
Unsolvability Certificates for Classical Planning

Salomé Eriksson and Gabriele Röger and Malte Helmert
University of Basel, Switzerland

{salome.eriksson,gabriele.roeger,malte.helmert}@unibas.ch

Abstract

The plans that planning systems generate for solvable plan-
ning tasks are routinely verified by independent validation
tools. For unsolvable planning tasks, no such validation ca-
pabilities currently exist. We describe a family of certificates
of unsolvability for classical planning tasks that can be effi-
ciently verified and are sufficiently general for a wide range
of planning approaches including heuristic search with delete
relaxation, critical-path, pattern database and linear merge-
and-shrink heuristics, symbolic search with binary decision
diagrams, and the Trapper algorithm for detecting dead ends.
We also augmented a classical planning system with the abil-
ity to emit certificates of unsolvability and implemented a
planner-independent certificate validation tool. Experiments
show that the overhead for producing such certificates is tol-
erable and that their validation is practically feasible.

Introduction
The aim of classical planning is to find a plan for a given
planning task or to prove that the task is unsolvable. While
more emphasis has traditionally been placed on finding
plans, the problem of proving unsolvability of planning tasks
has recently attracted much interest (e. g., Bäckström, Jons-
son, and Ståhlberg 2013; Hoffmann, Kissmann, and Torralba
2014; Lipovetzky, Muise, and Geffner 2016).

The more intelligent problem-solving algorithms become
part of our everyday lives, the more important it is that
we can trust their computations. When a planning system
claims to have found a plan for a planning task or claims
that it is unsolvable, this claim can be wrong due to soft-
ware bugs, hardware faults or even malicious reasons. It is
thus prudent to perform an independent verification of such
claims. For solvable planning tasks, validation tools such as
VAL (Howey and Long 2003) and INVAL1 are commonly
used for this purpose.

For unsolvable planning tasks, no such validation capabil-
ities currently exist. For example, the recently held first In-
ternational Planning Competition for proving unsolvability
(Unsolvability IPC) included a rule to disqualify planning
systems from a particular planning domain when it falsely

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://users.cecs.anu.edu.au/˜patrik/

reports a planning task as unsolvable to discourage the par-
ticipating planning systems from “guessing”.

Verifying the correctness of the output of an algorithm is
a need that arises in many areas of computer science. A cer-
tifying algorithm (McConnell et al. 2011) produces, along
with its regular output, a certificate (or witness) that proves
the correctness of the output. The validity of a certificate can
be checked by a verifier. To be practically useful, certificates
should satisfy four criteria:
• completeness: There should be a certificate for every un-

solvable planning task.
• efficient generation: Transforming a non-certifying algo-

rithm into a certifying one should be possible with rea-
sonable (polynomial, ideally linear) overhead.

• efficient verification: Verifying the correctness of a certifi-
cate should be possible with reasonable effort (e.g., poly-
nomial in the size of the certificate).

• generality: A single class of certificates (and hence veri-
fier) should be useful for a wide range of algorithms.
For example, for the unsatisfiability problem of proposi-

tional logic formulas in conjunctive normal form (UNSAT),
resolution proofs are a form of certificate that can be reason-
ably efficiently supported by the majority of state-of-the-art
UNSAT algorithms (Beame, Kautz, and Sabharwal 2004)
and are one of a small number of certificate types permitted
in the Certified UNSAT tracks of recent SAT competitions.2

In this paper, we introduce a family of certificates that
can be used to prove the unsolvability of classical planning
tasks. The central notion underlying these certificates are
inductive sets of states that separate the initial state of a
planning task from its goal states. Using the established ap-
proach of representing sets of states over propositional state
variables as logical formulas or circuits, we utilize known
tractability results for knowledge representation formalisms
in propositional logic (e. g., Dowling and Gallier 1984;
Darwiche and Marquis 2002) to define classes of unsolv-
ability certificates that can be efficiently verified. We then
show that a number of non-certifying planning approaches
in the literature based on heuristic or symbolic search can
be augmented to produce certificates with polynomial over-
head. Finally, we describe a prototype implementation of a

2http://satcompetition.org/

certifying planning algorithm and of a stand-alone verifier
for unsolvability certificates and experimentally show that
certificate verification, though computationally expensive, is
practically feasible.

Planning Tasks
We consider planning tasks in propositional STRIPS rep-
resentation (Fikes and Nilsson 1971). We do not consider
action costs, which do not matter for unsolvable tasks. Plan-
ning tasks in SAS+ representation (Bäckström and Nebel
1995) can easily be converted to STRIPS.

A STRIPS planning task is a tuple Π = 〈V,A, I,G〉,
where V is a finite set of (state) variables or atoms, A is
a finite set of actions or operators, I ⊆ V is the initial state
and G ⊆ V is the goal. We write ‖Π‖ for the size of a
compact description of Π.

A state s ⊆ V of Π is defined by the atoms that are true
in this state. A state s is a goal state if G ⊆ s. We write
S(Π) = 2V for the set of states of Π and SG(Π) for the set
of goal states of Π.

Each operator o ∈ A is defined by its preconditions
pre(o) ⊆ V , add effects add(o) ⊆ V and delete effects
del(o) ⊆ V . It is applicable in state s if pre(o) ⊆ s, and
the resulting successor state is s[o] = (s \ del(o)) ∪ add(o).

An s-plan for a state s is a sequence of operators that are
successively applicable in s and result in a goal state. An
I-plan is also called a plan for Π. A state s is unsolvable if
no s-plan exists, and Π is unsolvable if no I-plan exists.

Given a state set S ⊆ S(Π) and operator o ∈ A, we write
S[o] = {s[o] | s ∈ S, o applicable in s} for the set of all
successors of S via operator o, and for operator sets O ⊆ A
we write S[O] =

⋃
o∈O S[o] for all successors of S via any

operator in O. The successor set is monotonic in S and O,
i.e., S[O] ⊆ S′[O′] for all S ⊆ S′ and O ⊆ O′.

Sets of States as Logical Formulas
A critical aspect of the unsolvability certificates we con-
sider is the compact representation of sets of states. Fol-
lowing ideas used in planning as satisfiability (Kautz and
Selman 1992) and planning as symbolic search (Edelkamp
and Helmert 2001), we use logical formulas to represent sets
of states. Specifically, consider a propositional formula ϕ
whose propositional variables correspond to the state vari-
ables V of a planning task. We say that a state s satisfies ϕ
if the interpretation where exactly the variables in s are true
satisfiesϕ. The set of all such states is denoted by states(ϕ).

