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Abstract

Planning is a central topic of AI and provides solutions
to problems given in a problem independent formalism.
Recent successes in the exploration of model checking
and single-agent search problems have led to a general-
ization of the symbolic exploration method with binary
decision diagrams (BDDs).

In this paper we present the use, architecture, imple-
mentation and performance of our STRIPS planner
MIPS abbreviating intelligent model checking and plan-
ning system.

With BDD refinements, symbolic and single state
heuristic search engines we highlight recent improve-
ments that have been added to the system.

Introduction

In classical planning an object is a unique name for an
entity in the modeled domain and predicates are unique
names for modeling attributes of objects. Instantiated
predicates are facts. A state in the planning problem
is a set of facts. An operator is a 3-tuple (P, A, D)
of preconditions, add-effects and del-effects, with P , A
and D being sets of facts. An operator is applicable, if
all preconditions are fulfilled. The state is altered by
adding the corresponding add-effects and removing the
del-effects. Operators or actions are defined by schemas
that contain free variables, to be instantiated by the
facts given in a state.

Given a set P of predicates, a set A of actions, a set O
of objects, an initial state s and set of goal states G the
planning problem is to find a sequence of operators that
transforms s into g in G. The algorithm is admissible if
the sequence of operators is the shortest possible. The
algorithm is complete if it always terminates returning
a plan or with failure in case no solution exists.

In this paper we give details on the implementation
and current status of our planner MIPS. The internal
structure of BDDs and their operators is not discussed.
We use BDDs as a black box compactly representing
and operating on Boolean functions in our planner. We
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start with SAT-based planning which leads to represen-
tation issues resolved by precompilation, and reachabil-
ity analysis. We give some insights in the complexity
of precompilation, exploration and solution extraction.
Further on we present the architecture of the system
MIPS 1.0 and its usage. Then we turn to new inven-
tions in version 1.1 - version 1.5 of our planner. Finally
experiments on the AIPS-98 problem suite and some
concluding remarks are given. Throughout the paper
we have included some code fragments. Even though
the code is not self-explanatory and only scratched in
the text it might give a feeling of the implementation.

Planning as Satisfiability

Planning as satisfiability (as given in Satplan (Kautz
and Selman 1996)) formalizes the truth of fact f af-
ter t time steps with a variable xf,t in propositional
logic. The initial state is valid in time step t = 0 and
leads to the following conjunction: start =

∧
f∈s xf,0 ∧∧

f∈F\s ¬xf,0, where F is the set of all facts. Reaching

the goal set G that is represented by a set of facts which
must be satisfied in any goal state and is formalized
as goal(t) =

∧
f∈G xf,t Finally, applying an operator

o = (P, A, D) at time t is formalized as

apply(o, t) =
∧

f∈P

xf,t ∧
∧

f∈A

xf,t+1 ∧
∧

f∈D

¬xf,t+1

∧
∧

f∈F\(A∪D)

xf,t ↔ xf,t+1

The entire problem specification is now given by

Problem(t) = start ∧ goal(t) ∧
∧

0≤i<t

∨

o∈Op

apply(o, i)

If a satisfying instantiation of the formula for a min-
imal time step t = t0 is obtained, one can extract the
sequence of states xf,t, t ∈ {0, 1, ..., t0} that transforms
the initial state into one goal state. This state solu-
tion path immediately implies the operator solution se-
quence.

The problem with planning as satisfiability is that
even for small problem the number of variables is



high. Since the action schemas generate similar opera-
tors, many similarly structured formulae are generated.
Therefore, a compact data structure representation of
actions is required and the utility of BDDs is apparent.

The Underlying BDD-Package

At first we had implemented a BDD-Library StaticBdd
for efficient concise index based depth first search BDD
operations from scratch. In about 1K lines all neces-
sary features such as a unique table, a cache, a free list,
a compressed state description, a dirty bit garbage col-
lector, a reduction integrated synthesis and a relational
product algorithm were provided.

