
Inductive Certificates of Unsolvability for Domain-Independent Planning†

Salomé Eriksson, Gabriele Röger and Malte Helmert
University of Basel, Switzerland

{salome.eriksson,gabriele.roeger,malte.helmert}@unibas.ch

Abstract
If a planning system outputs a solution for a given
problem, it is simple to verify that the solution is
valid. However, if a planner claims that a task is
unsolvable, we currently have no choice but to trust
the planner blindly. We propose a sound and com-
plete class of certificates of unsolvability, which
can be verified efficiently by an independent pro-
gram. To highlight their practical use, we show
how these certificates can be generated for a wide
range of state-of-the-art planning techniques with
only polynomial overhead for the planner.

1 Introduction
The aim of automated planning is to find a course of actions
whose application to the current situation of the world leads
to a desired goal situation. Two examples are a logistics com-
pany which has packages and trucks at several distribution
centers and wants to deliver all packages to their destination,
or a Sokoban game where we need to push boxes to their goal
locations. We focus on classical planning, where actions are
deterministic and we have complete knowledge of the world.

Traditionally, most research in classical planning concen-
trated on finding plans (action sequences that reach the goal).
Depending on the problem it might however be beneficial to
instead focus on the question whether the problem is actu-
ally solvable or not. The International Planning Competition
(IPC) recently encouraged further research in this direction
with its first Unsolvability IPC in 2016, and indeed, many
new techniques for detecting unsolvability emerged. [Hoff-
mann et al., 2014; Haslum, 2016; Gnad et al., 2016; Pom-
merening and Seipp, 2016; Seipp et al., 2016; Torralba, 2016;
Torralba et al., 2016; Steinmetz and Hoffmann, 2017].

A question that naturally arises is whether the planners are
actually correct in their assessment of which tasks are unsolv-
able. If a planner claims that a task is solvable, it usually pro-
vides an actual plan. This plan can easily be verified by ap-
plying the actions from the initial state and checking whether
this leads to a goal state. For this purpose there already ex-
ist tools such as VAL [Howey and Long, 2003] or INVAL
[Haslum, 2011].
† This is an abridged version of a paper [Eriksson et al., 2017b] that
won the best student paper award at ICAPS 2017.

Proving unsolvability however is not as simple. A planning
task induces a directed graph, the so-called state space, which
is exponentially larger than the task description. To prove
unsolvability we need to show that this graph contains no path
from the initial state to any goal state.

We propose a class of certificates of unsolvability, which is
complete (in the sense that for each unsolvable planning task
such a certificate exists) and can be efficiently verified. The
core idea is based on sets of states that once entered cannot be
left again. If the set contains the initial state but no goal state,
the task must be unsolvable. We can efficiently generate such
certificates for a wide variety of current planning techniques.

2 Planning Tasks
We consider planning tasks in propositional STRIPS repre-
sentation [Fikes and Nilsson, 1971]. We do not consider ac-
tion costs, which are irrelevant for the question of solvability.

A planning task is a tuple Π = 〈V,A, I,G〉, where V is
a finite set of (state) variables, A is a finite set of actions,
I ⊆ V is the initial state and G ⊆ V is the goal description.

A state s ⊆ V of Π is defined by the variables that are
true in the state. State s is a goal state if G ⊆ s. We write
S(Π) = 2V for the set of all states of Π and SG(Π) for the set
of goal states of Π. Each action a ∈ A is defined by its pre-
conditions pre(a) ⊆ V , add effects add(a) ⊆ V and delete ef-
fects del(a) ⊆ V . It is applicable in state s if pre(a) ⊆ s, and
the resulting successor state is s[a] = (s \ del(a)) ∪ add(a).

A plan for Π is a sequence of actions that are successively
applicable in I and result in a goal state. Task Π is solvable if
there exists a plan, otherwise it is unsolvable.

Given a state set S ⊆ S(Π) and action a, we write
S[a] = {s[a] | s ∈ S, a applicable in s} for the set of all
successors of S via action a, and for action sets A′ ⊆ A we
write S[A′] =

⋃
a∈A′ S[a] for all successors of S via any

action in A′.

3 Representing State Sets
Since our certificates work with potentially very large sets of
states, we require a suitable and compact representation of
these sets. We will use propositional formulas over the vari-
ables V from the planning task. Such a formula represents a
set of states according to the following definition:
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Figure 1: Two instances of the Sokoban puzzle. Dark gray fields are
walls, the brown field represents the box and the gray field its goal
position.

Definition 1 (state set representation). Given a modelM of a
propositional formula ϕ, state sM contains exactly the vari-
ables which are true inM, i. e. sM = {v | M(v) = >}.

Formula ϕ represents the set S of all states that are de-
scribed by a model of ϕ, i. e. S = {sM | M |= ϕ).