Representing Logical Formulas
More generally, instead of logical formulas we can use any
formalism R for representing sets of truth assignments for
a set of propositional logic variables V. Examples of such
formalisms include the class of formulas over V in conjunc-
tive normal form (CNF) or the set of reduced ordered bi-
nary decision diagrams (ROBDDs, in the following BDDs
for short) for a given variable order on V (Bryant 1986).
Because variable orders are important for BDDs, we assume
that V is totally ordered and write ≺ for this variable order.

An R-formula ϕ is a particular instance of formalism R,
such as a particular CNF formula or a particular BDD. We
use ϕ to refer both to the represented formula and its rep-
resentation and write ‖ϕ‖ for its representation size. For
example, if ϕ is represented as a BDD, ‖ϕ‖ is the number
of BDD nodes. We write vars(ϕ) for the propositional vari-
ables used in formula ϕ. In general, vars(ϕ) may include
variables that do not directly correspond to state variables of
the planning task, in which case states(ϕ) is not defined.

Following Darwiche and Marquis (2002), we can view
R-formulas as abstract data structures where different for-
malisms R differ in the operations they support efficiently.
For example, testing satisfiability of an R-formula is effi-
cient for BDDs but NP-complete for general CNF. Rather
than committing to a specific representation for certificates,
we prove results that hold for any formalism R that effi-
ciently supports certain operations on R-formulas. The fol-
lowing list describes the operations used in this paper, some
of which are taken from Darwiche and Marquis (2002):

MO (model testing) Given R-formula ϕ and truth assign-
ment I , test if I |= ϕ.

CO (consistency) Given R-formula ϕ, test if ϕ is satisfi-
able.

CE (clausal entailment) Given R-formula ϕ and clause γ,
test if ϕ |= γ.

SE (sentential entailment) Given R-formulas ϕ and ψ,
test if ϕ |= ψ.

∧BC (bounded conjunction) Given R-formulas ϕ and ψ,
construct an R-formula representing ϕ ∧ ψ.

∧C (general conjunction) Given R-formulas ϕ1, . . . , ϕn,
construct an R-formula representing ϕ1 ∧ · · · ∧ ϕn.

¬C (negation) Given R-formula ϕ, construct an R-
formula representing ¬ϕ.

CL (conjunction of literals) Given a conjunction ϕ of lit-
erals, construct an R-formula representing ϕ.

RN (renaming) Given R-formula ϕ and an injective vari-
able renaming r : vars(ϕ)→ V, construct an R-formula
representing ϕ[r], i.e., ϕ with each variable X replaced
by r(X).

RN≺ (renaming consistent with order) Same as RN, but
r must be consistent with the variable order in the sense
that if V, V ′ ∈ vars(ϕ) with V ≺ V ′, then r(V) ≺ r(V ′).

BI (biimplication pairs) Given a disjoint set S of pairs of
propositional variables, construct an R-formula repre-
senting

∧
{v,v′}∈S(v ↔ v′).

BI≺ (biimplication pairs consistent with order) Same as
BI, but S must be consistent with ≺ in the sense that if
{V, V ′} ∈ S with V ≺ V ′, then no other pair in S may
contain a variable V ′′ with V ≺ V ′′ ≺ V ′.

We say that a formalism R efficiently supports one of
these operations if the operation can be performed in polyno-
mial time in the representation size of the inputs. Our main
focus is on three formalisms: Horn formulas (CNF formulas

with at most one positive literal per clause), 2-CNF formu-
las (CNF formulas with at most two literals per clause, also
called Krom formulas), and BDDs.

BDDs are very common for representing sets of states,
e. g. in symbolic search. Horn formulas and 2-CNF formulas
are interesting due to their role as maximal tractable classes
in Schaefer’s dichotomy (1978) for Boolean constraint sat-
isfaction, and we will later see certificates that can be com-
pactly represented in these formalisms but not as BDDs.

Horn and 2-CNF formulas efficiently support all listed op-
erations except ¬C. BDDs efficiently support all listed op-
erations except ∧C, RN and BI. In particular they do effi-
ciently support ∧BC, RN≺ and BI≺, the weaker forms of
the three unsupported operations.

Inductive Certificates
We are now ready to define unsolvability certificates for
planning. The key concept is the notion of inductive sets,
i.e., sets of states that are closed under operator application.
Definition 1 (inductive set). A set S ⊆ S(Π) of states of a
STRIPS planning task Π = 〈V,A, I,G〉 is inductive in Π if
S[A] ⊆ S, i.e., all operator applications in a state in S lead
to a state in S.

The key property of inductive sets is that they are impossi-
ble to leave: once a state inside S is reached, all further oper-
ator applications stay within S. For this reason, Lipovetzky
et al. (2016) call formulas that describe inductive sets traps.

If an inductive set contains no goal state, then there is no
plan for any of its states. Therefore, we can use inductive
sets as a basis for unsolvability certificates.
Definition 2 (inductive certificate). Given a task Π =
〈V,A, I,G〉, an inductive certificate for a state s ∈ S(Π)
is given by a set S ⊆ S(Π) of states such that

1. s ∈ S,
2. S ∩ SG(Π) = ∅, and
3. S is inductive in Π.

An inductive certificate for the initial state I is also called
an inductive certificate for Π.

For now, we focus on the mathematical properties of in-
ductive certificates, leaving the question of how to com-
pactly represent and efficiently verify them for the next sec-
tion. It is easy to see that an inductive certificate for a state
exists iff there is no solution from that state.
Proposition 1 (soundness and completeness). Let Π =
〈V,A, I,G〉 be a STRIPS planning task. There is an induc-
tive certificate for state s ∈ S(Π) iff s is unsolvable. There
is an inductive certificate for Π iff Π is unsolvable.

To see that inductive certificates always exist for unsolv-
able states s, observe that the set of states reachable from s
satisfies properties 1–3 of Definition 2 if s is unsolvable. To
see that no inductive certificate exists if s is solvable, note
that an inductive set S for s must include s (by property 1)
and hence all states reachable from s (by property 3). Hence,
if there is an s-plan, S must violate property 2.

Before we move on to more complex certificates, we ob-
serve a structural property of inductive certificates.

Theorem 1. Inductive certificates are closed under union
and intersection.

Proof. Let S and S′ be certificates for state s. From s ∈ S
and s ∈ S′ we get s ∈ S ∪ S′ and s ∈ S ∩ S′ (property 1).

As there is no goal state in S or in S′, there is no goal
state in S ∪ S′ or S ∩ S′ (property 2).