During the implementation process we changed the
BDD representation to improve performance mainly for
small planning examples. We chose a quite recent pub-
lic domain BDD package called Buddy (Library Package
version 1.6) by Jørn Lind-Nielsen additionally providing
a finite domain variable interface.

The Planning Process

The straight forward encodings of states by a variable
for each fact are too long to solve larger planning prob-
lems. The question how to transform the STRIPS nota-
tion into a concise Boolean representation of the states
and operators has been resolved by precompiling the
domain to minimize the state description length. The
process of finding a state description consists of four
phases (Edelkamp and Helmert 1999). In the first phase
we symbolically analyze the domain specification to de-
termine constant and one-way predicates, i.e. predi-
cates that remain unchanged by all operators or toggle
in only one direction, respectively. In the second phase
we symbolically merge predicates and exhibit impor-
tant domain-specific invariants which lead to a drastic
reduction of state encoding size, while in the third phase
we constrain the domains of the predicates to be con-
sidered by enumerating the operators of the planning
problem. The fourth phase combines the result of the
previous phases.

Representation

States are represented by their characteristic function
φ, which evaluates to true if and only if the binary en-
coding of the state is met. Similarly, we can represent
relations on states by enumerating all tuples. There-
fore, the three main parts of a planning problem are
given by boolean formulae: start state, goal states and
the transition relation encoding all possible state tran-
sition in the problem.

The BDD representation of the state space allows to
reduce the planning problem to model checking: An
iterative calculation of Boolean expressions has to be
performed to verify the formula EF Goal in the tempo-
ral logic CTL. The computation of a (minimal) witness
delivers a plan.

Exploration
In the context of the above formalization given a consis-
tent assignment to the variables xf,t (the valid states at
time t) the set of consistent assignments of the variable
xf,t+1 (the valid states at time t + 1) is calculated. If
one of the sets contains a goal state a satisfying assign-
ment to the entire boolean planning formula is found.
In case of a BDD representation the assignments have
to be extracted.

Since exploration is the most important part of the
BDD-based approach in Figure 1 we give the C++-
code of the search engine. The main loop switches from
forward to backward search according to a boolean flag
forward. The encountered BDDs for representing the
breadth–first search layers are kept in vector structures
provided by the standard template library STL. The
search step itself depicted in Figure 2.

int search() {
vector<bdd> forwardBDD, backwardBDD;
forwardBDD.push_back(init);
backwardBDD.push_back(goal);
int iteration = 0;
bdd meet = bddfalse;
while(meet == bddfalse) {
bdd &front = forwardBDD.back();
bdd &back = backwardBDD.back();
++iteration;
if(forward
? searchStep(front,back,meet,

preVar,prePair,forwardBDD)
: searchStep(back,front,meet,

effVar,effPair,backwardBDD))
break;

}
return iteration;

}

Figure 1: The (bidirectional) breadth–first search pro-
cess.

void searchStep
(bdd front,bdd back,bdd &meet,bdd varset,
bddPair *rename,vector<bdd> &bddVec) {

bdd current = bdd_relprod(front,trans,varset);
meet = current & back;
current = bdd_replace(current, rename);
bddVec.push_back(states);
bdd states = front | current;
if (states == front) return true;
return false;

}

Figure 2: One iteration step in the symbolic breadth–
first traversal.

Note, that the application of boolean formulae and
BDDs from one level to the next is executed in one step



and not state by state, as in most single-agent engines.
As we search both from the start state onwards and
from the goal state backwards we perform bidirectional
breadth–first search.

Solution Extraction
If exploration terminates with success a plan exists.
The last task is to extract a solution sequence. This is
done by extracting one state u of the intersection meet.
As in bidirectional search, the inverse of the transition
relation can be used to build the solution in the oppo-
site direction of the exploration process.

For both search frontiers we determine all states
which may have led to u. Since the nodes on the
searched solution path have been reached one iteration
before termination we build a disjunction of this set
and the set of states reached in this iteration. Now, we
extract one state of the intersection and iterate.

