
Higher-Dimensional Potential Heuristics:
Lower Bound Criterion and Connection to Correlation Complexity

Simon Dold and Malte Helmert
University of Basel, Switzerland

{simon.dold, malte.helmert}@unibas.ch

Abstract

Correlation complexity is a measure of a planning task in-
dicating how hard it is. The introducing work provides suf-
ficient criteria to detect a correlation complexity of 2 on a
planning task. It also introduced an example of a planning
task with correlation complexity 3. In our work, we introduce
a criterion to detect an arbitrary correlation complexity and
extend the mentioned example to show with the new crite-
rion that planning tasks with arbitrary correlation complexity
exist.

Introduction
In classical planning, we try to find a plan, a sequence of ac-
tions to transition from an initial state to a goal state. We
consider satisficing planning, which looks for a plan that
leads us to a goal state. In contrast, optimal planning looks
for the plan with the lowest cost. Both satisficing planning
and optimal planning are PSPACE-complete in general (By-
lander 1994) but for some domains, it is drastically easier to
find a satisficing plan than to find an optimal one.

Some satisficing planning tasks are easier to solve than
others even though they have the same amount of vari-
ables and operators. This difference is hidden somewhere in
the structure of the task. The correlation complexity (Seipp
et al. 2016) is one measure for the difficulty of a satisficing
planning task. This measure is based on potential heuristics
(Pommerening et al. 2015), which looks at the features of a
given state and sums their corresponding weight to compute
a heuristic value. The correlation complexity of a task1 Π de-
scribes the minimal dimension of a potential heuristic hpot

such that hpot is descending and dead-end avoiding. This
can be interpreted as a measure of how many facts the agent
has to consider at once to find the next best successor. Un-
less all alive states are goal states the correlation complexity
is at least 1 (the agent has to consider at least something).

A low correlation complexity guarantees that a heuristic
with nice properties can be represented compactly as poten-
tial heuristic. Finding the actual weights for such a potential
heuristic is a hard problem and not the scope of this paper.
It is PSPACE-complete in general and Σp

2-complete (that is

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In this work we assume that each task is solvable.

the second level of the polynomial hierarchy) for heuristics
with similar characteristics (Helmert et al. 2022).

(Seipp et al. 2016) introduced 2 criteria based on oper-
ators to detect a lower bound of 2 for the correlation com-
plexity. In this work, we will introduce a new criterion based
on states to detect a lower correlation complexity of at least
to in more cases. This criterion is further generalized to de-
tect a lower bound of arbitrary correlation complexity. Af-
terwards, we use this to create another criterion to detect
a lower bound of arbitrary correlation complexity based on
macros instead of states. Additionally, we prove the exis-
tence of planning tasks with arbitrary correlation complex-
ity by applying the new criterion to gray counter tasks with
an arbitrary number of bits and investigate further common
domains.

Background
We consider classical planning in the SAS+formalism. A
task Π = ⟨V, I,O, γ⟩ is a tuple, where V is the finite set
of state variables in finite domain representation with the
domain dom(v) for each v ∈ V . We call v 7→ d with v ∈ V
and d ∈ dom(v) a fact. A partial state p is a set of facts
with pairwise different variables. We denote the variables
mentioned by p as vars(p) := {v | v 7→ d ∈ p}. A state s
is a partial state containing all state variables (i.e. vars(s) =
V), we use the notation s ∈ Π to indicate that s is a state
of the task Π. I is the initial state, and γ is a partial state
indicating the goal of the task.

The projection of a partial state s to the state variables
W ⊆ vars(s) is denoted as sW := {v 7→ d ∈ s | v ∈W}.