For the inductivity of the union, consider a state s′ ∈ S ∪
S′ and assume w.l.o.g. that s′ ∈ S. We conclude from the
inductivity of S that s′[A] ⊆ S ⊆ S∪S′. For the inductivity
of the intersection, consider s′ ∈ S ∩ S′ and o ∈ A such
that o is applicable in s′. Since s′ ∈ (S ∩ S′) ⊆ S and S
is inductive, we have s′[o] ∈ S. With the same argument,
we have s′[o] ∈ S′ and hence s′[o] ∈ S ∩ S′. This shows
property 3.

Inductive certificates are general in the sense that they can
be generated for every unsolvable state. However, actually
constructing and verifying an inductive certificate as a sin-
gle monolithic set can be computationally challenging. We
therefore introduce two “factored” representations of induc-
tive certificates, which will be useful for efficient certificate
generation and verification.

Definition 3 (disjunctive/conjunctive certificate). A family
F ⊆ 2S(Π) of state sets of task Π is called a disjunctive cer-
tificate for state s of Π if

⋃
S′∈F S

′ is an inductive certificate
for s. It is called a conjunctive certificate for s if

⋂
S′∈F S

′

is an inductive certificate for s.

Disjunctive and conjunctive certificates allow combining
different sources of information without having to explic-
itly compute the union/intersection of the component sets.
However, verifying the conditions for inductive certificates
in general requires considering the full union/intersection,
negating this advantage. For this reason, we now introduce
a more restrictive form of disjunctive and conjunctive cer-
tificates which allows verifying the certificate properties in
a factored way.

These certificates are parameterized by a number r which
determines how many component sets must be considered
at the same time. We will later show that with suitable rep-
resentations, such certificates can be verified in polynomial
time for any fixed r.

Definition 4 (r-disjunctive certificate). For r ∈ N0, a family
F ⊆ 2S(Π) of state sets of task Π = 〈V,A, I,G〉 is called
an r-disjunctive certificate for state s if:

1. s ∈ S′ for some S′ ∈ F ,
2. S′ ∩ SG(Π) = ∅ for all S′ ∈ F , and
3. for all S′ ∈ F and all o ∈ A, there is a subfamilyF ′ ⊆ F

with |F ′| ≤ r such that S′[o] ⊆
⋃

S′′∈F ′ S′′.

We call the third property of the definition disjunctive r-
inductivity. Essentially, it means that to verify the inductiv-
ity property for a component set, only r subsets need to be
considered at the same time. We now show that this is a
sufficient condition for inductivity.

Theorem 2. All r-disjunctive certificates for a state s are
disjunctive certificates for s.

Proof. Let F be an r-disjunctive certificate for s, and let
S =

⋃
S′∈F S

′. We show that each of the three properties of
Def. 4 (for F) implies the corresponding property of Def. 2
(for S). Properties 1 and 2 of the two definitions are equiva-
lent by simple set arithmetic.

For property 3, consider any state s′ ∈ S and any operator
o applicable in s′. Because S =

⋃
S′∈F S

′, there exists a
set S′ ∈ F with s′ ∈ S′. From Def. 4, there must be a
subfamily F ′ ⊆ F such that s′[o] ∈ S′[o] ⊆

⋃
S′′∈F ′ S′′ ⊆⋃

S′∈F S
′ = S, and hence S is inductive.

We can use the same idea to define r-conjunctive certifi-
cates as a variant of conjunctive certificates that allows fac-
tored verification. Here, the bound r is also applied to re-
strict the complexity of verifying that the inductive set con-
tains no goal states.
Definition 5 (r-conjunctive certificate). For r ∈ N0, a fam-
ilyF ⊆ 2S(Π) of state sets of task Π = 〈V,A, I,G〉 is called
an r-conjunctive certificate for state s if:

1. s ∈ S′ for all S′ ∈ F ,
2. there is a subfamily F ′ ⊆ F with |F ′| ≤ r such that

(
⋂

S′′∈F ′ S′′) ∩ SG(Π) = ∅, and
3. for all S′ ∈ F and all o ∈ A, there is a subfamilyF ′ ⊆ F

with |F ′| ≤ r such that (
⋂

S′′∈F ′ S′′)[o] ⊆ S′.

We call the third property of this definition conjunctive
r-inductivity. As in the disjunctive case, we can show that
r-conjunctive certificates are conjunctive certificates.
Theorem 3. All r-conjunctive certificates for a state s are
conjunctive certificates for s.

Proof. Let F be an r-conjunctive certificate for s, and let
S =

⋂
S′∈F S

′. We show that each of the three properties of
Def. 5 (for F) implies the corresponding property of Def. 2
(for S). Properties 1 are equivalent, and it is easy to verify
that property 2 of Def. 5 implies property 2 of Def. 2.

For property 3, consider any state s′ ∈ S, any set S′ ∈ F
and any operator o applicable in s′. Because S =

⋂
S′∈F S

′,
s′ is contained in all sets of the form

⋂
S′′∈F ′ S′′ with

F ′ ⊆ F . From Def. 5, there is a subfamily F ′ with
s′[o] ∈

⋂
S′′∈F ′ S′′[o] ⊆ S′. Therefore, s′[o] is contained in

all sets S′ ∈ F and hence also in their intersection, S.

Efficient Certificate Verification
An inductive certificate for a state s is always an over-
approximation of all states reachable from s. Since the num-
ber of reachable states can be huge, we require compact rep-
resentations of such certificates. In the following, we iden-
tify representations that permit polynomial verification of
the certificates. For this purpose, we make the representa-
tion formalism R explicit.
Definition 6 (inductive R-certificate). Let Π = 〈V,A, I,G〉
be a STRIPS planning task. An inductive R-certificate for
state s ∈ S(Π) is an R-formula ϕ with vars(ϕ) ⊆ V such
that states(ϕ) is an inductive certificate for s.

For the composite certificates, the R-representation rep-
resents each component as an R-formula.

Definition 7 (composite R-certificates). Let Π =
〈V,A, I,G〉 be a STRIPS planning task. A disjunctive/con-
junctive/r-disjunctive/r-conjunctive R-certificate for state
s ∈ S(Π) is a set Φ of R-formulas with vars(ϕ) ⊆ V for
all ϕ ∈ Φ such that {states(ϕ) | ϕ ∈ Φ} is a disjunctive/
conjuctive/r-disjunctive/r-conjunctive certificate for s.

The following theorems establish a set of requirements on
the representation formalism that allow R-certificates to be
verified efficiently.

