from s (including s itself). There can be no edge
from any s′ ∈ R(s) to some s′′ ̸∈ R(s) since otherwise s′′ would also be reachable from
s, leading to the following proposition:

Proposition 4.1. Given state s, the setR(s) of states reachable from s is inductive.

We can also say that if an inductive set contains a state s, it must contain all of R(s).
From this follows directly that an inductive set is the union of all R(s) for all states s in
S:
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Figure 4.2: Examples of backwards inductive sets in a search space.

Proposition 4.2. If S is inductive, then S =
⋃
s∈SR(s).

Another interesting property of inductive sets is that for two inductive sets their union
and their intersection is inductive as well, as we can see for S1 and S2 in Figure 4.1.

Theorem 4.1 (closure properties of inductive sets). Given inductive sets S and S ′:

(1) S ∪ S ′ is inductive.

(2) S ∩ S ′ is inductive.

Proof:

(1) Consider any arbitrary s ∈ S ∪ S ′ and an arbitrary action a applicable to s. If
s ∈ S, then s[a] ∈ S must be true since S is inductive, from which follows that
s[a] ∈ S ∪ S ′. If s ̸∈ S, then s ∈ S ′ and s[a] ∈ S ∪ S ′ with the same argument
(since S ′ is also inductive). Since we chose s and a arbitrarily, we have shown that
all successors of all states in S ∪ S ′ are also in S ∪ S ′, thus S ∪ S ′ is inductive.

(2) Consider any arbitrary s ∈ S ∩ S ′ and a applicable to s. From s ∈ S ∩ S ′ we have
s ∈ S and s ∈ S ′. Since both S and S ′ are inductive, we know that s[a] ∈ S and
s[a] ∈ S ′, which means s ∈ S ∩S ′. From this we conclude that S ∩S ′ is inductive.

□

4.1.1 Backwards Inductive Sets
The concept of inductive sets can also be applied in a regression perspective, i.e. a set that
cannot be entered from the outside:
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Figure 4.3: Two examples showing how the complement of an inductive set (in orange) is
backwards inductive (in turquoise).

Definition 4.2 (backwards inductive set). A state set S is backwards inductive iff for all
s ∈ S and a backwards-applicable in s we have [a]s ∈ S.

Figure 4.2 shows some examples of backwards inductive sets in the same search space
as Figure 4.1. Similar to forward inductive sets we see that states with no predecessors
are a special case of backwards inductive sets.

If we look at S ′
2, we see that it contains exactly the states not contained in S3 from

Figure 4.1. This is not by chance, as inductivity and backwards inductivity are closely
related:

Theorem 4.2. S is inductive iff S is backwards inductive.

Proof: If S is inductive, then we have s[a] ∈ S for any s ∈ S and a ∈ AΠ applicable
to s. This means that for any s′ ̸∈ S and backwards-applicable action a′ the predecessor
s′[a′] cannot be in S thus must be in S, meaning S is backwards inductive. For the
opposite direction we have that all predecessors of S are in S, meaning there can be no
state s ∈ S = S with s[a] ∈ S, thus S must be inductive. □

This means we can consider an inductive or backwards inductive set as partitioning the
search space in two areas, where we cannot reach one from the other. Note however that
this separation is not bidirectional: if S is inductive, then we cannot reach S from S, but
we might reach S from S, i.e. there might be a transition from s ∈ S to s′ ∈ S. Figure 4.3
shows two examples of such a partitioning.

4.2 Simple Inductive Certificates
The most natural way to argue that a task Π is unsolvable is that the set of states reachable
from the initial state IΠ does not contain any goal states. A certificate could then consist
of simply this set S of reachable states. In order to verify this form of certificate the
verifier would need to check that S does not contain any goal state and S is indeed the set
of states reachable from IΠ.
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While checking the exclusion of all goal states from S might be doable in an efficient
manner, verifying that a set is equivalent to the set of states reachable from IΠ is not
straightforward. A verifier could check it by conducting a blind search from IΠ and see
if the set of states it finds is equivalent to S. This is however in general not an efficient
verification since it requires |S| (the amount of states in S) expansion steps, but ∥S∥ (the
representation size of S) might be exponentially smaller than |S|. Consider for example
a planning task where all states are reachable from IΠ. In this case S can be represented
by ⊤, but exploring the search space requires 2V Π expansions.

Instead we observe that we do not need the exact set of states reachable from IΠ; we
only need to know that no goal state can be reached from IΠ. We know that given an
inductive set S, any state s ∈ S cannot reach any state s ̸∈ S. Thus an inductive set that
contains IΠ but does not contain any goal state shows that no goal can be reached by IΠ,
meaning such an inductive certificate is a witness for unsolvable planning tasks.

Definition 4.3 (inductive certificate). Given a task Π = ⟨V Π, AΠ, IΠ, GΠ⟩, an inductive
certificate for Π is a set S ⊆ SΠ of states such that

1. IΠ ∈ S,

2. S ∩ SΠ
G = ∅, and

3. S is inductive in Π.

As we stated in Chapter 1, one requirement for our witnesses is that they are sound and
complete. For inductive certificates, this is the case:

Theorem 4.3 (soundness and completeness of inductive certificate). Given a STRIPS
planning tasks Π = ⟨V Π, AΠ, IΠ, GΠ⟩, there is an inductive certificate for Π iff Π is
unsolvable.

Proof:
soundness: If an inductive certificate for Π exists, then it contains all states reachable

from IΠ. Since it also cannot contain any goal state, it follows that no goal state is
reachable from IΠ, meaning the task is unsolvable.

completeness: If a planning task is unsolvable, no goal state is reachable from IΠ.
Together with Proposition 4.1 we conclude that the set of states reachable from IΠ then
forms an inductive certificate. □

Aside from soundness and completeness, we want our certificates to be efficiently gen-
erated, efficiently verifiable, and general in the sense that they are applicable to a variety of
planning techniques. Efficient generation and generality depends on the concrete planning
techniques and will thus only be addressed in part II of this thesis. Efficient verification
on the other hand only depends on the representation used for S. An inductive certificate
represented by formalism R is called an inductive R-certificate.
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The most difficult part of verifying an inductive certificate is to show inductivity. Defi-
nition 3.15 specifies how we can express the progression of S with a, but uses the forget
operator. In the case of verifying inductivity however, we do not need it. We first show
the following lemma:

Lemma 4.1. Let φ, ψ and χ be propositional formulas, and X and X ′ be proposi-
tional variables, where φ, ψ and χ do not mention any variable from X ′. The statement
(∃X.φ) ∧ ψ |= χ holds iff φ[X → X ′] ∧ ψ |= χ does.

Proof: We observe that ∃X.φ is equivalent to ∃X ′.(φ[X → X ′]) if φ does not mention
any variable fromX ′, and thus (∃X.φ)∧ψ |= χ holds iff (1) (∃X ′.(φ[X → X ′]))∧ψ |= χ
does. According to the deduction theorem, (1) in turn holds iff (2) ∃X ′.(φ[X → X ′]) |=
¬ψ ∨ χ does.

Since ¬ψ∨χ does not mention any variable fromX ′, we can now apply Definition 3.14
and state that (2) holds iff (3) φ[X → X ′] |= ¬ψ ∨ χ does. Applying the deduction
theorem again yields that (3) holds iff φ[X → X ′] ∧ ψ |= χ does, concluding the proof.
□

Following this lemma the next theorem states which operations R must efficiently sup-
port in order to efficiently verify an inductive certificate:

Theorem 4.4. Inductive R-certificates φ for Π can be verified in polynomial time in ∥φ∥
and ∥Π∥ if R efficiently supports MO, CE, SE, ∧BC, CL and RN≺.

Proof: To verify that φ is an inductive R-certificate for Π = ⟨V Π, AΠ, IΠ, GΠ⟩, we must
verify that it satisfies the three requirements of Definition 4.3, where S = states(φ).

Requirement 1 (IΠ ∈ states(φ)) can be verified using MO by testing I |= φ with the
truth assignment I defined as I(v) = ⊤ for v ∈ IΠ and I(v) = ⊥ otherwise.

Requirement 2 (states(φ) ∩ SΠ
G = ∅) can be verified as φ |=

∨
v∈GΠ ¬v using CE.

For requirement 3 (states(φ) is inductive in Π), we can verify for each action a ∈
AΠ individually that states(φ)[a] ⊆ states(φ). With the definition of states(φ)[a] from
Definition 3.15 we reformulate this statement into the following entailment:(
∃(add(a) ∪ del(a)).(φ ∧

∧
vp∈pre(a)

vp)
)
∧

∧
va∈add(a)

va ∧
∧

vd∈(del(a)\add(a))

¬vd |= φ (4.1)

Applying Lemma 4.1 yields that the entailment in (4.1) holds iff(
(φ∧

∧
vp∈pre(a)

vp)[(add(a)∪del(a))→ X ′]
)
∧

∧
va∈add(a)

va∧
∧

vd∈(del(a)\add(a))

¬vd |= φ (4.2)

does, where X ′ is a fresh set of variables. This test can be performed with SE, CL, RN
and ∧BC.

Instead of using an arbitrary X ′, we introduce a fresh auxiliary propositional variable
v′ for every state variable v ∈ V Π. We write V Π′ for these new (“primed”) variables. We
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ensure that each primed variable is adjacent to its unprimed variable in the variable order:
if v1 ≺ · · · ≺ vn is the order on V Π, then v1 ≺ v′1 ≺ · · · ≺ vn ≺ v′n is the order on
V Π ∪ V Π′. The variables that have to be renamed are then renamed to their respective
primed variables. This enables us to use RN≺ instead of RN. □

From this we can conclude that BDDs, Horn formulas, 2CNF formulas and MODS all
support efficient verification of inductive certificates.

A weakness of inductive certificates is that we need to describe the set as a single
R-formula. In order to cover cases where this is not possible or requires a prohibitive
representation size, we investigate situations where we can compactly represent the set as
a union or intersection of several R-formulas in the next two sections.

4.3 Disjunctive Certificates
We first discuss disjunctive certificates, which represent an inductive certificate as the
union over a family of sets:

Definition 4.4 (disjunctive certificate). A family F ⊆ 2S
Π

of state sets of task Π is called
a disjunctive certificate for Π if

⋃
S∈F S is an inductive certificate for Π.

The goal of introducing composite certificates is to deal with sets that cannot be com-
pactly represented in a single set. However, in order to verify that a family of sets is in-
deed a disjunctive certificate, we would need to explicitly build the union and test whether
this union is an inductive certificate, negating the advantage of representing the set as a
union of sets. In order to achieve efficient verification we define a restricted variant with
stronger properties that can be checked without building the union of all sets and imply
the properties of inductive sets:

Definition 4.5 (r-disjunctive certificate). For r ∈ N0, a family F ⊆ 2S
Π

of state sets of
task Π = ⟨V Π, AΠ, IΠ, GΠ⟩ is called an r-disjunctive certificate if:

1. IΠ ∈ S for some S ∈ F ,

2. S ∩ SΠ
G = ∅ for all S ∈ F , and

3. for all S ∈ F and all a ∈ AΠ, there is a subfamily F ′ ⊆ F with |F ′| ≤ r
such that S[a] ⊆

⋃
S′∈F ′ S ′.

We call the third property of the definition disjunctive r-inductivity. We now establish
that r-disjunctive certificates prove unsolvability:

Theorem 4.5. All r-disjunctive certificates are disjunctive certificates.
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Figure 4.4: An example of a 1-disjunctive certificate in a search space with three actions.
The top row highlights for S1 and each action to which set the action appli-
cation leads; the bottom row shows the same for S2. The thick outlined area
denotes the origin of the considered action, while the filled area shows the
where the action leads.

Proof: Let F be an r-disjunctive certificate, and let S =
⋃
S∈F S. We show that each

of the three properties of Definition 4.5 (for F) implies the corresponding property of
Definition 4.3 (for S). Properties 1 and 2 of the two definitions are equivalent by simple
set arithmetic.

For property 3, consider any state s ∈ S and any action a applicable in s. Because
S =

⋃
S∈F S, there exists a set S ∈ F with s ∈ S. From Definition 4.5, there must be a

subfamily F ′ ⊆ F such that S[a] ⊆
⋃
S′∈F ′ S ′, so we get S[a] ⊆

⋃
S′∈F ′ S ′ ⊆

⋃
S∈F S =

S. From s ∈ S, we know that s[a] ∈ S[a] and conclude that s[a] ∈ S. As this is true for
arbitrary states s ∈ S and applicable actions a, set S is inductive. □

Figure 4.4 shows an example of a 1-disjunctive certificate F = {S1, S2} for a task with
actions a1, a2 and a3. Inclusion of the initial state c can be seen from c ∈ S1; exclusion
of the only goal state j from j ̸∈ S1 and j ̸∈ S2. For inductivity we first consider S1: we
have S1[a1](= {c, d}) ⊆ S1, S1[a2](= {d, f, h}) ⊆ S2 and S1[a3](= {i}) ⊆ S1. For S2

we have S2[a1](= {d, h}) ⊆ S2, S2[a2](= {f, h}) ⊆ S2 and S2[a3](= {c, g, i}) ⊆ S1.
As we can see we never needed to compute a union (or in other words we only needed
unions of size 1), making the certificate 1-disjunctive. If for example g[a1] = e instead of
d, F would still be a disjunctive certificate; but since S1[a1] is now neither a subset of S1

nor of S2, it is no longer a 1-disjunctive certificate.
It is left to show that r-disjunctive certificates can indeed be verified efficiently. We

define an (r-)disjunctive R-certificate as an (r-)disjunctive certificate where all sets are
represented as R-formulas. In the following we show how we can verify that a set of
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R-formulas indeed represents an r-disjunctive certificate:

Theorem 4.6. For fixed r, r-disjunctive R-certificates Φ for task Π can be verified in
polynomial time in ∥Φ∥ and ∥Π∥ if R efficiently supports MO, CE, ∧BC, CL, RN≺ and
either (a) ∨BC and SE or (b) toCNF.

Proof: Let Φ be an r-disjunctive R-certificate for task Π = ⟨V Π, AΠ, IΠ, GΠ⟩. We must
verify the three requirements of Definition 4.5.

For requirement 1 (initial state), we must verify that IΠ ∈ states(φ) for some φ ∈ Φ.
This can be done in polynomial time using MO, iterating over all φ ∈ Φ.

For requirement 2 (non-inclusion of goal states), we must verify that states(φ)∩SΠ
G = ∅

for all φ ∈ Φ. Each test can be performed using CE, as in the proof of Theorem 4.4.
For requirement 3 (disjunctive r-inductivity), we iterate for all φ ∈ Φ, a ∈ AΠ over all

Φ′ ⊆ Φ with |Φ′| ≤ r until we found a Φ′ with states(φ)[a] ⊆
⋃
φ′∈Φ′ states(φ′). Since r

is fixed, there is only a polynomial number of such Φ′.
Each test whether states(φ)[a] ⊆

⋃
φ′∈Φ′ states(φ′) can be performed following the

same ideas as in the proof of Theorem 4.4, replacing φ on the right side of the entailment
with

∨
φ′∈Φ φ

′, resulting in the following formula:

(φ ∧
∧

vp∈pre(a)

vp)[(add(a) ∪ del(a))→ E ′] ∧
∧

va∈add(a)

va ∧
∧

vd∈(del(a)\add(a))

¬vd |=
∨
φ′∈Φ′

φ′

Expressing the left side of the entailment requires CL, RN≺ and ∧BC. We can then
build the disjunction on the right side directly with ∨BC and check entailment with SE.
Alternatively we transform each φ′ into a CNF with toCNF. Building a single CNF from
a disjunction of CNFs is exponential in the size of the disjunction, but for a fixed size (in
our case r) polynomial. The entailment test can then be done by checking each clause of
this CNF separately with CE. □

This means all considered formalisms are suitable. For BDDs we use ∨BC and SE.
Horn and 2CNF formulas do not support ∨BC, but can use toCNF instead. For MODS
we can either use ∨BC and SE if all formulas φ′ are over the same set of variables,
otherwise we use toCNF.

4.4 Conjunctive Certificates
Analogously to disjunctive certificates, we can define conjunctive certificates as follows:

Definition 4.6 (conjunctive certificate). A family F ⊆ 2S
Π

of state sets of task Π is called
a conjunctive certificate if

⋂
S∈F S is an inductive certificate for Π.

Similar to the disjunctive case, conjunctive certificates in themselves do not offer any
advantage, and we thus define a restricted parameterized version with stronger properties.
A notable difference however is that the property of non-inclusion of goal states also
involves a subfamily of parameterized size.
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Definition 4.7 (r-conjunctive certificate). For r ∈ N0, a family F ⊆ 2S
Π

of state sets of
task Π = ⟨V Π, AΠ, IΠ, GΠ⟩ is called an r-conjunctive certificate if:

1. IΠ ∈ S for all S ∈ F ,

2. there is a subfamily F ′ ⊆ F with |F ′| ≤ r such that (
⋂
S∈F ′ S) ∩ SΠ

G = ∅, and

3. for all S ∈ F and all a ∈ AΠ, there is a subfamily F ′ ⊆ F with |F ′| ≤ r
such that (

⋂
S′∈F ′ S ′)[a] ⊆ S.

We call the third property of this definition conjunctive r-inductivity. As in the disjunc-
tive case, we can show that an r-conjunctive certificate is a proof of unsolvability:

Theorem 4.7. All r-conjunctive certificates are conjunctive certificates.

Proof: Let F be an r-conjunctive certificate, and let S =
⋂
S∈F S. We show that each

of the three properties of Definition 4.7 (for F) implies the corresponding property of
Definition 4.3 (for S). Property 1 is equivalent, and it is easy to see that property 2 of
Definition 4.7 implies property 2 of Definition 4.3.

For property 3, consider any state s ∈ S and any action a applicable in s. We will
show that s[a] is in all sets S ∈ F and hence also in their intersection S. For this purpose,
consider an arbitrary S∗ ∈ F . From Definition 4.7, there is a subfamily F ′ ⊆ F with
(
⋂
S∈F ′ S)[a] ⊆ S∗. Since S =

⋂
S∈F S, s is contained in all S ∈ F , and hence also in⋂

S∈F ′ S. Therefore s[a] ∈ (
⋂
S∈F ′ S)[a] ⊆ S∗. □

Figure 4.5 shows an example of a 2-conjunctive certificate F = {S1, S2, S3}. The
inclusion of the initial state f can be seen from f ∈ S1, f ∈ S2 and f ∈ S3. Exclusion
of the goal states i and k can be seen from S1 ∩ S2 ∩ {i, k} = ∅. Note that we need an
intersection of S1 and S2 here, since i ∈ S1, i ∈ S3, k ∈ S2 and k ∈ S3. For inductivity
we can see for each set S ∈ F and each action a ∈ {a1, a2} that applying a to some
intersection of at most two sets from F leads only to S. For S1 we actually do not even
need intersections since we can use S1[a1] ⊆ S1 and S3[a2] ⊆ S1 (depicted on the left
side of Figure 4.5). For S2 we see in the middle of Figure 4.5 that (S2 ∩S3)[a1] ⊆ S2 and
S2[a2] ⊆ S2. Note that for a1 either only S2 or only S3 would not be sufficient because of
transitions h[a1] = n and m[a1] = n, and S1 is not sufficient because of i[a1] = e. Finally
for S3 we see on the right side of Figure 4.5 that (S1∩S2)[a1] ⊆ S3 and (S1∩S3)[a2] ⊆ S3.
Since we only needed intersections of size 1 or 2, F is 2-conjunctive.

Analogously to our earlier terminology for disjunctive certificates, an (r-)conjunctive
R-certificate is an (r-)conjunctive certificate where the component sets are represented
as R-formulas. We can efficiently verify r-conjunctive R-certificates, if they support the
following operations efficiently:

Theorem 4.8. For fixed r, r-conjunctive R-certificates Φ for task Π can be verified in
polynomial time in ∥Φ∥ and ∥Π∥ if R efficiently supports MO, CE, SE, ∧BC, CL and
RN≺.
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Figure 4.5: An example of a 2-conjunctive certificate in a search space with two actions.
The filled area denotes the origin of the considered action, while the thick
outlined area shows the where the action leads.

Proof: Let Φ be an r-conjunctive R-certificate for task Π = ⟨V Π, AΠ, IΠ, GΠ⟩. We must
verify the three requirements of Definition 4.7.

For requirement 1 (initial state), we must verify that s ∈ states(φ) for all φ ∈ Φ. This
can be done in polynomial time using MO, iterating over all φ ∈ Φ.

For requirement 2 (non-inclusion of goal states), we must verify that there exists some
Φ′ ⊆ Φ with |Φ′| ≤ r such that (

⋂
φ∈Φ′ states(φ)) ∩ SΠ

G = ∅. We iterate over the O(|Φ|r)
candidates subsets until we found a suitable one. For each subset, we use a similar idea
as in the proof of Theorem 4.4 and test whether

∧
φ∈Φ′ φ |=

∨
v∈GΠ ¬v. While building∧

φ∈Φ′ φ can be exponential in r, for fixed r the runtime is polynomial if∧BC is efficiently
supported. The entailment can then be checked with CE.

For requirement 3 (conjunctive r-inductivity), we must verify for all φ ∈ Φ and all a ∈
AΠ that there exists some Φ′ ⊆ Φ with |Φ′| ≤ r s.t. (

⋂
φ′∈Φ′ states(φ′))[a] ⊆ states(φ).

We test this separately for each φ, a and Φ′, amounting to a polynomial number of tests.
Applying the same ideas as Theorem 4.4 and 4.3 to avoid the forget operator and use RN≺
instead of RN, each test needs to check the following entailment with ∧BC, CL, RN≺
and SE:

(
∧
φ′∈Φ′

φ′ ∧
∧

vp∈pre(a)

vp)[(add(a) ∪ del(a))→ E ′] ∧
∧

va∈add(a)

va ∧
∧

vd∈(del(a)\add(a))

¬vd |= φ

□
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5 Unsolvability Proof System
A disadvantage of the inductive certificates presented in Chapter 4 is that they are mono-
lithic, meaning that the planning system needs to find one set (possibly represented in a
composite form) that is inductive. State of the art planning systems however commonly
employ a variety of techniques which all reason in different ways. Even if we were able to
build an inductive certificate for each of these techniques when they are used on their own,
we are likely not able to build one if the techniques are used together. A simple reason
is that different techniques might require different formalisms to represent their sets. The
more fundamental problem is that when combined, one technique only contributes part of
the reason why the task is unsolvable, and building an inductive set with these parts is not
straightforward.

The approach presented in this chapter enables a much higher degree of composability
by introducing a specialized proof system based on natural deduction. The advantage of
this proof system is that it serves as a collection of knowledge we gather about the task,
and once a piece of knowledge has been proven it can be used without concern about
the details of the proof. This enables us to first prove the correctness of the reasoning of
each applied technique by itself and then combine the learned knowledge in into the final
argument why a task is unsolvable.

In Section 5.1 we will give a more formal background on natural deduction. Sec-
tion 5.2 then defines the proof system. Afterwards, Section 5.3 analyzes under which
circumstances proofs in this system can be efficiently verified. In Section 5.4 we compare
the proof system to our previous approach of inductive certificates.

5.1 Natural Deduction
Natural deduction was formalized by Gentzen (1935) as an alternative to deductive rea-
soning. His main motivation was to provide a formal way of reasoning that more closely
resembles the way of human reasoning. A proof system based on natural deduction is
defined by its inference rules. An inference rule concludes that if certain assumptions are
true, its conclusion is true as well. In propositional logic for example, given the assump-
tion that A ∧ B is true we can conclude that A is true. Inference rules are universal in
the sense that they do not talk about concrete objects, e.g. A and B in the above example
are not concrete formulas but placeholders for an arbitrary formula. The correctness of a
new inference rule must be proven either outside of the proof system (for example with
a handcrafted proof) or by using already existing rules, but once proven correct it can be
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used universally within the proof system for any instantiation of its placeholders.
In natural deduction we reason about judgments. A judgment is something which can

be known, e.g. “It rains.”. An inference rule takes a certain amount of judgments as
premises and concludes a new judgment from it. For example we could say “If it rains, it
is cloudy.”, and could use this inference rule when it is raining to deduce that it must be
cloudy.

