Certifying Planning Systems: Witnesses for Unsolvability

Salomé Eriksson

University of Basel, Switzerland

April 26, 2019

Witness I: Inductive Certificates

Vitness II: Proof System

Comparison 00000 Conclusion 0

### **Classical Planning**



Witness I: Inductive Certificates

Witness II: Proof System

Comparison 00000 Conclusion 0

### Validating Planner Output

#### • Why?

- software bugs
- hardware faults
- malicious reasons
- . . .
- How?
  - tests on known instances
  - formal correctness proofs
  - certifying algorithms

| Introduction |  |
|--------------|--|
| 0000         |  |

Vitness II: Proof System

Comparison DOOOO Conclusion 0

## Certifying Algorithms

generate a witness alongside answer:



| Introduction |  |
|--------------|--|
| 0000         |  |

Vitness II: Proof System

Comparison 00000 Conclusion O

## Certifying Algorithms

generate a witness alongside answer:



| Introduction<br>000● | Witness I: Inductive Certificates | Comparison<br>00000 |  |
|----------------------|-----------------------------------|---------------------|--|
| Contribu             | ition                             |                     |  |

#### Main Contributions

two suitable witness types for unsolvable planning tasks:

- Inductive Certificates
- II Proof System

theoretical and experimental comparison

suitability measures:

- soundness & completeness
- efficient generation and verification
- generality

## Witness I: Inductive Certificates [E, Röger, Helmert, ICAPS 2017]

|           | Witness I: Inductive Certificates<br>•0000000 | Witness II: Proof System | Comparison<br>00000 | Conclusion<br>0 |
|-----------|-----------------------------------------------|--------------------------|---------------------|-----------------|
| Inductive | e Sets                                        |                          |                     |                 |



|           | Witness I: Inductive Certificates | Witness II: Proof System | Comparison<br>00000 | Conclusion<br>O |
|-----------|-----------------------------------|--------------------------|---------------------|-----------------|
| Inductive | e Sets                            |                          |                     |                 |



|           | Witness I: Inductive Certificates | Witness II: Proof System | Comparison<br>00000 | Conclusion<br>O |
|-----------|-----------------------------------|--------------------------|---------------------|-----------------|
| Inductive | e Sets                            |                          |                     |                 |



|           | Witness I: Inductive Certificates<br>•0000000 | Witness II: Proof System | Comparison<br>00000 | Conclusion<br>O |
|-----------|-----------------------------------------------|--------------------------|---------------------|-----------------|
| Inductive | e Sets                                        |                          |                     |                 |



|           | Witness I: Inductive Certificates<br>•0000000 | Witness II: Proof System | Comparison<br>00000 | Conclusion<br>O |
|-----------|-----------------------------------------------|--------------------------|---------------------|-----------------|
| Inductive | e Sets                                        |                          |                     |                 |



|           | Witness I: Inductive Certificates<br>••••••• | Comparison<br>00000 |  |
|-----------|----------------------------------------------|---------------------|--|
| Inductive | e Sets                                       |                     |  |



can only reach states with "box in corner"

#### Inductive Set

A set of states is inductive if all action applications to a state in S lead to a state which is also in S.  $(S[A] \subseteq S)$ .

|           | Witness I: Inductive Certificates<br>0000000 | Comparison<br>00000 |  |
|-----------|----------------------------------------------|---------------------|--|
| Inductive | e Certificate                                |                     |  |

#### Inductive Certificate

set of states  $\boldsymbol{S}$  with following properties:

- ${\ensuremath{\, \circ \,}}$  contains I
- contains no goal
- inductive



Witness I: Inductive Certificates

Witness II: Proof System

Comparison 00000 Conclusion 0

### Soundness & Completeness

#### Theorem

Inductive certificates are sound and complete.

states reachable from I:

- contains I
- is inductive
- contains no goal if task solvable

Vitness II: Proof System

Comparison 00000 Conclusion O

### Efficient Verification

#### depends on how $\boldsymbol{S}$ is represented

- formalisms based on propositional logic
- Which logical operations are needed for efficient verification?