When combining the path of the forward and back-
ward solution path, we are left with a sequence of states
(v0, v1, . . . , vn−1, vn), such that for all i ∈ {0, . . . , n−1}
there exists an operator opi that performs the transition
from vi to vi+1. Finally we determine the correspond-
ing operator sequence by simply trying all possibilities
on the given pairs. Similar to the search process the
implementation consists of two parts (depicted in Fig-
ure 3 and Figure 4): the outer loop and the individual
solution step to apply the relational product and to suc-
cessively extract one state for the next iteration.

void extractSolution(vector<bdd> &forward,
vector<bdd> &backward,bdd meet) {

bdd meetForward = meet;
bdd meetBackward = bdd_replace(meet,effPair);
list<bdd> states;
states.push_front(meetForward);
for(int i = forward.size() - 2;i >= 0;i--)
states.push_front(solutionStep

(meetBackward,forward[i],false));
for(int i = backward.size() - 2;i >= 0;i--)
states.push_back(solutionStep

(meetForward,backward[i],true));
}

Figure 3: Solution extraction.

Complexity
Since STRIPS-planning is PSPACE complete we can-
not expect an polynomial time planner. Therefore we
exhibit, which parts of the algorithm are difficult and
which parts are not.

The parsing process can be executed in linear time
with respect to the length of the file. The data struc-
tures for referencing actions, predicates and objects by
unique identifiers can be efficiently built by using bal-
anced trees. For detecting constant predicates each ef-
fect list is considered at most once, resulting in a time
bound linear in the total number of effects.

bdd solutionStep(bdd &current,bdd next,
bool forward) {

current = next &
bdd_relprod(current,trans,

forward ? preVar : effVar);
current = bdd_fsatone(current);
if(forward) {
current = bdd_replace(current,prePair);
return current;

} else {
bdd state = current;
current = bdd_replace(current,effPair);
return state;

}
}

Figure 4: Calculating one solution step.

The balancing technique of predicates leads to an al-
gorithm exponential in the number of (non-constant)
predicates, since each combination of predicates in the
effect lists can be considered in the recursive approach.
However, in the benchmark problems we never achieved
a recursion depth of more than two, which corresponds
to the exponent. Moreover, the total number of (non-
constant) predicates itself was small.

When exploring of the fact space (as proposed by uti-
lizing a queue) the number of facts to be enqueued is
bounded by the number total number of facts. Each
instantiation step can take time linear in the number
of operators. In theory both number can be large (ex-
ponential in the maximal parameter length of predi-
cates and maximal number of operator schemes, re-
spectively), but in well-modeled domains the exponents
should be small constants leading to a polynomial time
algorithm. To generate the encoding we systematically
compare the different possibilities generated in the pre-
ceding steps. We prune the generation if the length
of the next encoding exceeds the length of the cur-
rently minimal one. Nevertheless, the time required
is exponential in the number of different possibilities to
merge (non-constant) predicates. As mentioned above
this number will be small in practice.

Building the BDD for the transition relation is critical
in both time and space. In general the BDD size can
be exponential in the number of bits in the encoding.
However, the hope is that this will not be the case. The
partial relation of each action is found by combining the
representations of all possible operators.

The variable ordering of the encoded predicates is
very important and can be improved by a precompiling
step systematically trying some orders and measuring
the growth of the transition relation. The optimal or-
dering is an NP hard problem so that we cannot ex-
pect an efficient algorithm. As said the number of non-
constant predicates is small so that at least a greedy
hill climbing strategy will do. The size of the transition
relation is a predictor for the efforts in the exploration.



Tough we have faced two hard problems in building
the transition function, the exploration includes an NP
hard problem (the determination of the relational prod-
uct) in each iteration step. Fortunately, there is a lot of
practical evidence that this work is small with respect
to the set of represented states.

Solution extraction takes time proportional to the
product of the solution length, the number of opera-
tors plus the BDD size of the transition function, and
the binary encoding lengths, since relational product
for one state and the transition function is linear in the
product of both BDD sizes.