Theorem 4. Inductive R-certificates ϕ for state s of task
Π can be verified in polynomial time in ‖ϕ‖ and ‖Π‖ if R
efficiently supports MO, CE, SE, ∧BC, CL, RN≺ and BI≺.

Proof. To verify that ϕ is an inductive R-certificate for state
s of task Π = 〈V,A, I,G〉, we must verify that it satisfies
the three requirements of Definition 2, where S = states(ϕ).

Requirement 1 (s ∈ states(ϕ)) can be verified using MO
by testing I |= ϕ with the truth assignment I defined as
I(v) = T for v ∈ s and I(v) = F otherwise.

Requirement 2 (states(ϕ) ∩ SG(Π) = ∅) can be verified
as ϕ |=

∨
v∈G ¬v using CE.

For requirement 3 (states(ϕ) is inductive in Π), we
can verify for each operator o ∈ A individually that
states(ϕ)[o] ⊆ states(ϕ). For this purpose we need a fresh
auxiliary propositional variable v′ ∈ V for every state vari-
able v ∈ V . We write V ′ for these new (“primed”) vari-
ables. The original (“unprimed”) variables V are used to
describe a state in which o is applied, and the primed vari-
ables V ′ describe the successor state. We ensure that each
primed variable is adjacent to its unprimed variable in the
variable order: if v1 ≺ · · · ≺ vn is the order on V , then
v1 ≺ v′1 ≺ · · · ≺ vn ≺ v′n is the order on V ∪ V ′.

We then proceed as follows:

1. Build the transition R-formula τo over V ∪ V ′ that rep-
resents

∧
v∈pre(o) v∧

∧
v∈add(o) v

′∧
∧

v∈del(o)\add(o) ¬v′∧∧
v∈V \(add(o)∪del(o))(v ↔ v′). This can be done in poly-

nomial time using CL, BI≺ and ∧BC. This R-formula
represents all state pairs 〈s, s′〉 with s′ = s[o].

2. Build the R-formula ϕ ∧ τo. This can be done in polyno-
mial time using ∧BC. This R-formula represents all pairs
〈s, s′〉 with s′ = s[o] and s ∈ states(ϕ).

3. Test if ϕ ∧ τo |= ϕ[V → V ′], where ϕ[V → V ′] is ϕ
with each unprimed variable renamed to the correspond-
ing primed variable. This can be done in polynomial time
using RN≺ and SE. The test succeeds iff s′ ∈ states(ϕ)
for all states s′ with s′ = s[o] and s ∈ states(ϕ). In other
words, it succeeds iff ϕ satisfies the inductivity property
for operator o.

In summary, all tests can be performed in polynomial time
and succeed iff ϕ is an inductive R-certificate.

We remark that BDDs, Horn formulas and 2-CNF formu-
las satisfy all requirements of the theorem and are hence all
suitable representations for inductive R-certificates.

An analogous result using the same requirements on R
can be proved for r-conjunctive R-certificates. The rep-
resentation size of a composite certificate Φ is defined as
‖Φ‖ =

∑
ϕ∈Φ ‖ϕ‖.

Theorem 5. For fixed r, r-conjunctive R-certificates Φ for
state s of task Π can be verified in polynomial time in ‖Φ‖
and ‖Π‖ if R efficiently supports MO, CE, SE, ∧BC, CL,
RN≺ and BI≺.

Proof. Let Φ be an r-conjunctive R-certificate for state s of
task Π = 〈V,A, I,G〉. We must verify the three require-
ments of Definition 5.

For requirement 1 (initial state), we must verify that s ∈
states(ϕ′) for all ϕ′ ∈ Φ. This can be done in polynomial
time using MO, iterating over all ϕ′ ∈ Φ.

For requirement 2 (non-inclusion of goal states), we must
test if there exists some Φ′ ⊆ Φ with |Φ′| ≤ r such that∧

ϕ′′∈Φ′ ϕ′′ |=
∨

v∈G ¬v. While building
∧

ϕ′′∈Φ′ ϕ′′ can
be exponential in r, for fixed r the runtime is polynomial
using ∧BC and CE. The number of candidate subsets Φ′ is
O(|Φ|r).

For requirement 3 (conjunctive r-inductivity), we must
verify for all ϕ′ ∈ Φ and all o ∈ A that there exists
some Φ′ ⊆ Φ with |Φ′| ≤ r s.t. (

⋂
ϕ′′∈Φ′ states(ϕ′′))[o] ⊆

states(ϕ′). We test this separately for each ϕ′, o and Φ′,
amounting to a polynomial number of tests.

Each test can be performed on R-formulas as
(
∧

ϕ′′∈Φ′ ϕ′′) ∧ τo |= ϕ′[V → V ′], where the transi-
tion R-formula τo is computed in polynomial time using
CL, BI≺ and ∧BC as in Theorem 4, and the conjunc-
tions, renaming and entailment test can be performed in
polynomial time using ∧BC, RN≺ and SE.

The same proof idea can be used for conjunctive certifi-
cates (without the parameter r) if R efficiently supports
unbounded conjunction (∧C). However, in this case con-
junctive certificates are not actually necessary because they
can be efficiently converted to (monolithic) inductive R-
certificates. We remark that Horn and 2-CNF formulas effi-
ciently support unbounded conjunction, but BDDs do not.

To complete our results on efficient certificate verifica-
tion, we now consider (r-) disjunctive certificates. In this
case, the requirements on R are slightly different, requiring
¬C and CO instead of SE.
Theorem 6. For fixed r, r-disjunctive R-certificates Φ for
state s of task Π can be verified in polynomial time in ‖Φ‖
and ‖Π‖ if R efficiently supports MO, CO, CE, ∧BC, ¬C,
CL, RN≺ and BI≺.

Proof. Let Φ be an r-disjunctive R-certificate for state s of
task Π = 〈V,A, I,G〉. We must verify the three require-
ments of Definition 4.

For requirement 1 (initial state), we must verify that s ∈
states(ϕ′) for some ϕ′ ∈ Φ. This can be done in polynomial
time using MO, iterating over all ϕ′ ∈ Φ.

For requirement 2 (non-inclusion of goal states), we must
verify that states(ϕ′) ∩ SG(Π) = ∅ for all ϕ′ ∈ Φ. Each
test can be performed in polynomial time using CE, as in
Theorem 4.

For requirement 3 (disjunctive r-inductivity), we test
states(ϕ′)[o] ⊆

⋃
ϕ′′∈Φ′ states(ϕ′′) for all ϕ′ ∈ Φ, o ∈ A

and Φ′ ⊆ Φ with |Φ′| ≤ r and combine the results appropri-
ately. This is a polynomial number of tests.