Each operator o = ⟨pre(o), eff(o)⟩ in O contains a set
of facts called precondition and a partial state called effect.
An operator o is applicable in state s if pre(o) ⊆ s. The suc-
cessor of a state s and an applicable operator o is the state
sJoK with sJoKvars(eff(o)) = eff(o) and sJoKV \vars(eff(o)) =
sV \vars(eff(o)). We use the notation sJo!K to forcefully apply
operator o to state s, with sJo!K := sJ⟨∅, eff(o)⟩K. We as-
sume operators o to be in normal form, i.e. vars(eff(o)) ⊆
vars(pre(o)) and eff(o) ∩ pre(o) = ∅. If all operators of
planning task Π are in normal form, then we say Π is in
normal form. We say two operators o, o′ are inverse of each
other if vars(eff(o)) = vars(eff(o′)), eff(o) ⊆ pre(o′) and
eff(o′) ⊆ pre(o). Intuitively, everything changed by apply-

ing o to a state where it is applicable changes back by (force-
fully) applying o′ to that successor.

A list of operators m = [o1, . . . , on] is called a macro,
we treat them the same as operators2 with pre([o1, o2]) =
pre(o1) ∪ (pre(o2) \ eff(o1)) ∪ {v 7→ d ∈ eff(o1) |
v ∈ vars(pre(o1)∩pre(o2))} and eff([o1, o2]) = (eff(o2)∪
{v 7→ d ∈ eff(o1) | v /∈ vars(eff(o2))}) \ pre([o1, o2]).
Additionally, [o1, o2, o3, . . . , on] = [[o1, o2], o3 . . . , on] is a
macro, too. The set pre([o1, o2]) might be no partial state for
containing two distinct facts with the same state variable.
This could happen if pre(o2) requires a different assignment
for v than pre(o1) does but eff(o1) does not provide it, or if
pre(o2) requires the same assignment for v as pre(o1) does
but eff(o1) changes it. In such a case the macro is not appli-
cable by definition. If the operators are in normal form the
resulting macro is in normal form, too.

We can recompose a macro by representing it as
a different but equivalent list of macros and/or opera-
tors that keeps the same underlying list of operators.
For example [[o1, o2, o3], o4, [o5]] can be recomposed into
[[o1, o2], [o3, o4], [o5]]. We call the macros and operators in
the outermost list the base macros.

Applying a singleton macro [o] is the same as
applying the underlying operator. Applying a macro
[m1,m2, . . . ,mn] to state s is the same as applying
the base macros m1,m2, . . . ,mn in succession to s, i.e.
sJ[m1,m2, . . . ,mn]K = sJm1KJ[m2, . . . ,mn]K.

Unless explicitly mentioned we only talk about non-
empty macros.

With O∗ we denote the set of all list with elements from
O. If a macro m ∈ O∗ is applicable in s ∈ Π and γ ⊆ sJmK,
then m is called an s-plan (such macros might be empty).

We call a state s solvable if an s-plan exists. A state is
called alive if a (possibly empty) macro m ∈ O∗ exists that
is applicable in I , IJmK = s and s is solvable.

A heuristic h(s) maps each state s to a value in R∪{∞},
indicating how “good” the state is for the search (the lower
the better). In this work we actually deal with functions that
map partial states to values in R ∪ {∞}, which is an exten-
sion of usual heuristics.

A heuristic h is descending if each non-goal alive state s
has a successor s′ with h(s) > h(s′). A heuristic h is dead-
end avoiding if it holds for each non-goal alive state s that
each successor s′ of s with h(s) > h(s′) is solvable (Seipp
et al. 2016).

With [n : m] we denote the set {x | x ∈ N, n ≤ x ≤ m}.

Potential Heuristic
Potential heuristics are a class of heuristics introduced by
Pommerening et al. (2015). A potential heuristic is a func-
tion hpot : P → R ∪ {∞} that is computed with a weighted
count of the partial states that agree with the given (partial)

2Our definition is similar to Coles, Fox, and Smith (2007) but in
a finite domain representation instead of a STRIPS like represen-
tation, and they allow combining operators only if they applicable
in succession, where we allow arbitrary combinations but ensure
that the resulting macro is not applicable if the operators are not
applicable in succession.

states.

hpot(s) =
∑
p∈P

(w(p) · [p ⊆ s])

where P is the set of all possible partial states for the task,
[p ⊆ s] is the Iverson bracket notation that evaluates to 1
if the inner statement holds, 0 otherwise, and w(p) is the
weight for the partial assignment p. In practice, most of
the weights are 0. The dimension of a potential heuristic
is maxp∈P,w(p)̸=0|p|.