several commonly used formalisms support needed operations

Witness I: Inductive Certificates 00000000

Nitness II: Proof System

Comparison DOOOO Conclusion O

### Composite Certificates

not all sets can be compactely described  $\rightsquigarrow$  represent as union or intersection of sets

#### *r*-disjunctive Certificates

family  ${\mathcal F}$  of sets with:

- $I \in S$  for some  $S \in \mathcal{F}$
- no goal in any  $S \in \mathcal{F}$
- $S[a] \subseteq \bigcup_{S' \in \mathcal{F}'} S'$  for all  $a \in A, S \in \mathcal{F}$ with  $\mathcal{F}' \subseteq \mathcal{F}$  and  $|\mathcal{F}'| \leq r$ .

Witness I: Inductive Certificates

Witness II: Proof System

Comparison 00000 Conclusion O

### Application to Heuristic Search

heuristic can detect dead-ends → set of reachable states not explored fully

Witness II: Proof System

Comparison 00000 Conclusion O

### Application to Heuristic Search



Witness II: Proof System

Comparison 00000 Conclusion O

### Application to Heuristic Search

#### heuristic can detect dead-ends

 $\rightsquigarrow$  set of reachable states not explored fully

#### Heuristic Search Certificate

Union of:

- inductive set for each dead-end
  - for each  $a \in A$ : leads to itself

Witness II: Proof System

Comparison 00000 Conclusion O

### Application to Heuristic Search



Witness II: Proof System

Comparison 00000 Conclusion O

### Application to Heuristic Search

#### heuristic can detect dead-ends

 $\rightsquigarrow$  set of reachable states not explored fully

#### Heuristic Search Certificate

Union of:

- inductive set for each dead-end
  - for each  $a \in A$ : leads to itself
- one set for each expanded state
  - $\bullet\,$  for each  $a\in A:$  leads to one expanded or dead-end state

 $\rightsquigarrow 1\text{-disjunctive}$ 

Witness II: Proof System

Comparison 00000 Conclusion O

### Application to Heuristic Search



Witness II: Proof System

Comparison 00000 Conclusion 0

### Generating Inductive Certificates

|                      | certificates      |
|----------------------|-------------------|
| blind search         | yes               |
| heuristic search     |                   |
| - single heuristic   | yes               |
| - several heuristics | if same formalism |
| $h^+$                | yes               |
| $h^m$                | yes               |
| h <sup>M&amp;S</sup> | yes               |
| Landmarks            | yes               |
| Trapper              | yes               |
| Iterative dead pairs | no                |
| CLS                  | yes               |

|         | Witness I: Inductive Certificates | Comparison<br>00000 |  |
|---------|-----------------------------------|---------------------|--|
| Weaknes | ses                               |                     |  |

monolithic: find one inductive set

- cannot mix representations
  - several heuristics
- cannot cover techniques not built on inductive sets
  - iterative dead pairs

## Witness II: Proof System [E, Röger, Helmert, ICAPS 2018]

|         | Witness I: Inductive Certificates | Witness II: Proof System<br>●0000000 | Comparison<br>00000 |  |
|---------|-----------------------------------|--------------------------------------|---------------------|--|
| Dead St | ates                              |                                      |                     |  |

incrementally rule out parts of the search space

#### Definition

A state s is dead if no plan traverses s. A set of states is dead if all its elements are dead.

initial state / all goal states dead  $\rightsquigarrow$  task unsolvable

|         | Witness I: Inductive Certificates | Witness II: Proof System<br>0000000 | Comparison<br>00000 | Conclusion<br>O |
|---------|-----------------------------------|-------------------------------------|---------------------|-----------------|
| Proof S | ystems                            |                                     |                     |                 |

#### based on rules with premises $A_i$ and conclusion B:

$$\frac{A_1 \quad \dots \quad A_n}{B}$$

#### universally true

|       | Witness I: Inductive Certificates | Witness II: Proof System | Comparison<br>00000 |  |
|-------|-----------------------------------|--------------------------|---------------------|--|
| Rules |                                   |                          |                     |  |