Each test can be performed following the same ideas as in
Theorem 4. We first construct τo (using CL, BI≺ and ∧BC)
and then test ϕ′ ∧ τo |= (

∨
ϕ′′∈Φ′ ϕ′′)[V → V ′]. This is

equivalent to testing if ϕ′ ∧ τo ∧ (
∧

ϕ′′∈Φ′ ¬ϕ′′)[V → V ′]
is unsatisfiable, which can be done in polynomial time using
∧BC, ¬C, RN≺ and CO.

Similar to the conjunctive case, the result can be gener-
alized to general disjunctive certificates (with no bound on
r) by requiring ∧C instead of ∧BC, but this is somewhat
pointless because in this case ∧C and ¬C can be used to
efficiently perform unbounded disjunction (using De Mor-
gan’s laws) and hence convert the disjunctive certificate into
a monolithic inductive certificate.

While BDDs satisfy all requirements of Theorem 6, Horn
formulas and 2-CNF formulas do not, as they lack support
for ¬C. However, for the special case of r = 1, which the
following section shows to be relevant for heuristic search
and the Trapper algorithm, we can use SE instead of ¬C.

Theorem 7. 1-disjunctive R-certificates Φ for state s of task
Π can be verified in polynomial time in ‖Φ‖ and ‖Π‖ if R
efficiently supports MO, CO, CE, SE, ∧BC, CL, RN≺ and
BI≺.

Proof. The proof is identical to the one for Theorem 6 ex-
cept that the test ϕ′ ∧ τo |= (

∨
ϕ′′∈Φ′ ϕ′′)[V → V ′] is

handled differently. For 1-disjunctive certificates we have
|Φ′| ≤ 1, and hence the disjunction is either empty or a
singleton. If Φ′ = ∅, we can use CO to test whether
ϕ′∧ τo is unsatisfiable (= entails the empty disjunction), and
if Φ′ = {ϕ′′}, we can use SE to test whether ϕ′ ∧ τo |=
ϕ′′[V → V ′].

We conclude this section by summarizing the results for
the three main representation formalisms we consider:

• Inductive certificates can be verified efficiently when rep-
resented as BDDs, Horn formulas or 2-CNF formulas.

• r-conjunctive certificates can be verified efficiently when
represented as BDDs, Horn formulas or 2-CNF formulas.
Horn formulas and 2-CNF formulas also support efficient
verification of unrestricted conjunctive certificates.

• r-disjunctive certificates can be verified efficiently when
represented as BDDs, and in the case r = 1 also when
represented as Horn formulas or 2-CNF formulas.

Certifying Planning Algorithms
To demonstrate the practical utility of the family of unsolv-
ability certificates we introduced, we now show how a range
of common planning algorithms can be converted into certi-
fying algorithms. Unless noted otherwise, the overhead for
producing a certificate is bounded by a multiplicative con-
stant and hence does not change the big-O complexity of
the algorithm.

Blind Search (Explicit and Symbolic)
Arguably the simplest planning algorithm is blind forward
search. To prove a task unsolvable, an explicit-state search
must explore all states Sreach reachable from the initial state
and show that they include no goal state. The set Sreach can
be efficiently converted into a BDD,3 yielding an inductive
BDD certificate.

Symbolic blind search algorithms are among the strongest
current planning algorithms (e. g., Torralba 2015). A sym-
bolic progression search proving unsolvability produces a
BDD for the closed set that, upon termination, contains all
reachable states and is an inductive BDD certificate.

Similarly, a symbolic regression search proving unsolv-
ability computes a BDD representing all states from which a
goal state can be reached and shows that it does not include
the initial state. The BDD for the complement set, which
can be efficiently computed, is an inductive BDD certificate.

A symbolic bidirectional search proving unsolvability ter-
minates either when it has proved that the goal is unreach-
able in the forward direction or that the initial state is un-
reachable in the backward direction. In the first case, it can
use the same certificate as a forward search, and in the sec-
ond case the same certificate as a backward search.

Infinite Heuristic Estimates
Distance heuristics h are useful for proving a task unsolvable
if h(s) = ∞, i.e., if they can show that there is no solution
from a given state s. We only consider heuristics that are
safe, i.e., that only assign infinite values to unsolvable states.
In the following, we show how to compute certificates for
states s with h(s) = ∞ for a range of common heuristics
for classical planning.

Merge-and-Shrink and PDB Heuristics For every con-
sistent heuristic, the set of states with h(s) = ∞ is an in-
ductive set, and for every admissible heuristic, this set con-
tains no goal state. The cascading tables representation of
a merge-and-shrink (M&S) heuristic (Helmert, Haslum, and
Hoffmann 2007; Helmert et al. 2014) with a linear merge
strategy can be transformed into an algebraic decision dia-
gram (Bahar et al. 1993) representing the same function in
linear time (Torralba 2015). From this decision diagram,
a BDD for all states with infinite heuristic estimate can be
extracted in linear time. For “pure” M&S heuristics as de-
scribed in the literature, this results in an inductive BDD
certificate for all states pruned by the heuristic.4

3We can construct a binary decision tree for the set of states in
polynomial time as follows: convert the set into a trie by treating
each state as a string. Then mark the labels of the trie with 1 and
add a leaf labeled with 0 to each unary node as the second child.
Applying the standard Shannon and isomorphism reductions to this
decision diagram yields a BDD.

4Practical implementations of M&S heuristics often deviate
from theory by assigning h(s) = ∞ to states that are known to
be unreachable from the initial state, even though the goal might
be reachable from s. Such M&S heuristics are inadmissible, but
still usable for optimal search. They require more advanced tech-
niques for generating certificates.

While the limitation to linear merge strategies is a restric-
tion in general, the existing work on tailoring M&S to prov-
ing unsolvability (Hoffmann, Kissmann, and Torralba 2014)
only uses linear merge strategies.

The M&S result directly carries over to pattern database
heuristics (Edelkamp 2001), which are a special case of
M&S with linear merge strategies.

Delete Relaxation Delete relaxation heuristics like h+,
hmax, hadd, hFF and hLM-Cut (e. g., Bonet and Geffner 2001;
Hoffmann and Nebel 2001) all assign an infinite heuristic
value to the same set of states, so it suffices to discuss one of
them. Helmert and Domshlak (2009) describe a compilation
from hmax to linear M&S heuristics which implies that the
result for M&S carries over to hmax: if hmax(s) = ∞, there
exists an inductive BDD certificate for s. However, as the
compilation is state-dependent, different states may require
different certificates.

