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Validating Planner Output

Why?

software bugs
hardware faults
malicious reasons
. . .

How?

tests on known instances
formal correctness proofs
certifying algorithms
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Certifying Algorithms

generate a witness alongside answer:

task

Planner

“solvable”
plan

plan validation tool

“valid”/“invalid”

“solvable”

plan

“unsolvable”

cert

verification tool

“valid”/“invalid”
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Contribution

Main Contributions

two suitable witness types for unsolvable planning tasks:

I Inductive Certificates

II Proof System

theoretical and experimental comparison

suitability measures:

soundness & completeness

efficient generation and verification

generality
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Witness I: Inductive Certificates
[E, Röger, Helmert, ICAPS 2017]
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Inductive Sets

can only reach states with “box in corner”

Inductive Set

A set of states is inductive if all action applications to a state in S
lead to a state which is also in S. (S[A] ⊆ S).
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Inductive Certificate

Inductive Certificate

set of states S with following properties:

contains I

contains no goal

inductive

I G

S
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Soundness & Completeness

Theorem

Inductive certificates are sound and complete.

states reachable from I:

contains I

is inductive

contains no goal if task solvable
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Efficient Verification

depends on how S is represented

formalisms based on propositional logic

Which logical operations are needed for efficient verification?

several commonly used formalisms support needed operations
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Composite Certificates

not all sets can be compactely described
 represent as union or intersection of sets

r-disjunctive Certificates

family F of sets with:

I ∈ S for some S ∈ F
no goal in any S ∈ F
S[a] ⊆

⋃
S′∈F ′ S

′ for all a ∈ A, S ∈ F
with F ′ ⊆ F and |F ′| ≤ r.
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Application to Heuristic Search

heuristic can detect dead-ends
 set of reachable states not explored fully

Heuristic Search Certificate

Union of:

inductive set for each dead-end

for each a ∈ A: leads to itself

one set for each expanded state

for each a ∈ A: leads to one expanded or dead-end state

 1-disjunctive
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Application to Heuristic Search

h =∞

h =∞

walk-up

push-right

walk-right

push-up

. . .

. . .

10 / 26



Introduction Witness I: Inductive Certificates Witness II: Proof System Comparison Conclusion

Application to Heuristic Search

heuristic can detect dead-ends
 set of reachable states not explored fully

Heuristic Search Certificate

Union of:

inductive set for each dead-end

for each a ∈ A: leads to itself

one set for each expanded state

for each a ∈ A: leads to one expanded or dead-end state

 1-disjunctive

10 / 26



Introduction Witness I: Inductive Certificates Witness II: Proof System Comparison Conclusion

Application to Heuristic Search

h =∞

h =∞

walk-up

push-right

walk-right

push-up

. . .

. . .

10 / 26



Introduction Witness I: Inductive Certificates Witness II: Proof System Comparison Conclusion

Application to Heuristic Search

heuristic can detect dead-ends
 set of reachable states not explored fully

Heuristic Search Certificate

Union of:

inductive set for each dead-end

for each a ∈ A: leads to itself

one set for each expanded state

for each a ∈ A: leads to one expanded or dead-end state

 1-disjunctive

10 / 26



Introduction Witness I: Inductive Certificates Witness II: Proof System Comparison Conclusion

Application to Heuristic Search

h =∞

h =∞

walk-up

push-right

walk-right

push-up

. . .

. . .

10 / 26



Introduction Witness I: Inductive Certificates Witness II: Proof System Comparison Conclusion

Generating Inductive Certificates

certificates

blind search yes
heuristic search
- single heuristic yes
- several heuristics if same formalism
h+ yes
hm yes
hM&S yes
Landmarks yes

Trapper yes
Iterative dead pairs no
CLS yes
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Weaknesses

monolithic: find one inductive set

cannot mix representations

several heuristics

cannot cover techniques not built on inductive sets

iterative dead pairs
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Witness II: Proof System
[E, Röger, Helmert, ICAPS 2018]



Introduction Witness I: Inductive Certificates Witness II: Proof System Comparison Conclusion

Dead States

incrementally rule out parts of the search space

Definition

A state s is dead if no plan traverses s.
A set of states is dead if all its elements are dead.

initial state / all goal states dead  task unsolvable
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Proof Systems

based on rules with premises Ai and conclusion B:

A1 . . . An

B

universally true
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Rules

showing that state sets are dead

end proof

set theory
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showing that state sets are dead

end proof

set theory

S′ dead S ⊆ S′
S dead

15 / 26



Introduction Witness I: Inductive Certificates Witness II: Proof System Comparison Conclusion

Rules

showing that state sets are dead

end proof

set theory

S[A] ⊆ S ∪ S′ S′ dead S ∩G dead

S dead

S S′
G
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Rules

showing that state sets are dead

end proof

set theory

I dead
unsolvable

G dead
unsolvable
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Rules

showing that state sets are dead

end proof

set theory

S ⊆ (S ∪ S′)

S ⊆ S′ S′ ⊆ S′′
S ⊆ S′′
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Basic Statements

show S ⊆ S′ holds for concrete sets?
 basic statements

verified for concrete task

establish ”initial” knowledge base
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Soundness & Completeness