- showing that state sets are dead
- end proof
- set theory

|       | Witness I: Inductive Certificates | Witness II: Proof System<br>00●00000 | Comparison<br>00000 |  |
|-------|-----------------------------------|--------------------------------------|---------------------|--|
| Rules |                                   |                                      |                     |  |

- showing that state sets are dead
- end proof
- set theory

$$\frac{S' \text{ dead}}{S \text{ dead}} \qquad S \subseteq S'$$

|       | Witness I: Inductive Certificates | Witness II: Proof System | Comparison<br>00000 |  |
|-------|-----------------------------------|--------------------------|---------------------|--|
| Rules |                                   |                          |                     |  |

- showing that state sets are dead
- end proof
- set theory



|       | Witness I: Inductive Certificates | Witness II: Proof System<br>00●00000 | Comparison<br>00000 |  |
|-------|-----------------------------------|--------------------------------------|---------------------|--|
| Rules |                                   |                                      |                     |  |

- showing that state sets are dead
- end proof
- set theory

*I* dead unsolvable

G dead unsolvable

|       | Witness I: Inductive Certificates | Witness II: Proof System | Comparison<br>00000 |  |
|-------|-----------------------------------|--------------------------|---------------------|--|
| Rules |                                   |                          |                     |  |

- showing that state sets are dead
- end proof
- set theory

$$S \subseteq (S \cup S')$$
$$S \subseteq S' \quad S' \subseteq S''$$
$$S \subseteq S''$$

Witness II: Proof System

Comparison DOOOO Conclusion O

### **Basic Statements**

show  $S\subseteq S'$  holds for concrete sets?  $\rightsquigarrow$  basic statements

- verified for concrete task
- establish "initial" knowledge base

Witness II: Proof System

Comparison 00000 Conclusion 0

### Soundness & Completeness

#### Theorem

Proofs in the proof system are sound and complete.

inductive certificate S:

- no successor
- containing I
- no goal

- (1)  $\emptyset$  dead
- (2)  $S[A] \subseteq S \cup \emptyset$
- $(3) \quad S \cap G \subseteq \emptyset$
- (4)  $S \cap G$  dead
  - $S \, \operatorname{dead}$
  - $I \in S$

(5)

(6)

- (7) I dead
- (8) unsolvable

|           | Witness I: Inductive Certificates | Witness II: Proof System | Comparison<br>00000 |  |
|-----------|-----------------------------------|--------------------------|---------------------|--|
| Efficient | Verification                      |                          |                     |  |

rule verification trivial  $\rightsquigarrow$  only depends on basic statements

different forms of  $S \subseteq S'$ :

- $\bullet \ S$  as a intersection of sets
- S' as a union of sets
- $\bullet~S$  and  $S^\prime$  represented in different formalisms

translated inductive certificates require same operations

Witness I: Inductive Certificates

Witness II: Proof System

Comparison 00000 Conclusion 0

### Application to Heuristic Search

#### Heuristic Search Proof

proof structure:

each dead end is dead (inductive set)

Witness I: Inductive Certificates

Witness II: Proof System

Comparison 00000 Conclusion 0

### Application to Heuristic Search



Witness I: Inductive Certificates

Witness II: Proof System

Comparison 00000 Conclusion 0

### Application to Heuristic Search

#### Heuristic Search Proof

proof structure:

- each dead end is dead (inductive set)
- union of all dead ends is dead

Witness I: Inductive Certificates

Witness II: Proof System

Comparison 00000 Conclusion 0

### Application to Heuristic Search



Witness I: Inductive Certificates

Witness II: Proof System

Comparison 00000 Conclusion 0

### Application to Heuristic Search

#### Heuristic Search Proof

proof structure:

- each dead end is dead (inductive set)
- 2 union of all dead ends is dead
- $\textcircled{O} expanded[A] = expanded \cup dead \rightsquigarrow expanded dead$
- $I \in expanded \rightsquigarrow I dead.$