By following their construction, we can see that the full
expressive power of BDDs is not needed for delete relax-
ation heuristics. For a given state s, let R+

unreach(s) denote
the set of atoms that are not reachable from s in the delete
relaxation. R+

unreach(s) can be computed in O(‖Π‖). It is
easy to see that hmax(s) = ∞ iff R+

unreach(s) contains a goal
atom and that the formula

∧
v∈R+

unreach(s) ¬v describes an in-
ductive certificate for s in this case. This formula can be
compactly represented as a BDD with an arbitrary variable
order, as a Horn formula, or as a 2-CNF formula.

Critical Path Heuristics For critical path heuristics, we
show how to efficiently compute unsolvability certificates
for the hm heuristic family (Haslum and Geffner 2000). We
conjecture that similar results can be shown for generaliza-
tions of hm based on the ΠC compilation (Keyder, Hoff-
mann, and Haslum 2014).

We base the treatment of hm on the Πm compilation
(Haslum 2009). For a given task Π and natural number m >
0, Πm is a delete-free planning task with hmΠ (s) = hmax

Πm(sm)
for all states s, where sm is a state in Πm that corresponds
to state s in Π. (Subscripts denote in which task a heuristic
is evaluated.) In particular, the correspondence between hmΠ
and hmax

Πm implies that hm(s) = ∞ iff sm is unsolvable in
the delete-free task Πm.

The key idea of the Πm compilation is to explicitly repre-
sent conjunctions c = {v1, . . . , vk} ⊆ V of up to m atoms
by new atoms πc such that whenever πc is unreachable in
Πm, the conjunction v1 ∧ · · · ∧ vk is unreachable in Π. Let
Πm

unreach denote the set of unreachable atoms in Πm. (Com-
puting this set is a side effect of computing hm.) Using the
result for delete relaxation above, it follows that the formula
ϕ =

∧
{v1,...,vk}∈Πm

unreach
¬(v1 ∧ · · · ∧ vk) describes an induc-

tive certificate for s when hm(s) =∞.
We can writeϕ in clause form as

∧
{v1,...,vk}∈Πm

unreach
(¬v1∨

· · ·∨¬vk), which shows that inductive Horn formula certifi-
cates for states with hm(s) = ∞ can be efficiently gener-
ated. In the common case m ≤ 2, ϕ is also a 2-CNF for-
mula.

However, even in the limited case of m = 2, ϕ is in gen-
eral not compactly representable as a BDD (cf. Edelkamp

and Kissmann 2011), so this result does not directly result
in efficiently computable inductive BDD certificates for hm.
However, if we consider each clause of ϕ as a separate for-
mula, every individual clause can be efficiently converted
into a BDD, and hence this collection of BDDs forms a con-
junctive BDD certificate for s. Moreover, it can be shown
that this certificate is actually 1-conjunctive and hence can
be efficiently verified.5

Landmarks The landmark heuristics described in the lit-
erature can all be understood as landmarks of the delete re-
laxation or of the Πm compilation (e. g., Keyder, Richter,
and Helmert 2010; Bonet and Helmert 2010; Bonet and
Castillo 2011), and hence states with infinite landmark
heuristic estimates are covered by the previous results.

Heuristic Forward State-Space Search
Many classical planning systems employ heuristic search
algorithms such as A∗, IDA∗ or greedy best-first search
searching forward in the state space of the planning task.
In the context of proving unsolvability, heuristics are useful
for proving individual states unsolvable.

An unsolvability certificate for a heuristic search algo-
rithm must establish that none of the states expanded by such
a search algorithm are goal states and that all their succes-
sors have been expanded or proven unsolvable by a heuris-
tic. In this case, a 1-disjunctive certificate for the overall
algorithm can be efficiently computed if we can compute
inductive certificates for each state shown unsolvable by a
heuristic.

Theorem 8. Let Π = 〈V,A, I,G〉 be a STRIPS planning
task, let S∞ ⊆ S(Π) be a set of unsolvable states, and let
F∞ be a family of inductive certificates such that S∞ ⊆⋃

S′∈F∞
S′. (In other words, each state in S∞ is included

in some inductive certificate in F∞.)
Moreover, let Sexp ⊆ S(Π) be a set of states such that

I ∈ Sexp ∪ S∞, Sexp contains no goal state, and Sexp[A] ⊆
Sexp ∪ S∞. Then F = {{s} | s ∈ Sexp} ∪ F∞ is a 1-
disjunctive certificate for Π.

Proof. We check the three requirements for 1-disjunctive
certificates in Def. 4. Property 1 (inclusion of the initial
state) is trivial. Property 2 (non-inclusion of goal states)
holds because Sexp contains no goal states and all S′ ∈ F∞
are inductive certificates and therefore do not contain any
goal states either. It remains to check property 3 (disjunctive
1-inductivity) for all component certificates S′ ∈ F and all
operators o ∈ A.

Case 1: S′ = {s} for some s ∈ Sexp. Then S′[o] is ei-
ther empty (if o is inapplicable in s) and the condition holds

5For space reasons, we do not prove the 1-conjunctiveness re-
sult, which would require elaborating the details of the Πm compi-
lation. The key idea is that for every original operator o and every
conjunction c represented in Πm that o might achieve, there exists
a unique minimal (w.r.t. its preconditions) operator õ based on o
achieving c in Πm. If c is unreachable in Πm, one of the precondi-
tions of õmust be unreachable, and such a precondition can then be
used to define the family F ′ of size at most 1 needed in property 3
of Definition 5.

trivially, or S′[o] = {s[o]}, and we can set F ′ in Def. 4 to
include any set in F that includes s[o]. Such a set must exist
because Sexp[A] ⊆ Sexp ∪ S∞ and S∞ ⊆

⋃
S′∈F∞

S′.
Case 2: S′ ∈ F∞. Then we can set F ′ = {S′} in Def. 4

because S′ is an inductive certificate.

To generate a 1-disjunctive R-certificate for a heuristic
forward search algorithm, we apply the theorem with Sexp
as the set of expanded states and S∞ as the set of states
pruned due to infinite heuristic estimates. We need induc-
tive R-certificates for the states in S∞ as components. To
generate the component certificates for singleton state sets,
it suffices that R efficiently support CL, which all represen-
tation formalisms we consider do.

Trapper
The Trapper algorithm (Lipovetzky, Muise, and Geffner
2016) computes a formula ϕtrap such that all states satisfy-
ing ϕtrap only have states satisfying ϕtrap as successors and
all goal states satisfying ϕtrap violate a mutex, where mu-
texes are computed with the h2 algorithm. Lipovetzky et
al. (2016) show that all states satisfying ϕtrap that can be
reached by a forward search algorithm are unsolvable.