While propositional formulas can in most cases compactly
represent large state sets, verifying certain properties such as
satisfiability is in general not efficiently possible. We thus
focus on three subclasses which trade off representational
power in favor of efficient operations:

• Reduced Ordered Binary Decision Diagrams (BDDs)
[Bryant, 1986] represent formulas as rooted acyclic
graphs.

• 2-CNF formulas are formulas in conjunctive normal
form (CNF) with at most 2 literals per clause.

• Horn formulas are CNF-formulas where each clause
contains at most one positive literal.

We chose BDDs since they are commonly used in plan-
ning to represent sets of states, and Horn and 2-CNF formu-
las since they are two of the maximal tractable classes for
boolean constraint satisfaction [Schaefer, 1976].

4 Inductive Certificates
The basic idea of our certificates revolves around defining a
set of states which once entered cannot be left again. Con-
sider the left side of Figure 1, which shows a Sokoban prob-
lem where the box is facing an outer wall. While we can still
move the box around (and thus reach different states), we can
never reach a state where the box is not on that wall. In other
words, if an action is applied to any state in this set S of
states where the box is on the upper wall, the resulting state
will also be contained in S. We call a set with this property
an inductive set.

Definition 2 (inductive set). A set S of states from a planning
task Π = 〈V,A, I,G〉 is inductive in Π iff S[A] ⊆ S.

The empty set and the set of all states are two trivial cases
of inductive sets. Another example is the set of states reach-
able from one specific state. Furthermore, inductive sets are
closed under union and intersection. Some concrete exam-
ples can be seen in Figure 2. In the context of unsolvability,
inductive sets described by a formula are also called traps
[Lipovetzky et al., 2016]
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Figure 2: Examples of inductive sets in a search space. Notice that
their unions and intersections are inductive as well.

If we find an inductive set S with the additional properties
that (i) it contains the initial state and (ii) it does not contain
any goal state, we have a sufficient argument that the planning
task is unsolvable: Since a potential solution must start in
S (due to (i)) and never leaves S (because S is inductive),
it must also end in S. But then it cannot reach a goal (due
to (ii)) and therefore cannot be a plan. We call this form of
unsolvability certificate an inductive certificate:
Definition 3 (inductive certificate). A set S ⊆ S(Π) is an
inductive certificate for Π = 〈V,A, I,G〉 if

1. I ∈ S (S contains the initial state)
2. S ∩ SG(Π) = ∅ (S contains no goal state), and
3. S[A] ⊆ S (S is inductive)
As we argued above, if such an inductive certificate exists,

the task is unsolvable. It is also easy to see that for each un-
solvable planning task there exists an inductive certificate, for
example the set of all states reachable from the initial state.
Corollary 1 (soundness and completeness). Inductive cer-
tificates are sound and complete, i. e. a planning task Π is
unsolvable iff an inductive certificate for Π exists.

In order for such a certificate to be verifiable in practice, we
must be able to check its three properties efficiently. Property
1 (I ∈ S) corresponds to a model check, which BDDs, Horn
and 2-CNF formulas all support efficiently.

Property 2 (S∩SG(Π) = ∅)) can be reformulated with log-
ical formulas ϕS and

∧
v∈G v (representing S and SG(Π)) as

ϕS |=
∨

v∈G ¬v. This implication is a special form of en-
tailment called clausal entailment, which all considered for-
malisms support efficiently.

Property 3 (S[A] ⊆ S) requires the most involved verifi-
cation step. We first observe that it is sufficient to test for
each a ∈ A individually that S[a] ⊆ S holds. To this end
we introduce a primed version v′ for each variable v ∈ V
and then define a transition formula τa which describes the
state in which a is applied in terms of the variables from
V and the successor state in terms of the primed variables:
τa =

∧
v∈pre(a) v ∧

∧
v∈add(a) v

′ ∧
∧

v∈del(a)\add(a) ¬v′ ∧∧
v∈V \(add(a)∪del(a))(v ↔ v′). If we conjoin τa with ϕS

(which represents S), each model of the resulting formula
represents a pair of states (s, s′) (where s′ is gained from the
primed variables) with the property that s ∈ S and s′ is the
successor of s with a, i. e. s[a] = s′. What is left to do is to
check that all these successors s′ are in S. We can do this by
creating a formula ϕS′ which replaces all v with v′, and then



testing if ϕS ∧ τa |= ϕS′ holds. All these steps can be done
efficiently for all considered formalisms.

Corollary 2 (efficient verification). Given a BDD, Horn for-
mula or 2-CNF formula ϕS representing a state set S, testing
whether S is an inductive certificate can be done in time poly-
nomial in the representation size of ϕS and Π.