Witness II: Proof System

Comparison 00000 Conclusion

### Application to Heuristic Search



Witness II: Proof System

Comparison 00000 Conclusion 0

## Generating Proofs

|                      | certificates      | proofs |
|----------------------|-------------------|--------|
| blind search         | yes               | yes    |
| heuristic search     |                   |        |
| - single heuristic   | yes               | yes    |
| - several heuristics | if same formalism | yes    |
| $h^+$                | yes               | yes    |
| $h^m$                | yes               | yes    |
| h <sup>M&amp;S</sup> | yes               | yes    |
| Landmarks            | yes               | yes    |
| Trapper              | yes               | yes    |
| Iterative dead pairs | no                | yes    |
| CLS                  | yes               | yes    |

## Comparison

Witness I: Inductive Certificates

Nitness II: Proof System

Comparison •0000 Conclusion 0

### Theoretical Comparison

- both witnesses sound & complete
- proof covers more examined techniques
- $\bullet$  translation certificate  $\rightarrow$  proof possible
  - also for composite certificates, but at cost of size increase

 $\rightsquigarrow$  proof system more expressive

Nitness II: Proof System

Comparison 00000 Conclusion 0

### Experimental Evaluation

#### comparison for $\mathsf{A}^*$ search with

- $h^{\max}$
- h<sup>M&S</sup>

limits:

- generate: 30 minutes
- verify: 4 hours





Vitness II: Proof System

Comparison 00000 Conclusion 0

### Verification



certificate repeats explicit search

|         | Witness I: Inductive Certificates | Comparison<br>0000● |  |
|---------|-----------------------------------|---------------------|--|
| Witness | Size                              |                     |  |



## Conclusion

## Summary

#### Inductive Certificates

- $\bullet$  describes invariant property which I has but not G
- concise argument for unsolvability
- lacks composability

#### Proof System

- explicit reasoning with simple rules
- versatile and extensible

# Logical Operations

|                     | BDD | Horn | 2CNF | MODS |
|---------------------|-----|------|------|------|
| MO                  | yes | yes  | yes  | yes  |
| CO                  | yes | yes  | yes  | yes  |
| VA                  | yes | yes  | yes  | yes  |
| CE                  | yes | yes  | yes  | yes  |
| IM                  | yes | yes  | yes  | yes  |
| SE                  | yes | yes  | yes  | yes  |
| ME                  | yes | yes  | yes  | yes  |
| $\wedge BC$         | yes | yes  | yes  | yes  |
| $\wedge \mathbf{C}$ | no  | yes  | yes  | no   |
| ∨BC                 | yes | no   | no   | no*  |
| $\vee \mathbf{C}$   | no  | no   | no   | no   |
| ¬C                  | yes | no   | no   | no   |
| CL                  | yes | yes  | yes  | yes  |
| RN                  | no  | yes  | yes  | yes  |
| RN⊰                 | yes | yes  | yes  | yes  |
| toDNF               | no  | no   | no   | yes  |
| toCNF               | no  | yes  | yes  | no   |
| СТ                  | yes | (no) | (no) | yes  |

## Transition formula

Traditional:

$$\begin{split} \varphi \wedge \bigwedge_{v_p \in \textit{pre}(a)} v_p \wedge \bigwedge_{v_a \in \textit{add}(a)} v'_a \wedge \bigwedge_{v_d \in (\textit{del}(a) \backslash \textit{add}(a))} \neg v'_d \\ & \wedge \bigwedge_{v \in (V^{\Pi} \backslash (\textit{add}(a) \cup \textit{del}(a))} (v \leftrightarrow v') \models \varphi[V \rightarrow V'] \end{split}$$

New:

$$\begin{pmatrix} (\varphi \land \bigwedge_{v_p \in \mathit{pre}(a)} v_p) [(\mathit{add}(a) \cup \mathit{del}(a)) \to X'] \end{pmatrix} \land \bigwedge_{v_a \in \mathit{add}(a)} v_a \land \bigwedge_{v_d \in (\mathit{del}(a) \backslash \mathit{add}(a))} \neg v_d \models \varphi$$