In summary, pre- and postprocessing contribute sub-
stantially to the overall running time but the BDD op-
erations in building the transition function and explo-
ration are dominating.

Architecture and Use (Version 1.0)

Figure 1 depicts the coarse structure of the plan-
ner (Version 1.0). The parts of the planning sys-
tem are as follows: main: Reads the command line,
starts the planning system. data.domain: Maintains
most data structures of the planner. data.object,
data.pred, data.fact, data.action: Responsible
for handling objects, action, predicates, and facts
of the planning domain. data.symbFact: Main-
tains symbolic facts as found in precondition and ef-
fect lists of the operators. step.parse: Reads in-
put files and builds the corresponding data struc-
tures. For this purpose a simple parser for processing
LISP files is utilized. step.constant: Detects con-
stant predicates. step.merge: Determines and uni-
fies balanced predicates. data.mergedPredicate and
data.partPredicate: Contain all methods for merg-
ing different predicates. step.explore Implements fact
space exploration. step.coding: Realizes the gen-
eration of the state encoding. bddEngine: Employs
BDDs, especially for the exploration phase. The tran-
sition relation is built in transitionBuilder and the
extraction of the plan is delegated to bdd.map. tools:
Some small routines that are used in different parts of
the system: failure handling, time measurement, tuple,
and some mathematical routines. bitarray: Maintains
bitvectors. option: Parses the command line.

The command to invoke the planner is

mips [<options>] [<problem>] [<domain>].

Each parameter can be omitted. If only one file is
given it is considered as the problem file and the do-
main description is read from domain.pddl in the cur-
rent directory. If no file is specified, then the problem
description is included from problem.pddl and the do-
main description domain.pddl is read. The following
options are available: -?, -h (help): Outputs a small
user manual. The planner itself is not invoked. -p (pre-
process): Only the steps for generating the state encod-
ing are processed. -t (transition): Only the steps for
preprocessing and building the transition function are
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main data.domain

data.object
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data.
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Figure 5: The architecture of MIPS 1.0.

executed, but no exploration takes place. -u (unidirec-
tional): BDD exploration is invoked uni-directionally.
The default is a bidirectional exploration. -s (silent
mode): Less program information output is printed
onto the screen. -n (normal mode): Normal program
information is given (only useful in combination with
-s, -v or -d) -v (verbose output): More program infor-
mation is printed, e.g. the time and represented plan-
ning states for each exploration step is given. -d (de-
bug output): Maximal information is given, e.g. the
contents the LIFO-queue while exploring fact space.

The last four option can be appended by arbitrary
letters from pcmeobts to impose restrictions on the
phases in which the information should be printed (de-
fault is all phases): p abbreviates parsing, c constant
predicates, m merging, e exploring (fact space), o coding,
b BDD package handling, t transition function creation,
and s BDD search. For example:

mips -u -s -vo gripper.pddl gripper.10.pddl

invokes the planner with domain gripper.pddl and
problem gripper.10.pddl. The search process is uni-
directional (-u) with minimal output except for the cod-
ing phase in which additional information is given.

New Inventions (Version 1.1-1.5)

The extend of MIPS in its version 1.0 incorporates
parsing, precomplilation, (bidirectional) breadth–first
search, and solution extraction. In versions 1.1 we
added BDD refinement techniques (forward set simpli-
fication, constrain and restrict operators and (simple)
transposition relation splitting. In version 1.2 and 1.3
the symbolic heuristic search engines BDDA* and Pure
BDDA* were implemented. Subsequently, in version
1.4 we improved the heuristic estimate. In version 1.5



we extended symbolic search with a performant heuris-
tic single-state search engine.

BDD Refinements (Version 1.1)

Several approaches have been proposed to improve the
efficiency in calculating the image of a set of states ac-
cording to a transition function. The daunting problem
is that even it the input and the output representa-
tions are small the representation during the computa-
tion may be larger by magnitudes.