An inference rule is defined by a name, a number of premises A1, . . . , An and a con-
clusion B. If the inference rule has no premises, it is called an axiom. We will represent
inference rules in the following way:

A1 . . . An name
B

When using an inference rule during a proof, the premises are either proven through
other rules (e.g. axioms) or are (temporarily) assumed. Rules can also discharge previ-
ously made assumptions. To illustrate this consider the implication operator in proposi-
tional logic: If one can prove that, under the assumption that ϕ holds, a certain propo-
sition ψ holds (possibly with several steps), then ϕ → ψ must hold, even if ϕ does not.
We denote the discharging of assumptions by adding square brackets to the discharged
assumption and add a superscript to it and the rule name:

[Φ]i

...
Ψ → I iΦ→ Ψ

Since proof systems often talk about different types of objects, placeholder variables
such as Φ and Ψ are often identified with a type. In the case of propositional logic,
we could for example define the types “variable” (X := xi) and “proposition” (P :=
X|¬P |P ∧ P |P ∨ P ). In this rule, Φ and Ψ are propositions. To denote that Φ is a
proposition, we write “Φ : P ”.

Below is an example of the general structure of a proof. The proof uses two rules from
propositional logic: the previously defined rule→ I , as well as a rule ∧L with premise
Φ ∧Ψ and conclusion Φ.

[φ ∧ ψ]1
∧Lφ
→ I1φ ∧ ψ → φ

Since there are no open assumptions in the proof, we have shown that φ ∧ ψ → φ is
always true.
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5.2 Proof System for Unsolvability of Planning Tasks
A witness in this approach is a proof for unsolvability of a planning task within our proof
system. As we stated in Chapter 1, we aim for witnesses that are sound and complete.
This means the proof system must be sound itself, i.e. if something is proven within the
proof system it must be true. It does however not need to be complete: A complete proof
system is defined as a system where we can prove everything that is true. We only want
completeness with respect to proving tasks unsolvable, i.e. if a task is unsolvable we can
prove it within the proof system. We thus instead say that our proof system is sound, and
complete with respect to the judgment “task unsolvable.”.

Our motivation for introducing a proof system was to allow for more composite forms
of reasoning. The reasoning planning techniques perform usually revolves around the idea
to show that certain areas of the search space cannot be part of a solution, either because
we cannot reach a goal from it or because we cannot reach it from the initial state. To
formalize this concept we introduce the notion of dead states and dead state sets.

Definition 5.1 (dead state and dead state set). A state s is dead if no plan traverses s, or
more precisely there is no plan π = ⟨a1, . . . an⟩ and 1 ≤ i ≤ n with s = I[a1] . . . [ai]. A
set of states is dead if all its elements are dead.

In general, deciding whether a state or a state set is dead is PSPACE-complete, since
the planning problem (which is PSPACE-complete) can be reformulated to the question
“Is IΠ dead?”. There are however many cases where deciding deadness is efficiently
possible. For example, any non-goal state with no successors is dead, as well as any state
other than the initial state with no predecessors.

We will not consider single states, but instead focus on sets of states S. We call these
sets state set expressions and define them in the following ways:

• explicitly in a formalism R,

• abstractly as a complement, union, intersection, progression or regression of state
set expressions,

• or as a constant {IΠ}, SΠ
G or ∅.

We call a state set defined explicitly or as a constant a state set variable, and a state set
variable or its negation a state set literal.

Additionally we consider action set expressions A which are defined either explicitly
as an enumeration of actions, abstractly as the union of action set expressions, or as the
constant AΠ.

5.2.1 Inference Rules
The inference rules in the proof system focus on proving state sets dead. We first define
some basic rules whose correctness can be seen immediately:
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• ∅ is dead.

• If S and S ′ are dead, then S ∪ S ′ is dead.

• If S is dead and S ′ ⊆ S, then S ′ is dead.

Next we want to define two special rules that finish a proof by stating that the task is
unsolvable:

Theorem 5.1. If the initial state is dead or all goal states are dead, then the task is
unsolvable.

Proof: If the initial state is dead, no action sequence can be a plan because every plan
must traverse the initial state. If all goal states are dead, no action sequence can be a plan
because every plan must traverse a goal state. □

The next two theorems form the centerpiece of our proof system, as they introduce the
only rules that can deduce new parts of the state space as dead.

Theorem 5.2. Let S be a set of states and S ′ a dead set of states such that all successors
of states s ∈ S are in S or S ′, i.e. , S[AΠ] ⊆ S ∪ S ′.

(i) If S ∩ SΠ
G is dead, then S is dead.

(ii) If IΠ ∈ S, then S is dead.

Proof: For any plan π = ⟨a1, . . . , an⟩ traversing a state from S we can show that the plan
will never leave S again. More formally, if IΠ[⟨a1, . . . , ai⟩] ∈ S for some i ≤ n, then
IΠ[⟨a1, . . . , aj⟩] ∈ S for all i ≤ j ≤ n.

For i = n we have nothing to show. Otherwise, consider s = IΠ[⟨a1, . . . , ai+1⟩]. From
S[AΠ] ⊆ S ∪ S ′ we know that s ∈ S ∪ S ′. But since S ′ is dead and s is part of a plan and
thus cannot be dead, we conclude that s ∈ S. Applying this argument iteratively proves
the claim.

(i) By contradiction: assume that S ∩ SΠ
G is dead and S is not dead. Then a plan π

traversing a state in S exists. We have shown that IΠ[π] ∈ S. Because π is a plan, we
also get that IΠ[π] ∈ SΠ

G and that IΠ[π] is not dead. This contradicts the fact that S ∩ SΠ
G

is dead.
(ii) From IΠ ∈ S we know that no plan leaves S, and hence s /∈ S cannot be traversed

by a plan. Hence S is dead. □

Figure 5.1 illustrates these rules. On the left side, we see that all goal states contained
in S are dead. This means that in order to reach a goal from S we need to leave S. But
this leads us to S ′, which cannot be part of a plan. Thus any state in S cannot be part of
a plan either. On the right side, the initial state is in S, meaning all plans must start in S.
Since we can only leave S though dead states, we can conclude that the entire plan must
lie in S and thus all states outside of S are dead.

For regression, we can formulate similar rules:
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S S′

SΠ
G

S S′
IΠ

Figure 5.1: Illustration of the inference rules related to progression. S ′ is already proven
to be dead, and successors of S are either in S or S ′.

S S′
SΠ
G

S S′

IΠ

Figure 5.2: Illustration of the inference rules related to regression. S ′ is already proven to
be dead, and predecessors of S are either in S or S ′.

Theorem 5.3. Let S be a set of states and S ′ a dead set of states such that all predecessors
of states s ∈ S are in S or S ′, i.e. , [AΠ]S ⊆ S ∪ S ′.

(i) If S ∩ SΠ
G is dead, then S is dead.

(ii) If IΠ /∈ S, then S is dead.

Proof: Similarly to progression, we can argue that if a plan π = ⟨a1, . . . , an⟩ traverses
a state from S, it cannot have traversed a state from S earlier, or more formally: if
IΠ[⟨a1, . . . , ai⟩] ∈ S for some i ≤ n, then for all j ≤ i we get IΠ[⟨a1, . . . , aj⟩] ∈ S
and in particular IΠ[⟨⟩] = IΠ ∈ S.

(i) If S ∩ SΠ
G is dead, then all plans must end in a goal state in S. With the above

argument the plans traverse only states from S, so S is dead.
(ii) If a plan traverses a state from S, then IΠ is in S. As IΠ /∈ S, there cannot be such

a plan, and hence S is dead. □

Figure 5.2 illustrates the regression rules. On the left, we see that any goal state that
can be part of a plan (i.e. that is not dead) is contained in S, thus all plans must end in S.
Since we can only enter S over S ′, but S ′ cannot be part of a plan, the entire plan must be
contained in S. On the right, all plans must start outside of S since IΠ ̸∈ S. In order for
a plan to get to S it must go through S ′, but no plan can do this; thus S cannot be part of
a plan.

We also include a rule with relates progression and regression and is a generalization
of Theorem 4.2:
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Theorem 5.4. S[A] ⊆ S ′ iff [A]S ′ ⊆ S.

Proof: If S[A] ⊆ S ′, then all transitions originating from a state in S with a ∈ A lead
to a state in S ′. This means that for all states not in S ′ (i.e. , s ∈ S ′) their predecessors
with a cannot lie in S and hence [A]S ′ ⊆ S. If [A]S ′ ⊆ S, then all transitions leading to a
state in S ′ with a ∈ A originate from a state in S. This means that for all states in S, their
successors with a must lie in S ′ and hence S[AΠ] ⊆ S ′. □

The rules for progression and regression can also be derived from each other with the
help of Theorem 5.4. To illustrate this, we show how rule (i) from Theorem 5.3 can be
proven by applying rule (i) from Theorem 5.2, Theorem 5.4 and basic set rules:

We are given two sets S1 and S2, knowing that (1) [AΠ]S1 ⊆ S1 ∪ S2, (2) S2 is dead
and (3) S1 ∩ SΠ

G is dead. From this knowledge we want to show that S1 is dead. We
first define X1 = S1 ∩ S2, and X2 = S1 ∩ S2. With (1) and Theorem 5.4 we know that
S1 ∪ S2[A

Π] ⊂ S1. Since S1 ∪ S2 = X1 and S1 = (S1 ∩ S2) ∪ (S1 ∩ S2) = X1 ∪X2 we
can reformulate this to (4) X1[A

Π] = X1 ∪ X2. Next, from S2 being dead and X2 ⊆ S2

we know that (5) X2 is dead as well (since a subset of a dead set is dead). From (3) we
know that S1 ∩ S2 ∩ SΠ

G must be dead for the same reason, and can reformulate this to (6)
X1 ∩ SΠ

G is dead. Now we can apply rule (i) from Theorem 5.2 with (4),(5),(6) with the
result thatX1 = S1∩S2 is dead. Since we know already that S2 is dead and that the union
of two dead state sets is dead as well, we can conclude that (S1 ∩ S2) ∪ S2 = S1 ∪ S2 is
dead, and thus S1 must also be dead.

We also include a number of rules from set theory in order to be able to argue effectively
with sets. We only include rules that we need later on for specific use cases in order to
keep the proof system minimal; but if future work requires more rules they can always be
integrated. We will not discuss these rules here since they are already well established,
but they are listed in the next section.

Finally, we introduce a number of rules related to progression, as we need them later
to show the connection between our proof system and inductive certificates. Similar rules
could be introduced for regression as well, but as with the set theory rules above we only
include rules that we currently need.

The first two rules follow directly from the monotonicity of progression:

• If S[A] ⊆ S ′ and A′ ⊆ A, then S[A′] ⊆ S ′

• If S[A] ⊆ S ′ and S ′′ ⊆ S, then S ′′[A] ⊆ S ′

The other two rules follow from the definition of progression:

• If S[A] ⊆ S ′ and S[A′] ⊆ S ′, then S[A ∪ A′] ⊆ S ′.

• If S[A] ⊆ S ′ and S ′′[A] ⊆ S ′, then (S ∪ S ′′)[A] ⊆ S ′.

For the first case, consider any state s ∈ S and a ∈ (A ∪ A′). If a ∈ A, then s[a] must
be in S ′ from S[A] ⊆ S ′, and if a ∈ A′ the same can be concluded form S[A′] ⊆ S ′. For
the second case, consider any state s ∈ (S∪S ′) and a ∈ A. If s ∈ S, then from S[A] ∈ S ′

follows s[a] ∈ S ′, and the case s ∈ S ′ is analogous.
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5.2.2 Basic Statements
The inference rules discussed above all operate on a purely syntactical level, meaning they
do not interpret the actual semantics of the involved sets, and depend on judgments we
already know about them. As a result, we lack a starting point for gathering judgments.
For example, consider a planning task with state s with no successor. It is easy to see
that judgment {s}[AΠ] ⊆ {s} is true, but we cannot prove it within the proof system. To
overcome this problem, we define an additional source of judgments that interprets the
semantics of the sets and thus must be proven separately in each proof. A judgment that
must be proven this way is called a basic statement.

We only consider basic statements in the form of S ⊆ S ′. Verifying this statement can
become a difficult task, since the definition of a state set can be arbitrarily complex and
use different formalisms. Instead we limit the statement to practically useful cases and as
general as possible, but can be verified in polynomial time if the involved formalisms sup-
port certain operations efficiently. In what follows, XR is a state set variable represented
by formalism R, LR a set literal where the underlying state set variable is represented
by formalism R, and r is a constant bounding the size of intersections and unions. We
consider the following statements:

1.
⋂
LR∈L LR ⊆

⋃
L′
R∈L′ L′

R with |L|+ |L′| ≤ r The first basic statement restricts S to
be an intersection of state set literals and S ′ a union of state set literals, where all involved
state set variables are represented with the same formalism R. This includes the special
case where the intersection and/or union contains only one element, i.e. S and/or S ′ are a
set literal.

2. (
⋂
XR∈X XR)[A] ∩

⋂
LR∈L LR ⊆

⋃
L′
R∈L′ L′

R with |X |+ |L|+ |L′| ≤ r The second
basic statement adds progression. S ′ is restricted the same way as in the first basic state-
ment, but the intersection in S can now also contain the progression of an intersection of
state variables. Note that the progression cannot contain state literals.

3. [A](
⋂
XR∈X XR) ∩

⋂
LR∈L LR ⊆

⋃
L′
R∈L′ L′

R with |X | + |L| + |L′| ≤ r The third
basic statement adds regression. It is identical to the second basic statement except that
progression is replaced with regression.

4. LR ⊆ L′
R′ The fourth basic statement restricts S and S ′ to only a set literal, but

instead allows to use different formalisms for S and S ′. This is important for being able
to combine knowledge gained from techniques requiring different formalisms.

5. A ⊆ A′ The final basic statement considers actions instead of sets. Action set expres-
sionsA andA′ are not restricted, i.e. they can be defined as either an explicit enumeration,
a union or the constant set AΠ.
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5.2.3 Overview
In what follows we give a full overview of the components of the proof system. We first
define the type of objects used, then list the inference rules used within the proof system
and afterwards the basic statements which have to be verified based on semantics. To
emphasize that the proof system interprets judgments on a purely syntactical level, we
write S ⊑ S instead of S ⊆ S when denoting a judgment in the proof system.

Types We define the object types through a simple grammar:
state set variables X := {IΠ}|SΠ

G|∅|XR

state set literals L := X|X
state set expressions S := L|(S ∪ S)|(S ∩ S)|S[A]|[A]S
action set expressions A := AΠ|a|(A ∪ A)
set expressions E := S|A

Set expressions are defined separately to enable us to define basic set theory rules that
can be applied to both state set expressions and action set expressions. In what follows
we denote an object of e.g. type E by simply E,E ′ or E ′′ instead of Z : E and also do
not mention the type of constant expressions since they are defined above.

Rules The following rules show that state sets are dead:
Empty set Dead ED∅ dead

Union Dead S dead S ′ dead UD
S ∪ S ′ dead

Subset Dead S ′ dead S ⊑ S ′
SD

S dead

Progression Goal S[AΠ] ⊑ S ∪ S ′ S ′ dead S ∩ SΠ
G dead

PG
S dead

Progression Initial S[AΠ] ⊑ S ∪ S ′ S ′ dead {IΠ} ⊑ S
PI

S dead

Regression Goal [AΠ]S ⊑ S ∪ S ′ S ′ dead S ∩ SΠ
G dead

RG
S dead

Regression Initial [AΠ]S ⊑ S ∪ S ′ S ′ dead {IΠ} ⊑ S
RI

S dead

These rules show that the task is unsolvable:

Conclusion Initial {IΠ} dead
CIunsolvable

Conclusion Goal SΠ
G dead

CGunsolvable
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These rules from basic set theory can be used for both state and action set expressions:
Union Right UR

E ⊑ (E ∪ E ′)

Union Left UL
E ⊑ (E ′ ∪ E)

Intersection Right IR
(E ∩ E ′) ⊑ E

Intersection Left IL
(E ′ ∩ E) ⊑ E

DIstributivity DI
((E ∪ E ′) ∩ E ′′) ⊑ ((E ∩ E ′′) ∪ (E ′ ∩ E ′′))

Subset Union E ⊑ E ′′ E ′ ⊑ E ′′
SU

(E ∪ E ′) ⊑ E ′′

Subset Intersection E ⊑ E ′ E ⊑ E ′′
SI

E ⊑ (E ′ ∩ E ′′)

Subset Transitivity E ⊑ E ′ E ′ ⊑ E ′′
ST

E ⊑ E ′′

The final rules focus on progression and its relation to regression:

Action Transitivity S[A] ⊑ S ′ A′ ⊑ A
AT

S[A′] ⊑ S ′

Action Union S[A] ⊑ S ′ S[A′] ⊑ S ′
AU

S[A ∪ A′] ⊑ S ′

Progression Transitivity S[A] ⊑ S ′′ S ′ ⊑ S
PT

S ′[A] ⊑ S ′′

Progression Union S[A] ⊑ S ′′ S ′[A] ⊑ S ′′
PU

(S ∪ S ′)[A] ⊑ S ′′

Progression to Regression
S[A] ⊑ S ′

PR
[A]S ′ ⊑ S

Regression to Progression [A]S ′ ⊑ S
RP

S[A] ⊑ S ′

Basic Statements

B1
⋂
LR∈L LR ⊆

⋃
L′
R∈L′ L′

R with |L|+ |L′| ≤ r

B2 (
⋂
XR∈X XR)[A] ∩

⋂
LR∈L LR ⊆

⋃
L′
R∈L′ L′

R with |X |+ |L|+ |L′| ≤ r

B3 [A](
⋂
XR∈X XR) ∩

⋂
LR∈L LR ⊆

⋃
L′
R∈L′ L′

R with |X |+ |L|+ |L′| ≤ r

B4 LR ⊆ L′
R′

B5 A ⊆ A′
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5.3 Efficient Verification
Any application of an inference rule is inherently efficient, since we only need to check
that the premises are known and that the rule is applied properly on a syntactical level.
For example, a step in the proof might claim that S2∪ (S4∩S6) is dead based on applying
rule UD to premises “S2 is dead” and “(S4 ∩ S6) is dead”. The verifier only needs to
check if the premises are known judgments, if rule UD is applicable to the premises and
if the conclusion of applying the rule matches the conclusion the proof claims. This is
efficient since we require syntactical equality. For example, if the second premise instead
were “(S6∩S4) is dead”, the verifier would reject the proof even if semantically the claim
is correct, because it is not equal on the syntactical level. Similarly, if the proof claims
conclusion “(S4 ∩ S6) ∪ S2 is dead” when having “S2 is dead” as first and “(S4 ∩ S6) is
dead” as second argument, the verifier will reject the proof.

Basic Statements on the other hand require to analyze the semantics of the expressions
used in the statements. Basic statement B5A ⊆ A′ is trivial to verify, since we can retrieve
all elements of A and A′ in time linear in their representation size or the representation of
the planning task: If A (A′) is defined explicitly, all elements are represented explicitly;
if A (A′) is the constant AΠ, we retrieve the actions from planning tasks; and if A (A′) is
a union of A1 and A2, we can first retrieve all elements of A1 and A2 and then merge the
two explicit sets.

For state set expressions, the semantics of a state set variable X is given by an R-
formula φR over variables V , such that the models of φR represent the states in X . The
semantics of a constant variable can be represented by any formalism R that supports
CL. Composite set expressions are represented based on their underlying state set vari-
ables and using the connective ∨ for ∪, ∧ for ∩, ¬ for complement and the formulas in
Definition 3.15 and 3.16 for progression and regression. To formalize this, we define the
interpretation function I which maps set expressions to logical formulas in the following
way:

I(X) := φR where X is represented as φR

I({IΠ}) :=
∧
v∈IΠ v ∧

∧
v′ ̸∈IΠ ¬v′

I(SΠ
G) :=

∧
g∈GΠ g

I(∅) := v ∧ ¬v for some v ∈ V Π

I(S) := ¬I(S)

I(S ∪ S) := I(S) ∨ I(S ′)

I(S ∩ S) := I(S) ∧ I(S ′)

I(S[A]) :=
∨
a∈A

(
∃(add(a) ∪ del(a)).(I(S) ∧

∧
vp∈pre(a) vp)

)
∧
∧
va∈add(a) va

∧
∧
vd∈(del(a)\add(a)) ¬vd
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I([A]S) :=
∨
a∈A

(
∃(add(a)∪ del(a)).(I(S)∧

∧
va∈add(a) va ∧

∧
vd∈(del(a)\add(a)) ¬vd)

)
∧
∧
vp∈pre(a) vp

A subset relation S ⊆ S ′ now holds iff I(S) |= I(S ′) does.
Note that the interpretation does not consider the formalism used in concrete formu-

las. We can express a formula only if the formulas representing the underlying state set
variables are all in the same formalism.

5.3.1 Single Representation
We will first analyze basic statements where all involved state set variables are represented
by the same formalism R. We do this in an incremental way, starting with the case where
both the left and right side consist of only one state set variable. As we add unions and
intersections, we will assume that the total amount of set variables occurring in a statement
is bounded by r. Since all formulas are encoded in R we will write φ instead of φR.

Case X ⊆ X ′

Given I(X) = φ and I(X ′) = ψ, X ⊆ X ′ holds iff φ |= ψ. This is the definition of SE
and thus R can efficiently verify this case iff it efficiently supports SE.

Case
⋂
Xi∈X Xi ⊆ X ′

In this case we allow a bounded intersection on the left side. Given I(Xi) = φi and
I(X ′) = ψ, we define a set of formulas Φ = {φi|Xi ∈ X}.

For the case |Φ| = 0, we do not have any φi, and the statement we want to verify is
⊤ |= ψ, which is another way of asking if ψ is valid. This can be verified efficiently iff R
efficiently supports VA.

If |Φ| = 1, the statement results in φ |= ψ, which was covered in the above case.
If |Φ| > 1, the left side consists of a conjunction of formulas. If R efficiently supports

∧BC, then this conjunction can be transformed into a single formula and we have case
φ |= ψ again, meaning SE and ∧BC are sufficient for efficient verification.

If R does not efficiently support ∧BC, but toDNF and IM instead, we can also do the
following: Transform all φi ∈ Φ to DNF, then multiply the conjunction of DNFs out,
resulting in one DNF. The cubes of this DNF are the implicants which can be tested sep-
arately with IM. Multiplying out the DNFs is exponential in the number of conjunctions,
but polynomial for bounded |X |.

Case X ⊆
⋃
X′

i∈X ′ X ′
i

A similar conclusion can be drawn for the case where we allow a bounded union on
the right side. We are given I(X) = φ, I(X ′

i) = ψi for each X ′
i ∈ X ′ and define

Ψ = {ψi|X ′
i ∈ X ′}.
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If |Ψ| = 0, we need to verify φ |= ⊥, which can be done by testing φ on consistency.
The case |Ψ| = 1 again reduces to case X ⊆ X ′.
For |Ψ| > 1, we can merge the disjunction in one formula with ∨BC. Alternatively

we can turn each ψi into a CNF with toCNF and multiply out the CNFs, resulting in one
CNF. We then check for each clause if it is entailed by φ with CE.

Case
⋂
Xi∈X Xi ⊆

⋃
X′

i∈X ′ X ′
i

If we allow both a bounded intersection on the left side and a bounded union on the right
side, we have 4 new cases:

• |Φ| = 0 and |Ψ| = 0: This results in ⊤ |= ⊥ which never holds.

• |Φ| = 0 and |Ψ| > 1: In this case we can either build the disjunction of Ψ into one
formula with ∨BC and test validity with VA; or transform each ψi ∈ Ψ to CNF
with toCNF and multiply them out. Testing the resulting CNF on validity can be
done easily by testing each clause.

• |Φ| > 1 and |Ψ| = 0: Analogous to above we either build the conjunction of Φ
with ∧BC and test it on consistency with CO; or build DNFs from each φi ∈ Φ
with toDNF, multiply them out and test the resulting DNF on consistency by testing
each cube.

• |Φ| > 1 and |Ψ| > 1: If R supports both ∧BC and ∨BC efficiently, we can reduce
the case to φ |= ψ.

If we build a CNF on the right side and want to use CE on the left, R needs to effi-
ciently support ∧BC such that we can build a single formula from the conjunction
of Φ, on which we can then test clausal entailment of each clause. Analogously
when building a DNF on the left side and using IM on the right, we need ∨BC to
build a single formula from the disjunction of Ψ.

