A Proof System for Unsolvable Planning Tasks

Salomé Eriksson Gabriele Röger
Malte Helmert

Motivation

planner should emit proof for its output:

- solvable: plan
- unsolvable: inductive certificate [Eriksson et al. 2017]
weakness of inductive certificates: not compositional
\rightsquigarrow new approach: proof system

Inductive Certificates

no path from / to goal
\rightsquigarrow partition into $S_{\text {I }}$ and S_{G}
$S_{\text {, }}$ is inductive
\rightsquigarrow no outgoing edges

A state set S is an inductive certificate iff

1. $I \in S$,
2. S contains no goal and
3. applying any $a \in A$ to any $s \in S$ leads to some $s^{\prime} \in S$. (written $S[A] \subseteq S$)

Proof System

build up a knowledge base:

- basic statements
- state facts about concrete objects
- need to be verified
- derivation rules
- derive new knowledge from existing knowledge
- universally true (only correct application needs to be verified)

Example: Set Theory

objects: elements a, b, c, d, e and sets $A=\{a, b\}, B=\{b, c, e\}, C=\{b, c\}$ basic statements: derivation rules:

- $(A \cap B) \subseteq C$
- $X \subseteq Y, Y \subseteq Z \rightarrow X \subseteq Z$
- $b \in(A \cap B)$
$x \in X, X \subseteq Y \rightarrow x \in Y$

Unsolvability Proof System

objects: state sets S described by

- BDDs
- Horn formulas
- 2CNF formulas
- explicit

Basic Statements

restrict basic statements to cases that are verifiable in polynomial time:

$$
\begin{array}{ll}
\text { B1 } & L \subseteq L^{\prime} \\
\text { B2 } & X \subseteq X^{\prime} \cup X^{\prime \prime} \\
\text { B3 } & L \cap G \subseteq L^{\prime} \\
\text { B4 } & X[A] \subseteq X \cup L^{\prime} \\
\text { B5 } & {[A] X \subseteq X \cup L^{\prime}}
\end{array}
$$

X : constant $(\{/\}, G, \emptyset)$ or set variable (explicitly represented set)
L: constant, set variable or their complement

Proof Generation

examples of covered planning techniques:

- explicit and symbolic blind search
- heuristic search with
- delete-relaxation heuristic
$h^{\mathrm{M} \& \mathrm{~S}}$ with linear merge strategy
$-h^{C}$
\rightsquigarrow combination of multiple heuristics now possible
- trapper [Lipovetzky et al. 2016]
- clause learning state space search [Steinmetz and Hoffmann 2016]
- h^{2}-based preprocessing [Alcázar and Torralba 2015]

Translating Inductive Certificates

inductive certificate S : no successor, no goal and contains /
D1
(5) S dead
D6 (2),(1),(4)
(2) $\quad S[A] \subseteq S \cup \emptyset \quad$ B4
B4
(6) $\{I\} \subseteq S$
B1
(3) $S \cap G \subseteq \emptyset \quad B 3$
(7) $\{1\}$ dead
D3 (6),(5)
(4) $S \cap G$ dead
D3 (3),(1)
(8) task unsolvable
D4 (7)

Heuristic Search

(1)	\emptyset dead	D1	
(2)	$S_{d_{1}}[A] \subseteq S_{d_{1}} \cup \emptyset$	B4	
(3)	$S_{d_{1}} \cap G \subseteq \emptyset$	B3	
(4)	$S_{d_{1}} \cap G$ dead	D3	(3),(1)
(5)	$S_{d_{1}}$ dead	D6	(2),(1),(4)
(6)	$\left\{d_{1}\right\} \subseteq S_{d_{1}}$	B1	
(7)	$\left\{d_{1}\right\}$ dead	D3	(6),(5)
(8)	$\left\{d_{2}\right\}$ dead	D3	
(9)	$\left\{d_{1}\right\} \cup\left\{d_{2}\right\}$ dead	D2	(7),(8)
(10)	$S_{D} \subseteq\left\{d_{1}\right\} \cup\left\{d_{2}\right\}$	B2	
(11)	S_{D} dead	D3	(10),(9)
(12)	$S_{\text {exp }}[A] \subseteq S_{\exp } \cup S_{D}$	B4	
(13)	$S_{\exp } \cap G \subseteq \emptyset$	B3	
(14)	$S_{\text {exp }} \cap G$ dead	D3	(13),(1)
(15)	$S_{\text {exp }}$ dead	D6	(12),(11),(14)
(16)	$\{I\} \subseteq S_{\text {exp }}$	B1	
(17)	\{I\} dead	D3	(16),(15)
(18)	task unsolvable	D4	(17)

h^{2}-based Preprocessing

Experimental Evaluation

	base	certifying	verifier
FD- $h^{\max }$	211	$168(135)^{*}$	$167(125)^{*}$
FD- $h^{\text {M\&S }}$	230	$191(200)^{*}$	$184(163)^{*}$
FD- h^{2}	183	177	177
FD-max $\left(h^{\text {M\&S }}, h^{2}\right)$	204	199	195
DFS-CL	385	386	383