Correlation Complexity
Correlation complexity is a measure of the complexity of
planning tasks introduced by Seipp et al. (2016) which
is based on potential heuristics. They looked for poten-
tial heuristics that are descending and dead-end avoiding
(DDA).

Definition 1 (Correlation Complexity). The correlation
complexity of a planning task Π is defined as the minimal
dimension of all descending, dead-end avoiding potential
heuristics for Π. The correlation complexity of a domain is
the maximal correlation complexity over all tasks in that do-
main.

Finding a plan with the use of a DDA heuristic is eas-
ily done with simple hill-climbing. This algorithm works by
starting at the initial state and repeatedly updating the cur-
rent state with a successor that has a lower heuristic value
until a goal state is found. This can be interpreted as wan-
dering downwards in the state space. The number of state
expansions is bounded by hpot(I) − mins∈S hpot(s) if all
weights are integers (Seipp et al. 2016).

Seipp et al. investigated multiple IPC planning domains
and showed that all of them had a correlation complexity of
2, but it is possible to construct planning tasks with correla-
tion complexity of 3.

Lower Bounds of the Correlation Complexity
We want to understand better what causes a large correla-
tion complexity. Seipp et al. (2016) introduced two criteria
to identify that a task has correlation complexity of at least
2. They are based on critical and dangerous operators.

Definition 2. Let Π = ⟨V, I,O, γ⟩. An operator o is critical
in task Π if there is an alive state s ∈ Π such that ⟨V, s,O \
{o}, γ⟩ is unsolvable. An operator o is dangerous in task
Π = ⟨V, I,O, γ⟩ if there is an alive state s ∈ Π with o
applicable in s, such that ⟨V, sJoK, O, γ⟩ is unsolvable.

Theorem 1. Let Π be a planning task in normal form, and
let o and o′ be critical operators of Π that are inverses of
each other. Then Π has correlation complexity of at least 2.

Theorem 2. Let Π be a planning task in normal form, and
let o be an operator that is critical and dangerous in Π. Then
Π has correlation complexity of at least 2.

These criteria focus on the operators in the task. We want
to add criteria that look from a different angle and focus on
the states instead.

Quartet Criterion
We introduce the quartet criterion. Roughly speaking it
checks if a given potential heuristic can be represented as
a 2-dimensional heuristic. Note that any heuristic can be
translated into a potential heuristic if the dimension is large
enough. This check is done by finding a witnessing quartet.
Definition 3 (witnessing quartet). Let Π = ⟨V, I,O, γ⟩
be a planning task and h a heuristic for Π. We call
⟨[a, b, c, d], [W,M]⟩ with a, b, c, d states in Π and {W,M}
a partition of V such that:

h(a) > h(b), aW = bW , aM = dM ,

h(c) ≥ h(d), cW = dW , bM = cM ,

a witnessing quartet for h.
Theorem 3 (Quartet Criterion). Let Π = ⟨V, I,O, γ⟩ be a
planning task, and let h be a potential heuristic. If there exist
a witnessing quartet for h, then the dimension of h is at least
2.

Proof. Let⟨[a, b, c, d], [W,M]⟩ a witnessing quartet for h.
Assume that the dimension of h is at most 1. The

assumption implies that h(s) =
∑

p∈P,|p|≤1 w(p) ·
[p ⊆ s] =

∑
p∈P,|p|=1,vars(p)⊆W w(p) · [p ⊆ sW] +∑

p∈P,|p|=1,vars(p)⊆M w(p) · [p ⊆ sM] + w(∅) = h(sW) +

h(sM)−w(∅) for each state s. The weight w(∅) is subtracted
because ∅ ⊆ sW and ∅ ⊆ sM . This provides us with the two
inequalities

h(aW) + h(aM)− w(∅) > h(bW) + h(bM)− w(∅)

h(cW) + h(cM)− w(∅) ≥ h(dW) + h(dM)− w(∅).
Since aW = bW and cW = dW we can simplify the in-

equalities to

h(aM) > h(bM) and h(cM) ≥ h(dM).