By itself, states(ϕtrap) is an inductive set but not an induc-
tive certificate because it may include goal states. Hence, it
is not possible to use states(ϕtrap) as an unsolvability certifi-
cate on its own. This makes sense because the soundness of
the algorithm relies on the soundness of the mutexes used,
and hence a certifying algorithm must certify the soundness
of the mutexes as well.

For a planning task Π = 〈V,A, I,G〉, let M ⊆ 2V be
the set of unordered pairs determined as mutually exclusive
by the h2 algorithm, i.e., {v1, v2} ∈ M iff h2({v1, v2}) =
∞. Then the consistent states of Π given M (the states not
violating a mutex in M) can be described by the formula
ϕcons =

∧
{v1,v2}∈M (¬v1 ∨ ¬v2). It is easy to see that ϕcons

describes an inductive set, i.e., all successors of consistent
states are consistent.

Let ϕprune = ϕtrap ∧ϕcons. Then states(ϕprune) contains all
states pruned by the Trapper algorithm and is an inductive
certificate for all its states. S is closed under operator appli-
cation because ϕtrap and ϕcons are individually closed under
operator application, and S does not contain a goal state be-
cause all goal states satisfying ϕtrap must violate a mutex and
hence do not satisfy ϕcons.

It remains to show that S can be compactly described
using a tractable representation formalism R. The trap
formula ϕtrap is a disjunction of conjunctions of atoms,
i.e., ϕtrap =

∨
1≤i≤n

∧
v∈ci v for certain variable sub-

sets (conjunctions) c1, . . . , cn ⊆ V . Hence ϕprune =
ϕtrap ∧ ϕcons = (

∨
1≤i≤n

∧
v∈ci v) ∧ ϕcons, which is equiv-

alent to
∨

1≤i≤n((
∧

v∈ci v) ∧ ϕcons), which we can write as∨
1≤i≤n ψi with ψi = (

∧
v∈ci v) ∧ ϕcons. Each ψi is a CNF

formula consisting of unit clauses from ci and negative bi-
nary clauses from ϕcons, and hence ψi is a Horn formula and
a 2-CNF formula. Therefore, Φ = {ψ1, . . . , ψn} is a dis-
junctive Horn certificate and a disjunctive 2-CNF certificate

for all states pruned by Trapper.6

Arbitrary disjunctive Horn or 2-CNF certificates are not
efficiently verifiable (unless P = NP), but it turns out that Φ
is actually 1-disjunctive. To see this, we must verify that
for every component certificate ψi ∈ Φ and every operator
o ∈ A, there exists a component certificate ψj ∈ Φ such that
applying operator o in a state satisfying ψi is guaranteed to
lead to a state satisfying ψj .

A closer investigation of the Trapper algorithm shows that
this is indeed the case. Trapper is based on marking certain
conjunctions of variables, and the conjunctions c1, . . . , cn
defining ϕtrap are the ones that remain unmarked after ex-
ecuting the algorithm. Unmarked conjunctions ci have the
property that each operator o ∈ A is either inapplicable in all
states satisfying ψi (in which case disjunctive 1-inductivity
holds trivially), or there exists an unmarked o-child cj of ci,
i.e., a conjunction satisfying cj ⊆ ((ci ∪ pre(o)) \ del(o)) ∪
add(o). In this case, every o-successor of a state satisfying ci
satisfies cj , and hence every o-successor of a state satisfying
ψi satisfies ψj .

Proof-of-Concept Implementation
To experimentally test inductive unsolvability certificates,
we augmented the implementations of A∗, hmax and hM&S

(linear merge strategies, no pruning of unreachable abstract
states) in Fast Downward (Helmert 2006) to produce BDD-
based unsolvability certificates. We refer to the original Fast
Downward as FD and the certifying version as FDcert.

We also implemented a certificate verification algorithm
supporting regular, r-conjunctive and r-disjunctive BDD
certificates. The verifier is a stand-alone implementation (in
C++) not related to an existing planning system. Both FDcert

and the verifier use the CUDD library7 to implement BDD
operations and are publicly available.8

We tested FDcert and the verifier with these two heuris-
tics (using default settings for hM&S) on the unsolvable
tasks from the Unsolvability IPC 2016, on the unsolvable
resource-constrained benchmarks used by Steinmetz and
Hoffmann (2016) and on the unsolvable benchmarks by
Hoffmann, Kissmann, and Torralba (2014).9 We set limits
of 30 minutes and 2 GiB for FD and FDcert and a more gen-
erous limit of 4 hours and 2 GiB for the verifier. A data set
with detailed results is publicly available.10

Table 1 shows how many tasks in each domain could be
solved with and without certificate generation and how many
of the generated certificates could be verified within the re-
source bounds. For A∗ with hmax, certificates could be pro-
duced for 64% of the successful runs, and in 90% of the

6Unlike the previous constructions, constructing this certificate
takes quadratic rather than linear time because the mutex informa-
tion is replicated in each component formula ψi. A linear repre-
sentation is possible if formulas are represented as circuits, i.e., if
common subformulas may be reused.

7http://vlsi.colorado.edu/˜fabio/
8http://doi.org/10.5281/zenodo.376651
9For the latter two benchmark collections, see https://

fai.cs.uni-saarland.de/software.html.
10http://doi.org/10.5281/zenodo.376652

hmax hM&S

FD FDcert Ver. FD FDcert Ver.
3unsat (30) 15 10 10 15 10 10
bag-barman (20) 8 8 3 12 8 4
bag-gripper (25) 3 3 1 3 3 1
bag-transport (29) 6 6 4 7 6 4
bottleneck (25) 20 15 15 10 8 7
cave-diving (25) 7 5 5 6 6 5
chessboard-pebbling (23) 5 3 3 5 5 4
diagnosis (18) 5 4 4 3 1 1
document-transfer (20) 7 5 5 12 9 4
mystery (9) 2 0 0 2 2 1
nomystery (150+24) 54 20 16 46 38 27
over-rovers (150+20) 14 8 8 24 22 19
over-tpp (25+30) 22 10 10 34 29 25
pegsol (24) 24 20 20 24 24 24
pegsol-row5 (15) 5 4 4 5 5 4
sliding-tiles (20) 10 10 10 10 10 10
tetris (20) 5 5 5 5 5 5
total (702) 212 136 123 223 191 155

Table 1: Completed tasks by domain (FD, FDcert, verifier).