Case
⋂
Li∈L Li ⊆

⋃
L′
i∈L′ L′

i

As a next and final step for basic statement B1, we allow complements of state set vari-
ables. We are given I(Xi) = φ+

i for all Xi ∈ L, I(Xi) = φ−
i for all Xi ∈ L, I(X ′

i) = ψ+
i

for all X ′
i ∈ L′ and ψ−

i for all X ′
i ∈ L′. We define Φ+ as the set of all φ+

i , Φ− as the set
of all φ−

i , Ψ+ as the set of all ψ+
i and Ψ− as the set of all ψ−

i .
The corresponding statement to verify in propositional logic is now:∧

φ+
i ∈Φ+

φ+
i ∧

∧
φ−
i ∈Φ−

¬φ−
i |=

∨
ψ+
i ∈Ψ+

ψ+
i ∨

∨
ψ−
i ∈Ψ−

¬ψ−
i (5.1)

There is a simple way to express an equivalent statement where no negations occur:
We have that ϕ ∧ ¬ϕ′ |= ψ iff ϕ |= ψ ∨ ϕ′, and ϕ |= ψ ∨ ¬ψ′ iff ϕ ∧ ψ′ |= ψ. This means
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above statement holds iff∧
φ+
i ∈Φ+

φ+
i ∧

∧
ψ−
i ∈Ψ−

ψ−
i |=

∨
ψ+
i ∈Ψ+

ψ+
i ∨

∨
φ−
i ∈Φ−

φ−
i (5.2)

holds. This reduces the case to case
⋂
Xi∈X Xi ⊆

⋃
X′

i∈X ′ X ′
i.

The following theorem summarizes the above discussion under which circumstances
basic statement B1 can be verified efficiently:

Theorem 5.5. The statement
⋂
Li∈L Li ⊆

⋃
L′
i∈L′ L′

i where |L| + |L′| ≤ r and the in-
volved state set variables are represented with a set of R-formulas Φ can be verified in
polynomial time in ∥Φ∥ if R efficiently supports one of the options in the corresponding
cell:

L+ + L′− = 0 L+ + L′− = 1 L+ + L′− > 1

L− + L′+ = 0
CO CO, ∧BC

toDNF

L− + L′+ = 1
VA SE SE, ∧BC

toDNF, IM

L− + L′+ > 1
VA, ∨BC SE, ∨BC SE, ∧BC, ∨BC
toCNF toCNF, CE toDNF, IM, ∨BC

toCNF, CE, ∧BC

where X+ is the number of non-negated literals in X and X− the number of negated
literals in X for X ∈ {L,L′}.

Cases (
⋂
Xi∈X Xi)[A]∩

⋂
Li∈L Li ⊆

⋃
L′
i∈L′ L′

i / [A](
⋂
Xi∈X Xi)∩

⋂
Li∈L Li ⊆

⋃
L′
i∈L′ L′

i

For basic statements B2 and B3, we allow to add either a progression or regression of
a bounded conjunction of state set variables on the left side. In both cases the statement
holds iff for all actions a ∈ A the corresponding statement when replacingAwith a holds.

Given action a we define a precondition formula ρ =
∧
vp∈pre(a) vp, an effect formula

ϵ =
∧
va∈add(a) va ∧

∧
vd∈(del(a)\add(a)) ¬vd, and variable set E = add(a) ∪ del(a). We also

define φ+
i , φ−

i , Φ+, Φ−, ψ+
i , ψ−

i , Ψ+ and Ψ− as in above case and additionally define
I(Xi) = φ→

i for each Xi ∈ X and Φ→ for the set of all φ→
i .

By applying Lemma 4.1 to replace the forget operator with a renaming of variables, we
now need to verify the following entailments:

(
∧

φ→
i ∈Φ→

φ→
i ∧ ρ)[E → E ′] ∧ ϵ ∧

∧
φ+
i ∈Φ+

φ+
i ∧

∧
ψ−
i ∈Ψ−

ψ−
i |=

∨
ψ+
i ∈Ψ+

ψ+
i ∨

∨
φ−
i ∈Φ−

φ−
i (5.3)

(
∧

φ→
i ∈Φ→

φ→
i ∧ ϵ)[E → E ′] ∧ ρ ∧

∧
φ+
i ∈Φ+

φ+
i ∧

∧
ψ−
i ∈Ψ−

ψ−
i |=

∨
ψ+
i ∈Ψ+

ψ+
i ∨

∨
φ−
i ∈Φ−

φ−
i (5.4)
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5 Unsolvability Proof System

If we choose the renamed variables E ′ the same way as in the proof of Theorem 4.4,
we can represent the progression and regression with ∧BC, CL and RN≺. The rest of
the formula is identical to basic statement B1. Since we need ∧BC either way, we only
distinguish cases based on the amount of formulas on the right side of the entailment. If
|Ψ+ ∪Φ−| = 0, we additionally only need CO. For |Ψ+ ∪Φ−| = 1, CO gets replaced by
SE. Finally, if |Ψ+ ∪ Φ−| > 1 we also need ∨BC, or transform the right side to a CNF
with toCNF and use CE instead of SE.

Theorem 5.6. The statements (
⋂
Xi∈X Xi)[A]∩

⋂
Li∈L ⊆

⋃
L′
i∈L′ L′

i and [A](
⋂
Xi∈X Xi)∩⋂

Li∈L ⊆
⋃
L′
i∈L′ L′

i where |X | + |L| + |L′| ≤ r and the involved state set variables are
represented with a set of R-formulas Φ can be verified in time polynomial in ∥Φ∥ and |A|
if R efficiently supports one of the options in the corresponding cell:

L− + L′+ = 0 CO, ∧BC, CL, RN≺
L− + L′+ = 1 SE, ∧BC, CL, RN≺
L− + L′+ > 1 SE, ∨BC, ∧BC, CL, RN≺

toCNF, CE, ∧BC, CL, RN≺

where X+ is the number of non-negated literals in X and X− the number of negated
literals in X for X ∈ {L,L′}.

5.3.2 Mixed Representations
In order to bridge representation formalisms we allow the basic statement B4 L ⊆ L′ to
use different formalisms R and R′ to represent the state set variable underlying L and
L′. Given that both L and L′ can either be state set variables or their complement, the
statement can be split up in four cases: X ⊆ X ′, X ⊆ X ′, X ⊆ X ′ and X ⊆ X ′. Given
I(X) = φR and I(X ′) = ψR′ we analyze the equivalent propositional logic statements:

Case φR |= ψR′

We first consider the basic case with no complement. Since φR and ψR′ use different
formalisms we cannot use SE directly. There are however two approaches we used in the
single representation case that can also be used here: toDNF and IM, and toCNF and
CE. In the single representation case we used this when a formalism does not efficiently
support∧BC or∨BC respectively, but the general idea of transforming one side to DNF or
CNF and using IM or CE on the other side can also be applied when different formalisms
are involved.

If R efficiently supports toDNF, we can transform φR to a DNF and then for each cube
check if it implies ψR′ , as long as R′ supports IM. Similarly, if R′ efficiently supports
toCNF and R efficiently supports CE, we transform ψR′ to CNF and check for each
clause if it is entailed by φR.
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5 Unsolvability Proof System

The idea of breaking down a formula into clauses or cubes can be taken even further
by breaking the formula down to its models. If we can enumerate all models for φR, then
we can check for each model if it is also a model for ψR′ . This requires ME for R and
MO for R′. However, since ME is polynomial in the size of the formula and the amount
of models, either R or R′ must additionally be non-succinct1. If φR is non-succinct, then
enumerating its models is polynomial in ∥φR∥. If ψR′ is non-succinct, then we need to
enumerate at most ∥ψR′∥ + 1 models of φR, at which point at least one model is not
contained in ψR′ .

The above argument only holds if φR and ψR′ mention the same set of variables. For
cases where the mentioned variables differ, we need to impose more restrictions:

1. vars(φR)\vars(ψR′) ̸= ∅: We can forget the variables for each model of φR and test
MO in ψR′ with the reduced model. This is only polynomial in the representation
size if φR is non-succinct. Otherwise, we might enumerate an amount of models
that is exponential in ∥φR∥ and reduce all of them to the same model for ψR′ . As an
example, consider formulas χ1 = x1 ∧ (x2 ∨ · · · ∨xn) and χ2 = x1. If we represent
χ1 as BDD, its size is linear in n, and an explicit enumeration of χ2 over variable
set V = {x1} has size linear in its variables. But χ1 has 2(n−1) − 1 models, thus
enumerating them is not polynomial in either representation size.

2. vars(ψR′) \ vars(φR) ̸= ∅: We expand the models of φR to the variables occurring
in ψR′ . This step is exponential in the amount of variables added; but if ψR′ is non-
succinct we are still guaranteed to enumerate at most ∥ψR′∥ “extended” models
(since after this we must have enumerated at least one non-model of ψR′).

Case ¬φR |= ψR′

If R efficiently supports ¬C we can reduce the case to φR |= ψR′ . Otherwise we observe
that instead of transforming φR to a DNF we can use toCNF and transform it to a CNF.
From this we can efficiently construct a DNF representing ¬φR with de Morgan’s law.

Using ME and MO is not directly possible anymore since we cannot efficiently enu-
merate the non-models of φR needed in this case. But if R efficiently supports MO and
CT, and R′ efficiently supports ME and is non-succinct, we can instead count those in-
terpretations that are models of ψR′ but not of φR by enumerating all models of ψR′ and
counting them only if they are not models of φR (which can be done with MO). This
must be equal to the number of models of ¬φR, which we can compute with CT since
|¬φR| = 2vars(φR) − |φR|. We must however again pay attention if the two formulas in-
volve different variables. We can only support the case vars(φR) ⊆ vars(ψR′), where we
forget the variables not occurring in φR for each model of ψR′ . Even if φR is not succinct
as well we could not guarantee non-exponential overhead if φR mentions variables not in
ψR′ because we might need |¬φR|MO checks, which can be exponential in |φR|.

1Non-succinct in this context means the representation size of the formula grows linearly in the amount of
models.
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5 Unsolvability Proof System

Finally we observe that the statement ¬φR |= ψR′ is equivalent to ¬ψR′ |= φR, mean-
ing that the roles of R and R′ can be exchanged.

Case φR |= ¬ψR′

As in the case above this case can be reduced to the first one if R′ efficiently supports
¬C. Otherwise we can build a DNF from ψR′ if R′ efficiently supports toDNF. Negating
this DNF with de Morgan results in a CNF representing ¬ψR′ , and we can check for each
clause if it is entailed by φR if R efficiently supports CE.

The approach with ME and MO is similar to the first case, only this time φR must be
non-succinct and vars(ψR′) ⊆ vars(φR) must hold, since the negation of a non-succinct
formula renders the non-succinctness useless for our approach.

As with the previous case we see that φR |= ¬ψR′ is equivalent to ψR′ |= ¬φR, thus
the roles of R and R′ can be exchanged again.

Case ¬φR |= ¬ψR′

This statement is equivalent to ψR′ |= φR, and can thus be reduced to the first case by
exchanging R and R′, even without requiring ¬C from either formalism.

Theorem 5.7. The statement L ⊆ L′ where the two involved state set variables are rep-
resented by φR and ψR′ with R ̸= R′ can be verified in polynomial time in ∥φR∥ and
∥ψR′∥ in the following cases:

R R′

φR|= ψR′

¬ψR′|= ¬φR

ME, ns MO
toDNF IM
CE toCNF
ME MO, ns

¬φR|= ψR′

¬ψR′|= φR

ME, ns MO, CT
toCNF IM
IM toCNF
MO, CT ME, ns

φR|= ¬ψR′

ψR′|= ¬φR

ME, ns MO
toDNF CE
CE toDNF
MO ME, ns

where “ns” means that the formalism is non-succinct (i.e. the representation size of the
formula is in best case linear in the amount of models). If the other involved formula is
succinct, it cannot contain variables not mentioned in the non-succinct formula.

If R (R′) supports ¬C and ¬φR (¬ψR′) occurs, we can also reduce the case to φR |=
ψR′ .
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5 Unsolvability Proof System

Looking at our concrete formalisms, we see that any statement where MODS is in-
volved can be verified efficiently. In most cases, we utilize the non-succinctness of the
formula, since the other formalism then only needs to support MO (possibly in combina-
tion with CT) or ME. All formalisms support MO and ME, but Horn and 2CNF do no
support CT, which is needed for ¬φR |= ψR′ . In these cases we can however use toCNF
and IM.

Since BDDs, Horn and 2CNF all are succinct, we need to rely on toDNF and toCNF
in those cases. However, Horn and 2CNF do not support toDNF and BDD supports
neither. Thus, all statements of type φR |= ¬ψR′ involving two of those three formalisms
cannot be verified efficiently since they require toDNF from one of the two formalisms.
Furthermore, φHorn/2CNF |= ψBDD and the equivalent ¬ψBDD |= ¬φHorn/2CNF cannot be
verified efficiently either since we would need either toDNF from Horn/2CNF or toCNF
from BDD. All other cases are however efficiently supported.

5.4 Comparison to Inductive Certificates
All unsolvability certificates in our previous approach are based on inductive sets (i.e. sets
S with S[AΠ] ⊆ S) that contain the initial state and no goal state. On a high level, such
certificates can be translated into the proof system the following way: We first show that
S is dead with rule PG (instantiating S ′ with ∅). Then, since IΠ ∈ S, we can show that
{IΠ} is dead with SD and can conclude the proof with CI.

For the simplest form of inductive certificates, the translation is very straightforward:

Theorem 5.8. Given an inductive R-certificate S for Π (meaning IΠ ∈ S, S ∩ SΠ
G = ∅

and S is inductive), we can construct a proof in the proof system in linear time. Verifying
the proof can be done with the same operations that are needed for inductive certificates,
namely MO, CE, SE, ∧BC, CL and RN≺.

Proof: Let S be an inductive certificate for Π. We start with ED deducing (1) ∅ is dead.
Since S contains no goal states, we state (2) (S ∩ SΠ

G) ⊑ ∅ with B1 and apply SD with
(1) and (2) to get (3) (S ∩ SΠ

G) is dead. Further, since S is inductive we can state (4)
S[AΠ] ⊑ S with B2. We apply UR to deduce (5) S ⊑ (S ∪ ∅) and use ST with (4) and
(5), resulting in (6) S[AΠ] ⊑ (S ∪ ∅).2 Using PG with (6), (1) and (3), we conclude (7)
S is dead. Since IΠ ∈ S, we can state (8) {IΠ} ⊑ S with B1, and apply SD with (7) and
(8) to obtain (9) {IΠ} is dead. We conclude the proof with CI applied to (9) resulting in
(10) “unsolvable”.

We only require operations from R for representing constant formulas (requiring CL)
and verifying the basic statements occurring at (2), (4) and (8). For (4), we need SE,
∧BC, CL and RN≺, and with this (2) and (8) is already covered as well.

2We need judgment S[AΠ] ⊑ (S ∪ ∅) rather than S[AΠ] ⊆ S for PG. We could also directly state
the needed judgment but then R theoretically would need to efficiently support ∨BC according to
Theorem 5.6, even if practically this is not needed since the second set is ∅.
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5 Unsolvability Proof System

We technically do not even require MO and CE here. However, any formalism effi-
ciently supporting SE, ∧BC and CL can also handle MO and CE For MO, we can build
a R-formula representing the model with CL, and test if the model is contained with SE.
For CE, we build the negation of γ with CL and test φ ∧ ¬γ |= ⊥ with SE. □

Since inductive certificates are complete, this also directly means that our proof system
is complete with respect to judgment “task unsolvable”:

Theorem 5.9 (soundness and completeness of the proof system). Given a STRIPS plan-
ning tasks Π = ⟨V Π, AΠ, IΠ, GΠ⟩, there is an proof in the proof system for Π iff Π is
unsolvable.

Proof: Soundness follows from the correctness of all inference rules and basic statements.
Completeness (with respect to judgment “task unsolvable”) follows from the fact that we
can for any unsolvable task Π translate an inductive certificate (which must exist since
inductive certificates are complete) into a proof in the proof system. □

For r-disjunctive and r-conjunctive certificates the translation becomes more involved,
since S is represented as a union or intersection of a family F of state sets and it is as-
sumed that the explicit union or intersection cannot be represented efficiently. Instead we
need to express the reasoning in the proofs of Theorem 4.5 and 4.7 within the proof sys-
tem. Specifically, we need to show that subset statements such as

⋃
S′
i∈F ′ S ′

i ⊆
⋃
Sj∈F Sj

(where F ′ ⊆ F) hold. While this is possible with the set theory rules we have included
in the proof system, building the proof can no longer be done in linear time.

In order to avoid different binary representations of a union/intersection of several (in-
dexed) sets, we build the binary representation in a linear ascending fashion. Given a fam-
ily of state setsF = {Si, Sj, . . . , Sk}, we denote the union asF∪ = (. . . (Si∪Sj) · · ·∪Sk)
and the intersection as F∩ = (. . . (Si ∩ Sj) · · · ∩ Sk), where i < j < k.

r-disjunctive Certificates An r-disjunctive certificate is a family of state sets F =
{S1, . . . S|F|}, such that (a) IΠ ∈ Sk for some Sk ∈ F , (b) Si∩SΠ

G = ∅ for all Si ∈ F and
(c) Si[a] ⊆

⋃
S′
j∈F ′ S ′

j for all Si ∈ F , a ∈ AΠ where F ′ is a subset of F of at most size r.
All these properties can be expressed as basic statements for the proof (for (b) we have a
subset instead of an equality relation). We then need to show within the proof that from
(b) follows (F∪ ∩ SΠ

G) ⊑ ∅, and from (c) follows F∪[A
Π] ⊑ (F∪ ∪ ∅). With this we can

show that F∪ is dead, from which we conclude with (a) and Si ⊑ F∪ that {IΠ} is dead
and thus the task is unsolvable.

Theorem 5.10. Given an r-disjunctive certificate F = {S1, . . . , Sn} for Π, we can con-
struct a proof in the proof system in time O(|F|2 + |AΠ| · |F| · r) showing that Π is
unsolvable. Verifying the proof can be done with the same operations that are needed for
r-disjunctive certificates, namely MO, CE, ∧BC, CL, RN≺ and either (i) ∨BC and SE or
(ii) toCNF.
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5 Unsolvability Proof System

Proof: We express (a) as basic statement B1: {IΠ} ⊑ Sk, (b) as |F| basic statements B1:
Si∩SΠ

G ⊑ ∅, and (c) as |AΠ| · |F| basic statements B2 Si[aj] ⊑ F i,j∪ , whereF i,j∪ represents
the corresponding subfamily for this particular set and action. Furthermore, we establish
basic statement B5: AΠ ⊑ (. . . (a1 ∪ a2) · · · ∪ a|AΠ|) and that ∅ is dead with ED.

We first want to show that F∪[A
Π] ⊑ F∪ holds. As a preparation for this we first show

that Si ⊑ F∪ holds for all Si ∈ F . This requires O(|F|2) steps. For each Si, we first
apply UL to show that Si is a subset of the union of all sets up to Si, and then extend the
union one set at a time with UD and ST, requiring |F| − i extension steps:

# judgment rule premises
(i) Si ⊑ (. . . (S1 ∪ S2) · · · ∪ Si) UL

(i+ 1) (. . . (S1∪S2) · · ·∪Si) ⊑ ((. . . (S1∪S2) · · ·∪Si)∪Si+1) UR
(i+ 2) Si ⊑ ((. . . (S1 ∪ S2) · · · ∪ Si) ∪ Si+1) ST (i),(i+ 1)

Next, we can show for each Si ∈ F , a ∈ AΠ that Si[a] ⊑ F∪ holds by applying ST
to basic statement Si[aj] ⊑ F i,j∪ and judgment F i,j∪ ⊑ F∪. The latter can be obtained
by using SU r − 1 times with the already derived judgments Si ⊑ F∪. In total this part
requires O(|F| · |AΠ| · r) steps.

# judgment rule premises
(x) Sx ⊑ F∪
(y) Sy ⊑ F∪
(z) Sz ⊑ F∪
(i) Si[aj ] ⊑ F i,j∪ B2

(i+ 1) (Sx ∪ Sy) ⊑ F∪ SU (x),(y)
. . .

(i+r−1) F i,j∪ ⊑ F∪ SU (i+r−2),(z)
(i+ r) Si[aj ] ⊑ F∪ ST (i),(i+r−1)

From these judgments we can now for each Si ∈ F first derive that Si[AΠ] ⊑ F∪ holds
with AU and AT, and combine this together with PU to the judgment F∪[A

Π] ⊑ F∪,
requiring O(|F| · |AΠ|) steps. Extending the judgment to the required (A) F∪[A

Π] ⊑
F∪ ∪ ∅ is then simply achieved with UR (F∪ ⊑ (F∪ ∪ ∅)) and ST.

To show that (F∪ ∩ SΠ
G) ⊑ ∅ holds, we need basic statement B1: (Si ∩ SΠ

G) ⊑ ∅ for all
Si ∈ F , and combine them together with help of SU, DI and ST, requiring O(|F|) steps.

# judgment rule premises
(x) ((. . . ) ∩ SΠ

G) ⊑ ∅
(i) (Si ∩ SΠ

G) ⊑ ∅ B1
(i+ 1) (((. . . ) ∩ SΠ

G) ∪ (Si ∩ SΠ
G)) ⊑ ∅ SU (x),(i)

(i+ 2) (((...) ∪ Si) ∩ SΠ
G) ⊑ (((..) ∩ SΠ

G) ∪ (Si ∩ SΠ
G)) DI

(i+ 3) (((. . . ) ∪ Si) ∩ SΠ
G) ⊑ ∅ ST (i+2),(i+1)
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With this we can conclude that (B) (F∪∩SΠ
G) is dead with the help of ED and SD. Now

we can show with PG applied to (A), ∅ dead and (B) that F∪ is dead, and then apply ST
to basic statement {IΠ} ⊑ Sk and judgment Sk ⊑ F∪ to show that {IΠ} is in F∪, from
which follows with SD that {IΠ} is dead and thus the task is unsolvable (CI).

Looking at the required operations, the basic statement from (a) requires CL and SE,
for (c) we need ∧BC, CL, RN≺ and either (i) ∨BC and SE, or (ii) toCNF and CE, and
(b) is then covered with CL, SE and ∧BC. While r-disjunctive certificates do not list SE
as a requirement when using toCNF, they are covered through toCNF and CE: φ |= ψ
can be checked by transforming ψ to a CNF and checking for each clause γ that φ |= γ
holds with CE. □

r-conjunctive Certificates An r-conjunctive certificate is a family of state sets F =
{S1, . . . S|F|}, such that (a) IΠ ∈ Si for all Si ∈ F , (b) (

⋂
Si∈FG Si)∩SΠ

G = ∅ for a subset
FG of F of at most size r, and (c) (

⋂
S′
j∈F ′ S ′

j)[a] ⊆ Si for all Si ∈ F , a ∈ AΠ where F ′

is a subset of F of at most size r.
All these properties can be expressed as basic statements for the proof (for (b) we have

a subset instead of an equality relation). We then need to show within the proof that from
(b) follows (F∩ ∩ SΠ

G) ⊑ ∅), and from (c) follows F∩[A
Π] ⊑ (F∩ ∪ ∅). With this we

can show that F∩ is dead. From (a) we can show that {IΠ} ⊑ F∩ holds, from which we
conclude that {IΠ} is dead and the task is unsolvable.

Theorem 5.11. Given an r-conjunctive certificate F = {S1, . . . , Sn} for Π, we can con-
struct a proof in the proof system in time O(|F|2 + |AΠ| · |F| · r) showing that Π is
unsolvable. Verifying the proof can be done with the same operations that are needed for
r-conjunctive certificates, namely MO, CE, SE, ∧BC, CL and RN≺.

Proof: The proof is in many parts similar to the r-disjunctive case. We express (a) with
|F| basic statements B1: {IΠ} ⊑ Si for each Si, (b) with basic statement B1: FG∩ ∩SΠ

G ⊑
∅ and (c) with |AΠ| · |F| basic statements B2: F i,j∩ [aj] ⊑ Si, where F i,j∩ represents the
corresponding subfamily for this particular set and action. Analogously to the disjunctive
case we establish the set of all actions and that ∅ is dead with B5 and ED.

