Inductive Certificates

Certifying Planning Algorithms

Unsolvability Certificates for Classical Planning

Salomé Eriksson Gabriele Röger Malte Helmert

University of Basel, Switzerland

ICAPS 2017

Certifying Planning Algorithms

Motivation

Validating correctness of planner output:

• Why?

 \rightsquigarrow Software bugs, hardware faults, malicious reasons . . .

- How?
 - (a) Planner outputs a plan: VAL/INVAL
 - (b) Planner claims unsolvability: ?

Inductive Certificates 00000

Certifying Planning Algorithms 000000 Conclusion

Proving Unsolvability

Goal

Generate unsolvability certificate which can be verified

Desired properties:

- Soundness & Completeness
- Efficient generation
- Efficient verification
- Generality

Inductive Certificates ••••• Certifying Planning Algorithms 000000 Conclusion

General Idea

Unsolvable planning problems \rightsquigarrow No path from I to goal

Motivatio	

Inductive Certificates ••••• Certifying Planning Algorithms

Conclusion

General Idea

Unsolvable planning problems \rightsquigarrow No path from I to goal

Split graph into S_I and $S_G(=\overline{S_I})$ s.t. no outgoing edges from S_I

Inductive Certificates ••••• Certifying Planning Algorithms 000000 Conclusion

General Idea

Unsolvable planning problems \rightsquigarrow No path from I to goal

Split graph into S_I and $S_G(=\overline{S_I})$ s.t. no outgoing edges from S_I

Inductive Certificates

Certifying Planning Algorithms 000000 Conclusion

Inductivity

Inductive Set

A state set S is inductive if for all $s \in S$, all operator applications lead to a $s' \in S$.

Inductive Certificate

If a state set

- contains the initial state
- 2 contains no goal state
- is inductive

the planning task is unsolvable.

Inductive Certificates 00000

Certifying Planning Algorithms

Conclusion

Representation of State Sets

Representation of state sets as logical formulas

We focus on the following representations:

- (RO)BDD
- 2CNF
- Horn Formulas

Certifying Planning Algorithms

Conclusion

Conjunctive/Disjunctive Certificates

Not all state sets compactly representable

Conjunctive/Disjunctive Certificate

$$\mathcal{S} = \{S_1, \dots, S_n\}$$
 is a

- conjunctive certificate: $\bigcap_{S_i \in S} S_i$ is inductive certificate
- disjunctive certificate: $\bigcup_{S_i \in S} S_i$ is inductive certificate

Efficient Verification? in general not feasible \rightarrow only consider up to r sets at once

Inductive Certificates

Certifying Planning Algorithms

Conclusion

Suitable Representations

Certificate Type	BDD	2CNF	Horn Formulas
Inductive Certificate	Yes	Yes	Yes
Conjunctive Certificate	No	Yes	Yes
r-conjunctive Certificate	Yes	Yes	Yes
Disjunctive Certificate	No	No	No
r-disjunctive Certificate	Yes	No	No
1-disjunctive Certificate	Yes	Yes	Yes

Blind Search

Inductive Certificates

Certifying Planning Algorithms •00000

Conclusion

Inductive Certificates

Certifying Planning Algorithms •00000

Conclusion

Blind Search

• Progression: expanded = reachable from *I* ~> inductive certificate

Blind Search

Inductive Certificates

Certifying Planning Algorithms •00000

Conclusion

- Progression: expanded = reachable from *I* ~> inductive certificate
- Regression: expanded = backwards-reachable from goal

Inductive Certificates

Certifying Planning Algorithms •00000

Conclusion

Blind Search

- Progression: expanded = reachable from *I* ~> inductive certificate
- Regression: expanded = backwards-reachable from goal ~> complement is inductive certificate

Blind Search

Inductive Certificates

Certifying Planning Algorithms •00000

Conclusion

- Progression: expanded = reachable from I
 \dots inductive certificate
- Regression: expanded = backwards-reachable from goal
 ~> complement is inductive certificate
- Bidirection: whichever direction shows unsolvability