Forward Set Simplification The introduction of
a list Closed containing all states ever expanded is
very common in single state exploration to avoid du-
plicates in the search. Usually, the memory structure
is realized as a hash table which in this context is re-
ferred to by the term transposition table. For symbolic
search this technique is called forward set simplifica-
tion. Let reached be the BDD representation of the
set of reached nodes and to be the image of the cur-
rent set. Then forward set simplification is implemented
by current = to & !reach, i.e. the set of already
reached nodes is subtracted from the set of nodes in
the next iteration.

Constrain and Restrict Operators Note that any
set R in between the successor set and the simplified
successor set will be a valid choice for the horizon in the
next iteration. Therefore, one may choose a set R that
minimizes the BDD representation instead of minimiz-
ing the set of represented states. This is the idea of the
restrict operator ⇓, which itself is a refinement to the
constrain operator ↓. Without going into involved de-
tails we denote that both operators can be implemented
efficiently and are available in several packages (Coud-
ert, Berthet, and Madre 1990).

With the flags optimize for the restrict operator and
simplify for forward set simplification and the BDD
reachwe get the code fragment of Figure 6 to determine
the next preimage given the current one.

Image(bdd& current, bdd trans) {
bdd to = bdd_relprod(trans,current,preVar);
meet = back & to;
to = bdd_replace(to,renamePair);
if (!optimize & !simplify)
current = to;

if (!optimize & simplify)
current = to & !reach;

if (optimize & simplify)
current = bdd_simplify(to,!reach);

}

Figure 6: Calculating th image of a set of states accord-
ing to different simplification schemes.

Transition Function Splitting Fortunately, in
the considered domains of search and planning prob-
lems the transition function is composed of smaller
parts, called the operator functions: T (x′, x) =

∨
o∈O o(x′, x). Therefore, we can simplify the calcula-

tion of the successor set: ∃x′ (From(x′) ∧ T (x′, x)) =∨
o∈O ∃x′ (From(x′) ∧ o(x′, x))
A more efficient computation is obtained by par-

titioning the transition relation and performing the
existential quantification of next state variables early
in the calculation (Burch, Clarke, and Long 1991;
Ranjan et al. 1995). To do this the transition relation T
is split into a conjunction of partitions T1, . . . , Tn allow-
ing the modified calculation: ∃x′ From(x′) ∧ T (x′, x) =
∃x′

nTn ∧ . . . ∧ ∃x′
1T1 ∧ From(x′) This approach has

effectively been applied to the UMOP planning system
(Jensen and Veloso 1999) and is planned to enrich MIPS
in the near future.

Symbolic Heuristic Search (Version 1.2-1.4)

In the symbolic version of A* (Hart, Nilsson, and
Raphael 1968), called BDDA* (Edelkamp and Reffel
1998), the relational product algorithm determines all
successor states according to the set of states with mini-
mal merit and the given heuristic estimate in one evalu-
ation step. Heuristic pattern databases (Culberson and
Schaeffer 1996) serve as heuristics and are combined to
an overall heuristic by taking the maximum or the sum
of subposition solutions. Subpositions are facts and the
estimated distance of each single fact p to the goal is
a heuristic value associated with p. In the add -version
of a heuristic these values are added and in the max -
version these values maximized. Especially in reversible
problem spaces like Logistics this approach pays off.
Searching with the max -Heuristic achieves better solu-
tions compared to the add -Heuristic, but takes more
time. A variant of BDDA*, called Pure BDDA* is ob-
tained by ordering the priority queue only according to
the h values. In this case the calculation of the succes-
sor relation simplifies to ∃x′ Min(x′) ∧ T (x′, x) ∧ ∃h
H(h, x). As a code fragment this leads to the imple-
mentation given in Figure 7.

void pureHeuristicStep() {
current = find_min(open);
open = open & ! min;
Image(current,trans);
current = current & heuristic;
current = bdd_replace(current,exchange);
open = open | current;
reach = reach | bdd_exist(from,preMeritVar);
bddVec.push_back(open);

}

Figure 7: Source code for one exploration step with
Pure BDDA*.