To show that F∩[A
Π] ⊑ F∩ holds, we first show in O(|F|2) steps that F∩ ⊑ Si holds

for each Si. For this we first apply IL to get that the intersection of all sets up to Si is a
subset of Si, and then add sets Sj with j > i one step at a time with IR and ST:

# judgment rule premises
(i) (. . . (S1 ∩ S2) · · · ∩ Si) ⊑ Si IL

(i+ 1) ((. . . (S1∩S2) · · ·∩Si)∩Si+1) ⊑ (. . . (S1∩S2) · · ·∩Si) IR
(i+ 2) ((. . . (S1 ∩ S2) · · · ∩ Si) ∩ Si+1) ⊑ Si ST (i+ 1),(i)

Next, we show for each set Si and action a that F∩[a] ⊑ Si holds with the help of basic
statements from (c) and rules SI and PT, requiring O(|F| · |AΠ| · r) steps in total:
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# judgment rule premises
(x) F∩ ⊑ Sx
(y) F∩ ⊑ Sy
(z) F∩ ⊑ Sz
(i) F i,j∩ [aj ] ⊑ Si B2

(i+ 1) F∩ ⊑ (Sx ∩ Sy) SI (x),(y)
. . .

(i+r−1) F∩ ⊑ F i,j∩ SI (i+r−2),(z)
(i+ r) F∩[aj ] ⊑ Si PT (i),(i+r−1)

Analogously to the disjunctive case we can from these judgments now deriveF∩[A
Π] ⊑

Si for each Si with O(|AΠ|) applications of AU and one application of AT. To deduce
F∩[A

Π] ⊑ F∩ then requires O(|F|) applications of SI. Finally, we derive judgment (A)
F∩[A

Π] ⊑ F∩[A
Π] ∪ ∅ with UR and ST. In total this part requires O(|F| · |AΠ|) steps.

Showing that (B) F∩ ∩ SΠ
G is dead is easier than in the disjunctive case. We first show

F∩ ⊑ FG∩ with r − 1 applications of SI (analogous to showing above that F∩ ⊑ F i.j∩
holds). (B) is then derived with the help of basic statement FG∩ ∩SΠ

G ⊆ ∅ in the following
way:

# judgment rule premises
(x) ∅ dead

(i− 1) F∩ ⊑ FG∩
(i) (F∩ ∩ SΠ

G) ⊑ F∩ IR
(i+ 1) (F∩ ∩ SΠ

G) ⊑ FG∩ ST (i),(i− 1)
(i+ 2) (F∩ ∩ SΠ

G) ⊑ SΠ
G IL

(i+ 3) (F∩ ∩ SΠ
G) ⊑ (FG∩ ∩ SΠ

G) SI (i+1),(i+2)
(i+ 4) (FG∩ ∩ SΠ

G) ⊑ ∅ B1
(i+ 5) (F∩ ∩ SΠ

G) ⊑ ∅ ST (i+3),(i+4)
(i+ 6) (F∩ ∩ SΠ

G) dead SD (x),(i+ 5)

We can now derive that F∩ is dead by using PG with judgments (A), ∅ dead and (B).
It is left to show that {IΠ} is dead (and thus the task unsolvable). This can be done with
the help of basic statements {IΠ} ⊑ Si for all Si and O(|F|) applications of SI to obtain
{IΠ} ⊑ F∩, and applying SD to show {IΠ}is dead. Rule CI concludes the proof.

Looking at the operations needed to verify the proof, basic statements from (a) require
CL and SE, for (c) we need SE, ∧BC, CL and RN≺, and (b) is then covered with CL,
∧BC and SE. □

For both r-disjunctive and r-conjunctive certificate, the full schematic translation into
a proof as well as a concrete example are shown in Appendix A.2.

In summary, our theoretical comparison has shown that all types of inductive certifi-
cates can be translated into proofs in our proof system and can be verified efficiently if
this is the case for the inductive certificate. However, depending on the certificate type,
these proofs can be substantially bigger, because much of the reasoning inherent in the
inductive certificate has to be made explicit in the proof. There is an argument to be
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5 Unsolvability Proof System

made in favor of as fine-grained reasoning as possible for reducing errors, since proving
correctness of an inference rule in the proof system is not as involved as proving the en-
tire concept of for example r-disjunctive certificates correct. However, the disadvantage
of making the reasoning explicit is that verifying the proof will require more time than
verifying the properties of the inductive certificate.
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Applications
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6 Search Algorithms
Most state-of-the-art planning systems utilize some kind of search procedure on the in-
duced transition graph of the task Π in order to find plans. A general graph search starts
from one state (or a set of states) and iteratively discovers new states by expanding pre-
viously seen states. The states that should be expanded are kept in an open list and in
each iteration states are taken out in order to be expanded. To avoid re-expanding the
same states most search algorithms also keep a closed list, where expanded states are
remembered, and only expand a state if it is not in the closed list yet.

The three most commonly used search algorithm groups are depth-first, breadth-first
and best-first search. Depth-first search expands states in the open list in a FIFO order,
meaning the most recently discovered state is expanded first. Breadth-first search on the
other hand expands state in a LIFO order, meaning it expands the search space in “layers”:
first all states immediately adjacent to the starting point are expanded, then the states
adjacent to those and so forth. Finally, best-first-search assigns each state in the open
list some priority and expands states accordingly. Uniform cost search prioritizes states
based on the cost from the starting point to them, thus states nearer to the starting point
are expanded first. This guarantees that the first solution found is optimal. The other
prominent best-first search technique is heuristic search, where the expansion priority
is determined by a heuristic (which estimates the cost to the nearest goal), possibly in
combination with other measures like cost from starting point to current state.

Pruning techniques are a powerful tool to reduce the part of the search space that must
be explored. One common application of pruning is when a heuristic determines that the
goal cannot be reached from the current state; in this case it is safe to simply not expand
the state since we cannot lose possible solutions.

Proving unsolvability in graph search is essentially achieved by exploring all states that
are reachable from the starting point and realizing that the desired end state is not among
them. Pruning adds complexity to this argument since not all reachable states are explored
any more. We thus first examine how blind search, which does not apply pruning, can
create witnesses.

6.1 Blind Search
Blind search algorithms such as depth-first search, breadth-first and uniform cost search
explore the search space without pruning any states and stop when they have found a goal
or all reachable states are explored.
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6 Search Algorithms

A progression search starts at the initial state IΠ and expands successors of the con-
sidered states at each expansion step. If all (forward) reachable states from IΠ have been
expanded but no goal is found, the search claims unsolvability. In this case, the set of
expanded states serves as an inductive certificate: it contains IΠ, contains no goal and is
inductive.

A regression search starts with a partial state denoting all goal states and expands pre-
decessors of the considered partial states. It claims unsolvability if no more partial states
can be expanded and the initial state is not subsumed by any expanded partial state. The
set of states subsumed by the union of all expanded partial states can be seen as a “back-
wards inductive certificate” and thus its negation is a (forward) inductive certificate.

Finally, bidirectional search has two search frontiers: a forward direction starting from
IΠ and a backwards direction starting from the goal; expansion steps then advance either
the forward or backwards frontier. Unsolvability is claimed if one of the frontiers cannot
find any new states. Thus a certificate can be built like in progression if the forward
frontier is fully expanded, and as in regression if the backwards frontier is fully expanded.

If we want to generate a proof instead of an inductive certificate, we can simply translate
the inductive certificate into a proof as shown in Chapter 5.4.

In what follows we will not distinguish between the depth-first, breadth-first and uni-
form cost search, since all algorithms must expand all reachable states at some point,
and we can add those states to the certificate at this point. We will however distinguish
between explicit and symbolic search since states are represented in different ways.

6.1.1 Explicit Blind Search
Explicit blind search expands one state at a time. It is most commonly performed in the
forward direction, where the set of all expanded states is an inductive certificate. We
can build a formula φ representing this set by adding each state s to φ as it is expanded.
For this, we initialize φ to ⊥, and update it the following way when expanding s: φ :=
φ ∨ (

∧
v∈s s ∧

∧
v ̸∈s ¬v). From our considered formalisms, 2CNF and Horn formulas are

not suitable since they do not support disjunction, but both MODS and BDD are (MODS
works since all formulas consider the same set of variables). In both cases adding the new
state can be done in time linear in |V Π|: for MODS we can just add the corresponding
cube to the formula since all states mention the same set of variables; for BDDs see
Theorem A.1 in Appendix A.1.

Explicit blind regression search operates on partial states sp ⊆ V Π, which represent all
states s ⊇ sp and can be expressed as formula φsp =

∧
v∈sp v. The inductive certificate

in this case consists of all states not expanded by the search. This set can be built by a
formula φ that is initialized to ⊤ and in each expansion step conjoined with the negation
of the expanded partial state, i.e. when expanding partial state swe update φ the following
way: φ := φ∧

∨
v∈s ¬v. 2CNF and MODS are not suitable, since

∨
v∈s can in general not

be represented by 2CNF and requires an exponential representation size in MODS. While
BDDs can represent φ, building it is in general exponential in the number of expanded
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6 Search Algorithms

states (Edelkamp and Kissmann, 2011). Horn formulas on the other hand can update φ in
time linear in |V Π| and are thus best suited.

6.1.2 Symbolic Blind Search
Symbolic search expands an entire set of states in each expansion step. As such, they
need to be able to compactly represent state sets. Since most planning systems employing
symbolic search like GAMER (Edelkamp and Kissmann, 2009) and SymBA* (Torralba
et al., 2014) use BDDs as representation formalism, we only consider inductive BDD
certificates.

In contrast to explicit search, symbolic search works principally the same in both pro-
gression and regression, since states are represented in an identical way.

Symbolic search stores its closed list in two different ways: For solution reconstruction
it keeps a BDD for each distance to the starting set, including all closed states that can
be reached from this distance. For duplicate elimination a BDD containing all closed
states is stored. This BDD is all we need for generating an inductive certificate: In the
progression case, it is already an inductive certificate. In the regression case, we simply
need to negate the BDD, which takes constant time. Symbolic blind search based on
BDDs can thus generate inductive certificates without any overhead.

6.2 Heuristic Search
Heuristic search, similarly to blind search, can be performed in various ways. One can
choose between progression and regression, explicit and symbolic search, and optimal and
suboptimal search. Here we will focus on explicit forward search, where the search starts
from the initial state and expands single states based on a combination of its heuristic
estimate (an estimate of the distance to the nearest goal state) and possibly other metrics.
The exact calculation of the expansion priority does not matter; nor does it matter whether
the heuristic estimates are admissible or not. The only property we require of the heuristic
is safety: it can only declare a state s as dead-end if no goal can be reached from s.

Heuristic search changes the detection of unsolvabilty insofar that not the entire reach-
able search space must be explored anymore. If a heuristic detects a state as dead-end,
i.e. it detects that no goal can be reached via this state, the state can be pruned from the
search without affecting correctness. Since the dead-end state cannot reach any goal, we
know that an inductive set containing the dead-end but no goal state must exist. While the
next chapter focuses on how to describe such a set for a multitude of heuristics, we will
currently assume that these sets are given, i.e. we assume that for every state d pruned
during search we have an inductive set Sd containing d but no goal states.1

1For proofs in the proof system it is already sufficient to have some form of proof why d is dead (which
can but does not necessarily need to argue with inductive sets), but since we consider both types of
witnesses here, we assume a stricter requirement.
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The key of proving unsolvability now lies in combining these inductive sets with the set
of expanded states. Intuitively, if dead-ends cannot reach a goal and the expanded states
can only reach themselves and dead-ends it is clear that the task cannot be solved. In the
next two sections we will analyze separately how inductive certificates and proofs in the
proof system can be built from this.

6.2.1 Inductive Certificates
We can form an inductive certificate with the union of sets Sd for all dead-ends d and
the set of expanded states, since it is an overapproximation of the states reachable from
IΠ, and all states in this union that are not reachable from IΠ must be contained in some
inductive set Sd. However, we can in general not generate a single R-formula represent-
ing this union, because we need equally many disjunctions as dead-ends occurred. Since
often several thousand dead-ends are detected in a heuristic search, we cannot rely on
bounded disjunction anymore but must require ∨C, which none of our considered for-
malisms supports.

Instead we suggest to build a disjunctive certificate consisting of the sets Sd for dead-
ends d and for each expanded state e a separate set. This family of sets forms a 1-
disjunctive certificate:

Theorem 6.1. Let Π = ⟨V Π, AΠ, IΠ, GΠ⟩ be a STRIPS planning task, let S∞ ⊆ SΠ be a
set of dead-ends, and let F∞ be a family of inductive sets such that

⋃
S∈F∞

S ∩ SΠ
G = ∅

and S∞ ⊆
⋃
S∈F∞

S (i.e. each state in S∞ is included in some inductive set in F∞).
Moreover, let Sexp ⊆ SΠ be a set of states such that IΠ ∈ Sexp ∪ S∞, Sexp contains no

goal state, and Sexp[A
Π] ⊆ Sexp∪S∞. Then F = {{s} | s ∈ Sexp}∪F∞ is a 1-disjunctive

certificate for Π.

Proof: We check the three requirements for 1-disjunctive certificates in Definition 4.5.
Property 1 (inclusion of the initial state) and 2 (non-inclusion of goal states) are trivial.
It remains to check property 3 (disjunctive 1-inductivity) for all component certificates
S ∈ F and all actions a ∈ AΠ.

Case 1: S = {s} for some s ∈ Sexp. Then S[a] is either empty (if a is inapplicable in
s) and the condition holds trivially, or S[a] = {s[a]}, and we can set F ′ in Definition 4.5
to include some set in F that includes s[a]. Such a set must exist because Sexp[A

Π] ⊆
Sexp ∪ S∞ and S∞ ⊆

⋃
S∈F∞

S.
Case 2: S ∈ F∞. Then we can set F ′ = {S} in Definition 4.5 because S is inductive.

□

Note that while building one set for all expanded states would seem more intuitive it
would violate 1-disjunctiveness, since applying an action to two different expanded states
might lead to a dead-end in one case and an expanded state in the other case; or to two
different dead-ends covered by two different inductive sets. Figure 6.1 illustrates this: If
we had a single set S = {IΠ, s1, s2, s3} containing all expanded states, then for example
S[a2] has elements in S, Sd1 and Sd2 and thus the certificate is no longer 1-disjunctive.
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Sd1

Sd2

IΠ

s1

s2

s3

d1

d2

SΠ
G

a1 a2 a3

Figure 6.1: Example of a search space where a heuristic recognized d1 and d2 as dead-
ends. The red sets denote inductive sets Sd obtained by the heuristic for
each dead-end, and blue sets are singleton sets, each including exactly one
expanded state.

A set S = {s} is represented by a formula
∧
v∈s v ∧

∧
v′ ̸∈s ¬v′ and requires only CL,

thus all considered representation formalisms are suitable. However, since those sets form
only part of the certificate there are still some limitations:

• Each set for a dead-end must be represented explicitly by one single formula.

• The representation formalism must be the same for all sets. For BDDs, this also
means all sets must have the same variable ordering.

The second point also implies that building certificates for heuristic search with several
heuristics is in general not covered by this approach, even if all heuristics are supported
in isolation but require different formalisms.

Theorem 6.2. Given an unsolvable STRIPS planning task Π, an explicit heuristic forward
search with heuristic h can generate a 1-disjunctive R-certificate iff R efficiently supports
CL and h can generate an inductive set represented by R-formula φd for each detected
dead-end d such that d ∈ states(φd) and SΠ

G ∩ states(φd) = ∅.

All four considered formalisms are in principle suitable, since they efficiently support
CL and can efficiently verify 1-disjunctive certificates. In the case of MODS we do not
even need the restriction that all formulas are over the same set of variables, since for
1-disjunctive certificates the disjunction on the right side contains only one element.
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6.2.2 Proof System
As we have shown in Theorem 5.10, we could simply translate the 1-disjunctive certifi-
cate from above into our proof system. Such a proof would however be considerably
bigger than the certificate, and more importantly we would not make use of the richer
expressiveness of the proof system and impose the same restrictions on which algorithms
could produce proofs at all.

The main feature of the proof system is to be able to combine knowledge gained from
different sources. Following this design, the key idea of generating proofs from heuristic
search is to first show for each individual dead-end why it is dead, and then combine this
knowledge by showing that the set of expanded states only leads to itself or to dead states,
meaning we cannot reach any goal from the initial state.

Theorem 6.3. Given an unsolvable STRIPS planning task Π, an explicit heuristic forward
search can generate a proof of unsolvability iff each heuristic can prove for each detected
dead-end d that some set expression Sd containing d is dead, where all set variables in
Sd are represented by some R-formalism and no progression or regression occurs. To
generate the proof, we additionally need a formalism R′ that efficiently supports CL and
is able to build a formula by iteratively adding models.

Proof: In the first part of the proof we prove for each dead-end d in the set of all dead-
ends S∞ that the set {d} represented in R′ is dead. We are already given formulas φR

representing a set Sd that has been proven dead and know that d ∈ Sd holds. First,
we represent {d} by building an R′-formula ψR′ =

∧
v∈d v ∧

∧
v ̸∈d ¬v, using CL. If

Sd is a set literal, we can directly show that {d} ⊑ Sd holds with basic statement B4.
Otherwise Sd must be union or intersection of two sets and we recurse over these two
sets. If Sd = (S ∪ S ′), then {d} ⊑ S or {d} ⊑ S ′ must hold since {d} contains only a
single element. After recursively showing either statement, we can use UR or UL together
with ST to show {d} ⊑ (S∪S ′). If Sd = (S∩S ′), then both {d} ⊑ S and {d} ⊑ S ′ must
hold. After recursively showing both statements we use SI to get {d} ⊑ (S ∩ S ′). Once
we obtained {d} ⊑ Sd, we can use the existing knowledge that Sd is dead by applying
rule SD to get (1) {d} is dead.

We now have a set {d} represented by an R′-formula for each d ∈ S∞, and we know
all such sets are dead. We combine this knowledge by applying rule UD |S∞| − 1 times
in order to get the statement (2)

⋃
d∈S∞
{d} is dead.

For the second part of the proof, we represent the set of expanded states Sexp as an
R′-formula, which is built incrementally each time a state is expanded. We know from
the search that expanded states only lead to expanded states or dead-ends and state this
with B2 (3) Sexp[A

Π] ⊑ Sexp ∪
⋃
d∈S∞
{d}. We also know that Sexp cannot contain any

goal states since otherwise the task would not be unsolvable, which leads to statement B1
(4) Sexp ∩ SΠ

G ⊑ ∅. From (4) together with rule ED (∅ dead) follows (5) Sexp ∩ SΠ
G dead.

Now we can conclude from (3), (2) and (5) that (6) Sexp is dead with PG. Since IΠ must
have been expanded we can state (7) {IΠ} ⊑ Sexp with B1, and together with (6) follows
that (8) {IΠ} is dead according to SD. Applying CI to (8) concludes the proof.
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For the special case where the initial state is already detected to be a dead-end, we can
directly conclude the proof with CI applied to (1). In this case, we do not need need R′

and {IΠ} ⊑ Sd is covered by basic statement B1 and CL. □

For our four considered formalisms, this concretely means that only BDDs or MODS
can take on the role of R′ because only they can incrementally add models to a formula
in an efficient manner (see Section 6.1.1).

For verifying the proof, basic statement B2 in (3) can become problematic, since the
size of the union is linear in the amount of dead-ends. We observe however that the union
represents a disjunction over models with the same variables, and thus both MODS and
BDDs can efficiently build this union. Alternatively we can split up the role of R′ by
building a single set DR′ of all dead-ends in R′ and show with B1 that it is a subset of
the union of all {d}, and then build a set DR′′ containing the same states in a different
formalism R′′ and show with B4 that DR′′ ⊑ DR′ holds. The remainder of the proof can
then be shown using R′′, which does not need to be able to build a union of models.

While we cannot discuss all cases how a heuristic might show that Sd is dead, we
analyze the case where Sd is represented by a single R-formula φR and must be inductive
and contain no goal states. Showing that Sd is dead can then be done the following way:

We first establish Sd ∩ SΠ
G ⊑ ∅ with basic statement B1, and by applying SD together

with ED (∅ dead) we have (1) Sd∩SΠ
G dead. Inductivity means that we can state Sd[AΠ] ⊑

Sd with B2, which we can extend to (2) Sd[AΠ] ⊑ (Sd ∪ ∅) with the help of UR (Sd ⊑
(Sd ∪ ∅)) and ST. We then can apply rule PG to (1), ED and (2) to get Sd dead.

For basic statement B2 Sd[AΠ] ⊑ Sd we need ∧BC, CL, RN≺ and SE, which also
covers B1 Sd ∩ SΠ

G ⊑ ∅.

Corollary 6.1. If a heuristic can produce an R-formula φR representing an inductive
set Sd containing no goal state, we can generate a proof showing Sd is dead that can be
efficiently verified iff R efficiently supports ∧BC, CL, RN≺ and SE.

Figure 6.2 shows an example of a full proof where each Sd is inductive, contains no
goal state and is represented by a single R-formula. We can build the proof efficiently by
creating sets Sdi and {di} and showing they are dead each time a dead-end is detected,
and by iteratively building Sexp every time a state is expanded.
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Sd1
{d1}

Sd2

{d2}

Sexp

IΠ

s1

s2

s3

d1

d2
SΠ
G

# judgment rule premises
(1) ∅ dead ED
(2) Sd1 [A

Π] ⊑ Sd1 B2
(3) Sd1 ⊑ (Sd1 ∪ ∅) UR
(4) Sd1 [A

Π] ⊑ (Sd1 ∪ ∅) ST (2),(3)
(5) Sd1 ∩ SΠ

G ⊑ ∅ B1
(6) Sd1 ∩ SΠ

G dead SD (1),(5)
(7) Sd1 dead PG (4),(1),(6)
(8) {d1} ⊑ Sd1 B4
(9) {d1} dead SD (7),(8)

(10) Sd2 [A
Π] ⊑ Sd2 B2

(11) Sd2 ⊑ (Sd2 ∪ ∅) UR
(12) Sd2 [A

Π] ⊑ (Sd2 ∪ ∅) ST (10),(11)
(13) Sd2 ∩ SΠ

G ⊑ ∅ B1
(14) Sd2 ∩ SΠ

G dead SD (1),(13)
(15) Sd2 dead PG (12),(1),(14)
(16) {d2} ⊑ Sd2 B4
(17) {d2} dead SD (15),(16)
(18) ({d1} ∪ {d2}) dead UD (9),(17)
(19) Sexp[A

Π] ⊑ (Sexp ∪ ({d1} ∪ {d2})) B2
(20) Sexp ∩ SΠ

G ⊑ ∅ B1
(21) Sexp ∩ SΠ

G dead SD (1),(20)
(22) Sexp dead PG (19),(18),(21)
(23) {IΠ} ⊑ Sexp B1
(24) {IΠ} dead SD (22),(23)
(25) task unsolvable CI (24)

Set variables: Sd1 : R1 Sd2 : R2 {d1} : R′ {d2} : R′ Sexp : R′

Figure 6.2: An example of how a proof for heuristic search can be built. The heuristics
detected d1 and d2 as dead-end, and provided two sets Sd1 and Sd2 that include
the corresponding dead-end, do not contain any goal state and are inductive.
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For the purpose of detecting unsolvability, heuristics only serve a pruning purpose: when
a heuristic returns an infinite estimate for a state s, it concluded that no goal state can
be reached from s and thus s does not need to be expanded. In the previous chapter
we discussed how heuristic search can emit a certificate or proof of unsolvability, based
on the assumption that if a heuristic reports a dead-end it can produce an inductive set
containing the dead-end but no goal states (for inductive certificates) or can prove some
set Sd containing the dead-end dead (for proofs). In this chapter we now show for several
heuristics how such a set can be generated.

While the proof approach does not require Sd to be inductive and contain no goal (it
only needs to show in some way that Sd is dead), all heuristics we discuss in this chapter
can provide a set with these properties. We thus restrict our discussion to such sets, which
we call dead-end validations:

Definition 7.1 (dead-end validation). Given a heuristic h and a state s that h claims to
be a dead-end, a dead-end validation is a set S of states with the following properties:

• s ∈ S

• S ∩ SΠ
G = ∅

• S is inductive

If we consider the set of all states that a given heuristic detects as dead, certain prop-
erties of a heuristic directly imply properties of the dead-end validation. Obviously, the
first property is given since we consider the set of all dead-ends. For the second and third
property, we look at the following heuristic properties:

• safety: A heuristic h is safe if it only declares a state s as dead-end if no goal can
be reached from s.