Blind Search

Inductive Certificates

Certifying Planning Algorithms •00000

Conclusion

- Progression: expanded = reachable from I
 \dots inductive certificate
- Regression: expanded = backwards-reachable from goal
 ~> complement is inductive certificate
- Bidirection: whichever direction shows unsolvability

Suitable representation: BDDs (for symbolic search)

Notivation	Inductive Certificates	Certifying Planning Algorithms 0●0000		
Merge	& Shrink			

Union of states s where $h^{M\&S}(s) = \infty$ is inductive & no goal states \rightsquigarrow If $h^{M\&S}(I) = \infty$, this union is inductive certificate

For linear merge strategies:

- Represent cascading tables as ADD
- **②** Compress to BDD: finite h-values lead to \bot , infinite to \top

Inductive Certificates

Certifying Planning Algorithms

Conclusion

Delete Relaxation Heuristics

 $h^+(s)=\infty$ if part of the goal is relaxed unreachable

• $U^+(s)$: relaxed unreachable variables

•
$$\varphi_{U^+(s)} = \bigwedge_{v \in U^+(s)} \neg v$$
 is inductive & no goal states

 \rightsquigarrow If $h^+(I) = \infty$, $\varphi_{U^+(s)}$ represents inductive certificate

Covers all delete-relaxation heuristics ($h^{\text{max}}, h^{\text{add}}, h^{\text{FF}}, h^{\text{LM-Cut}}, \dots$)

Suitable representation: BDDs, Horn Formulas, 2CNF

 h^m -Family

Inductive Certificates

Certifying Planning Algorithms 000000

Conclusion

Similar idea to h^+ , but with unreachable conjunctions:

 $\bigwedge_{c\in U^m(I)}\bigvee_{v\in c}\neg v$

Suitable representation: Horn Formulas, 2CNF (for $m \le 2$), BDDs (as 1-conjunctive Certificate)

Inductive Certificates

Certifying Planning Algorithms

Conclusion

Heuristic Search

Heuristic certificates sufficient if $h(I) = \infty$

General heuristic search:

- $S_{exp} = \{\{s\} \mid s \in \text{ expanded states}\}$
- \mathcal{S}_{∞} : family of inductive sets covering all detected dead ends

 $\rightsquigarrow \mathcal{S}_{\mathsf{exp}} \cup \mathcal{S}_\infty$ is 1-disjunctive certificate

Suitable representation: BDDs, Horn Formulas, 2CNF

Limitation:

- all sets must have same representation
- sets cannot be conjunctive/disjunctive

Trapper [Lipovetzky et al. 2016]:

- only considers states not violating mutexes M (based on h^2)
- no escape from $\varphi_{\mathsf{trap}} \rightsquigarrow \mathsf{inductive}$
- no goal states (in considered states)

Observations:

- φ_{trap} alone no certificate (goal states)
- states not violating mutexes $(= \varphi_{\neg M})$ inductive

 $\rightsquigarrow \varphi_{\mathsf{trap}} \land \varphi_{\neg M}$ represents inductive certificate (even 1-disjunctive)

Suitable representation: 2CNF, Horn Formulas

Mot		

Experiments

Proof of concept implementation of

- FD^{cert}: generates BDD certificates for $A^* + h^{max} / h^{M\&S}$
- Verifier: vanilla, r-conjunctive, r-disjunctive BDD certificates

limits: 30 min generation, 4 hours verification

	h ^{max}			$h^{M\&S}$		
	FD	FD^{cert}	Ver.	FD	FD^{cert}	Ver.
Coverage (702)	212	136	123	223	191	155

all certificates valid

Conclusion

unsolvability certificates based on inductive sets

- completeness: yes
- efficient generation: yes/no
- efficient verification: mostly yes (if efficient generation)
- generality: yes/no

Future Work

- cover more techniques (heuristics, pruning, ...)
- combined certificate with different formalisms