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Abstract

The SelMax planner combines two state-of-the-art admissible
heuristics using an online learning approach. In this paper we
describe the online learning approach employed by SelMax,
briefly review the Fast Downward framework, and describe
the SelMax planner.

Introduction

One of the most prominent approaches to cost-optimal plan-
ning is using the A* search algorithm with an admissible
heuristic. Many admissible heuristics have been proposed,
varying from cheap to compute yet typically not very in-
formative to expensive to compute but often very informa-
tive. Since the accuracy of heuristic functions varies for dif-
ferent problems, and even for different states of the same
problem, we can produce a more robust optimal planner by
combining several admissible heuristics. The simplest way
of doing this is by using their point-wise maximum at each
state. Presumably, each heuristic is more accurate, that is,
provides a higher estimate, in different regions of the search
space, and thus their maximum is at least as accurate as
each of the individual heuristics. In some cases it is also
possible to use additive (Felner, Korf, and Hanan 2004;
Haslum, Bonet, and Geftner 2005; Katz and Domshlak
2008) or mixed additive/maximizing (Coles et al. 2008;
Haslum et al. 2007) combinations of admissible heuristics.

An important issue with both max-based and sum-based
approaches is that the benefit of adopting them over stick-
ing to just a single heuristic is assured only if the planner is
not constrained by time. Otherwise, the time spent on com-
puting numerous heuristic estimates at each state may out-
weigh the time saved by reducing the number of expanded
states. Selective Max (SelMax) is a novel method for com-
bining admissible heuristics that aims at providing the accu-
racy of their max-based combination while still computing
just a single heuristic for each search state.

At a high level, selective max can be seen as a hyper-
heuristic (Burke et al. 2003) — a heuristic for choosing be-
tween other heuristics. Specifically, selective max is based
on a seemingly useless observation that, if we had an or-
acle indicating the most accurate heuristic for each state,
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then computing only the indicated heuristic would provide
us with the heuristic estimate of the max-based combina-
tion. In practice, of course, such an oracle is not available.
However, in the time-limited settings of our interest, this is
not our only concern: It is possible that the extra time spent
on computing the more accurate heuristic (indicated by the
oracle) may not be worth the time saved by the reduction in
expanded states.

Addressing the latter concern, we first analyze an ideal-
ized model of a search space and deduce a decision rule for
choosing a heuristic to compute at each state when the ob-
jective is to minimize the overall search time. Taking that
decision rule as our target concept, we then describe an on-
line active learning procedure for that concept that consti-
tutes the essence of selective max.

Notation

We consider planning in the SAS™ formalism (B#ckstrom
and Nebel 1995); a sast description of a planning task
can be automatically generated from its PDDL descrip-
tion (Helmert 2009). A SAS™ task is given by a 4-tuple
I = (VA $0,G). V = {v1,...,v,} is a set of state
variables, each associated with a finite domain dom/(v;).
Each complete assignment s to V' is called a state; s is
an initial state, and the goal G is a partial assignment to V.
A is a finite set of actions, where each action a is a pair
(pre(a), eff(a)) of partial assignments to V' called precondi-
tions and effects, respectively.

An action a is applicable in a state s iff pre(a) C s.
Applying a changes the value of each state variable v to
eff(a)[v] if eff(a)[v] is specified. The resulting state is de-
noted by sfa]; by s[{a1,...,a;)] we denote the state ob-
tained from sequential application of the (respectively appli-
cable) actions ay, ..., aj starting at state s. Such an action
sequence is a plan if G C so[(a1, ..., ar)].

A Model for Heuristic Selection

Given a set of admissible heuristics and the objective of min-
imizing the overall search time, we are interested in a deci-
sion rule for choosing the right heuristic to compute at each
search state. In what follows, we derive such a decision rule
for a pair of admissible heuristics with respect to an ideal-
ized search space model corresponding to a tree-structured
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Figure 1: An illustration of the idealized search space model
and the f-contours of two admissible heuristics.

search space with a single goal state, constant branching fac-
tor b, and uniform cost actions (Pearl 1984). Two additional
assumptions we make are that the heuristics are consistent,
and that the time ¢; required for computing heuristic h; is in-
dependent of the state being evaluated; w.l.o.g. we assume
to > t1. Obviously, most of the above assumptions do not
hold in typical search problems, and later we carefully ex-
amine their individual influences on our framework.