We experimented with two symbolic estimates. The
HSP-Heuristic of a fluent p is found through the
fixed-point calculation of the relaxed planning problem
according to the set of reachable facts. The fact ex-
ploration phase has been extended to output an HSP-
like heuristic estimate h(p) for each fact p. Since we



omit facts to be generated twice with each explored fact
we can associate a depth by adding the value 1 to its
predecessor. The incorporated search knowledge is not
as good as in HSPr since we do not consider mutual
exclusions. Nevertheless, given the list of value/fact
pairs and the heuristic in a symbolic representation we
achieve good results. That is the symbolic representa-
tion compensates for a weaker knowledge.

For the FF-Heuristic we have implemented the FF
planning approach (see below). The estimate for each
fluent is calculated in a precompliation phase with re-
spect to the fluent representing the goal. In the exper-
iments the average heuristic value per fluent according
to the FF-Heuristic is about 50 percent larger than in
the HSP-Heuristic. However, by simplifying states to
fluents a lot of the refined heuristic information in FF
is lost. Therefore, in search spaces where the heuristic
guidiance leads to a few thousand states to be evalu-
ated, we stick to single-agent search.

Single-Agent Heuristic Search (Version 1.5)
To infer the heuristic estimate for each state FF (for
fast-forward planning) approximates a relaxed planning
problem (del-effect list omitted) in a combined forward
and backward traversal (Hoffmann 2000). In terms of
Graphplan, FF builds the plan graph and extracts a
simplified solution by returning the number of instan-
tiated operators that at least have to fire. Therefore,
the heuristic estimate in FF is an elaboration to the
heuristic in HSP (Bonet and Geffner 1999), since the
latter one considers the first phase only. With enforced
hill climbing it further employs another search strategy
and drastically reduces the explored portion of search
space at least for some important planning domains.

We have newly implemented the FF planning ap-
proach. The precompilation phase gives a list of facts,
such that each state can be interpreted as a bitvector
of facts. Forward traversal determines the set of op-
erators and facts in the layered graph structure and is
depicted in Figure 8.

To improve the performance in preActions the oper-
ators are kept in lists according to their preconditions.
In the algorithm the number of not achieved precon-
ditions is decreased until it equals zero. All operators
that lead to new fluents are kept in a queue, on which
Backward traversal extracts a relaxed solution (Fig-
ure 9). The relevant operator queue and the array vis
(initialized with zeros) are used to reduce the branching
factor and provide an ordering on the set of successors
for expansion.

Experiments
MIPS will compete on AIPS-00 as a fully automated
planner in the combined Strips and ADL track. Since
the problems have not been released yet we concentrate
on results to the AIPS-98 competition.

The experiments were run on a Linux PC/450 MHz
with 128 MByte. The precompiling and solution ex-
traction times are included.

void Forward(State& from,State& to){
enqueuedFacts = from.getVector();
processedFacts = zeroFacts;
markedFacts = to.getVector();
while(!(markedFacts == zeroFacts)) {
goals[depth] = enqueuedFacts;
goals[depth++] -= processedFacts;
processedFacts |= enqueuedFacts;
goals[depth-1]->toIntArray(FactArray,size);
for (int i=0; i<size;i++) {
fact = FactArray[i];
for(int o=0;o<preActions[fact.size()];o++){
opererator = preActions[fact][o];
(opererator->presize)--;
if (operator->presize == 0) {
enqueued = false;
for (int k=0;k<operator->addsize;k++){

succId = operator->add[k];
if(!enqueuedFacts.get(succId)) {
enqueued = true;
enqueuedFacts.set(succId);

}
}
if (enqueued)

operQueue[operSentinal++] = operator;
}

}
}
markedFacts -= enqueuedFacts;

}
}

Figure 8: Determining the fix-point on the set of facts.

The observed time offset of MIPS 1.4 to MIPS 1.0 for
small domains is due to different extractions algorithms
of the solution paths. In MIPS 1.0 we traverse the path
strictly backwards, whereas in MIPS 1.4 we start at the
initial state and search for the first predecessor state in
the list of BDDs.