• consistency: A heuristic h is consistent if h(s) ≤ h(s[a]) + cost(a) for any state s
and applicable action a, where cost : A→ R+

0 assigns each action a finite nonneg-
ative cost.

The safety property implies that no goal is in the set of all dead-ends, and the consis-
tency property implies that this set is inductive:
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Theorem 7.1. Given a heuristic h, let Hinf be the set of states s ∈ SΠ with h(s) =∞.

(a) If h is safe, Hinf contains no goal state.

(b) If h is consistent, Hinf is inductive.

Proof: (a) If h is safe, then it can only report states as dead-end if no goal can be reached
from them. Thus if s ∈ Hinf, then no goal state can be reached from s, which also
means that s cannot be a goal state. (b) From the definition of consistency follows that if
h(s) = ∞, then h(s′) = ∞ for all s′ reachable from s, i.e. all states reachable from any
s ∈ Hinf must also be in Hinf. Thus Hinf is inductive. □

Theorem 7.1 shows that for consistent and safe heuristics we can define one singular
set that contains all dead-ends and serves as a dead-end validation for all dead-ends. How-
ever, such a set can not always be represented compactly. We thus also explore options
where we build different sets for each dead-end.

7.1 Delete Relaxation
The family of delete relaxation heuristics like h+, hmax, hadd, hFF and hLM-Cut (e.g. Bonet
and Geffner, 2001; Hoffmann and Nebel, 2001; Helmert and Domshlak, 2009) operates
on an altered planning task where the delete effects of all actions are removed:

Definition 7.2 (delete relaxation). Let Π = ⟨V Π, AΠ, IΠ, GΠ⟩ be a STRIPS planning task.
The delete relaxation ΠR = ⟨V Π, AR, IΠ, GΠ⟩ of Π contains an action aR ∈ AR for each
a ∈ AΠ such that pre(aR) = pre(a), add(aR) = add(a) and del(aR) = ∅.

We say that a variable v is unreachable in ΠR from state s if it is impossible to reach
a state from s that contains v, and call the set of all such variables UR

s . Since in delete
free tasks an action applicable to a state s is applicable to all successors of s, we can
incrementally compute UR

s by applying all applicable actions until we reach a fix point
s∗. The set of all variables not contained in this fix point is UR

s .
In the original task Π this set of variables can be used to define inductive sets:

Theorem 7.2. Given UR
s for some state s, the set SRs = {s′ ⊆ V Π|s′ ∩ UR

s = ∅} is
inductive in Π

Proof: We know that in ΠR the state s∗ = V Π \UR
s is a fix point, i.e. s∗[aR] = s∗ if aR is

applicable. In Π, the corresponding actions a are applicable to s∗ since their preconditions
are identical and they must lead to a state s′ ⊆ s∗ (or s′ ∈ SRs ) since the add effects are
identical but a might contain delete effects, meaning {s∗}[AΠ] ⊆ SRs . Furthermore, for
any state s′′ ⊆ s∗ we have that s′′[a] ⊆ s∗[a] (and thus s′′[a] ∈ SRs ) if a is applicable in s′′

due to the relaxation lemma 1. From this we conclude that SRs [A
Π] ⊆ SRs . □

1The relaxation lemma (for STRIPS) states that given two states s ⊆ s′ and action sequence π applicable
to s, π is also applicable to s′ and s[π] ⊆ s′[π].
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Any delete relaxation heuristic detects a state s only as dead-end if UR
s contains at

least one goal variable. In this case SRs contains no goal states, meaning it is a dead-end
validation for s.
SRs can be represented by

∧
v∈UR

s
¬v, requiring only CL, which all considered for-

malisms support efficiently. Aside from generating the set with CL, no additional over-
head is incurred since delete relaxation heuristics perform a relaxed reachability analysis
as part of their heuristic computation.

Corollary 7.1. Given a state s that is detected as dead-end by a delete relaxation heuris-
tic, a dead-end validation for s can be represented by a single R-formula φR iff R effi-
ciently supports CL.

This means that all four considered formalisms are suitable for delete-relaxation heuris-
tics. Since the dead-end validation is represented as a single formula φR it can be used
for both proofs (with Corollary 6.1) as well as 1-disjunctive R-certificates.

7.2 Critical Paths
The family of hm (Haslum and Geffner, 2000) heuristics are a generalization of the hmax

heuristic and can intuitively be understood to relax the task by considering the reachability
of variable tuples with size up to m. Similar to delete relaxation heuristics, hm computes
a set of reachable variable tuples as a side effect, and we can show that the set of all states
containing only tuples from this set is inductive.

In order to prove this claim we utilize the Πm compilation introduced by Haslum
(2009), which is defined such that hmax(Πm) = hm(Π), i.e. instead of directly com-
puting the hm heuristic we can compute the hmax heuristic on Πm. It explicitly represents
conjunctions c ⊆ V Π of up to m variables by new variables πc. We use the shorthand Xm

to denote the set of such new variables for all conjunctions of up to m variables that are
implied by a set of variables X ⊆ V Π: Xm = {πc | c ⊆ X and |c| ≤ m}. With this
shorthand, we can define the Πm compilation as follows:

Definition 7.3 (Πm compilation). For a STRIPS planning task Π = ⟨V Π, AΠ, IΠ, GΠ⟩ and
a parameter m ∈ N+, Πm is the planning task (V m, Am, Im, Gm), where Am contains an
action af for each pair a ∈ AΠ and f ⊆ V Π such that |f | < m and f is disjoint from
del(a) ∪ add(a). Action af is given by

pre(af ) = (pre(a) ∪ f)m

add(af ) = (add(a) ∪ f)m

del(af ) = ∅

The original definition in Haslum (2009) does not include variables πc in add(af ) where
c ∩ add(a) = ∅. For these variables, it holds that c ⊆ f , so πc is included in pre(af ). Our
additional add effects do therefore not change the semantics of the actions.

73



7 Heuristics

We say that a variable πc is unreachable in Πm from state s if it is impossible to reach
a state from s where πc is true, and call the set of all such variables Um

s . For a given πc,
the set Sc̄ = {s ⊆ V Π | c ̸⊆ s} denotes the set of all states in Π that do not contain all
variables in c. The intersection of these sets for all πc in Um

s is inductive:

Theorem 7.3. Given a task Π and a state s, the intersection of the family of sets F =
{Sc̄ | πc ∈ Um

s } is inductive.

Proof: We will show that for each action a ∈ AΠ and Sc̄ ∈ F there is a c′ such that
Sc̄′ [a] ⊆ Sc̄. As we have seen in the proof to Theorem 4.7, this implies that

⋂
Sc̄∈F Sc̄ is

inductive.
Consider an action a and Sc̄ ∈ F . If add(a) ∩ c = ∅ or del(a) ∩ c ̸= ∅ then a cannot

make all variables in c true and Sc̄[a] ⊆ Sc̄. Otherwise, let f := c \ add(a) be the set of
variables that needs to be true in a state s′ such that s′[a] ̸∈ Sc̄. Consider action af of the
task Πm. It holds that πc ∈ add(af ) but πc ∈ Um

s , so pre(af ) cannot be relaxed reachable
from sm in Πm, i.e. there is a πc′ ∈ Um

s ∩ pre(af ). From πc′ ∈ pre(af ) = (pre(a) ∪ f)m,
we know that c′ ⊆ pre(a)∪f , which means that for any state in Sc̄′ we have that either a is
not applicable or not all variables in f are true (and thus in the successor not all variables
of c are true). From this we conclude Sc̄′ [a] ⊆ Sc̄. □

hm detects a state as dead-end iff some πc with c ⊆ G is in Um
s . In this case, the inter-

section of the sets in F does not contain any goal state and is thus a dead-end validation.
This dead-end validation can be built with R-formula φ =

∧
πc∈Um

s

∨
v∈c ¬v, requiring

∧C and the ability to represent a clause containing only negated variables. This means
only Horn formulas are suitable, or 2CNF if m ≤ 2. Alternatively we can define it as
the intersection of sets represented by R-formulas φc =

∨
v∈c ¬v for all πc ∈ Um

s . For
this, BDDs and MODS are suitable as well. In both cases we can build the formula(s) in
O(|m| · |Um

s |).

Corollary 7.2. Given a state s that is detected as dead-end by an hm heuristic, a dead-
end validation for s can be represented by a single formula

∧∨
¬v, i.e. a CNF formula

where all literals are negated variables.

Looking at our considered formalisms, this means that 1-disjunctive certificates can be
built for heuristic search with an hm heuristic, but only represented by Horn formulas,
or if m ≤ 2 by 2CNF formulas. For proofs, we can show that the singular formula
representation is dead with Corollary 6.1. We can however also avoid building the singular
formula. As we have seen in the proof for Theorem 7.3, for each Sc̄ (represented by φc)
and action a ∈ AΠ, we can find a Sc̄′ such that Sc̄′ [a] ⊆ Sc̄, which is reminiscent of
1-conjunctive certificates. Indeed, if the initial state is detected as a dead-end by hm,
we could build a 1-conjunctive certificate with these formulas. With the proof system,
we can build a proof for any state s detected as dead-end by hm showing that s is dead
analogously to how we translate r-conjunctive certificates into proofs.
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Corollary 7.3. Given a state s that is detected as dead-end by an hm heuristic, we can
build a proof that s is dead in any R-formalism that can represent a clause containing
only negated variables. This proof can be verified efficiently if R efficiently supports CE,
SE, ∧BC, CL and RN≺.

7.3 Merge and Shrink
Pattern databases (PDBs) (Edelkamp, 2001) and their generalization the M&S heuristic
(Helmert, Haslum, and Hoffmann, 2007) are defined in a SAS+ setting. Their general idea
is to build an abstraction of the search space and use the goal distance in the abstraction
as heuristic estimate. Pattern databases abstract the planning problem to a set of variables
(called the “pattern”). The M&S heuristic first builds abstractions for all variables (called
atomic abstractions), and then iteratively merges two abstractions, potentially shrinking
the result, until only one abstraction remains. The merge strategy (represented by a tree)
dictates in which order abstractions are merged. If the tree degenerates to a list (meaning
one abstraction in the merge step is always an atomic abstraction), we speak of a linear
merge strategy. PDBs can also be understood as an M&S heuristic using a linear merge
strategy and abstracting all variables not in the pattern to only one abstract state.

M&S heuristics internally use a cascading tables representation, where each node in
the merge tree is associated with a table. Tables for leaf nodes map each value of the
associated SAS+ variable to an abstract state in the atomic abstraction. Tables for merge
nodes map pairs of abstract states from its two child nodes to new abstract states, except
for the top-level node which maps to heuristic values instead. The heuristic value for
a state s can then be looked up by first looking up the abstract states for each variable
and then following the merge tree. As an example consider Figure 7.1: Given a state
s = {v1 = 0, v2 = 1, v3 = 2}, we see that v1 = 0 maps to α1

0 in leaf table A1, v2 = 1
maps to α2

1 in A2, and v3 = 2 to α3
0 in A3. In merge table M2 we see that ⟨α2

1, α
1
0⟩ maps

to µ2
1, and in M3 (the final table) ⟨α3

0, µ
2
1⟩ maps to∞, thus h(s) =∞.

In order to reduce the number of abstract states, the shrinking step maps all states of an
abstraction that either (i) cannot reach any abstract goal state or (ii) cannot be reached by
the abstract initial state to one abstract “dead state”, which will result in the corresponding
concrete states having a heuristic value of∞ and effectively being pruned from the search.
Since condition (ii) results in states from which a goal can be reached to have infinite
heuristic value, M&S heuristics are in general neither safe nor consistent. If we however
do not prune states that only satisfy condition (ii) (i.e. states from which a goal can be
reached but that cannot be reached from the initial state), the resulting M&S (or PDB)
heuristic is safe and consistent. In what follows we only consider this variant of M&S
heuristics.

Since the considered M&S heuristics are consistent and safe, the set of all states with
infinite heuristic estimate is inductive and does not contain any goal. While for general
heuristics it is hard to represent this set, Helmert et al. (2014) have shown that for linear
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Figure 7.1: An example showing the cascading tables representation of a M&S heuristic
with linear merge strategy.

⊤
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Figure 7.2: The (partially reduced) BDD representing all dead states of the M&S heuristic
from Figure 7.1. Leaf node⊥ and all edges leading to it are omitted for clarity.
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merge strategies we can efficiently build an ADD2 (Bahar et al., 1993) from the cascading
tables. From this ADD we can efficiently extract a BDD representing all states mapping
to ∞. We need to consider however that the M&S heuristic is defined on SAS+ and
our translation to STRIPS introduces new states, thus Theorem 7.1 can not be applied
directly. But due to the construction of the STRIPS task it is easy to see that for any state
for which the M&S heuristic is defined (i.e. all states not violating the mutexes inherent
in the SAS+ task) the successor states all also do not violate these mutexes. Thus the set
of states for which the M&S heuristic is defined and evaluates to∞ is indeed inductive
even for the translated STRIPS task.

When extracting the BDD with all dead states we largely follow the construction from
Helmert et al. (2014) except for two changes: (1) we build the BDD directly from the
cascading tables, and (2) our binary representation of SAS+ variable vi consists of the
|dom(vi)| propositional variables from our STRIPS translation (instead of |dom(vi)| − 1
variables). Algorithm 1 shows how we construct the BDD and an example can be seen in
Figure 7.2. The construction centers around intermediate BDDs Bi

j , which relate to the
abstract states j of the right child of M i. It represents how, given j, remaining variables
vk′ with k′ ≥ imust be assigned such that the resulting state is dead. The variable ordering
for the BDDs is taken from the (linear) merge strategy. We denote variables in such a way
that hM&S first merges v1 and v2, then merges the result with v3 and so on. The variable
ordering for our BDD then is v1,0 ≺ · · · ≺ v1,|dom(v1)|−1 ≺ v2,1 ≺ · · · ≺ vn,|dom(vn)|−1

(assuming dom(vi) = {0, |dom(vi)| − 1} for all variables vi ∈ VSAS+).
We first replace all finite heuristic values in the last merge table Mn with 0 and can

thus interpret Mn to map to the two abstract states 0 and ∞. Since we want to build a
BDD representing all dead states, we assign Bn+1

0 = ⊥ and Bn+1
∞ = ⊤. We then iterate

backwards over the merge tables M i and build a BDD Bi
j for each column of M i in the

following way: We build a BDD for each value x in dom(vi) (i.e. the domain of the
variable in the left leaf child) and combine it with Bi+1

j′ , i.e. the BDD representing the
abstract state j′ mapped to by j and the abstract state for x in M i. The union over these
BDDs forms Bi

j . After we processed the final merge table M2, BDDs B2
j correspond to

abstract states of the atomic abstraction to v1. We build the final BDD by again combining
each value of v1 with the appropriate B2

j BDD and building the overall union.
Each BDD operation in lines 9–10 and 17–18 take time linear in dom(vi):

• Bvi=k: Building a partial variable assignment to k variables is linear in k, andBvi=k

is a partial assignment to dom(vi) variables (independent of variable ordering).

• With Theorem A.3 from Appendix A.1 we know that since all variables occurring
in Bvi=k are ordered before any in Bi+1

entry, the conjunction Bvi=k ∧ Bi+1
entry, is done in

time linear in ∥Bvi=k∥ = dom(vi).

2Algebraic Decision Diagrams (ADDs) have a finite amount of leaf nodes representing integers or∞ as
opposed to BDD with leaves ⊤ and ⊥.
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Algorithm 1: Build a BDD representing all dead states of a given M&S heuristic.
Data: Cascading tables A1, . . . , An and M2, . . . ,Mn. M i has left child Ai and right

child M i−1 for i > 2; M2 has left child A2 and right child A1. All Ai are
leaves.

Result: BDD B∞
1 replace finite values in Mn with 0;
2 Bn+1

0 ← ⊥;
3 Bn+1

∞ ← ⊤;
4 for i = n . . . 2 do
5 for j ∈M i.column do
6 Bi

j ← ⊥;
7 for k ∈ dom(vi) do
8 entry←M i[Ai[k]][j];
9 Bvi=k ← vi,k ∧

∧
k′∈(dom(vi)\{k}) ¬vi,k′;

10 Bi
j ← Bi

j ∨ (Bvi=k ∧Bi+1
entry);

11 end
12 end
13 end
14 B∞ ← ⊥;
15 for k ∈ dom(v1) do
16 entry← A1[k];
17 Bv1=k ← vi,k ∧

∧
k′∈(dom(v1)\{k}) ¬vi,k′;

18 B∞ ← B∞ ∨ (BDD(v1 = k) ∧B2
entry);

19 end
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• The final disjunction Bi
j ∨ (Bvi=k ∧ Bi+1

entry) is covered by Theorem A.2 from Ap-
pendix A.1: The overall lowest ranked variable (i.e. appearing first in the variable
order) is vi = 0, and when restricted to variables vi = k for k ∈ dom(vi) (which are
contiguous in the order) the right-hand side represents a complete variable assign-
ment (with Bvi=k) that is disjoint to the left-hand side (since we did not consider
vi = k in Bi

j yet).

Corollary 7.4. Given a state s that is detected as a dead-end by a M&S heuristic with
ĺinear merge strategy (including all PDB heuristics), a dead-end validation for s can be
represented by a BDD that can be built in time linear in the size of the cascading tables
representation and the maximum domain size in the SAS+ task. This BDD serves as a
dead-end validation for all dead-ends from this heuristic and must thus only be built once
during the entire search.

This means that a 1-disjunctive BDD certificate can be built and verified for heuristic
search using (only) a M&S heuristic with linear merge strategy. For proofs, we can easily
show that the BDDB representing all dead-ends is dead, but the mixed statement φR ⊑ B
can be problematic. If R is MODS, then the statement can be verified; however if R is
a BDD with different variable ordering, the statement cannot be verified. On the other
hand, if BDDs are used for the expanded state and we only use one M&S heuristic, we
could simplify the proof substantially: Instead of defining sets for each dead-end, we only
generate a BDD E with the same variable ordering as B representing all expanded states,
and after we show B to be dead we can state E[AΠ] ⊑ (E ∪ B) directly, since E and B
have the same formalism.

7.4 Landmarks
Informally speaking, a landmark in planning is something that every plan must achieve
along the way. One variation of a landmark is a fact landmark, a variable that must be true
in some state visited during the plan. For example, consider a logistics problem where a
truck needs to deliver packages. If a package is not already at its goal location, we could
define a fact landmark saying that the package must be in the truck at some point. We
can also express this as an action landmark, saying that at some point we must load the
package into the truck. A landmark heuristic in its simplest form can now determine how
far away from a goal a certain state is by counting the landmarks that have not yet been
achieved.

An integral part of a landmark heuristic is how landmarks are found. Almost all land-
mark heuristics described in the literature utilize landmarks detected on the delete relax-
ation or on the Πm compilation (Keyder, Richter, and Helmert, 2010; Bonet and Helmert,
2010; Bonet and Castillo, 2011). As such, states that are detected as dead-ends by a land-
mark heuristic are also detected as dead-ends by a delete relaxation or hm heuristics, and
we can use the previous results for generating a dead-end validation for them.
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8.1 Trapper
The Trapper algorithm (Lipovetzky, Muise, and Geffner, 2016) is based on the idea of
traps, which are formulas φ such that if a state satisfies φ, all its successors satisfy it as
well. It is easy to see that such traps describe inductive sets.

Trapper is a preprocessing step that finds a special kind of traps called dead-end traps,
i.e. traps which are inconsistent with the goal. For this, it constructs a graph with nodes
Bi representing variable sets and a dummy node D. It inserts a labeled edge a from Bi

to Bj if for all states s ⊇ Bi where action a is applicable we have s[a] ⊇ Bj . If no such
Bj exists, an a-edge to D is added instead. It then iteratively marks nodes according to
certain rules until it reaches a fixpoint. The resulting graph has the following property:
If a node is not marked, then for all children reached with the same label at least one of
them is not marked as well. Let T be all the unmarked nodes; then φtrap =

∨
Bi∈T

∧
v∈Bi

v
is a trap. The intuition behind this is that if a state contains a set Bi ∈ T then for any
applicable action the successor contains another Bj ∈ T .

When building the graph the algorithm additionally uses mutex informationM gained
from the h2 heuristic. M is a collection of tuples that are unreachable when computing
h2 for IΠ. Two variables x and y are called mutex with each other if {x, y} ∈ M. The
algorithm only considers variable sets Bi containing at least one variable mutex with a
goal variable. Furthermore a set cannot contain variables mutex with each other, and an
action is only considered forBi if its preconditions are not mutex withBi. This means the
set represented by φtrap is not necessarily inductive by itself. Instead we need to restrict it
to exclude states violating the mutexes. For given mutexesM, φ¬M =

∧
m∈M

∨
v∈m ¬v

describes all states consistent withM (i.e. not violating any mutexes fromM). We then
have that the set S represented by φ = φtrap ∧ φ¬M is inductive. Furthermore S cannot
contain any goal states: any state in it must satisfy at least one Bi ∈ T but all Bi are
mutex with the goal, meaning any state consistent with Bi andM cannot be a goal state.
Finally, if IΠ ∈ S, then S is an inductive certificate.

While we have found a formula describing an inductive certificate, we cannot efficiently
represent it in its current state: we cannot use BDDs since they cannot efficiently encode
φ¬M , and φtrap is neither a Horn nor a 2CNF formula. However, we can reformulate φ
as a disjunction of formulas ψi = (

∧
v∈Bi

v) ∧ φ¬M for each Bi ∈ T . Each ψi is both a
Horn and 2CNF formula, and if φ represents an inductive certificate, then {ψi | Bi ∈ T }
represents a 1-disjunctive certificate:
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Theorem 8.1. Given a planning task Π = ⟨V Π, AΠ, IΠ, GΠ⟩, let T be a trap obtained
from Trapper using mutex informationM, and Bi ⊆ IΠ for some Bi ∈ T . Then the set of
formulas F = {ψi = (

∧
v∈Bi

v) ∧ φ¬M | Bi ∈ T } represents a 1-disjunctive certificate.

Proof: (1) Inclusion of IΠ: Since IΠ is a superset of some Bi and is consistent withM
(thus satisfying φ¬M ), it must satisfy at least one ψi.

(2) Exclusion of goal states: For each ψi we have that Bi is mutex with the goal, thus
no goal state can be a superset of Bi and at the same time satisfy φ¬M .

(3) 1-disjunctive inductivity: It is easy to see that the disjunction over the formulas
in F is equivalent to φtrap ∧ φ¬M , which is inductive. For showing 1-disjunctiveness
consider any ψi and a ∈ AΠ: In the graph utilized by the algorithm we know that at
least one a-successor of Bi must be Bj ∈ T . This means that for all supersets of Bi

consistent withM and where a is applicable, their successor must be a superset of Bj .
Since ψi denotes exactly the states consistent withM and being a superset of Bi, we have
states(φi)[a] ⊆ states(φj). □

It is easy to see that each ψi ∈ F is a Horn formula. Additionally, since mutexes inM
have at most size two because they stem from h2, each ψi is also a 2CNF formula.

For our proof system, we can translate the certificate into a proof according to Theo-
rem 5.10. If the proof system contained more set rules, we could also create a proof that
requires only formulas βi =

∧
v∈Bi

v representing each Bi ∈ T and µi =
∨
v∈mi
¬v rep-

resenting each mutexmi ∈M. It achieves this by showing that S = (
⋃
Bi∈T states(βi))∩⋂

µi∈M states(µi) is dead and contains the initial state.
We first show that the set of all states violating mutexes, i.e.

⋂
mi∈M states(µi), is dead.

This can be done similar to proving an hm dead-end dead, only that we do not apply
rule PG but PI which applies if the initial state is in the set and then shows that the
complement is dead.

