Motivat	

Certified Unsolvability for SAT Planning with Property Directed Reachability

Salomé Eriksson Malte Helmert

University of Basel, Switzerland

ICAPS 2020

Certifying Algorithms

Certifying Algorithm

Emit certificate alongside answer, verify independently.

in planning:

- solvable: plan
- unsolvable: unsolvability certificate, e.g. [E et al. 2018]

Desired Certificate Properties

- sound & complete
- $\bullet\,$ efficient generation $\rightarrow\,$ polynomial in planner runtime
- \bullet efficient verification \rightarrow polynomial in certificate size
- general

Covered So Far

- explicit & symbolic search
- different heuristics
- h^2 preprocessing
- Trapper

SAT-based planning?

- traditionally less suited for detecting unsolvability
- verifying properties of CNF formulas NP-complete

Conclusion 0

Property Directed Reachability [Suda 2014]

reasons about layers L_i :

- overapproximates states with distance $\leq i$ to goal
- iterative refinement
- represented as
 - $\bullet \ {\sf CNF} \to {\sf requires} \ {\sf SAT} \ {\sf solver}$
 - dual-Horn (for STRIPS tasks)

 $L_u = L_{u-1} \rightarrow \text{unsolvable}$

Unsolvability Proof System [E et al. 2018]

collection of knowledge about sets of states

- subset relations
- deadness of state sets
- $\{I\}$ or G dead \rightarrow task unsolvable

gaining & verifying knowledge:

• basic statements $A \subseteq B$

 \rightarrow need to be verified semantically

• inference rules $A \subseteq B$ and B dead $\rightarrow A$ dead

 \rightarrow need to be verified syntactically

Creating Certificates for PDR

Verifying the Certificate 000

Conclusion 0

PDR Unsolvability Certificate

PDR Argument

 $L_u = L_{u-1} \rightarrow \mathsf{unsolvable}$

certificate translation:

statement justification

-

Creating Certificates for PDR 000

Verifying the Certificate 000

Conclusion 0

PDR Unsolvability Certificate

PDR Argument

 $L_u = L_{u-1} \rightarrow \mathsf{unsolvable}$

#	statement	justification	_
(1)	$[A]L_u \subseteq L_u$	basic statement	×

Creating Certificates for PDR 000

Verifying the Certificate 000

Conclusion 0

 L_n

PDR Unsolvability Certificate

PDR Argument

 $L_u = L_{u-1} \rightarrow \mathsf{unsolvable}$

#	statement	justification	
(1)	$[A]L_u \subseteq L_u$	basic statement	$I \cdot \mathbf{k}$
(2)	$\{I\}\subseteq \overline{L_u}$	basic statement	

Creating Certificates for PDR 000

Verifying the Certificate 000

Conclusion 0

 L_{n}

PDR Unsolvability Certificate

PDR Argument

 $L_u = L_{u-1} \rightarrow \mathsf{unsolvable}$

#	statement	justification	
(1)	$[A]L_u \subseteq L_u$	basic statement	$I \cdot \mathbf{y}$
(2)	$\{I\} \subseteq \overline{L_u}$	basic statement	
(3)	L_u is dead	from (1) and (2) with rule RI	

Creating Certificates for PDR 000

Verifying the Certificate 000

Conclusion 0

PDR Unsolvability Certificate

PDR Argument

 $L_u = L_{u-1} \rightarrow \mathsf{unsolvable}$

#	statement	justification	
(1)	$[A]L_u \subseteq L_u$	basic statement	$I \cdot \mathbf{v}$
(2)	$\{I\} \subseteq \overline{L_u}$	basic statement	(TO)
(3)	L_u is dead	from (1) and (2) with rule ${\sf R}{\sf I}$	
(4)	$G \subseteq L_u$	basic statement	$\overbrace{L_u}$

Creating Certificates for PDR 000

Verifying the Certificate 000

Conclusion 0

PDR Unsolvability Certificate

PDR Argument

 $L_u = L_{u-1} \rightarrow \mathsf{unsolvable}$

#	statement	justification	
(1)	$[A]L_u \subseteq L_u$	basic statement	$I \cdot \mathbf{v}$
(2)	$\{I\} \subseteq \overline{L_u}$	basic statement	(C)
(3)	L_u is dead	from (1) and (2) with rule RI	
(4)	$G \subseteq L_u$	basic statement	$_{L_{n}}$
(5)	G is dead	from (3) and (4) with rule ${f SD}$	u

Verifying the Certificate $\bullet \circ \circ$

Efficient Verification

bottleneck: basic statements $(A \subseteq B)$

 \rightarrow depends on representation of A and B

efficient for

- BDDs
- (dual-)Horn formulas
- 2CNF
- explicit enumeration

Not efficient for CNF!

Verifying the Certificate $\circ \bullet \circ$

Conclusion 0

Verifying PDR for positive STRIPS

implemented on top of pdrplan

	base	certifying	verifier
PDR	388	-4	-2
FD-h ^{M&S}	224	-27	-19
$FD\text{-}h^{max}$	203	-47	-14
DFS-CL	394	-8	-1

small generation overhead, efficient verification

Verifying the Certificate $\circ \circ \bullet$

Integration of SAT Certificates

Observations

- PDR must have solved related SAT queries already
- SAT solvers are certifying

 \rightarrow use SAT certificates from planner's SAT calls*

Example

given: state sets S_{φ} and S_{ψ} described by φ and ψ (in CNF)

 $\to S_{\varphi} \subseteq \overline{S_{\psi}}$ verified with UNSAT certificate for $\varphi \wedge \psi$

*SAT calls don't perfectly match basic statements \rightarrow combine knowledge within proof system

Creating Certificates for PDR 000 Verifying the Certificate 000

Conclusion

Conclusion & Outlook

Contributions

- certifying version of PDR
- extension of proof system to CNF formalism

outlook:

- traditional SAT solvers with modern upper bound techniques
- problem reformulations (e.g. symmetry, STRIPS duality)
- . . .