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

failed

run-time of FD (in s)

ru
n-

tim
e

of
FD

ce
rt

(i
n
s)

hmax

hM&S

Figure 1: Run-time comparison of FD vs. FDcert.

10−2 10−1 100 101 102 103 104 105

10−2

10−1

100

101

102

103

104

105

failed

certificate size (in MiB)

ve
ri

fic
at

io
n

tim
e

(i
n
s)

hmax

hM&S

Figure 2: Verifier run-time as a function of certificate size.

cases where a certificate could be generated, it could be ver-
ified within the given resource bounds. For A∗ with hM&S,
the corresponding numbers are 86% and 81%. We consider
these numbers encouraging given that (to the best of our
knowledge) this is the first attempt at implementing a cer-
tifying planning algorithm, and neither the certifying algo-
rithm nor the verifier are highly optimized at this stage.

For hM&S, 30.5% of the cases where certificate verifica-
tion failed were due to the memory limit and 69.5% of the
cases were due to the time limit. For hmax, all certificate
verification failures were due to the time limit. However, as
CUDD seems to slow down to preserve memory when near-
ing memory exhaustion, the distinction can be fuzzy.

Figures 1 and 2 provide a more detailed look at this data.
Figure 1 shows that in most cases, but not always, the over-
head of FDcert compared to FD is benign. Figure 2 shows
the time needed to verify a certificate as a function of its
size (which is itself at most linear in the run-time of FDcert).
Apart from very small certificates, where verification time is
dominated by processing the task representation, the scaling
behavior appears to be not much worse than linear.

Conclusion
We described unsolvability certificates for classical planning
based on inductive sets. By using suitable representations
together with disjunctive and conjunctive factoring, these
certificates are sufficiently general to cover many planning
algorithms from the literature. A proof-of-concept imple-
mentation shows that the approach is practically feasible.

In future work, we would like to extend the approach to
further planning techniques. For example, pruning tech-
niques based on partial-order reduction are good candidates
for certification because several flawed algorithms have been
proposed in the literature (cf. Wehrle and Helmert 2012).

Acknowledgments
This work was supported by the European Research Council
as part of the project “State Space Exploration: Principles,
Algorithms and Applications”.

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast
detection of unsolvable planning instances using local con-
sistency. In Helmert, M., and Röger, G., eds., Proceedings
of the Sixth Annual Symposium on Combinatorial Search
(SoCS 2013), 29–37. AAAI Press.
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1993. Algebraic deci-
sion diagrams and their applications. In Lightner, M. R., and
Jess, J. A. G., eds., Proceedings of the 1993 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD
1993), 188–191.
Beame, P.; Kautz, H. A.; and Sabharwal, A. 2004. Towards
understanding and harnessing the potential of clause learn-
ing. Journal of Artificial Intelligence Research 22:319–351.

Bonet, B., and Castillo, J. 2011. A complete algorithm
for generating landmarks. In Bacchus, F.; Domshlak, C.;
Edelkamp, S.; and Helmert, M., eds., Proceedings of the
Twenty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2011), 315–318. AAAI Press.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Coelho, H.; Studer, R.; and
Wooldridge, M., eds., Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), 329–334.
IOS Press.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
Dowling, W. F., and Gallier, J. H. 1984. Linear-time al-
gorithms for testing the satisfiability of propositional Horn
formulae. Journal of Logic Programming 1(3):367–383.
Edelkamp, S., and Helmert, M. 2001. The model checking
integrated planning system (MIPS). AI Magazine 22(3):67–
71.
Edelkamp, S., and Kissmann, P. 2011. On the complexity
of BDDs for state space search: A case study in Connect
Four. In Burgard, W., and Roth, D., eds., Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI 2011), 18–23. AAAI Press.
Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Chien, S.; Kambhampati, S.; and
Knoblock, C. A., eds., Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS 2000), 140–149. AAAI Press.
Haslum, P. 2009. hm(P) = h1(Pm): Alternative character-
isations of the generalisation from hmax to hm. In Gerevini,
A.; Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009), 354–357. AAAI
Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-

ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–63.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. “Dis-
tance”? Who cares? Tailoring merge-and-shrink heuris-
tics to detect unsolvability. In Schaub, T.; Friedrich, G.;
and O’Sullivan, B., eds., Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI 2014), 441–446.
IOS Press.
Howey, R., and Long, D. 2003. VAL’s progress: The auto-
matic validation tool for PDDL2.1 used in the International
Planning Competition. In Edelkamp, S., and Hoffmann, J.,
eds., Proceedings of the ICAPS 2003 Workshop on the Com-
petition: Impact, Organisation, Evaluation, Benchmarks.
Kautz, H., and Selman, B. 1992. Planning as satisfiabil-
ity. In Neumann, B., ed., Proceedings of the 10th European
Conference on Artificial Intelligence (ECAI 1992), 359–363.
John Wiley and Sons.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving
delete relaxation heuristics through explicitly represented
conjunctions. Journal of Artificial Intelligence Research
50:487–533.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound
and complete landmarks for and/or graphs. In Coelho, H.;
Studer, R.; and Wooldridge, M., eds., Proceedings of the
19th European Conference on Artificial Intelligence (ECAI
2010), 335–340. IOS Press.
Lipovetzky, N.; Muise, C.; and Geffner, H. 2016. Traps,
invariants, and dead-ends. In Proceedings of the Twenty-
Sixth International Conference on Automated Planning and
Scheduling (ICAPS 2016), 211–215. AAAI Press.
McConnell, R. M.; Mehlhorn, K.; Näher, S.; and
Schweitzer, P. 2011. Certifying algorithms. Computer Sci-
ence Review 5(2):119–162.
Schaefer, T. J. 1978. The complexity of satisfiability prob-
lems. In Proceedings of the Tenth Annual ACM Symposium
on Theory of Computing (STOC ’78), 216–226. New York:
ACM Press.
Steinmetz, M., and Hoffmann, J. 2016. Towards clause-
learning state space search: Learning to recognize dead-
ends. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence (AAAI 2016), 760–768. AAAI Press.

Torralba, Á. 2015. Symbolic Search and Abstraction Heuris-
tics for Cost-Optimal Planning. Ph.D. Dissertation, Univer-
sidad Carlos III de Madrid.

Wehrle, M., and Helmert, M. 2012. About partial order re-
duction in planning and computer aided verification. In Mc-
Cluskey, L.; Williams, B.; Silva, J. R.; and Bonet, B., eds.,
Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling (ICAPS 2012), 297–
305. AAAI Press.