## **Disjunctive Certificates**

#### *r*-disjunctive certificate

For  $r \in \mathbb{N}_0$ , a family  $\mathcal{F} \subseteq 2^{S^{\Pi}}$  of state sets of task  $\Pi = \langle V^{\Pi}, A^{\Pi}, I^{\Pi}, G^{\Pi} \rangle$  is called an *r*-disjunctive certificate if: 1  $I^{\Pi} \in S$  for some  $S \in \mathcal{F}$ , 2  $S \cap S_G^{\Pi} = \emptyset$  for all  $S \in \mathcal{F}$ , and

S for all S ∈ F and all a ∈ A<sup>Π</sup>, there is a subfamily F' ⊆ F with |F'| ≤ r such that S[a] ⊆ ⋃<sub>S'∈F'</sub> S'.

## Disjunctive Certificates



#### r-conjunctive certificate

For  $r \in \mathbb{N}_0$ , a family  $\mathcal{F} \subseteq 2^{S^{\Pi}}$  of state sets of task  $\Pi = \langle V^{\Pi}, A^{\Pi}, I^{\Pi}, G^{\Pi} \rangle$  is called an *r-conjunctive certificate* if: **1**  $\Pi \in S$  for all  $S \in \mathcal{F}$ , **2** there is a subfamily  $\mathcal{F}' \subseteq \mathcal{F}$  with  $|\mathcal{F}'| \leq r$  such that  $(\bigcap_{S \in \mathcal{F}'} S) \cap S_G^{\Pi} = \emptyset$ , and **3** for all  $S \in \mathcal{F}$  and all  $a \in A^{\Pi}$ , there is a subfamily  $\mathcal{F}' \subseteq \mathcal{F}$ with  $|\mathcal{F}'| \leq r$ such that  $(\bigcap_{S' \in \mathcal{F}'} S')[a] \subseteq S$ .

### **Conjunctive Certificates**





 $\rightarrow$   $a_1$ 

 $-- \rightarrow a_2$ 

| Empty set Dead                     | Ø dead ED                                                        |                          |                                           |
|------------------------------------|------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Union Dead                         | $\frac{S \text{ dead } S' \text{ dead}}{S \cup S' \text{ dead}}$ | d_UD                     |                                           |
| Subset Dead                        | $\frac{S' \text{ dead } S \sqsubseteq S}{S \text{ dead }}$       | "                        |                                           |
| Progression Goal                   | $S[A^\Pi] \sqsubseteq S \cup S'$                                 | $S^\prime~{\rm dead}$    | $S\cap S_G^\Pi$ dead                      |
|                                    |                                                                  | $S  \operatorname{dead}$ | PG                                        |
| Progression Initial                | $S[A^\Pi] \sqsubseteq S \cup S'$                                 | $S^\prime~{\rm dead}$    | $\{I^{\Pi}\} \sqsubseteq S$               |
|                                    | -                                                                | $\overline{S}$ dead      | FI                                        |
| Regression Goal                    | $[A^\Pi]S\sqsubseteq S\cup S'$                                   | $S^\prime~{\rm dead}$    | $\overline{S} \cap S_G^{\Pi}$ dead        |
|                                    |                                                                  | $\overline{S}$ dead      | KG                                        |
| <b>R</b> egression <b>I</b> nitial | $[A^\Pi]S\sqsubseteq S\cup S'$                                   | $S^\prime~{\rm dead}$    | $\{I^{\Pi}\} \sqsubseteq \overline{S}$ pi |
|                                    |                                                                  | S dead                   | Ki                                        |