For each βi, we know that states(βi) is mutex with the goal, which means we can state
states(βi) ∩ states(µj) ∩ SΠ

G ⊑ ∅ for some µj with B1. From this we can show within
the proof system that states(βi) ∩

⋂
mi∈M states(µj) ∩ SΠ

G ⊑ ∅ holds for each βi and thus
S ∩ SΠ

G is dead.
Next we show that S leads only to itself or

⋂
mi∈M states(µi) (which is dead). We

iterate over all βi and a ∈ AΠ. If pre(a) is mutex with Bi, we can state (states(βi) ∩
states(µj))[a] ⊑ ∅ for some µj with B2. Otherwise we can state states(βi)[a] ⊑ states(βj)
for some βj with B2. In either case we can show within the proof system that judg-
ment states(βi)[a] ∩

⋂
mi∈M µi ⊑

⋃
Bi∈T βi holds. From these judgments we can derive

S[AΠ] ⊑
⋃
Bi∈T βi. At this point the current proof system lacks an axiom of the form

X ⊆ (X ∩ Y ) ∪ Y , or a derivation thereof. If we had this judgment, the claim at the be-
ginning of the paragraph would follow directly. Since S only leads to itself and dead-ends
and contains only dead goal states, we can thus show that S is dead.

It is left to show that {IΠ} ⊑ S holds, which can be done by stating with B1 that
{IΠ} ⊑ states(βi) for some βi and {IΠ} ⊑ states(µi) for all µi. The desired judgment
can then be derived within the proof system.
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The advantage of constructing the proof this way rather than directly translating the
1-disjunctive certificate is that the formulas involved can be represented more compactly
(without having basic statements over a large amount of set variables), especially since
we do not need to repeat the mutex information. It also follows the idea of Trapper more
naturally, since it first proves that the mutex information is correct and then shows that
with background knowledge of the mutexes the trap is a trap. The disadvantage is that
the proof might require substantially more steps. This should not affect performance too
much since rule applications are fast to verify, but it will affect the size of the written
proof.

While we mostly focused on the case where the trap found by Trapper contains the
initial state, Trapper can also be used in a planning system to prune the search space for
problems where the initial state is not part of the trap. In these cases it is unlikely that
we can build an inductive certificate due to their lack of composability. The proof system
on the other hand can easily combine the knowledge that all states in the trap are dead
with knowledge from the other planning component, and if need be can even derive more
fine grained statements about which states are dead, for example we could derive that
states(βi) ∩

⋂
mi∈M states(µi) is dead for some specific Bi.

8.2 Iterative Dead Pairs Calculation
Alcázar and Torralba (2015) describe an algorithm that finds pairs of SAS+ facts {p, q}
such that any state satisfying p ∧ q is dead. In the STRIPS setting, the most faithful
adaptation of the algorithm considers pairs of literals, i.e., p and q can be state variables
or negated state variables. Such fact pairs are sometimes called “forward/backward mu-
texes”, but since they are not mutexes in the strict sense, we call them dead pairs instead.
A dead pair set D is a set of dead pairs. A state is consistent with D if it contains no pair
in D; otherwise it is pruned by D. Pruned states are dead.

The algorithm by Alcázar and Torralba alternately performs forward and backward
steps. The k-th step computes a dead pair set Dk, exploiting that Dk−1 is already a known
dead pair set (beginning with D0 = ∅). If the k-th iteration is forward, the algorithm
performs an h2-style reachability analysis using Dk−1 as background knowledge, i.e.,
ignoring states pruned byDk−1. The backward iterations are similar, but using a backward
h2-style analysis.

In a forward step, the new dead pair set Dk is the (uniquely defined) maximal set of
pairs such that: (a) if IΠ is consistent with Dk−1, then IΠ is consistent with Dk, and (b)
for all transitions s→ s′ where s is consistent withDk and s′ is consistent withDk−1, s′ is
consistent with Dk. This characterization is not apparent from the description by Alcázar
and Torralba, but it follows directly from the description of Rintanen’s (2008) invariant
synthesis algorithm, which is equivalent to h2. Note that in a STRIPS setting the first
forward iteration will find all mutex information encoded in the multi-valued variables of
a SAS+ task.
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S1
IΠ

SΠ
G

S2
IΠ

SΠ
G

S3
IΠ

SΠ
G

Figure 8.1: An example of an iterative dead pairs calculation.

Similarly, in a backward step, the new dead pair set Dk is the (uniquely defined) maxi-
mal set of pairs such that: (a’) all goal states consistent with Dk−1 are consistent with Dk,
and (b’) for all transitions s → s′ where s′ is consistent with Dk and s is consistent with
Dk−1, s is consistent with Dk.

An example of how the algorithm works can be seen in Figure 8.1. In the first iteration,
a simple inductive set S1 is found which denotes the states containing only tuples that were
reachable by the h2 calculation for the initial state. In the second iteration, a backwards
analysis is performed from the goal states in S1, discovering new states as dead. Those
states might possibly have been backwards-reachable from some goal state, but only via a
state in S1 and are thus not reached by the backwards analysis. In the first step a forward
analysis is run again, but this time some states that were previously reachable are not
reachable anymore, since they were reached over states in S2.

We can construct a proof in our proof system showing that all states pruned by Dk are
dead. Let Sk be the set of states consistent with Dk, which can be described by the 2CNF
formula

∧
{ℓ1,ℓ2}∈Dk

(ℓ1 ∨ ℓ2), where ℓ denotes the complement of the literal ℓ. We prove
that all sets Sk are dead. For k = 0, this is easily proven by stating B1 Sk ⊑ ∅ and
applying SD together with ED.

For k > 0, we have already proven (1): Sk−1 is dead. In a forward step, we can assume
IΠ /∈ Sk−1 or else we could have proven unsolvability in the previous step. Hence we can
use the basic statement B1 (2): {IΠ} ⊆ Sk (B1). From (b) we get the basic statement B2
(3): Sk[A] ⊆ Sk ∪Sk−1. Using (3), (1), (2) with PI, we derive that Sk is dead as required.
If at this point Sk contains all goal states, we can state SΠ

G ⊑ Sk and derive with SD that
SΠ
G is dead, which allows us to conclude the proof with CG.
In a backward step, (a’) can be rephrased as “all goal states not consistent with Dk

are not consistent with Dk−1”, yielding the basic statement B1: Sk ∩ SΠ
G ⊆ Sk−1, which

according to SD together with (1) proves (2’): Sk ∩ SΠ
G is dead. From (b’) we obtain the

basic statement B3 (3’): [A]Sk ⊆ Sk ∪ Sk−1. Using (3’), (1), (2’) in RG, we derive that
Sk is dead as required. If at this point IΠ is in Sk, we can conclude the proof by stating
{IΠ} ⊑ Sk, from this deriving that {IΠ} is dead with SD and finally applying CI.

In summary, we can generate a compact proof in our proof system showing that all
states that are prunable according to the iterative dead pairs algorithm are dead. Using
SD, it is also easy to extract fine-grained results of the form “All states satisfying ℓ1 ∧ ℓ2
are dead” for each dead pair {ℓ1, ℓ2}, which can be converted to representations other than
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2CNF (e.g. BDDs or Horn clauses) and used in a larger overall proof. For example, it is
not difficult to augment a proof of unsolvability for explicit search to include pruning of
states that satisfy a dead pair. We conjecture that it is also possible to extend proofs of
unsolvability for certain heuristics to take such dead pairs into account as in constrained
abstraction (Haslum, Bonet, and Geffner, 2005).

8.3 Clause-Learning State Space Search
Steinmetz and Hoffmann (2017) describe a search algorithm built upon the hC heuristic
family where the heuristic is incrementally improved to detect more dead-ends. The al-
gorithm performs a depth-first search where states are pruned by an increasingly stronger
variant of the hC heuristic. Another way to see this is that the depth-first search prunes
states based on a family of hC heuristics. Thus, we can generate a witness if we can find
a dead-end validation for each such state pruned by one of the heuristics.

The heuristic hC is parameterized by a set C, where each c ∈ C is a set of state
variables (Keyder, Hoffmann, and Haslum, 2014; Steinmetz and Hoffmann, 2017). It is a
generalization of the hm heuristic family, which considers all sets up to size m. As such,
a compilation ΠC (Haslum, 2012) analogous to Πm can be generated and we can show
the same way as we did for hm that the set UC

s of variable sets unreachable in ΠC from s
can be used to define an inductive set:

Proposition 8.1. Given a task Π = ⟨V Π, AΠ, IΠ, GΠ⟩ and a state s, the intersection of
the family of sets F = {Sc̄ | c ∈ UC

s } is inductive, where Sc̄ = {s ⊆ V Π | c ̸⊆ s} and
UC
s is the set of unreachable variable sets from s determined by hC .

As with hm we can thus generate a 1-disjunctive certificate represented as a Horn for-
mula. In the proof system we can cover the algorithm as described in Chapter 6 where the
sub-proof for each dead-end uses Horn formulas as representation.

The search algorithm can also be set to continue improving its current hC heuristic
even after the search space has been explored, up to the point where it is strong enough
to detect the initial state as dead. In this case the dead-end validation directly serves as a
1-conjunctive certificate.

One enhancement of clause-learning state space search is that it can learn clauses with
the property that any state not satisfying the clause is guaranteed to be detected as dead-
end by the current hC heuristic. Each state is then first tested, and if it does not satisfy the
clause it can be pruned without evaluating hC on it. For generating dead-end validations
however, we must evaluate each dead-end d with hC in order to obtain UC

d and cannot
profit from this enhancement.
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9 Inductive Certificates
In order to assess how suitable inductive certificates are in practice, we augmented the
Fast Downward planning system to generate 1-disjunctive BDD certificates for A∗ search
combined with a relaxation heuristic like hmax or hadd, or with a M&S heuristic with
linear merge strategy. Furthermore we implemented a verifier capable of handling simple
inductive BDD certificates as well as r-disjunctive and r-conjunctive BDD certificates,
using the CUDD library (Somenzi, 2015) for representing and manipulating BDDs. Both
implementations are publicly available (Eriksson, 2019a).

We tested generation of certificates and subsequent verification through our verifier on
the benchmark set detailed in Chapter 1.4 for the following configurations:

• hmax: A∗ search guided by the hmax heuristic.

• hM&S: A∗ search guided by the hM&S heuristic with the following setting:

– merge_strategy=merge_precomputed(
merge_tree=linear())
(enforces a linear merge strategy)

– shrink_strategy=shrink_bisimulation()

– label_reduction=exact(
before_shrinking=true,before_merging=false)

– prune_unreachable_states=false
(ensures inductivity, see Chapter 7.3)

We also ran an unaltered version of Fast Downward to analyze the overhead induced
by certificate generation. We call the unaltered version FD and the version that generates
certificates FDC. The verifier for inductive certificates is called VerC.

Table 9.1 gives a general overview of the results by showing how many tasks FD and
FDC could solve within 30 minutes and 3584 MiB memory, and how many certificates our
verifier could verify within 4 hours and 3584 MiB memory. Overall, in 82% of the cases
where FD could solve the task, FDC could solve and additionally generate a certificate
within the same limits; and 87% of the generated certificates could be verified within the
given limits.

In the following sections, we first describe the most important aspects of our imple-
mentation, then analyze the most significant reasons for overhead when generating the
certificates, and afterwards discuss the performance of the verifier.
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hmax hM&S

FD FDC VerC FD FDC VerC

3unsat (30) 15 10 10 15 10 10
bag-barman (20) 8 8 4 11 8 4
bag-gripper (25) 2 2 2 3 2 2
bag-transport (29) 7 6 5 7 5 4
bottleneck (25) 21 17 15 10 8 8
cave-diving (25) 7 7 6 7 7 6
chessboard-pebbling (23) 5 4 4 5 4 4
diagnosis (13) 5 5 5 4 4 4
document-transfer (20) 7 6 6 12 12 12
mystery (9) 2 2 1 2 1 1
nomystery (150+24) 59 38 25 60 45 37
pegsol (24) 24 24 24 24 24 24
pegsol-row5 (15) 5 4 4 5 4 4
rovers (150+20) 15 12 8 25 24 23
sliding-tiles (20) 10 10 10 10 10 10
tetris (20) 10 5 5 5 5 5
tpp (25+30) 23 15 12 37 34 29
total (697) 225 175 146 242 207 187

Table 9.1: Completed tasks by domain for Fast Downward, certifying Fast Downward and
certificate verification.

9.1 Implementation
In order to generate a 1-disjunctive BDD certificate, FDC must create the following BDDs:

• One BDD for each expanded state representing only this state.

• A set of BDDs that represent inductive sets without goal states, such that each dead-
end is contained in at least one BDD. Several dead-ends may be contained in the
same BDD.

In order to improve efficiency when verifying the certificate, we also emit a hint file,
which denotes for all BDDs representing expanded states and all actions applicable to
that state which BDD contains the successor state. This reduces the inductivity check
from time quadratic in the size of the certificate to linear, as it does not need to test all
BDDs in order to find the correct successor BDD anymore. Since the number of BDDs
in our certificate can grow very large, a reduction from quadratic to linear time impacts
performance greatly. Due to the hint file, each BDD in the certificate is associated with a
unique setid.

A∗ search The search engine is responsible for creating a BDD for each expanded state,
creating the hint file and requesting a BDD from the heuristic for each dead-end. The hint
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file is created during the search for each expansion. If the heuristic reports a successor
to be a dead-end, the search requires a setid from the heuristic for the dead-end. Oth-
erwise, the stateid provided by Fast Downward is used. After search is concluded,
we iterate over all generated states and create the actual BDDs for each expanded state.
We do not do this during the search in order to impact it as little as possible; this way
the planner can still answer the question on whether the problem is solvable or not even
when creating a certificate requires too much memory or time. Finally we write all BDDs
representing expanded states into a file, and request the heuristic to do the same with its
BDDs.

hmax heuristic The hmax heuristic generates a new BDD each time it evaluates a state
as dead-end during search, and uses its stateid as setid. While we could reduce
search overhead further by only creating the BDDs after search has concluded, it would
lead to more total overhead as the heuristic must be evaluated again in order to get the set
of unreachable variables.

hM&S heuristic Unlike hmax the hM&S heuristic generates one BDD representing all
dead-ends only after search concluded and if at least one dead-end was encountered. This
is possible since only the M&S representation is needed for constructing the BDD, which
is saved until the program exits. During search only the stateid of the first encountered
dead-end is stored, which is used as setid for the BDD.

Verifier After reading in the certificate, the verifier tests the three properties of an in-
ductive certificate. For testing inductivity of r-conjunctive or r-disjunctive certificates,
a boolean is stored for each set indicating if the checks for this particular set have been
performed already. If a hint file is present, the checks related to the particular hint are
processed as the hint is read, eliminating the need to store the hints. Afterwards, all sets
whose checks have not been performed yet are (for each action) first tested whether they
are inductive themselves, and if not whether we can find a combination of r sets satis-
fying the needed property. For certificates created by FDC this guarantees a linear time
complexity in the number of sets and actions: for each set representing an expanded state
and each applicable action the corresponding set is detailed in the hint file while for each
inapplicable action the progression is empty and thus a subset of the set itself; and each
set created from a dead-end is inductive.

9.2 Generation
Generating a certificate succeeded in most cases: for hmax in 78% of all cases and for
hM&S in 86%. The size of the created certificates range from a few KiB to a little over 8.5
GiB, with an average of approximately 530 MiB, and certificates for hM&S typically being
moderately smaller.
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Figure 9.1: Comparison of time needed and memory used between FD and FDC. Only
tasks that FD completed are shown.

hmax hM&S

memory time memory time
FDC -12 -38 -32 -3
FDC′

-5 -46 0 -28

Table 9.2: Reasons for failure to generate certificates in tasks that FD solved.

Figure 9.1 compares time and memory used for FD and FDC. We can see that creat-
ing certificates induces a significant overhead for hmax but in most cases only moderate
overhead for hM&S. This is due to the fact that M&S often spends a significant amount of
allotted time and memory for calculating its abstraction, a process which is not altered by
FDC. Search with hmax on the other hand spends almost all of its time expanding states
since hmax does not need any preprocessing and is in general fast to evaluate. Furthermore,
hmax needs to calculate and store a BDD for each encountered dead-end, while hM&S only
needs to store one. While this BDD is usually significantly larger than a BDD for a hmax

dead-end, it is proportional to the M&S representation and takes less time and memory to
calculate than the M&S representation itself.

The first row in Table 9.2 shows why FDC failed to create a certificate where FD solved
the task within limits. hmax mostly fails due to the time limit, while hM&S almost exclu-
sively fails due to the memory limit. The tasks where hM&S induces significant memory
overhead all required a significant amount of expansions, thus much memory is needed to
store the BDDs of these expanded states. In order to improve memory usage, we imple-
mented an alternative version FDC′

, which does not store any BDDs for expanded states
but instead directly writes them into a text file, without even calling the CUDD library.
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hmax hM&S

generation finished/#certificates memory time finished/#certificates memory time
FDC 146/175 0 -29 187/207 -1 -19
FDC′

144/174 -1 -29 189/214 -6 -19
FDC′′

66/175 0 -109 114/207 -1 -92

Table 9.3: Reasons for failure of VerC. “finished” denotes the number of tasks where VerC

could verify the certificate within the given limits.

As we can see in the second row of Table 9.2, FDC′
is able to improve coverage signif-

icantly for M&S, shifting the reason for failure compared to FD fully to a reached time
limit, and reducing the average (max) ratio of memory used compared to FD from 2.452
(16.072) to 1.006 (1.237).1

This improvement comes with a price however. The certificates generated by FDC′
are

on average over twice as big as those generated by FDC, with a worst case factor of over
12. The reason for this is that when storing the BDDs with CUDD, nodes can be shared
between BDDs, reducing overall size. Additionally, all meta information (such as amount
of variables) must be repeated for each single BDD in FDC′

, while it is only written once
in FDC.

9.3 Verification
The certificates generated by FDC could be verified in 83% of all cases for hmax and
90% for hM&S within limits; with all verified certificates being valid. The first row in
Table 9.3 shows that all but one certificate failed due to the time limit. One explanation is
that the verifier needs most of its memory to store the BDDs belonging to the certificate.
Otherwise it only needs to store BDDs representing the actions and one temporary BDD at
a time in order to verify the properties of the certificate. Since the search needed to be able
to store all BDDs (on top of its normal memory requirement) within the same memory
limit in order to even create the certificate, it is reasonable to assume that the verifier
should be able to verify the certificate with the same memory limit. Another factor is
however that CUDD dynamically allocates memory for a cache and deletes BDDs lazily.
Thus, when memory reaches exhaustion, CUDD slows down significantly in order to free
as much memory as possible, which can then lead to a timeout.

Figure 9.2 (a) depicts the time needed to verify the certificate as a function of the
certificate size, showing that verification time is roughly linear in certificate size, although
bigger certificates typically cause more overhead. However, we also need to take into
account that larger certificates typically stem from tasks with more actions and facts,
which both also impact verification time. While the amount of facts is factored into the
certificate size since BDDs for more facts are bigger, actions are only factored in through

1Table B.1 in Appendix B shows full coverage results for FDC′
.
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Figure 9.2: Time needed for verification of the certificate as a function of its size. Only
tasks for which a certificate could be generated are shown.
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Figure 9.3: Comparison between certificates from FDC and FDC′′
. Tasks for which neither

method could create a certificate are omitted.
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the hint file, which is usually only a small factor in the overall certificate size. If we factor
in actions by dividing the verification time by the amount of actions as shown in (b), the
linear relationship becomes more visible.

Comparing FDC and FDC′
, Table 9.3 shows that FDC′

is able to verify roughly the same
amount of certificates as FDC. The tasks for which FDC′

could create certificates but not
FDC mostly failed verification due to the memory limit. Since FDC′

does not need to store
the entire certificate while creating it and as discussed above the verifier does not require
much additional memory other than storing the certificate, these results suggest that those
cases where FDC′

succeeds but FDC does not yield certificates that require more memory
to store than is allotted in the experiment.

To show the importance of the hint file, we ran a version FDC′′
where no hint file is

created. Figure 9.3 compares the certificate size and the verifier runtime of FDC and
FDC′′

. As we can see the hint file often does not contribute much to the total certificate
size, but verification without the hint file is significantly slower. As a result, FDC′′

fails
considerably more often, as shown in the last row of Table 9.3, and almost exclusively
due to a reached time limit.2

2Table B.2 in Appendix B shows full coverage results for FDC′′
.
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10 Proof System
For the experimental evaluation of the proof system, we augmented Fast Downward to
create proofs for A∗ search when using the hM&S, hm or a delete relaxation heuristic. Ad-
ditionally, we showcase the combination of different information sources by adding proof
generation support to the maximum evaluator, which takes several heuristics and uses the
maximum of their estimates as heuristic value. Finally, we augment the implementation
of the hC-based clause-learning algorithm from Steinmetz and Hoffmann (2017) to emit
proofs for the case where the refinement of the hC heuristic is continued until the initial
state is detected as dead-end. To verify the generated proofs, we implemented a veri-
fier with support for the four formalisms considered in this thesis (BDDs, Horn formulas,
2CNF formulas and MODS). All of our implementations are publicly available (Eriksson,
2019a). As in the previous chapter our implementation uses the CUDD library (Somenzi,
2015) for representing and manipulating BDDs, and the experiments were run on the
benchmark set described in Chapter 1.4.

For the experimental evaluation we used the following configurations:

• hmax: A∗ search guided by the hmax heuristic.

• hM&S: A∗ search guided by the hM&S heuristic with the following setting:

– merge_strategy=merge_precomputed(
merge_tree=linear())
(enforces a linear merge strategy)

– shrink_strategy=shrink_bisimulation()

– label_reduction=exact(
before_shrinking=true,before_merging=false)

– prune_unreachable_states=false
(ensures inductivity, see Chapter 7.3)

• h2: A∗ search guided by the hm heuristic with m = 2.

• max(hM&S, h2): A∗ search guided by the maximum of the h2 and hM&S heuristics
(parameters as above)

• hC : Clause Learning State Space Search(Steinmetz and Hoffmann, 2017) with the
following setting:

– --heuristic "hff=ff()"
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hmax hM&S h2 max(hM&S, h2) hC

FD FDP VerP FD FDP VerP all all CLS CLSP VerP

3unsat (30) 15 10 10 15 10 10 5 5 5 5 5
bag-barman (20) 8 8 8 11 8 8 0 0 0 0 0
bag-gripper (25) 2 2 2 3 3 3 0 0 0 0 0
bag-transport (29) 7 6 6 7 6 6 15 10 2 2 2
bottleneck (25) 21 17 15 10 9 9 12 12 9 9 9
cave-diving (25) 7 7 7 7 7 7 2 2 6 6 6
chessboard-pebbling (23) 5 5 5 5 5 5 2 2 2 2 2
diagnosis (13) 5 5 5 4 4 4 2 2 8 8 8
document-transfer (20) 7 6 6 12 12 12 2 8 5 5 4
mystery (9) 2 1 1 2 2 1 8 8 7 7 7
nomystery (150+24) 59 35 26 60 45 37 45 54 139 138 138
pegsol (24) 24 24 24 24 24 24 14 14 14 14 14
pegsol-row5 (15) 5 5 5 5 5 5 3 3 4 4 4
rovers (150+20) 15 11 9 25 24 23 66 70 155 155 155
sliding-tiles (20) 10 10 10 10 10 10 0 0 0 0 0
tetris (20) 10 5 5 5 5 5 0 5 0 0 0
tpp (25+30) 23 15 12 37 33 29 9 14 32 33 33
total (697) 225 172 156 242 212 198 185 209 388 388 387

Table 10.1: Completed tasks by domain for the original planner (FD and CLS), the proof
generating planner (FDP and CLSP) and proof verification (VerP). For h2 and
max(hM&S, h2), all tasks completed by FD were also completed by FDP and
VerP; we thus summarize the respective numbers.

– --heuristic "u=uc(x=-1,clauses=statemin)"

– --search "dfs(eval=[hff], preferred=[hff],
refiner=[ucrn2_1(uc=u)],
u_refine_initial_state=true)"
(the last parameter enforces refinement until IΠ is detected as dead-end).

As with inductive certificates, we compare our augmented version of Fast Downward
FDP against FD in order to assess the overhead from generating proofs, and do the same
for proof generating Clause Learning State Space Search CLSP and its original version
CLS. Table 10.1 summarizes on how many problem the original planner and the proof
generating planner successfully terminated within 30 minutes and 3584 MiB memory,
and how many proofs the verifier could verify within the 4 hours and 3584 MiB memory.
In total we could generate proofs in 93% of all cases where the original planner finished
within limits, and could verify 97% of all generated proofs.