4.1 Composite Certificates
While inductive certificates are complete, it is not always
possible to describe S compactly with the considered for-
malisms. Thus we introduce two composite certificate types
where we consider a family F of sets such that their union or
intersection forms an inductive certificate and each set S ∈ F
is represented by its own formula ϕS .

Definition 4 (disjunctive/conjunctive certificate). A family F
of state sets is an disjunctive certificate if

⋃
S∈F S is an in-

ductive certificate for Π. It is an conjunctive certificate for Π
if
⋂

S∈F S is an inductive certificate for Π.

Verifying the conditions for inductive certificates still re-
quires considering the full union/intersection. But if a repre-
sentation efficiently support this operation, there is no need
to use a composite certificate. For instance, the conjunction
of several Horn formulas is a Horn formula that can be build
in linear time, so we could efficiently transform a conjunc-
tive Horn certificate into a standard inductive certificate. The
same is true for conjunctive 2-CNF certificates.

With a BDD representation or for disjunctive certificates,
an efficient verification of the composite certificate is not pos-
sible in general (unless P = NP). However, for many appli-
cations we can use stronger properties that imply the prop-
erties of inductive certificates but only require to consider a
bounded number of sets at once. With these stronger proper-
ties, we can also use formalisms that only efficiently support
bounded disjunction or conjunction (such as BDDs).

Definition 5 (r-disjunctive certificate). A family F of state
sets is an r-disjunctive certificate if

1. I ∈ S for some S ∈ F ,

2. S ∩ SG(Π) = ∅ for all S ∈ F , and

3. for all S ∈ F and a ∈ A, there is a subfamily F ′ ⊆ F
with |F ′| ≤ r and S[a] ⊆

⋃
S′∈F ′ S′.

For disjunctive certificates in general, the inclusion of the
initial state and the exclusion of all goal states can be checked
for each set S ∈ F independently. For verifying the inductiv-
ity of

⋃
S∈F S, it is sufficient to verify for each set S ∈ F and

action a ∈ A that all successors lie in
⋃

S∈F S. For the more
restrictive r-disjunctive certificates, it is sufficient to verify
that they are in a union of at most r sets from F .

In terms of the three representation formalisms, only BDDs
can be used for verifying general r-disjunctive certificates.
The problem with Horn and 2-CNF formulas is that they do
not support the composition to a disjunction. However in the
special case of 1-disjunctive certificates, they can be used
since no disjunctions are required. This is for example al-
ready sufficient for tasks that are detected unsolvable by the
Trapper algorithm [Lipovetzky et al., 2016].

Conjunctive certificates are based on similar ideas:

Definition 6 (r-conjunctive certificate). A family F of state
sets is an r-conjunctive certificate if

1. I ∈ S for all S ∈ F ,

2. SG(Π)∩
⋂

S∈F ′ S = ∅ for some F ′ ⊆ F with |F ′| ≤ r,

3. for all S ∈ F and a ∈ A, there is a subfamiliy F ′ ⊆ F
with |F ′| ≤ r and (

⋂
S′∈F ′ S′)[a] ⊆ S.

BDDs, Horn and 2-CNF formulas are all suitable for r-
conjunctive certificates, although in the case of Horn and 2-
CNF formulas we could directly use inductive certificates.

5 Generating Certificates
So far, we have concentrated on the efficient verification of
certificates, now we give an idea how they can be efficiently
generated by current planning techniques. In this summary
paper, we do not have sufficient space to go into detail and
to cover many different approaches, so for an in-depth dis-
cussion, we refer the interested reader to the original paper
[Eriksson et al., 2017b].

Many state-of-the-art planners employ a forward-search in
the induced state space, usually using a heuristic for guiding
and pruning the search. We will illustrate from a high-level
perspective how such a system could build a certificate.

5.1 Blind Search
We first focus on the simplest case of a so-called blind search,
which does not prune the search but must consider all states
that are reachable from the initial state.

Consider the right puzzle in Figure 1: A blind search will
try to push the box to all positions it can, namely B2-B6, C4
(its start position) and D2-D6, and for each position, it con-
siders all possible positions of the person (everywhere except
at the box position). All these states are considered individ-
ually and the search can successively build up a BDD for the
entire set of states. The final BDD represents an inductive
certificate, because it contains the initial state, cannot be left
and for an unsolvable task it does not contain a goal state.

5.2 Heuristic Search
If a heuristic is used for pruning, the search does no longer
explicitly consider every reachable state, so the set of consid-
ered states alone is no longer inductive.

The search prunes state s (and all successor nodes), if the
heuristic detects that s is a dead end, i. e., the goal is unreach-
able from s. In the full paper [Eriksson et al., 2017b], we
have shown for a wide range of heuristics how they can ef-
ficiently provide an inductive set of states that contains the
dead end but no goal state for each detected dead end. These
can be seen as inductive certificates for the dead ends.