Conclusion Initial

C onclusion G oal

 $\begin{array}{c} \{I^{\Pi}\} \text{ dead} \\ \hline \text{unsolvable} \\ S^{\Pi}_{G} \text{ dead} \\ \hline \text{unsolvable} \\ \end{array} \\ \begin{array}{c} \mathsf{CG} \end{array}$ 

| Union Right                         | $\overline{E \sqsubseteq (E \cup E')} UR$                                                         |
|-------------------------------------|---------------------------------------------------------------------------------------------------|
| Union Left                          | $-\underline{E} \sqsubseteq (E' \cup E)^{-} UL$                                                   |
| Intersection <b>R</b> ight          | $(E \cap E') \sqsubseteq E$ IR                                                                    |
| Intersection Left                   | $\overline{(E'\cap E)\sqsubseteq E} IL$                                                           |
| <b>DI</b> stributivity              | $((E \cup E') \cap E'') \sqsubseteq ((E \cap E'') \cup (E' \cap E''))^{DI}$                       |
| Subset Union                        | $\frac{E \sqsubseteq E''  E' \sqsubseteq E''}{(E \cup E') \sqsubseteq E''} \operatorname{SU}$     |
| Subset Intersection                 | $\frac{E \sqsubseteq E' \qquad E \sqsubseteq E''}{E \sqsubseteq (E' \cap E'')} \operatorname{SI}$ |
| <b>S</b> ubset <b>T</b> ransitivity | $\frac{E \sqsubseteq E'}{E \sqsubseteq E''} ST$                                                   |

Action Transitivity

Action Union

Progression Transitivity

Progression Union

 $\mathbf{P} \text{rogression}$  to  $\mathbf{R} \text{egression}$ 

Regression to Progression

$$\begin{array}{c} S[A] \sqsubseteq S' & A' \sqsubseteq A \\ \hline S[A'] \sqsubseteq S' & AT \\ \hline S[A] \sqsubseteq S' & S[A'] \sqsubseteq S' \\ \hline S[A \sqcup A'] \sqsubseteq S' & AU \\ \hline S[A] \sqsubseteq S'' & S' \sqsubseteq S \\ \hline S'[A] \sqsubseteq S'' & S' \sqsubseteq S \\ \hline S'[A] \sqsubseteq S'' & S'[A] \sqsubseteq S'' \\ \hline S[A] \sqsubseteq S'' & S'[A] \sqsubseteq S'' \\ \hline S[A] \sqsubseteq S' & S'[A] \sqsubseteq S'' \\ \hline S[A] \sqsubseteq S' & RP \\ \hline S[A] \sqsubset S' & RP \\ \hline \end{array}$$

$$\bigcirc \bigcap_{L_{\mathbf{R}} \in \mathcal{L}} L_{\mathbf{R}} \subseteq \bigcup_{L'_{\mathbf{R}} \in \mathcal{L}'} L'_{\mathbf{R}}$$
with  $|\mathcal{L}| + |\mathcal{L}'| \le r$ 

$$(\bigcap_{X_{\mathbf{R}} \in \mathcal{X}} X_{\mathbf{R}})[A] \cap \bigcap_{L_{\mathbf{R}} \in \mathcal{L}} L_{\mathbf{R}} \subseteq \bigcup_{L'_{\mathbf{R}} \in \mathcal{L}'} L'_{\mathbf{R}}$$
with  $|\mathcal{X}| + |\mathcal{L}| + |\mathcal{L}'| \le r$ 

- $\begin{array}{l} \bullet \quad [A](\bigcap_{X_{\mathbf{R}}\in\mathcal{X}}X_{\mathbf{R}})\cap\bigcap_{L_{\mathbf{R}}\in\mathcal{L}}L_{\mathbf{R}}\subseteq\bigcup_{L'_{\mathbf{R}}\in\mathcal{L'}}L'_{\mathbf{R}} \\ \text{with } |\mathcal{X}|+|\mathcal{L}|+|\mathcal{L}'|\leq r \end{array}$
- $\textcircled{5} A \subseteq A'$