10.1 Implementation
A proof for heuristic search first proves for all dead-ends that they are dead. We then build
a set of all dead-ends which we show to be dead because all its members are dead, and
a set containing all expanded states which is dead because its successor states are either
contained in it or dead. Finally, we show that the task is unsolvable by showing that IΠ is
dead because it is in the set of expanded (or dead-end) states.
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Our implementation writes the proof only after search terminated. The search engine
then iterates over all generated states s. If s has been expanded it adds the state to a BDD
Bexp which will represent all expanded states. If s has been recognized as dead-end, we
ask the heuristic to write a sub-proof showing that some set containing s is dead. We then
define an explicit set Es which only contains s, and show that it is dead because it is a
subset of the set shown dead by the heuristic. We also perform the proof steps needed to
ultimately show that the union of all Es is dead and build both an explicit set Edead and a
BDD Bdead containing all dead-ends. Both sets are needed in order to translate between
MODS and BDD formalisms since mixed representation statements only allow one set on
each side. This way, Edead can be shown to be a subset of the union of all Es, and Bdead

can then shown to be a subset of the singular setEdead. While we could also forgo creating
Bdead by saving the expanded states to an explicit set as well, we decided against it since
the verifier needs to calculate the progression of this set, which can be significantly faster
for BDDs.

The heuristics have the possibility of saving information about dead-ends during the
search, such that we can avoid recomputing the heuristic when writing the proof. hmax

and hm both use this possibility, saving the unreachable (tuples of) propositions for each
dead-end encountered. In terms of used formalisms, hmax and hM&S use BDDs for their
sub-proofs, while hm uses Horn formulas.

In the proof, each set (both concrete and compound sets) and each judgment is asso-
ciated with an ID, which must be declared in ascending order. The verifier reads in the
proof line by line, checks directly whether the denoted judgment is correct and if so adds
it to its knowledge base. If the verification of a judgment fails, the verifier prints an error
message but continues its execution. Similarly, if the proof continues past the point of
proving unsolvability, the verifier checks the following judgments as well. When termi-
nating it simply outputs whether at some point it derived the judgment “task unsolvable”.
This architecture allows for a slightly more general usage, since the verifier is not only
focused on proving unsolvability.

10.2 Generation
We first look into the tasks that the original planner detected as unsolvable within limits
but the proof generating planner failed. Across all configurations, only 5 tasks in hmax

failed due to a reached memory limit, while failing due to a timeout happens in 78 tasks
across hmax and hM&S. For configurations h2, max(hM&S, h2) and hC , no tasks were lost.

Figure 10.1 compares the time and memory usage for the original planner versus the
proof generating planner. Regarding time usage, we see that generating proofs does not
impact the planner noticeably when using h2, max(hM&S, h2) and hC , but incurs signif-
icant overhead with the configurations hmax and hM&S. For hmax, this happens almost
always, while for hM&S the results are more diverse and significant overhead only occurs
on larger tasks.
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Figure 10.1: Comparison of time needed and memory used between FD and FDP. Only
tasks that FD completed are shown.

For configurations other than hC , these results can be explained when considering the
number of new states discovered per second. A proof needs to incorporate each state
discovered during search, either by adding it to the BDD containing all expanded states,
or by writing a deadness proof (and building the proof that all dead-ends are dead). h2

and max(hM&S, h2) both discover new states at a very slow rate since calculating h2 is
expensive. hM&S has a long preprocessing phase, but is afterwards very fast since it only
needs to perform a look-up in order to obtain the heuristic value of a state. Finally, hmax

expands states at a very high rate because it is fast to calculate and spends the entire time
expanding states since it does not need any preprocessing.
hC is different in this aspect, since it is run until its heuristic can detect the initial state

as a dead-end. Generating a proof does thus not depend on the amount of states visited,
and the time needed for writing the proof is negligible in consideration of the time hC

spends on exploring and refining its heuristic.
Regarding memory usage, we see that h2 and hmax can cause significant memory over-

head, while hM&S and max(hM&S, h2) sometimes cause moderate overhead and hC none.
For all configurations, there are two major potential origins of overhead: (1) we need to
store a BDD of all expanded states, and (2) heuristics might need to store information
about dead-ends in order to write their sub-proof later on.

The significant memory use of h2 and hmax can be explained with the latter cause. We
assume that max(hM&S, h2) is not as affected by this since hM&S is evaluated before h2 and
might thus detect the majority of dead-ends before h2 is involved. The increased memory
requirement for hM&S on the other hand is most likely due to a large set of expanded states,
which also explains why these cases rather occur in large tasks. Finally, hC does not need
to store expanded state nor heuristic information, thus incurring no memory overhead.
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hmax hM&S

finished/#proofs memory time finished/#proofs memory time
VerP 156/172 0 -16 198/212 -14 0
VerP′

162/168 -1 -5 198/212 -14 0

Table 10.2: Reasons for failure of the verifier. “finished” denotes the number of tasks
where the proof could be verified within the given limits.

10.3 Verification
Verifying the generated proofs succeeded in all cases for h2, max(hM&S, h2) and all but
one case for hC which failed due to a timeout. Of the proofs generated by hM&S, 14
could not be verified, all of them due to a reached memory limit; and for hmax 16 proof
verifications failed, this time solely due to a timeout. The memory failures in hM&S are
related to the amount of detected dead-ends in the corresponding task: all such proofs
contained over 3,500,000 dead-ends. The reason this causes high memory usage is that
proof contains one MODS formula for each dead-end, one MODS formula containing all
dead-ends (whose size is linear in the amount of dead-ends), one BDD formula containing
all dead-ends and a number of formulas (for hM&S this is one BDD) needed in the sub-
proofs for each dead-end.

In order to reduce memory usage for the verifier, we implemented a variant VerP′
in

which the verifier discards formulas once they are not needed anymore. For this, the ver-
ifier first reads through the entire proof and remembers for each formula which judgment
is the last that needs it. This also necessitated a change when generating the proof: sim-
ilar to FDC′

, FDP′
must now write BDDs individually, causing more time overhead and

increased certificate size.
We tested FDP′

and VerP′
with hmax and hM&S. Table 10.2 compares VerP′

and VerP. We
see that discarding formulas could not avoid running out of memory in those proofs that
could not be verified by FDP. However, we are able to verify more proofs for hmax, even
though we loose coverage in generating proofs. We assume that discarding the formulas
saves enough memory such that CUDD does not need to slow down in order to release
memory.1

Figure 10.2 shows the time needed for verification as a function of the proof size. Over-
all the relation between these two metrics appears to be linear, but with clear differences
between the configurations. hM&S proofs are in general the fastest to verify relative to
their certificate size, although several outliers exist especially for small certificates. We
assume this is because hM&S shares the sub-proof for each dead-end in one BDD. Config-
urations containing a form of hC(i.e. h2, max(hM&S, h2) and hC) on the other hand tend to
have very compact proofs which are harder to verify. This trend seems to be related to the
complexity of evaluating hC itself: as we consider more total tuples in hC , more tuples are
unreachable and thus the Horn formula denoting the inductive set grows. Furthermore, if

1Table B.3 in Appendix B shows full coverage results for FDP′
.
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Figure 10.2: Time needed for verification of the proof as a function of its size. Only tasks
for which a proof could be generated are shown.

we have more variables in a tuple the corresponding clause is longer. max(hM&S, h2) does
not suffer as much from this as h2 does since hM&S likely covers many dead-ends already.
hC on the other hand is even more expensive to verify since it most likely contains more
tuples than h2 and a fair amount of those tuples contain more than two variables.
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11 Comparison
After analyzing both inductive certificates and our proof system individually, this chapter
compares their performance on configurations hmax and hM&S with the goal to identify
cases where one witness type is preferred over the other one. Our comparison will in-
vestigate three factors: the size of the generated witness, the overhead incurred on the
planning system and the performance of the verifier.

11.1 Witness Size
Comparing the size of the generated witnesses as shown in Figure 11.1 (a) yields mixed
results. For hmax, inductive certificates are often smaller than proofs, although extremes in
the other direction exist. The size variations for hM&S are more diverse, but overall proof
sizes tend to be smaller — often quite significantly.

In general, proofs need to output more information for each dead-end. While certifi-
cates only need to print the set itself, proofs also need to print a sub-proof as to why this
dead-end is dead; and need to build the abstract union of all dead-ends and show it is dead
one step at a time. On the other hand, certificates need to output more information for
each expanded state, specifically the BDD for this state as well as for each successor a
hint which set holds this successor. In comparison, proofs only need to output one BDD
containing all expanded states, as well as a short proof why this set is dead. It thus stands
to reason that proofs are smaller than certificates if the majority of visited states has been
expanded, and bigger if the majority are dead-ends. Indeed, Figure 11.1 (b) supports this
analysis. It shows the factor by which the proof is bigger than the certificate as a func-
tion of the percentage of dead-ends in all visited states. As the percentage of dead-end
increases, proofs become bigger than certificates.

11.2 Generation
In order to produce a witness, FDC and FDP need to do similar things: they need to collect
all expanded states, all dead-ends and a number of inductive sets covering all dead-ends.
Thus there are not many significant differences in the runtime of the certifying planner, as
we see in Figure 11.2. Overall we can see however that FDP seems to cause more overhead
to the planner than FDC. For hmax this increase in overhead seems to be proportional
to the runtime, while for hM&S there is more variation, especially for longer runtimes.
Table 11.1 provides a different view on this data by showing for how many tasks one
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11 Comparison

FDC FDP

+ faster faster +
hmax 5 126 44 2
hM&S 1 85 121 6
total 6 211 165 8

Table 11.1: Time comparison for generating witnesses between FDC and FDP. “+” means
that the corresponding certifying algorithm succeeded in generating a witness
while the other did not.

FDC FDP

+ faster faster +
hmax 0 26 120 8
hM&S 1 54 132 7
total 1 80 252 15

Table 11.2: Time comparison for verifying witnesses between FDC and FDP. “+” means
that the corresponding certifying algorithm succeeded in verifying a witness
while the other did not. Only tasks where witnesses of both types were gen-
erated are considered.

certifying algorithm could create a witness where the other one could not, or was faster in
case both succeeded.

One reason why FDP requires more time generating the proof relates to the amount of
dead-ends. As discussed in the previous section, proofs tend to become bigger as the ratio
of dead-ends increased, and as such FDP requires more time to write the witness for tasks
with many dead-ends. Following this line of thought we would assume that FDP would
be significantly faster in cases where the proof is substantially smaller than the certificate,
but this is not the case. The size reduction is a result of only building one BDD containing
all expanded states. But building this BDD requires to first build a BDD of each expanded
state (which FDC does as well), and then additionally build the intersection of these BDDs
(which FDC does not do). Thus, while expanded states are represented more compactly
in proofs, FDP needed more time to obtain this representation.

11.3 Verification
While FDC and FDP are comparable when generating a witness, verifying the witness
yields vastly different results. As shown in Table 11.2 FDP could verify all but one task
FDC could (the one task nearly reaching a timeout in FDC) as well as 15 tasks where FDC

failed; and was faster in most cases where both could verify their witness. Figure 11.3 (a)
further emphasizes these results, showing that verification with FDP is frequently faster
by a factor of 10, and in extreme cases by a factor of 1000.

101



11 Comparison

10−1 101 103

10−1

101

103

fa
ile

d

failed

VerC runtime (in s)

V
er

P
ru

nt
im

e
(i

n
s)

hmax

hM&S

(a) verification time

0 0.2 0.4 0.6 0.8 1

100

≤ 10−2

≥ 102

percentage of dead-ends

ve
ri

fie
rr

un
tim

e
FD

P
/F

D
C hmax

hM&S

(b) proof to certificate verify time ratio as a
function of the percentage of dead-ends

Figure 11.3: Comparison of verification time between VerC (with certificates generated by
FDC) and VerP. Tasks for which neither method could create a witness are
omitted, for (b) only tasks where both succeeded in creating and verifying a
witness are considered.

The reason behind these results lies in the difference how expanded states are treated.
The 1-disjunctive certificate generated by FDC in its essence rebuilds an explicit search,
considering each expanded state individually. The proof generated by FDP on the other
hand requires a bit more work to establish the set of all dead-ends as dead, but then can
conclude the proofs within a few steps by looking at the progression of all expanded
states.

Figure 11.3 (b) shows that, as with witness size, FDC tends to do better when the
percentage of dead-ends is higher, and can even be faster than FDP in these cases. But
unlike the witness size it never shows a considerable advantage against FDP.

11.4 Summary
Our experimental evaluation demonstrated that both inductive certificates and proofs in
our proof system are a viable witness for heuristic search. While inductive certificates
have some advantages in causing less overhead when generating witnesses, they suffer
from two major disadvantages:

• They cannot be used for heuristic search with multiple heuristics requiring different
representation formalisms.

• They rebuild an explicit search and are thus slow to verify.
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The proof system on the other hand is capable of combining information from a variety
of sources, as long as those sources can generate a sub-proof of some form; and can form
more concise overall proofs since sub-proofs are only loosely coupled in the sense that
the exact reasoning does not matter once the judgment has been verified.

We believe that inductive certificates can be useful in cases where the reasoning of the
algorithm very closely fits the idea of inductive certificates. In these cases this reasoning
is already inherent in the certificates, while the proof system (while capable of generating
a proof) must express it explicitly, leading to higher overhead. For a more general usage
however, the proof system offers more versatility and a richer expressiveness, and is thus
the preferred choice.
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12 Future Work
We believe that both inductive certificates and proofs in our proof system have great po-
tential to serve as witness for a wide variety of planning techniques not discussed in this
thesis, possibly by extending their definition further. In what follows, we discuss several
ideas on both how to extend the witness definition and how new techniques could make
use of them.

12.1 Witnesses
Inductive Certificates The idea of composite certificates could be developed further
by allowing more general compositions, for example a union of intersections or even
an arbitrary composition. While it will not be possible to allow arbitrary compositions
and guarantee efficient verification, we could possibly define similar restrictions as in r-
conjunctive and r-disjunctive certificates. For example one could define a certificate akin
to an r-disjunctive certificate, but each member is represented by a conjunction of sets and
to show inductivity it suffices to consider only up to r′ members of the conjunction. This
would allow us to use inductive certificates in cases where it is not feasible to represent
the inductive set as a simple conjunction or disjunction.

Another possible extension is to consider backwards-inductive certificates and investi-
gate how they relate to forward-inductive certificates. For example, instead of a simple
inductive certificate S, we could define a backwards inductive certificate S which does
not contain the initial state, contains all goal states, and is backwards inductive. These
types of certificates could be particularly useful for formalisms not supporting ¬C if we
cannot express an inductive certificate S but can express its backwards counterpart S.

Proof System The proof system is easily extensible both in its inference rules and basic
statements. Whenever a new technique cannot generate a proof in the current definition
of the proof system, we can investigate whether adding new inference rules or basic state-
ments enables us to cover this technique. New inference rules could also make use of the
assumption mechanism described in Chapter 5.1, which we did not need for the current
rules. We need to keep in mind however that one strength of a proof system is having a
small core, making its correctness easier to prove. It is thus advisable to be reserved about
extending the system in order to avoid adding unnecessary complexity.

One area where extending the system could be beneficial is set theory: more rules from
set theory enable a richer possibility of reasoning with sets. For example, in the proof of
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Theorems 5.10 and 5.11 we needed two steps to derive S[AΠ] ⊑ (S∪∅) from S[AΠ] ⊑ S
because the proof system does not recognize ∅ as the neutral element of set union. Or
consider the alternative proof for Trapper, which cannot be expressed in the current proof
system due to a lack of appropriate set theory rules.

Finally, instead of adding new inference rules it might be beneficial to introduce a form
of macro rules, i.e. rules that can be deduced within the proof system. For example,
introducing a rule stating a set is always a subset of a union containing it would shorten
the proof translation of r-disjunctive and r-conjunctive certificates significantly.

12.2 Applications
Search Algorithms In this thesis we focused on heuristic explicit forward search since
it is one of the most commonly applied planning techniques. There are however many
other search algorithms for which we could potentially provide a witness in case of un-
solvability, and we present here two examples where we believe that creating witnesses is
possible with ideas similar to the ones presented in this thesis.

While we briefly discussed blind symbolic search, state-of-the-art planning systems
based on symbolic search like SymBA* (Torralba et al., 2014) employ more advanced
strategies, such as using heuristics to guide the search or pruning based on forward and
backward mutexes. We believe it to be possible that these planners can emit witnesses in
a similar fashion as their explicit counterpart.

A third commonly used planning technique is planning as satisfiability, where the plan-
ning task is encoded into a propositional formula. Traditional algorithms encode the task
only over a finite horizon, i.e. consider only up to n action applications, since each action
application increases the formula size. As such, they are unable to prove unsolvabil-
ity. Recent algorithms based on property directed reachability (Suda, 2014) however can
avoid the finite horizon problem and can detect unsolvability with an argument similar to
inductive sets.

Heuristics For heuristics based on delete-relaxation it might be worth investigating
whether we can use a single formula representing all dead-ends of the delete-relaxed task.
Such an encoding is possible (Muise, 2018) but requires auxiliary variables, a case we
did not consider so far. Such formulas could be integrated by using the forget-operator to
eliminate the auxiliary variables. Since forget is usually not efficiently supported, it might
also be beneficial to investigate if we could avoid it with the help of Lemma 4.1.

For non-linear merge strategies, Helmert, Röger, and Sievers (2015) have shown that
building an ADD that represents the heuristic can lead to super-polynomial blowup. A
recent Master’s thesis in our research group (Locher, 2019) suggests that Sentential De-
cision Diagrams (SDD), a generalization of BDDs, cannot avoid the super-polynomial
blowup but a formal proof is still pending.
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Finally, while we covered several commonly used heuristics, many more have yet to be
investigated. One way to potentially cover them is by considering compilations between
heuristics as shown in Helmert and Domshlak (2009). For others, new ideas might be
necessary. For example, dead-end potential heuristics (Seipp et al., 2016) detect tasks
unsolvable by showing that a function over states exists that is nonincreasing (i.e. for
each state s, all successors s′ have a lower or equal function value), but the initial state
has a lower function value than any goal state. Such a function in fact defines a family
of inductive certificates, more specifically one for each possible function value. Given a
value x, the set of all states with a function value lower or equal to x is inductive, since
it is not possible to reach a state with higher function value than the state itself has. How
this inductive set can be represented as a formula is however still an open question.

Other Approaches As with heuristics, a variety of planning techniques has yet to be
investigated. One direction for possible further research we want to highlight here is a
pruning technique called partial order reduction. It was first introduced in the area of
model checking (e.g. Valmari, 1989) and has also been used in planning (Alkhazraji et
al., 2012; Wehrle and Helmert, 2012, 2014).

In a nutshell partial order reduction tries to reduce the search space by avoiding permu-
tation of action sequences yielding the same result. For example, if we need to turn on n
light switches, it does not matter in which order we do this. But if we were to perform
a breath-first search we would explore 2n states before finding a goal. A partial order
reduction could now tell us for example that in the initial state we only need to consider
the action turning the first light switch on and we would still be able to find an optimal
plan.

A problematic aspect in translating the arguments of partial order reduction into induc-
tive certificates or proofs is that there is no clear way to derive an inductive set from the
pruned states. For heuristics, a dead-end usually has some property that all states reach-
able from it share, and we exploit this property to define an inductive set. States pruned
by partial order reduction on the other hand do not have this.

If we want to cover this technique with the current proof system, we need to be able
to somehow compactly express all states that were pruned. One possible approach is to
try and express this set through a regression. A preliminary investigation suggests that all
states pruned by a single application of a partial order reduction technique called strong
stubborn sets to state s can be reached in a single regression step yielding some set S.
However, S is an overapproximation of the desired state set, i.e. it contains states that
were not reachable from the pruned state. If we could eliminate these states, then the
progression of S would only lead to itself and to expanded states. How to eliminate
the unreachable states is as of yet still an open question, as well as how to generalize this
observation when partial order reduction is applied multiple times. Alternatively we could
try to introduce new rule types which express the conditions for pruning more directly, for
example rules denoting that an action can be considered dead under certain circumstances
(such as “dead for certain states”).
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On a final note, we could also consider to investigate correctness guarantees for the
verifiers. While the verifiers are far less complex than planning systems, they can still
contain bugs; and a faulty verifier jeopardizes the entire concept of a certifying algorithm.
To eliminate this possibility, we could verify the verifier with the help of automated theo-
rem provers.

108



13 Conclusion
The aim of this thesis was to provide suitable witnesses for unsolvable planning tasks,
where “suitable” is measured based on whether the witness is sound and complete, ef-
ficient to generate, efficient to verify and whether it can be applied to a wide variety of
state-of-the-art planning techniques.

In Part I, we introduced two different types of witnesses, inductive certificates and
proofs in a proof system specifically tailored for proving unsolvability. Both types are
built on sets of states represented as a propositional formula in some formalism such as
BDDs, Horn formulas, 2CNF formulas or MODS.

Inductive certificates are based on the idea of finding an invariant that holds in the
initial state but not in any goal state. They are sound since such an invariant directly
implies unsolvability, and complete since for any unsolvable planning task the set of states
reachable from the initial state is an inductive certificate. We have shown they can be
efficiently verified if the formalism used to represent them efficiently supports certain
operations, which all four formalisms mentioned above do. Since an inductive certificate
must be represented as a single set of states but oftentimes we cannot compactly represent
such a set, we further introduced r-disjunctive and r-conjunctive certificates. They enable
us to define the set as a union or intersection of states, and can be efficiently verified
without needing to explicitly build the full disjunction or conjunction.

Our proof system offers a more versatile approach where we can incrementally show
that parts of the search space are dead until we have shown the initial state or all goal
states to be dead. As with inductive certificates, we have shown that witnesses in the proof
system are sound and complete, and can be verified efficiently given the used formalisms
efficiently support the required operations. Unlike inductive certificate the proof system
allows a mixture of formalisms to be used and enables us to combine information from
various sources requiring different formalisms.

A theoretical comparison between the two witness types yielded that all three variations
of inductive certificates can be translated into a proof in the proof system, although for
r-disjunctive and r-conjunctive this translation can cause a non-negligible increase in size
since reasoning inherent in inductive certificate has to be made explicit in the proof.

In Part II, we exhibit the generality of both approaches by showing how they can be
efficiently generated for a multitude of planning techniques. For blind search algorithms,
witnesses can be produced fairly easily since the set of expanded states (or its complement
for regression) forms an inductive certificate. Our main focus was on explicit heuristic
forward search, where heuristics might prune states that they recognize cannot lead to a
goal. We have shown however that we can still efficiently generate proofs and to a lim-
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ited extent inductive certificates as long as the heuristics involved can produce a reason
within the witness for why the state can be pruned. We then covered for several prominent
heuristic families how they can do so. Finally we have demonstrated that our witnesses
are applicable beyond pure heuristic search by providing instructions on how we can gen-
erate witnesses for three planning techniques not fitting into the normal heuristic search
schema.

To back up our theoretical claims, we empirically evaluated both generation and veri-
fication of the presented witnesses in Part III. To this end, we augmented the Fast Down-
ward planning system to generate inductive certificates and proofs for A∗ search with
several heuristics, as well as the implementation of clause learning state space search to
produce proofs for the setting where the initial state is eventually detected as a dead-end.
For verifying the produced witnesses, we implemented two verifiers, one for each witness
type. The verifier for inductive certificates is capable of verifying all three types of induc-
tive certificates given as BDDs. The verifier for proofs can handle all four formalisms we
considered.

Our experimental study confirmed that producing and verifying witnesses is not only
theoretically possible but also practically feasible. Given the same time and memory
limits as the original planning algorithm, our certifying version could produce witnesses
of both types for a large majority of tasks. From these witnesses, again a large majority
could also be verified with the same memory and a more generous time limit.

Comparing the empirical performance between inductive certificates and proofs, proofs
came out as clear winners, verifying its witness sometimes several orders of magnitude
faster. Inductive certificates however incur less overhead for the certifying planner during
witness generation, and also perform strongly in tasks that have a high percentage of
dead-ends.