In the Movie domain no planner has any difficulties in
solving the problems. Moreover, precompiling exhibits
that all problems in the domain have the same encoding
so that the running times and solution lengths match
(0.03s, length 7).

In Gripper we choose unidirectional search so that
forward set simplification in MIPS 1.4 scales better.
The single-state heuristic search engine of MIPS 1.5
solves all problems to gripper in the optimal number
of expansions in less than a tenth of a second.

In Logistics Pure BDDA* with the HSP-Heuristic
leads to a noticeable improvement in solvability by the
cost of longer solutions. Further experiments indicate
that on average the FF-Heuristic leads to shorter solu-
tions and to smaller execution times (Edelkamp 2000).



int Backward(State& from) {
matches = 0;
markedFacts = zeroFacts;
processedFacts = from.getVector();
while (operSentinal > 0) {
Operator* oper = operQueue[--operSentinal];
for (int j=0; j< oper->addsize;j++) {

if (processedFacts[oper->add[j]] &&
! markedFacts[oper->add[j]]) {

matches++;
for (int k=0; k< oper->addsize;k++)
markedFacts.set(oper->add[k]);

for (int k=0; k< oper->presize;k++) {
vis[oper->pre[k]] = vis[oper->add[j]]+1;
processedFacts.set(oper->pre[k]);

}
relevantQueue[operRelevant++] = oper;
oper->pres = vis[oper->add[j]];

}
}

}
return matches;

}

Figure 9: Backward traversal.

Domain Problem MIPS 1.0 MIPS 1.4

Gripper 1-1 11 0.24s 11 0.45s
1-2 17 0.25s 17 0.46s
1-3 23 0.29s 23 0.49s
1-4 29 0.30s 29 0.53s
1-5 35 0.34s 35 0.58s
1-6 41 0.39s 41 0.65s
1-7 47 0.45s 47 0.75s
1-8 53 0.33s 53 0.86s
1-9 59 1.45s 59 1.25s

1-10 65 2.11s 65 1.70s
1-11 71 2.48s 71 2.24s
1-12 77 3.60s 77 2.92s
1-13 83 4.71s 83 3.67s
1-14 89 6.62s 89 4.56s
1-15 95 7.86s 95 5.59s
1-16 101 9.12s 101 6.78s
1-17 107 11.71s 107 8.18s
1-18 113 13.34s 113 9.73s
1-19 119 34.03s 119 15.95s
1-20 125 96.70s 125 20.81s

The results compete well with other symbolic ap-
proaches but are too weak to beat heuristic single-state
planners. Our single-state engine, however, can solve
the suite of 30 problem instances of round 1. The solu-
tion quality and the performance are almost as good as
in original FF; in time we are off by a factor of about
two and the achieved solution lengths are: 26 (-1), 32
(+0), 57 (+3), 62 (+4), 23 (+1), 71 (-2), 34 (-2), 45
(+4), 85 (-6), 105 (+2), 30 (+0), 42 (+1), 68 (+1), 95
(-3), 91 (-2), 56 (+1), 45 (+1), 174 (+7), 147 (-4), 138
(-1), 104 (+2), 295 (+13), 115 (-11), 40 (+0), 181 (+0),

208 (+25), 145 (+4), 266 (+1), 318 (-5), 131 (+0).

Domain Problem MIPS 1.0 MIPS 1.4

Logistics 1-1 26 165.76s 38 7.03s
1-2 37 15.23s
1-3 70 70.18s
1-4 72 87.67s
1-5 22 37.11s 32 6.97s
1-6 92 717.23s
1-7 36 52.84s
1-9 107 807.45s

1-10 132 541.98s
1-11 34 233.05s
1-23 139 483.63s
2-1 13 0.39s 16 3.29s
2-2 20 21.29s 24 3.75s
2-3 38 6.55
2-4 59 17.99s
2-5 42 13.78s

Mystery has some unsolvable problems (4,7,12) which
are easily found by MIPS 1.4 trough forward set sim-
plification. These problems become tractable with the
extra drink operator provided in Mprime. Single state
search solves 16 problem of Mprime (first round), in-
cluding the new ones 1-2 and 1-17.