## Proof System Basic Statements

$$\bigcap_{L_i \in \mathcal{L}} L_i \subseteq \bigcup_{L'_i \in \mathcal{L}'} L'_i$$
:

|                                            | $\mathcal{L}^+ + \mathcal{L}'^- = 0$ | $\mathcal{L}^+ + \mathcal{L}'^- = 1$ | $\mathcal{L}^+ + \mathcal{L}'^- > 1$ |
|--------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| $C^{-} + C^{\prime +} = 0$                 |                                      | CO                                   | CO, ∧BC                              |
| $\mathcal{L}^{+} \mathcal{L}^{+} \equiv 0$ |                                      |                                      | toDNF                                |
| $\mathcal{L}^- + \mathcal{L}'^+ = 1$       | VA                                   | SE                                   | SE, ∧BC                              |
|                                            |                                      |                                      | toDNF, IM                            |
|                                            | <b>VA</b> , ∨ <b>BC</b>              | SE, ∀BC                              | SE, ∧BC, ∨BC                         |
| $\mathcal{L}^- + \mathcal{L}'^+ > 1$       | toCNF                                | toCNF, CE                            | toDNF, IM, VBC                       |
|                                            |                                      |                                      | toCNF, CE, ABC                       |

$$(\bigcap_{X_i \in \mathcal{X}} X_i)[A] \cap \bigcap_{L_i \in \mathcal{L}} \subseteq \bigcup_{L'_i \in \mathcal{L}'} L'_i \text{ and } [A](\bigcap_{X_i \in \mathcal{X}} X_i) \cap \bigcap_{L_i \in \mathcal{L}} \subseteq \bigcup_{L'_i \in \mathcal{L}'} L'_i:$$

$$\label{eq:linear_state} \begin{array}{|c|c|c|c|} \hline \mathcal{L}^- + \mathcal{L}'^+ = 0 & \textbf{CO}, \ \land \textbf{BC}, \ \textbf{CL}, \ \textbf{RN}_{\prec} \\ \hline \hline \mathcal{L}^- + \mathcal{L}'^+ = 1 & \textbf{SE}, \ \land \textbf{BC}, \ \textbf{CL}, \ \textbf{RN}_{\prec} \\ \hline \mathcal{L}^- + \mathcal{L}'^+ > 1 & \textbf{SE}, \ \lor \textbf{BC}, \ \land \textbf{BC}, \ \textbf{CL}, \ \textbf{RN}_{\prec} \\ \hline \textbf{toCNF}, \ \textbf{CE}, \ \land \textbf{BC}, \ \textbf{CL}, \ \textbf{RN}_{\prec} \\ \hline \end{array}$$

## Proof System Basic Statements

 $L \subseteq L'$  (mixed):

|                                                             | $\mathbf{R}$ | $\mathbf{R}'$ |
|-------------------------------------------------------------|--------------|---------------|
|                                                             | ME, ns       | MO            |
| $\varphi_{\mathbf{R}} \models \psi_{\mathbf{R}'}$           | toDNF        | IM            |
| $\neg \psi_{\mathbf{R}'} \models \neg \varphi_{\mathbf{R}}$ | CE           | toCNF         |
|                                                             | ME           | MO, ns        |
|                                                             | ME, ns       | MO, CT        |
| $\neg \varphi_{\mathbf{R}} \models \psi_{\mathbf{R}'}$      | toCNF        | IM            |
| $\neg \psi_{\mathbf{R}'} \models \varphi_{\mathbf{R}}$      | IM           | toCNF         |
|                                                             | MO, CT       | ME, ns        |
|                                                             | ME, ns       | MO            |
| $\varphi_{\mathbf{R}} \models \neg \psi_{\mathbf{R}'}$      | toDNF        | CE            |
| $\psi_{\mathbf{R}'} \models \neg \varphi_{\mathbf{R}}$      | CE           | toDNF         |
|                                                             | MO           | ME, ns        |

M&S

## M&S



### Generation





## Future Work

- cover more planning techniques
  - planning as satisfiability
  - potential heuristics
  - partial order reduction
  - . . .
- extend witness definition
  - inductive certificates: more compositions
  - proof system: more rules, more general basic statements