In summary, both witnesses presented here are suitable under the measurements of
soundness, completeness, efficiency and generality, and are a first step towards fully cer-
tifying planning systems. We do believe however that they can be further improved in
order to cover more techniques: inductive certificates could allow more compositions
than just a simple union or intersections, and the proof system could introduce new rules,
both in set theory and providing new ways of proving state sets dead. But even in their
current state we believe that several planning techniques not discussed in this thesis can
be covered, such as heuristics like dead-end potentials, planning algorithms like planning
as satisfiability or other techniques like partial order reduction.
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A.1 Complexity of BDD Operations
This section shows that some BDD operations have tighter bounds when the involved
BDDs have specific properties. We assume a BDD implementation as described in Brace,
Rudell, and Bryant (1990), which is also used in CUDD (Somenzi, 2015). In this imple-
mentation, a BDD encoding of formula φ is represented by a node N , and v(N) is the
lowest ordered variable in φ (i.e. v(N) ⪯ v for all v occurring in φ). We define Nv as the
BDD representing φv which restricts v in φ to ⊤, and N¬v as the BDD representing φ¬v
which restricts v in φ to ⊥ (if v does not occur in the formula represented by N we have
Nv = N¬v = N ). N has two outgoing edges: the if-edge leads to Nv(N) and the else-edge
toN¬v(N). Constant function⊤ and⊥ have no outgoing edges and no associated variable.

Most operations on BDDs are done by calling a function ite(X, Y, Z) which stands
for “if X then Y else Z”. ite works in a recursive fashion: it first determines the lowest
ordered variable vl among v(X), v(Y ), and v(Z); and as a result returns a node N with
if-edge ite(Xvl , Yvl , Zvl), else-edge ite(X¬vl , Y¬vl , Z¬vl) and v(N) = vl. The terminal
cases of the recursion are:

• ite(⊤, N,N ′) = N ,

• ite(⊥, N,N ′) = N ′ and

• ite(N,⊤,⊥) = N .

Furthermore, if the if- and else-edge are the same nodeN thenN is returned, and nodes
are stored in a unique table which allows to only generate new nodes if an isomorphic node
does not exist yet (these two enhancements guarantee the result to already be reduced).
We assume everything other than the recursion is done in constant time.

Theorem A.1. Building the union of two BDDs where one BDD represents a complete
variable assignment (or “adding a model to a BDD”) is possible in time linear in the
amount of variables V . More concretely, the ite recursion is only called 2 · |V |+1 times
and at most |V | new nodes are created.

Proof: The union of two BDDs X and Y is built by calling ite(X,⊤, Y ). We first
assume X is a complete assignment, meaning that v(X) is the lowest ordered variable
and either Xv(X) or X¬v(X) is equal to ⊥, while the other one is a BDD representing
an assignment to all variables other than v(X) (or to all v ≻ v(X). We will show
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the claim with induction over the size of V . If V = {v}, then ite(X,⊤, Y ) will call
ite(Xv,⊤v(= ⊤), Yv0) and ite(X¬v,⊤, Y¬v) (since v is the lowest ordered variable
and occurs in X). Since X and Y depend only on v (or Y potentially on nothing), re-
stricting them on v will lead to constant functions, meaning both ite calls will be terminal,
leading to a total of 3(= 2 · |V | + 1) calls, and only the top call potentially creates a
new node. For V = {v0 ≺ · · · ≺ vn}, we have on the top level recursion the two calls
ite(Xv0 ,⊤, Yv0) and ite(X¬v0 ,⊤, Y¬v0) (since v0 is the lowest ordered variable and
occurs in X). We know that either Xv0 or X¬v0 must be equal to ⊥, meaning one of
the calls has ⊥ as first argument and is thus terminal. The arguments of the other call
can be seen as a union of two formulas over variable set V ′ = V \ {v0}, where X is a
complete variable assignment, meaning it will require 2 · |V ′|+1 ite calls and generate at
most |V ′| new nodes according to our induction assumption. Together with the top level
ite call, the terminal call and possibly a new node in the top level ite call we have
2 · |V ′|+ 1+ 2 = 2 · |V |+ 1 calls and at most |V ′|+ 1 = |V | new nodes. All proof steps
for the case of Y being the complete assignment are analogous, except that the terminal
call is terminal because the second argument is⊤ and the third⊥, rather than because the
first argument is ⊥. □

Theorem A.2. Let X and Y be two BDDs such that v(X) ≺ v(Y ). Given some vi ≻
v(X) let V ′ = {v′|v(X) ⪯ v′ ⪯ vi}, and XV ′/YV ′ be X/Y restricted to V ′ (i.e. forgetting
all v ̸∈ V ′). If

• XV ′ represents a complete assignment to variables v′ ∈ V ′, and

• XV ′ and YV ′ are disjoint (i.e. XV ′ ∧ YV ′ ≡ ⊥),

then building X ∨ Y is linear in |V ′|.

Proof: Since v(X) ≺ v(Y ), we can treat v(X) as lowest ordered variable. We have a
union where on one side the first |V ′| variables are uniquely assigned, thus up to this step
we have the same recursion behavior as in Theorem A.1. At variable vi we only have one
node to generate with if-child ite(Xvi ,⊤, Yvi) and else-child ite(X¬vi ,⊤, Y¬vi). Since
we know that after this variable X and Y become disjoint either Xvi or Yvi must be equal
to ⊥, and analogously for X¬vi and Y¬vi . Either way both calls must thus be terminal,
leading to a total of 2 · |V ′|+ 1 calls and at most |V ′| new nodes. □

Theorem A.3. Building the intersection of two BDDs X and Y where all variables oc-
curring in X are ordered lower than any variable occurring in Y is linear in the repre-
sentation size of X .

Proof: The intersection of two BDDs X and Y is built by calling ite(X, Y,⊥). The
recursion goes through each node connected to X , always calling ite(X ′

v, Yv = Y,⊥)
and ite(X ′

¬v, Yv = Y,⊥) for some restricted form of X . Each call where X ′
v or X ′

¬v
leads to ⊤ or ⊥ is terminal and has Y or ⊥ as child; thus we need to create at most ∥X∥
new nodes. □
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A.2 Translation of Inductive Certificates to Proofs
We present full schematic translations for r-disjunctive (Table A.1) and r-conjunctive
certificates (Table A.2) to proofs in the proof system. In what follows, x − i denotes the
judgment derived i steps previously in a concrete proof, not in the schematic proof.

Tables A.3 and A.4 exemplify the schemata by translating the certificates from Fig-
ure 4.4 and 4.5.

r-disjunctive certificate schema:

# judgment rule premises
(1) AΠ ⊑ (. . . (a1 ∪ a2) · · · ∪ am) B5
(2) ∅ dead ED
(3) S1 ⊑ (S1 ∪ S2) UR
(4) (S1 ∪ S2) ⊑ ((S1 ∪ S2) ∪ S3) UR
. . .
(5) (. . . (S1 ∪ S2) · · · ∪ Sn−1) ⊑ F∪ UR
(6) S1 ⊑ ((S1 ∪ S2) ∪ S3) ST (3),(4)
. . .
(7) S1 ⊑ F∪ ST (7− 1),(5)
(8) S2 ⊑ (S1 ∪ S2) UL
. . .
(9) S2 ⊑ F∪ ST (9− 1),(5)
. . .

(10) Sn ⊑ F∪ UL
. . .

(11) (S1,1
1 ∪ S

1,1
2 ) ⊑ F∪ SU (i1,11 )(i1,12 )

. . .
(12) F1,1

∪ ⊑ F∪ SU (12− 1),(i1,1k )
(13) S1[a1] ⊑ F1,1

∪ B2
(14) S1[a1] ⊑ F∪ ST (13),(12)
. . .

(15) S1[a2] ⊑ F∪ ST (15− 1),(15− 2)
. . .

(16) S1[am] ⊑ F∪ ST (16− 1),(16− 2)
(17) S1[(a1 ∪ a2)] ⊑ F∪ AU (14),(15)
. . .

(18) S1[(. . . (a1 ∪ a2) · · · ∪ am)] ⊑ F∪ AU (18− 1),(16)
(19) S1[A

Π] ⊑ F∪ AT (18),(1)
. . .

(20) S2[A
Π] ⊑ F∪ AT (20− 1),(1)

. . .
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# judgment rule premises
(21) Sn[A

Π] ⊑ F∪ AT (21− 1),(1)
(22) (S1 ∪ S2)[A

Π] ⊑ F∪ PU (19),(20)
. . .

(23) F∪[A
Π] ⊑ F∪ PU (23− 1),(21)

(24) F∪ ⊑ (F∪ ∪ ∅) UR
(25) F∪[A

Π] ⊑ (F∪ ∪ ∅) ST (23),(24)
(26) (S1 ∩ SΠ

G) ⊑ ∅ B1
(27) (S2 ∩ SΠ

G) ⊑ ∅ B1
(28) ((S1 ∩ SΠ

G) ∪ (S2 ∩ SΠ
G)) ⊑ ∅ SU (26),(27)

(29) ((S1 ∪ S2) ∩ SΠ
G) ⊑ ((S1 ∩ SΠ

G) ∪ (S2 ∩ SΠ
G)) DI

(30) ((S1 ∪ S2) ∩ SΠ
G) ⊑ ∅ ST (29),(28)

. . .
(31) (F∪ ∩ SΠ

G) ⊑ ∅ ST (31− 1),(31− 2)
(32) (F∪ ∩ SΠ

G) dead SD (2),(31)
(33) F∪ dead PG (24),(2),(32)
(34) {IΠ} ⊑ Si B1
(35) {IΠ} ⊑ F∪ ST (34),(ik)
(36) {IΠ} dead SD (33),(35)
(37) unsolvable CI (36)

Table A.1: Schematic translation of an r-disjunctive certificate to a proof witness.

r-conjunctive certificate schema:

# judgment rule premises
(1) AΠ ⊑ (. . . (a1 ∪ a2) · · · ∪ am) B5
(2) ∅ dead ED
(3) (S1 ∩ S2) ⊑ S1 IR
(4) ((S1 ∩ S2) ∩ S3) ⊑ (S1 ∩ S2) IR
. . .
(5) F∩ ⊑ (. . . (S1 ∩ S2) · · · ∩ Sn−1) IR
(6) ((S1 ∩ S2) ∩ S3) ⊑ S1 ST (4),(3)
. . .
(7) F∩ ⊑ S1 ST (5),(7− 1)
(8) (S1 ∩ S2) ⊑ S2 IL
. . .
(9) F∩ ⊑ S2 ST (5),(9− 1)
. . .

(10) F∩ ⊑ Sn IL
(11) F∩ ⊑ (S1,1

1 ∩ S
1,1
2 ) SI (i1,11 )(i1,12 )

. . .
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# judgment rule premises
(12) F∩ ⊑ F1,1

∩ SI (12− 1),(1,1k )
(13) F1,1

∩ [a1] ⊑ S1 B2
(14) F∩[a1] ⊑ S1 PT (13),(12)
. . .

(15) F∩[a2] ⊑ S1 PT (15− 1),(15− 2)
. . .

(16) F∩[am] ⊑ S1 PT (16− 1),(16− 2)
(17) F∩[(a1 ∪ a2)] ⊑ S1 AU (14),(15)
. . .

(18) F∩[(. . . (a1 ∪ a2) · · · ∪ am)] ⊑ S1 AU (18− 1),(16)
(19) F∩[A

Π] ⊑ S1 AT (18),(1)
. . .

(20) F∩[A
Π] ⊑ S2 AT (20− 1),(1)

. . .
(21) F∩[A

Π] ⊑ Sn AT (21− 1),(1)
(22) F∩[A

Π] ⊑ (S1 ∩ S2) SI (19),(20)
. . .

(23) F∩[A
Π] ⊑ F∩ SI (23− 1),(21)

(24) F∩ ⊑ (F∩ ∪ ∅) UR
(25) F∩[A

Π] ⊑ (F∩ ∪ ∅) ST (23),(24)
(26) F∩ ⊑ (SG1 ∩ SG2 ) SI (iG1 ),(iG2 )
. . .

(27) F∩ ⊑ FG∩ SI (27− 1),(iGk )
(28) (F∩ ∩ SΠ

G) ⊑ F∩ IR
(29) (F∩ ∩ SΠ

G) ⊑ FG∩ ST (28),(27)
(30) (F∩ ∩ SΠ

G) ⊑ SΠ
G IL

(31) (F∩ ∩ SΠ
G) ⊑ (FG∩ ∩ SΠ

G) SI (29),(30)
(32) (FG∩ ∩ SΠ

G) ⊑ ∅ B1
(33) (F∩ ∩ SΠ

G) ⊑ ∅ ST (31),(32)
(34) (F∩ ∩ SΠ

G) dead SD (2),(33)
(35) F∩ dead PG (24),(2),(34)
(36) {IΠ} ⊑ S1 B1
(37) {IΠ} ⊑ S2 B1
(38) {IΠ} ⊑ Sn B1
(39) {IΠ} ⊑ (S1 ∩ S2) SI (36),(37)
. . .

(40) {IΠ} ⊑ F∩ SI (40− 1),(38)
(41) {IΠ} dead SD (35),(40)
(42) unsolvable CI (41)

Table A.2: Schematic translation of an r-conjunctive certificate to a proof witness.
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r-disjunctive certificate example:

# judgment rule premises
(1) AΠ ⊑ ((a1 ∪ a2) ∪ a3) B5
(2) S1 ⊑ (S1 ∪ S2) UR
(3) S2 ⊑ (S1 ∪ S2) UL
(4) ∅ dead ED
(5) S1[a1] ⊑ S1 B2
(6) S1[a1] ⊑ (S1 ∪ S2) ST (5),(2)
(7) S1[a2] ⊑ S2 B2
(8) S1[a2] ⊑ (S1 ∪ S2) ST (7),(3)
(9) S1[a3] ⊑ S1 B2

(10) S1[a3] ⊑ (S1 ∪ S2) ST (9),(2)
(11) S1[(a1 ∪ a2)] ⊑ (S1 ∪ S2) AU (6),(8)
(12) S1[((a1 ∪ a2) ∪ a3)] ⊑ (S1 ∪ S2) AU (11),(10)
(13) S1[A

Π] ⊑ (S1 ∪ S2) AT (12),(1)
(14) S2[a1] ⊑ S2 B2
(15) S2[a1] ⊑ (S1 ∪ S2) ST (14),(3)
(16) S2[a2] ⊑ S2 B2
(17) S2[a2] ⊑ (S1 ∪ S2) ST (16),(3)
(18) S2[a3] ⊑ S1 B2
(19) S2[a3] ⊑ (S1 ∪ S2) ST (18),(2)
(20) S2[(a1 ∪ a2)] ⊑ (S1 ∪ S2) AU (15),(17)
(21) S2[((a1 ∪ a2) ∪ a3)] ⊑ (S1 ∪ S2) AU (20),(19)
(22) S2[A

Π] ⊑ (S1 ∪ S2) AT (21),(1)
(23) (S1 ∪ S2)[A

Π] ⊑ (S1 ∪ S2) PU (13),(22)
(24) (S1 ∪ S2) ⊑ ((S1 ∪ S2) ∪ ∅) UR
(25) (S1 ∪ S2)[A

Π] ⊑ ((S1 ∪ S2) ∪ ∅) ST (23),(24)
(26) (S1 ∩ SΠ

G) ⊑ ∅ B1
(27) (S2 ∩ SΠ

G) ⊑ ∅ B1
(28) ((S1 ∩ SΠ

G) ∪ (S2 ∩ SΠ
G)) ⊑ ∅ SU (26),(27)

(29) ((S1 ∪ S2) ∩ SΠ
G) ⊑ ((S1 ∩ SΠ

G) ∪ (S2 ∩ SΠ
G)) DI

(30) ((S1 ∪ S2) ∩ SΠ
G) ⊑ ∅ ST (29),(28)

(31) ((S1 ∪ S2) ∩ SΠ
G) dead SD (4),(30)

(32) (S1 ∪ S2) dead PG (25),(4),(31)
(33) {IΠ} ⊑ S1 B1
(34) {IΠ} ⊑ (S1 ∪ S2) ST (33),(2)
(35) {IΠ} dead SD (32),(34)
(36) unsolvable CI (35)

Table A.3: Translation of the 1-disjunctive certificate from Figure 4.4.
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r-conjunctive certificate example:

# judgment rule premises
(1) AΠ ⊑ (. . . (a1 ∪ a2) · · · ∪ am) B5
(2) ∅ dead ED
(3) (S1 ∩ S2) ⊑ S1 IR
(4) ((S1 ∩ S2) ∩ S3) ⊑ (S1 ∩ S2) IR
(5) ((S1 ∩ S2) ∩ S3) ⊑ S1 ST (4),(3)
(6) (S1 ∩ S2) ⊑ S2 IL
(7) ((S1 ∩ S2) ∩ S3) ⊑ S2 ST (4),(6)
(8) ((S1 ∩ S2) ∩ S3) ⊑ S3 IL
(9) S1[a1] ⊑ S1 B2

(10) ((S1 ∩ S2) ∩ S3)[a1] ⊑ S1 PT (9),(5)
(11) S3[a2] ⊑ S1 B2
(12) ((S1 ∩ S2) ∩ S3)[a2] ⊑ S1 PT (11),(8)
(13) ((S1 ∩ S2) ∩ S3)[(a1 ∪ a2)] ⊑ S1 AU (10),(12)
(14) ((S1 ∩ S2) ∩ S3)[A

Π] ⊑ S1 AT (13),(1)
(15) ((S1 ∩ S2) ∩ S3) ⊑ (S2 ∪ S3) SI (7),(8)
(16) (S2 ∪ S3)[a1] ⊑ S2 B2
(17) ((S1 ∩ S2) ∩ S3)[a1] ⊑ S2 PT (16),(15)
(18) S2[a2] ⊑ S2 B2
(19) ((S1 ∩ S2) ∩ S3)[a2] ⊑ S2 PT (18),(7)
(20) ((S1 ∩ S2) ∩ S3)[(a1 ∪ a2)] ⊑ S2 AU (17),(19)
(21) ((S1 ∩ S2) ∩ S3)[A

Π] ⊑ S2 AT (19),(1)
(22) (S1 ∩ S2)[a1] ⊑ S3 B2
(23) ((S1 ∩ S2) ∩ S3)[a1] ⊑ S3 PT (22),(4)
(24) ((S1 ∩ S2) ∩ S3) ⊑ (S1 ∩ S3) SI (5)(8)
(25) (S1 ∩ S3)[a2] ⊑ S3 B2
(26) ((S1 ∩ S2) ∩ S3)[a2] ⊑ S3 PT (25),(24)
(27) ((S1 ∩ S2) ∩ S3)[(a1 ∪ a2)] ⊑ S3 AU (23),(26)
(28) ((S1 ∩ S2) ∩ S3)[A

Π] ⊑ S3 AT (27),(1)
(29) ((S1 ∩ S2) ∩ S3)[A

Π] ⊑ (S1 ∩ S2) SI (14),(21)
(30) ((S1 ∩ S2) ∩ S3)[A

Π] ⊑ ((S1 ∩ S2) ∩ S3) SI (30),(28)
(31) ((S1 ∩ S2) ∩ S3) ⊑ (((S1 ∩ S2) ∩ S3) ∪ ∅) UR
(32) ((S1 ∩ S2) ∩ S3)[A

Π] ⊑ (((S1 ∩ S2) ∩ S3) ∪ ∅) ST (30),(31)
(33) (((S1 ∩ S2) ∩ S3) ∩ SΠ

G) ⊑ ((S1 ∩ S2) ∩ S3) IR
(34) (((S1 ∩ S2) ∩ S3) ∩ SΠ

G) ⊑ (S1 ∩ S2) ST (33),(4)
(35) (((S1 ∩ S2) ∩ S3) ∩ SΠ

G) ⊑ SΠ
G IL

(36) (((S1 ∩ S2) ∩ S3) ∩ SΠ
G) ⊑ ((S1 ∩ S2) ∩ SΠ

G) SI (34),(35)
(37) ((S1 ∩ S2) ∩ SΠ

G) ⊑ ∅ B1
(38) (((S1 ∩ S2) ∩ S3) ∩ SΠ

G) ⊑ ∅ ST (36),(37)
(39) (((S1 ∩ S2) ∩ S3) ∩ SΠ

G) dead SD (2),(38)
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# judgment rule premises
(40) ((S1 ∩ S2) ∩ S3) dead PG (32),(2),(39)
(41) {IΠ} ⊑ S1 B1
(42) {IΠ} ⊑ S2 B1
(43) {IΠ} ⊑ S3 B1
(44) {IΠ} ⊑ (S1 ∩ S2) SI (41),(42)
(45) {IΠ} ⊑ ((S1 ∩ S2) ∩ S3) SI (44),(43)
(46) {IΠ} dead SD (40),(45)
(47) unsolvable CI (46)

Table A.4: Translation of the 2-conjunctive certificate from Figure 4.5.
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B Detailed Coverage Results
This chapter contains detailed coverage results of variations of certifying Fast Downward.
Tables B.1 and B.2 cover two variations of certificate emitting Fast Downward: FDC′

avoids calling the cudd library by directly writing BDDs into a text file instead of storing
them, while FDC′′

does not store a hint file. Table B.3 presents the results of FDP′
, a

variation of proof emitting Fast Downward where set formulas are discarded as soon as
they are not needed anymore in order to save memory usage.

hmax hM&S

FD FDC′
VerC FD FDC′

VerC

3unsat (30) 15 10 10 15 11 10
bag-barman (20) 8 8 4 11 8 4
bag-gripper (25) 2 2 2 3 2 2
bag-transport (29) 7 6 4 7 6 4
bottleneck (25) 21 17 14 10 8 8
cave-diving (25) 7 7 6 7 7 6
chessboard-pebbling (23) 5 4 4 5 4 4
diagnosis (13) 5 5 5 4 4 4
document-transfer (20) 7 6 6 12 12 12
mystery (9) 2 1 1 2 2 1
nomystery (150+24) 59 37 25 60 47 38
pegsol (24) 24 24 24 24 24 24
pegsol-row5 (15) 5 5 4 5 5 4
rovers (150+20) 15 12 8 25 23 23
sliding-tiles (20) 10 10 10 10 10 10
tetris (20) 10 5 5 5 5 5
tpp (25+30) 23 15 12 37 36 30
total (697) 225 174 144 242 214 189

Table B.1: Completed tasks by domain for FDC′
.
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hmax hM&S

FD FDC′′
VerC FD FDC′′

VerC

3unsat (30) 15 10 5 15 10 5
bag-barman (20) 8 8 0 11 8 0
bag-gripper (25) 2 2 2 3 2 2
bag-transport (29) 7 6 1 7 5 1
bottleneck (25) 21 17 12 10 8 4
cave-diving (25) 7 7 2 7 7 2
chessboard-pebbling (23) 5 4 2 5 4 2
diagnosis (13) 5 5 4 4 4 1
document-transfer (20) 7 6 5 12 12 12
mystery (9) 2 2 0 2 1 0
nomystery (150+24) 59 38 2 60 45 27
pegsol (24) 24 24 14 24 24 14
pegsol-row5 (15) 5 4 4 5 4 3
rovers (150+20) 15 12 1 25 24 18
sliding-tiles (20) 10 10 0 10 10 0
tetris (20) 10 5 5 5 5 5
tpp (25+30) 23 15 7 37 34 18
total (697) 225 175 66 242 207 114

Table B.2: Completed tasks by domain for FDC′′
.

hmax hM&S

FD FDP′
VerP′

FD FDP′
VerP′

3unsat (30) 15 10 10 15 10 10
bag-barman (20) 8 8 8 11 8 8
bag-gripper (25) 2 2 2 3 3 3
bag-transport (29) 7 6 6 7 6 6
bottleneck (25) 21 17 15 10 9 9
cave-diving (25) 7 7 7 7 7 7
chessboard-pebbling (23) 5 5 5 5 5 5
diagnosis (13) 5 5 5 4 4 4
document-transfer (20) 7 6 6 12 12 12
mystery (9) 2 1 1 2 2 1
nomystery (150+24) 59 31 30 60 45 37
pegsol (24) 24 24 24 24 24 24
pegsol-row5 (15) 5 5 5 5 5 5
rovers (150+20) 15 11 9 25 24 23
sliding-tiles (20) 10 10 10 10 10 10
tetris (20) 10 5 5 5 5 5
tpp (25+30) 23 15 14 37 33 29
total (697) 225 168 162 242 212 198

Table B.3: Completed tasks by domain for FDP′
.
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