Adopting the standard notation, let g(s) be the cost of
the cheapest path from sg to s. Defining maxy(s) =
max(hq(s), ha(s)), we then use the notation f1(s) = g(s)+
hi(s), fa(s) = g(s) + ha(s), and maxs(s) = g(s) +
maxp,(s). The A* algorithm with a heuristic & expands states
in increasing order of f = g 4+ h. Assuming the goal state is
at depth ¢*, let us consider the states satisfying f1(s) = ¢*
(the dotted line in Fig. 1) and those satisfying f2(s) = ¢*
(the solid line in Fig. 1). The states above the f; = c¢*
and fo = c¢* contours are those that are surely expanded
by A* with h; and hs, respectively. The states above both
these contours (the grid-marked region in Fig. 1), that is,
the states SE = {s | maxy(s) < c*}, are those that are
surely expanded by A* using max;, (see Theorem 4, p. 79,
Pearl 1984).

Under the objective of minimizing the search time, ob-
serve that the optimal decision for any state s € SFE is
not to compute any heuristic at all, since all these states
are surely expanded anyway. The optimal decision for all
other states is a bit more complicated. fo = ¢* contour that
separates between the grid-marked and lines-marked areas.
Since f1(s) and f5(s) account for the same ¢(s), we have
ha(s) > hi(s), that is, ho is more accurate in state s than
h1. If we were interested solely in reducing state expansions,
then ho would obviously be the right heuristic to compute at
s. However, for our objective of reducing the actual search
time, ho may actually be the wrong choice because it might
be much more expensive to compute than hy.

Let us consider the effects of each of our two alternatives.
If we compute ha(s), then s is no longer surely expanded
since f2(s) = c¢*, and thus whether A* expands s or not
depends on tie-breaking. In contrast, if we compute hy(s),
then s is surely expanded because f1(s) < ¢*. Note that not
computing ho for s and then computing hsy for one of the
descendants s’ of s is surely a sub-optimal strategy as we do

pay the cost of computing ho, yet the pruning of A* is lim-
ited only to the search sub-tree rooted in s’. Therefore, our
choices are really either computing hy for s, or computing
h1 for all the states in the sub-tree rooted in s that lie on the
f1 = ¢* contour. Suppose we need to expand [ complete
levels of the state space from s to reach the f; = ¢* contour.
This means we need to generate order of bt states, and then
invest b't; time in calculating h, for all these states that lie
on the f; = ¢* contour. In contrast, suppose we choose to
compute ho(s). Assuming favorable tie-breaking, the time
required to “explore” the sub-tree rooted in s will be ¢5.
Putting things together, the optimal decision in state s is
thus to compute hg iff o < blty, or if we rewrite this, if

> logb(tQ/tl).

As a special case, if both heuristics take the same time to
compute, this decision rule boils down to [ > 0, that is,
the optimal choice is simply the more accurate (for state s)
heuristic.

The next step is to somehow estimate the “depth to go”
l. For that, we make another assumption about the rate
at which f; grows in the sub-tree rooted at s. Although
there are many possibilities here, we will look at two esti-
mates that appear to be quite reasonable. The first estimate
assumes that the h; value remains constant in the subtree
rooted at s, that is, the additive error of h; increases by
1 for each level below s. In this case, f; increases by 1
for each expanded level of the sub-tree (because i1 remains
the same, and g increases by 1), and it will take expanding
Ap(s) = ha(s) — hi(s) levels to reach the f; = ¢* contour.
The second estimate we examine assumes that the absolute
error of h; remains constant, that is, hy increases by 1 for
each level expanded, and so f; increases by 2. In this case,
we will need to expand Ay, (s)/2 levels. This can be gen-
eralized to the case where the estimate h; increases by any
constant additive factor ¢, which results in Ap(s)/(c 4+ 1)
levels being expanded. In either case, the dependence of [
on Ay(s) is linear, and thus our decision rule can be refor-
mulated to compute ho if

Ah(S) > O[lOgb(tQ/tl),

where « is a hyper-parameter for our algorithm. Note that,
given b, t1, and o, the quantity o log, (t2/t1) becomes fixed
and in what follows we denote simply by threshold T.

Dealing with Model Assumptions

The idealized model above makes several assumptions,
some of which appear to be very problematic to meet in
practice. Here we examine these assumptions more closely,
and when needed, suggest pragmatic compromises.

First, the model assumes that the search space forms a tree
with a single goal state and uniform cost actions, and that the
heuristics in question are consistent. Although the first as-
sumption does not hold in most planning problems, and the
second assumption is not satisfied by some state-of-the-art
heuristics, they do not prevent us from using the decision
rule suggested by the model. Furthermore, there is some
empirical evidence to support our conclusion about expo-
nential growth of the search effort as a function of heuristic



error, even when the assumptions made by the model do not
hold. In particular, the experiments of Helmert and Roger
(2008) with heuristics with small constant additive errors
clearly show that the number of expanded nodes typically
grows exponentially as the (still very small and additive) er-
ror increases.