Theorem

Proofs in the proof system are sound and complete.

inductive certificate S:

no successor

containing I

no goal

(1) ∅ dead
(2) S[A] ⊆ S ∪ ∅
(3) S ∩G ⊆ ∅
(4) S ∩G dead
(5) S dead
(6) I ∈ S
(7) I dead
(8) unsolvable
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Efficient Verification

rule verification trivial  only depends on basic statements

different forms of S ⊆ S′:
S as a intersection of sets

S′ as a union of sets

S and S′ represented in different formalisms

translated inductive certificates require same operations
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Application to Heuristic Search

Heuristic Search Proof

proof structure:

1 each dead end is dead (inductive set)

2 union of all dead ends is dead

3 expanded[A] = expanded ∪ dead expanded dead

4 I ∈ expanded I dead.
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Generating Proofs

certificates proofs

blind search yes yes
heuristic search
- single heuristic yes yes
- several heuristics if same formalism yes

h+ yes yes
hm yes yes
hM&S yes yes
Landmarks yes yes

Trapper yes yes
Iterative dead pairs no yes
CLS yes yes
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Theoretical Comparison

both witnesses sound & complete

proof covers more examined techniques

translation certificate → proof possible

also for composite certificates, but at cost of size increase

 proof system more expressive
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Experimental Evaluation

comparison for A* search with

hmax

hM&S

limits:

generate: 30 minutes

verify: 4 hours
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Coverage - Generation

hmax

225

175

146

certificate

172

156

proof

hM&S

242

207

187

certificate

212

198

proof
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Coverage - Verification

hmax
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certificate
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proof
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Verification
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certificate runtime (in s)
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certificate repeats explicit search
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Witness Size
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Summary

Inductive Certificates

describes invariant property which I has but not G

concise argument for unsolvability

lacks composability

Proof System

explicit reasoning with simple rules

versatile and extensible
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Logical Operations

BDD Horn 2CNF MODS

MO yes yes yes yes
CO yes yes yes yes
VA yes yes yes yes
CE yes yes yes yes
IM yes yes yes yes
SE yes yes yes yes
ME yes yes yes yes
∧BC yes yes yes yes
∧C no yes yes no
∨BC yes no no no*
∨C no no no no
¬C yes no no no
CL yes yes yes yes
RN no yes yes yes
RN≺ yes yes yes yes
toDNF no no no yes
toCNF no yes yes no
CT yes (no) (no) yes

1 / 10



Transition formula

Traditional:

ϕ ∧
∧

vp∈pre(a)

vp ∧
∧

va∈add(a)

v′a ∧
∧

vd∈(del(a)\add(a))

¬v′d

∧
∧

v∈(V Π\(add(a)∪del(a))

(v ↔ v′) |= ϕ[V → V ′]

New:(
(ϕ ∧

∧
vp∈pre(a)

vp)[(add(a) ∪ del(a))→ X ′]
)

∧
∧

va∈add(a)

va ∧
∧

vd∈(del(a)\add(a))

¬vd |= ϕ

2 / 10



Disjunctive Certificates

r-disjunctive certificate

For r ∈ N0, a family F ⊆ 2S
Π

of state sets of task
Π = 〈V Π, AΠ, IΠ, GΠ〉 is called an r-disjunctive certificate if:

1 IΠ ∈ S for some S ∈ F ,

2 S ∩ SΠ
G = ∅ for all S ∈ F , and

3 for all S ∈ F and all a ∈ AΠ, there is a subfamily F ′ ⊆ F
with |F ′| ≤ r
such that S[a] ⊆

⋃
S′∈F ′ S

′.

3 / 10



Disjunctive Certificates

a b

c
d

e f

g h

i jS1 S2

a b

c
d

e f

g h

i jS1 S2

a b

c
d

e f

g h

i jS1 S2

a b

c
d

e f

g h

i jS1 S2

a b

c
d

e f

g h

i jS1 S2

a b

c
d

e f

g h

i jS1 S2

a1 a2 a3
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Conjunctive Certificates

r-conjunctive certificate

For r ∈ N0, a family F ⊆ 2S
Π

of state sets of task
Π = 〈V Π, AΠ, IΠ, GΠ〉 is called an r-conjunctive certificate if:

1 IΠ ∈ S for all S ∈ F ,

2 there is a subfamily F ′ ⊆ F with |F ′| ≤ r such that
(
⋂

S∈F ′ S) ∩ SΠ
G = ∅, and

3 for all S ∈ F and all a ∈ AΠ, there is a subfamily F ′ ⊆ F
with |F ′| ≤ r
such that (

⋂
S′∈F ′ S

′)[a] ⊆ S.