Domain Problem MIPS 1.0 MIPS 1.4

Mystery 1-1 5 0.19s 5 0.50s
1-3 4 4.75s
1-4 -1 179.89s
1-7 -1 1.56s
1-9 8 165.32s 8 27.08s

1-11 7 0.69s 7 0.82s
1-12 -1 65.91s
1-17 4 242.79s
1-19 6 205.06s
1-25 4 0.17s 4 0.53s
1-26 6 5.81s
1-27 5 4.11s 5 2.19s
1-28 7 0.28s 7 0.62s
1-29 4 6.81s 4 2.10s



Domain Problem MIPS 1.0 MIPS 1.4

Mprime 1-1 5 1.21s 5 1.32s
1-3 4 16.23s
1-4 8 12.31s 8 9.27s
1-7 5 31.90s 5 20.70s
1-8 6 215.27s
1-9 8 91.17s

1-11 7 7.71s 7 5.30s
1-12 6 29.52s 6 12.08s
1-16 6 98.62s
1-21 6 408.87s
1-25 4 0.36s 4 0.69s
1-26 6 49.42s
1-27 5 42.91s 5 24.06s
1-28 7 2.51s 7 1.94s
1-29 4 41.66s 4 21.79s
2-1 4 36.93s
2-2 7 17.04s 7 8.28s
2-4 4 32.57s
2-5 5 2.12s

Grid is still a hard problem for our approach. Al-
though we can solve four problems with the µcke model
checker applying BDDA* in the all-contained planners
MIPS 1.0-1.4 up to now we are still restricted to two
problems. However, with relaxations to the transition
relation we can solve two further problems. Due to
some yet unresolved problems single-state search fails
to give fruitful results.

Domain Problem MIPS 1.0 MIPS 1.4

Grid 2-1 14 23.01s 14 8.55s
2-2 26 355.60s

Below we depict the encoding lengths, total number
of facts (number of facts to be encoded is given in paren-
thesis) and the number reachable operators for some
selected problems solved with MIPS 1.0.

Problem Bits Facts Operators

Movie 1-28 7 160 (7) 809 (162)
Movie 1-29 7 165 (7) 834 (167)
Movie 1-30 7 170 (7) 859 (172)
Gripper 1-18 79 3.738 (156) 149.940 (460)
Gripper 1-19 83 4.092 (164) 172.304 (484)
Gripper 1-20 87 4.462 (172) 196.788 (508)
Logistics 1-01 42 3.264 (144) 1.212.416 (727)
Logistics 1-05 35 5.805 (151) 3.816.336 (699)
Logistics 2-02 28 1.449 (80) 240.786 (341)
Mystery 1-01 28 3.192 (58) 12.252.303 (269)
Mystery 1-07 82 12.558 (181) 392.073.696 (521)
Mystery 1-27 63 7.788 (152) 117.406.179 (2.280)
MPrime 1-07 126 12.558 (352) ≈ 231 · 109 (3.291)
MPrime 1-11 61 4.862 (131) ≈ 8 · 109 (3.189)
MPrime 1-28 41 4.152 (90) ≈ 5 · 109 (2.544)
Grid 2-01 67 6.043 (276) 2.144.340 (4.295)

Conclusion
In this paper we presented the current status of
the intelligent model checking and planning system

(MIPS) project (cf. http://www.informatik.uni-
freiburg.de/~edelkamp/Mips for more information.)

Further on, we investigated currently finished and un-
finished work and present various experimental data on
the AIPS-98 problem suite.

We intend to build a hybrid planner on heuristic
search and BDD-exploration. The challenging question
is how to combine the approach with other successful
planning techniques Graphplan (Blum and Furst 1995),
Tim (Fox and Long 1998), Integer Programming (Kautz
and Walser 1999), and Satplan (Kautz and Selman
1996) to build a system that can solve really hard prob-
lems.
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