The model also assumes that both the branching factor
and the heuristic computation times are constant across the
search states. In our application of the decision rule to plan-
ning in practice, we deal with this assumption by adopt-
ing the average branching factor and heuristic computation
times, estimated from a random sample of search states. Fi-
nally, the model assumes perfect knowledge about the surely
expanded search states. In practice, this information is ob-
viously not available. We approach this issue conservatively
by treating all the examined search states as if they were on
the decision border, and thus apply the decision rule at all
the search states. Note that this does not hurt the correctness
of our algorithm, but only costs us some heuristic compu-
tation time on the surely expanded states. Identifying the
surely expanded region during search is the subject of on-
going work, and can hopefully be used to improve search
efficiency even further.

Online Learning of the Selection Rule

Our decision rule for choosing a heuristic to compute at a
given search state s suggests to compute the more expen-
sive heuristic hy when ho(s) — hi(s) > 7. However, com-
puting ho(s) — hi(s) requires computing in s both heuris-
tics, defeating the whole purpose of reducing search time by
selectively evaluating only one heuristic at each state. To
overcome this pitfall, we take our decision rule as a tar-
get concept, and suggest an active online learning proce-
dure for that concept. Intuitively, our concept is the set
of states where the more expensive heuristic ho is “signif-
icantly” more accurate than the cheaper heuristic hy. Ac-
cording to our model, this corresponds to the states where
the reduction in expanded states by computing hy outweighs
the extra time needed to compute it. In what follows, we
present our learning-based methodology in detail, describ-
ing the way we select and label training examples, the fea-
tures we use to represent the examples, the way we construct
our classifier, and the way we employ it within A* search.
To build a classifier, we first need to collect training ex-
amples, which should be representative of the entire search
space. One option for collecting the training examples is to
use the first & states of the search where £ is the desired num-
ber of training examples. However, this method has a bias
towards states that are closer to the initial state, and therefore
is not likely to well represent the search space. Hence, we
instead collect training examples by sending “probes” from
the initial state. Each such “probe” simulates a stochastic
hill-climbing search with a depth limit cutoff. All the states
generated by such a probe are used as training examples,
and we stop probing when k training examples have been
collected. In our evaluation, the probing depth limit was
set to twice the heuristic estimate of the initial state, that
is 2maxy(sg), and the next state s for an ongoing probe
was chosen with a probability proportional to 1/ maxy(s).

evaluate(s)
(h, con fidence) := CLASSIFY(s, model)
if (confidence > p) then return h(s)
else
label := hq
if ho(s) — hi(s) > alog,(t2/t1) then label := hy
update model with (s, label)
return max(hq(s), ha(s))

Figure 2: The selective max state evaluation procedure.

This “inverse heuristic” selection biases the sample towards
states with lower heuristic estimates, that is, to states that
are more likely to be expanded during the search. It is worth
noting here that more sophisticated procedures for search
space sampling have been proposed in the literature (e.g.,
see Haslum et al. 2007), but as we show later, our much
simpler sampling method is already quite effective for our
purpose.

After the training examples T are collected, they are first
used to estimate b,t; and to by averaging the respective
quantities over 7. Once b,t; and ¢ are estimated, we can
compute the threshold 7 = alogy(t2/t1) for our decision
rule. We generate a label for each training example by cal-
culating Ap(s) = ha(s) — h1(s), and comparing it to the
decision threshold. If Ay (s) > 7, we label s with hg, oth-
erwise with hy. If ¢t > ¢ we simply switch between the
heuristics—our decision is always whether to compute the
more expensive heuristic or not; the default is to compute
the cheaper heuristic, unless the classifier says otherwise.

Besides deciding on a training set of examples, we need to
choose a set of features to represent each of these examples.
The aim of these features is to characterize search states with
respect to our decision rule. While numerous features for
characterizing states of planning problems have been pro-
posed in previous literature (see, e.g., Yoon, Fern, and Gi-
van (2008); de la Rosa, Jiménez, and Borrajo (2008)), they
were all designed for inter-problem learning, and most of
them are not suitable for intra-problem learning like ours. In
our work we decided to use only elementary features corre-
sponding simply to the actual state variables of the planning
problem.

Once we have our training set and features to represent the
examples, we can build a binary classifier for our concept.
This classifier can then play the role of our hypothetical or-
acle indicating which heuristic to compute where. However,
as our classifier is not likely to be a perfect such oracle, we
further consult the confidence the classifier associates with
its classification. The resulting state evaluation procedure of
selective max is depicted in Figure 2. If state s is to be evalu-
ated by A™, we use our classifier to decide which heuristic to
compute. If the classification confidence exceeds a parame-
ter threshold p, then only the indicated heuristic is computed
for s. Otherwise, we conclude that there is not enough infor-
mation to make a selective decision for s, and compute the
regular maximum over h(s) and ha(s). However, we use
this opportunity to improve the quality of our prediction for
states similar to s, and update our classifier. This is done by
generating a label based on hsy(s) — hy(s) and learning from



this new example.! This can be viewed as the active part of
our learning procedure.