From these we can build a 1-disjunctive certificate that in-
cludes the inductive sets Di for each dead end, and for each
state s′ that is actually expanded by the search a set Si con-
taining only s′. The certificate is 1-disjunctive since for allDi

we have Di[A] ⊆ Di and for all Si and applicable a ∈ A we
have a single successor which must either also be expanded
(and thus Si[a] ⊆ Sj for some j) or is a dead end (and thus
Si[a] ⊆ Dj for some j).



As an example, consider again the right puzzle in Figure 1
and assume that a heuristic detects all states where the box
is at 4B or 4D as dead ends (independent of the position of
the person). Further, assume that it provides inductive sets
box-at-B and box-at-D (e.g. in 2-CNF), respectively, which
do not cover any goal state. As these states are pruned, the
search would only explore all states where the box is at posi-
tion 4C (just moving the person around). It would collect all
these states as individual sets (e.g. represented by formulas
like box-at-4C ∧ person-at-D4). The set of all these formu-
las and those from the heuristic is a 1-disjunctive certificate.
The initial state has been covered by the search and no for-
mula covers a goal state. For inductivity it holds that box-
at-B and box-at-D (from the heuristic) are inductive and all
sets/formulas included by the search represent a single state
where each applicable operator either results in another such
state or in a state covered by box-at-B or by box-at-D.

6 Experiments
As a proof of concept for the practicability of our certificates
we extended the Fast Downward planning system [Helmert,
2006] to generate certificates with A∗ search [Hart et al.,
1968] using the hmax heuristic [Bonet and Geffner, 2001],
and with A∗ using the Merge and Shrink (M&S) heuristic
[Helmert et al., 2007; Helmert et al., 2014]. Additionally
we implemented a standalone verifier that can validate the
generated certificates. Both implementations use the CUDD
library [Somenzi, 2015] for representing BDDs, and are pub-
licly available [Eriksson et al., 2017a].

In order to asses the overhead of generating certificates we
ran both Fast Downward configurations without and with cer-
tificate generation (which we will call FD and FDcert). We im-
posed limits of 30 minutes and 2 GiB for FD and FDcert; for
the verifier we set the same memory limit but a more generous
time limit of 4 hours. As benchmarks we used a collection
of unsolvable planning tasks which includes the unsolvable
tasks from the Unsolvability IPC.

For A∗ with hmax, FD detected 212 tasks as unsolvable,
and FDcert was able to generate certificates for 136 of them.
Of these 136 certificates, the verifier could verify 123 certifi-
cates within the given limits. For A∗ with hM&S, the respec-
tive numbers are 223 for FD, 191 for FDcert and 155 for the
verifier. As expected, all verified certificates were valid.

In order to get a better picture of the time overhead imposed
on the planner, Figure 3 compares the runtime of FD and
FDcert, showing that the overhead, while noticeable, is still
benign. Figure 4 plots the time required to verify a certificate
against its size. Except for small certificates (where verifica-
tion is dominated by parsing the task) we see that certificate
size and verification time mostly correlate.

Overall the results show that our certificates are useful in
practice, especially when considering that we used a proof of
concept implementation that could be further optimized.

7 Conclusion
We introduced a way to formally prove unsolvability of clas-
sical planning tasks, based on inductive certificates. The pre-
sented certificates are complete, can be verified efficiently
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Figure 3: Runtime comparison of FD vs. FDcert.
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Figure 4: Verifier runtime as a function of certificate size.

and can also be generated efficiently for a wide range of plan-
ning techniques. As a practical contribution, we implemented
the generation of certificates for two configurations of a state-
of-the-art planner as well as a standalone verifier for the gen-
erated certificates. Experiments show that certificates can be
generated and verified with reasonable resources.

One restriction for composite certificates is that all sets
must be represented in the same formalism. This limits their
applicability because we can for example not use them if the
search exploits multiple heuristics that require different for-
malisms. We addressed this issue in an extension of this
line of work towards a flexible proof system [Eriksson et al.,
2018].
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Planning as heuristic search. Artificial Intelligence,
129(1):5–33, 2001.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms
for boolean function manipulation. IEEE Transactions on
Computers, 35(8):677–691, 1986.

[Eriksson et al., 2017a] Salomé Eriksson, Gabriele Röger,
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[Torralba et al., 2016] Álvaro Torralba, Jörg Hoffmann, and
Peter Kissmann. MS-Unsat and SimulationDominance:
Merge-and-Shrink and dominance pruning for proving un-
solvability. In Unsolvability International Planning Com-
petition: planner abstracts, pages 12–15, 2016.
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