4 / 10



Conjunctive Certificates

a b c d
e f g

h
i j k

l m n

S1 S2
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e f g
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S1 S2
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a1 a2
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Proof System Rules

Empty set Dead ED∅ dead

Union Dead
S dead S′ dead

UD
S ∪ S′ dead

Subset Dead
S′ dead S v S′

SD
S dead

Progression Goal
S[AΠ] v S ∪ S′ S′ dead S ∩ SΠ

G dead
PG

S dead

Progression Initial
S[AΠ] v S ∪ S′ S′ dead {IΠ} v S

PI
S dead

Regression Goal
[AΠ]S v S ∪ S′ S′ dead S ∩ SΠ

G dead
RG

S dead

Regression Initial
[AΠ]S v S ∪ S′ S′ dead {IΠ} v S

RI
S dead
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Proof System Rules

Conclusion Initial
{IΠ} dead

CI
unsolvable

Conclusion Goal
SΠ
G dead

CG
unsolvable

5 / 10



Proof System Rules

Union Right UR
E v (E ∪ E′)

Union Left UL
E v (E′ ∪ E)

Intersection Right IR
(E ∩ E′) v E

Intersection Left IL
(E′ ∩ E) v E

DIstributivity DI
((E ∪ E′) ∩ E′′) v ((E ∩ E′′) ∪ (E′ ∩ E′′))

Subset Union
E v E′′ E′ v E′′

SU
(E ∪ E′) v E′′

Subset Intersection
E v E′ E v E′′

SI
E v (E′ ∩ E′′)

Subset Transitivity
E v E′ E′ v E′′

ST
E v E′′

5 / 10



Proof System Rules

Action Transitivity
S[A] v S′ A′ v A

AT
S[A′] v S′

Action Union
S[A] v S′ S[A′] v S′

AU
S[A ∪A′] v S′

Progression Transitivity
S[A] v S′′ S′ v S

PT
S′[A] v S′′

Progression Union
S[A] v S′′ S′[A] v S′′

PU
(S ∪ S′)[A] v S′′

Progression to Regression
S[A] v S′

PR
[A]S′ v S

Regression to Progression
[A]S′ v S

RP
S[A] v S′

5 / 10



Proof System Basic Statements

1
⋂

LR∈L LR ⊆
⋃

L′R∈L′
L′R

with |L|+ |L′| ≤ r
2 (
⋂

XR∈X XR)[A] ∩
⋂

LR∈L LR ⊆
⋃

L′
R∈L′ L′

R

with |X |+ |L|+ |L′| ≤ r
3 [A](

⋂
XR∈X XR) ∩

⋂
LR∈L LR ⊆

⋃
L′

R∈L′ L′
R

with |X |+ |L|+ |L′| ≤ r
4 LR ⊆ L′

R′

5 A ⊆ A′
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Proof System Basic Statements

⋂
Li∈L Li ⊆

⋃
L′i∈L′

L′i:

L+ + L′− = 0 L+ + L′− = 1 L+ + L′− > 1

L− + L′+ = 0
CO CO, ∧BC

toDNF

L− + L′+ = 1
VA SE SE, ∧BC

toDNF, IM

L− + L′+ > 1
VA, ∨BC SE, ∨BC SE, ∧BC, ∨BC
toCNF toCNF, CE toDNF, IM, ∨BC

toCNF, CE, ∧BC
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Proof System Basic Statements

(
⋂

Xi∈X Xi)[A] ∩
⋂

Li∈L ⊆
⋃

L′i∈L′
L′i and

[A](
⋂

Xi∈X Xi) ∩
⋂

Li∈L ⊆
⋃

L′i∈L′
L′i:

L− + L′+ = 0 CO, ∧BC, CL, RN≺
L− + L′+ = 1 SE, ∧BC, CL, RN≺
L− + L′+ > 1 SE, ∨BC, ∧BC, CL, RN≺

toCNF, CE, ∧BC, CL, RN≺
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Proof System Basic Statements

L ⊆ L′ (mixed):

R R′

ϕR|= ψR′

¬ψR′ |= ¬ϕR

ME, ns MO
toDNF IM
CE toCNF
ME MO, ns

¬ϕR|= ψR′

¬ψR′ |= ϕR

ME, ns MO, CT
toCNF IM
IM toCNF

MO, CT ME, ns

ϕR|= ¬ψR′

ψR′ |= ¬ϕR

ME, ns MO
toDNF CE
CE toDNF
MO ME, ns

6 / 10



M&S

M3 µ2
0 µ2

1 µ2
2 µ2

3

α3
0 2 ∞ 0 ∞
α3

1 1 3 ∞ ∞

A3

v3 = 0 α3
0

v3 = 1 α3
1

v3 = 2 α3
0

M2 α1
0 α1

1 α1
2

α2
0 µ2

0 µ2
2 µ2

2

α2
1 µ2

1 µ2
1 µ2

3

A2

v2 = 0 α2
0

v2 = 1 α2
1

A1

v1 = 0 α1
0

v1 = 1 α1
1

v1 = 2 α1
2
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M&S

>

B3
0 B3

1 B3
2 B3

3

B2
0 B2

1 B2
2

B∞v1 = 0

v1 = 1

v1 = 2

v2 = 0

v2 = 1

v3 = 0

v3 = 1

v3 = 2
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Generation
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Witness size in relation to dead-ends
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Future Work

cover more planning techniques

planning as satisfiability
potential heuristics
partial order reduction
. . .

extend witness definition

inductive certificates: more compositions
proof system: more rules, more general basic statements
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