The last decision to be made is the choice of classifier.
Although many classifiers can be used here, there are sev-
eral requirements that need to be met due to our particular
setup. First, both training and classification must be very
fast, as both are performed during time-constrained problem
solving. Second, the classifier must be incremental to allow
online update of the learned model. Finally, the classifier
should provide us with a meaningful confidence for its pre-
dictions. While several classifiers meet these requirements,
we found the classical Naive Bayes classifier to provide a
good balance between speed and accuracy (Mitchell 1997).
One note on the Naive Bayes classifier is that it assumes a
very strong conditional independence between the features.
Although this is not a fully realistic assumption for planning
problems, using a SAST formulation of the problem instead
of the classical STRIPS helps a lot: instead of many binary
variables which are highly dependent upon each other, we
have a much smaller set of variables which are less depen-
dent upon each other.

As a final note, extending selective max to use more
than two heuristics is rather straightforward—simply com-
pare the heuristics in a pair-wise manner, and choose the
best heuristic by a vote, which can either be a regular vote
(i.e., 1 for the winner, O for the loser), or weighted accord-
ing to the classifier’s confidence. Although this requires a
quadratic number of classifiers, training and classification
time (at least with Naive Bayes) appear to be much lower
than the overall time spent on heuristic computations, and
thus the overhead induced by learning and classification is
likely to remain relatively low.

The Fast Downward Planning Framework

We have implemented selective max on top of the Fast
Downward planning system. In this section we review the
relevant (for optimal planning) capabilities of the IPC-2011
version of the Fast Downward planning system. Since Fast
Downward incorporates many different algorithms and ap-
proaches, which have each been published separately in
peer-reviewed conferences and/or journals, we will simply
list the available components with pointers to further infor-
mation for the interested reader.

The Fast Downward planning system (Helmert 2006) is
composed of three main parts: the translator, the preproces-
sor, and the search component, which are run sequentially
in this order. The translator (Helmert 2009) is responsible
for translating the given PDDL task into an equivalent one
in SAS™ representation. This is done by finding groups of
propositions which are mutually exclusive and combining
them into a single SAS™ variable. The preprocessor per-
forms a relevance analysis and precomputes some data struc-
tures that are used by the search and certain heuristics. The
search component then searches for a solution to the given
SAST task.

"We do not change the estimates for b, ¢; and 2, so the thresh-
old 7 remains fixed.

Search The search component features three main types
of search algorithms: eager best-first search, lazy best-
first search (Richter and Helmert 2009), and enforced hill-
climbing (Hoffmann and Nebel 2001). For the purposes of
optimal planning, only eager search is relevant, since A™ is
implemented on top of eager search by using f = g+ h and
tie-breaking on h.

Heuristics Selective-max can combine arbitrary admissi-
ble heuristics from among the following admissible heuris-
tics which are implemented in Fast Downward:

e Blind — 0 for goal states, 1 (or cheapest action cost for
non-unit-cost tasks) for non-goal states

e W™ (Bonet, Loerincs, and Geffner 1997; Bonet and
Geffner 1999) — the relaxation-based maximum heuristic

e h™ (Haslum and Geffner 2000) — a very slow implemen-
tation of the A" heuristic family

o WM&S (Helmert, Haslum, and Hoffmann 2007; 2008) —
the merge-and-shrink heuristic

e hr 4 (Karpas and Domshlak 2009; Keyder, Richter, and
Helmert 2010) — the admissible landmark heuristic

o hIM-cut (Helmert and Domshlak 2009) — the landmark-
cut heuristic

Chosen Configuration

Given the number of parameters available for selective-max,
as well as the wealth of options of choosing which heuristics
to combine, it is difficult to choose one configuration for a
submission to the IPC. One option (which was implemented
in the FD Autotune planner) is to use some automated al-
gorithm configuration tool (Hutter et al. 2009) to choose a
configuration.

In this submission, we chose to combine the two best
heuristics available in Fast Downward (according to pre-
vious empirical results): A"M-<Ut (Helmert and Domsh-
lak 2009) and hr 4 (Karpas and Domshlak 2009; Keyder,
Richter, and Helmert 2010). Since we are using hy 4, we
also use the LM-A™ search algorithm (rather than regular
A").

The h 4 heuristic uses landmarks generated by two meth-
ods: the RHW method (Richter, Helmert, and Westphal
2008) and h™ landmarks with m = 1 (Keyder, Richter, and
Helmert 2010), which were combined into the same land-
mark graph (see BJOLP submission paper for details). The
parameters for selective-max were chosen based on a lim-
ited set of experiments, and are described in the following
table:

Parameter Value

« (heuristic difference bias) 1

p (confidence threshold) 0.6
initial sample size 1000
Sampling Method Probing
Classifier Naive Bayes
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