A Proof System for Unsolvable Planning Tasks

Salomé Eriksson Gabriele Röger Malte Helmert University of Basel

Motivation

planner should emit proof for its output:

► solvable: plan

unsolvable: inductive certificate [Eriksson et al. 2017] weakness of inductive certificates: not compositional

→ new approach: proof system

Inductive Certificates

no path from *I* to goal \rightsquigarrow partition into S_I and S_G

Proof Generation

examples of covered planning techniques:

- explicit and symbolic blind search
- heuristic search with
- delete-relaxation heuristic
- ► *h*^{M&S} with linear merge strategy
- ► h^C

→ combination of multiple heuristics now possible

- trapper [Lipovetzky et al. 2016]
- clause learning state space search [Steinmetz and Hoffmann 2016]
 based proprocessing [Alcázar and Torralba 2015]
- h²-based preprocessing [Alcázar and Torralba 2015]

 S_I is inductive \rightsquigarrow no outgoing edges

A state set S is an inductive certificate iff

1. *I* ∈ *S*,

2. S contains no goal and

3. applying any $a \in A$ to any $s \in S$ leads to some $s' \in S$. (written $S[A] \subseteq S$)

Proof System

build up a knowledge base:

- basic statements
- state facts about concrete objects
- need to be verified

derivation rules

- derive new knowledge from existing knowledge
- universally true (only correct application needs to be verified)

Example: Set Theory

objects: elements
$$a,b,c,d,e$$
 and sets $A = \{a,b\}, B = \{b,c,e\}, C = \{b,c\}$
basic statements: derivation rules:

$$(A \cap B) \subseteq C$$

 $\blacktriangleright X \subseteq Y, Y \subseteq Z \to X \subseteq Z$

Translating Inductive Certificates

inductive certificate S: no successor, no goal and contains /

(1)	\emptyset dead	D1	(5)	S dead	D6 (2),(1),(4)
(2)	$S[A] \subseteq S \cup \emptyset$	B4	(6)	$\{I\}\subseteq S$	B1
(3)	$S \cap G \subseteq \emptyset$	B3	(7)	{ <i>I</i> } dead	D3 (6),(5)
(4)	$S \cap G$ dead	D3 (3),(1)	(8)	task unsolvable	D4 (7)

Heuristic Search

S_{d₂}

 a_2

Sn

 S_{d_1}

 \boldsymbol{a}_1

	 (1) (2) (3) (4) (5) (6) (7) 	\emptyset dead $S_{d_1}[A] \subseteq S_{d_1} \cup \emptyset$ $S_{d_1} \cap G \subseteq \emptyset$ $S_{d_1} \cap G$ dead S_{d_1} dead $\{d_1\} \subseteq S_{d_1}$ $\{d_1\}$ dead	D1 B4 B3 D3 D6 B1 D3	(3),(1) (2),(1),(4) (6),(5)
	(8) (9) (10) (11)	$\{d_2\} \text{ dead}$ $\{d_1\} \cup \{d_2\} \text{ dead}$ $S_D \subseteq \{d_1\} \cup \{d_2\}$ $S_D \text{ dead}$	D3 D2 B2 D3	 (7),(8) (10),(9)
)	 (12) (13) (14) (15) (16) (17) (18) 	$S_{\exp}[A] \subseteq S_{\exp} \cup S_D$ $S_{\exp} \cap G \subseteq \emptyset$ $S_{\exp} \cap G$ dead S_{\exp} dead $\{I\} \subseteq S_{\exp}$ $\{I\}$ dead task unsolvable	B4 B3 D3 D6 B1 D3 D3 D4	(13),(1) (12),(11),(14) (16),(15) (17)

► $b \in (A \cap B)$

$\blacktriangleright x \in X, X \subseteq Y \rightarrow x \in Y$

Unsolvability Proof System

objects: state sets S described by▶ BDDs

- ► Horn formulas
- ► 2CNF formulas
- explicit

- types of statements:
 - ► *S* is dead (no plan through any $s \in S$)

 \emptyset is dead

S' dead

S dead

 $S \cup S'$ dead

task unsolvable

task unsolvable

 $\blacktriangleright S \subseteq S'$

 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

GS

task unsolvable

Derivation Rules

D1	
D2	S dead, S' dead
D 3	$S' \subset S$, S dead

- **D3** 3 <u></u> 3, 3 (**D4** {*I*} dead
- **D4** $\{I\}$ ueau **D5** G dood
- D5 G dead
- **D6** $S[A] \subseteq S \cup S', S' \text{ dead}, S \cap G \text{ dead} \rightarrow$
- **D7** $S[A] \subseteq S \cup S', S' \text{ dead}, \{I\} \subseteq S \longrightarrow S \text{ dead}$
- **D8** $[A]S \subseteq S \cup S', S' \text{ dead}, \overline{S} \cap G \text{ dead} \rightarrow \overline{S} \text{ dead}$
- **D9** $[A]S \subseteq S \cup S', S' \text{ dead}, \{I\} \subseteq \overline{S} \rightarrow S \text{ dead}$

*h*²-based Preprocessing

 $egin{aligned} & C_1[A] \subseteq C_1 \cup \emptyset \ & \emptyset ext{ dead}, \ & I \in C_1 \ & o \overline{C_1} ext{ dead} \end{aligned}$

 $[A]C_2 \subseteq C_2 \cup \overline{C_1}$ $\overline{C_1} \text{ dead}, \overline{C_2} \cap G \text{ dead}$ $\rightarrow \overline{C_2} \text{ dead}$

 $egin{aligned} &C_3[A]\subseteq C_3\cup \overline{C_2}\ &\overline{C_2} ext{ dead}, \ &I\in C_3\ &
ightarrow \overline{C_3} ext{ dead} \end{aligned}$

Experimental Evaluation

	base	certifying	verifier
FD-h ^{max}	211	168 (135)*	167 (125)*
FD-h ^{M&S}	230	191 (200)*	184 (163)*
FD- <i>h</i> ²	183	177	177
FD-max(h ^{M&S} , h ²)	204	199	195
DFS-CL	385	386	383
*inductive certificate ar	nroach	1	1

Basic Statements

restrict basic statements to cases that are verifiable in polynomial time:

B1 $L \subseteq L'$ mixed representations for L ,	L' in some cases
--	------------------

- **B2** $X \subseteq X' \cup X''$
- **B3** $L \cap G \subseteq L'$
- **B4** $X[A] \subseteq X \cup L'$
- **B5** $[A]X \subseteq X \cup L'$

X: constant ({*I*}, *G*, \emptyset) or set variable (explicitly represented set) *L*: constant, set variable or their complement

*inductive certificate approach