We know that aM = dM and bM = cM so we replace
these values in the latest inequality and end up with

h(aM) > h(bM) and h(bM) ≥ h(aM).

which is a contradiction. So the assumption is not true and
therefore the dimension of the potential heuristic h is at least
2.

The witnessing quartet is a sufficient condition to detect a
dimension of at least 2. Is it not a necessary condition.

Consider the two heuristics on a task with two variables
of binary domain (with ′XY ′ we denote the state {v1 7→
X, v2 7→ Y }): h1(

′00′) = 0, h1(
′10′) = 40, h1(

′01′) =
2, h1(

′11′) = 42 and h2 which is equal to h1 except for
h2(

′11′) > 42. It is easy to see that h1 is of dimension 1
with w1(v1) = 40, w1(v2) = 2 but h2 is not.

However, the order relations are the same, i.e. h1(a) >
h1(b) iff h2(a) > h2(b) (same for ≥). If we could find a
witnessing quartet for h2 to detect its larger dimension by
Theorem 3 we could use the same for h1, but that is not
possible as h1 is of dimension 1.

We can use the quartet criterion to argue about the corre-
lation complexity.

Corollary 1. Let Π = ⟨V, I,O, γ⟩ be a planning task. If
for each potential heuristic h that is DDA on Π there exist a
witnessing quartet for h, then the correlation complexity of
Π is at least 2.

Note that these witnessing quartets do not have to be the
same for all DDA potential heuristics.

Proof. Follows directly from Theorem 3.

Corollary 1 is a generalization of the criterion from The-
orem 2 that Seipp et al. (2016) used to detect correlation
complexity of at least 2 (proof in Appendix A). Theorem 3
is equivalent to the first (non-trivial) instance of a pattern,
which we will call the 2n states criterion. Here we formu-
late and prove it. Later, we will use the 2n states criterion
as a stepping stone to construct the macro folding criterion,
a generalization of the criterion from Theorem 1. We then
apply it to the family of Gray counter tasks and show that a
Gray counter task has a correlation complexity equal to its
number of bits.

2n States Criterion
To formulate the 2n states criterion, we will introduce the
Π≤k construction. The Π≤k construction is a representa-
tion of the planning task similar to the Pm construction
(Haslum 2009), to the ΠC compilation (Steinmetz and Hoff-
mann 2018), and to fluent merging (van den Briel, Kamb-
hampati, and Vossen 2007). We discuss the similarities and
differences in the related work section.

The Π≤k construction assumes an arbitrary order of the
state variables.

Definition 4 (Π≤k construction). Let Π = ⟨V, I,O, γ⟩
a planning task. Let V be arbitrarily ordered, V =
{v1, . . . , v|V |}. Let s be a state and k ≤ |V |.

Let p ⊇ {vi1 7→ di1 , . . . , vik 7→ dik} be a partial state
with ia < ib for each 0 < a < b ≤ k.

We call meta{i1,...,ik}(p) = v{i1,...,ik} 7→ [di1 , . . . , dik]
a metafact with the metavariable v{i1,...,ik}. The domain of
the metavariable is "k

j=1dom(vij). The size of the metafac-
t/metavariable is k.

Let l be a set of indices. We say metavariable vl is created
from variable vt if t ∈ l, we refer to these variables with
creators(vl).

With s≤k = {metaS(s) | S ⊆ V, |S| ≤ k} we denote
the set of all metafacts of s of size up to k. We call s≤k the
metastate of size k of s. The set V ≤k denotes the metavari-
ables of s≤k. The Π≤k construction is the set {s≤k|s ∈ Π}.

Let us look at an example. In the Termes domain a robot
has to build towers out of blocks on a 2D grid map. These
blocks are also used to build stairs to reach the top of the
towers. The robot can move to neighboring cells that con-
tain a tower at most one level apart from the level the robot
is at. It can change the height of a neighboring tower by
placing/removing a block. A block can only be placed if the
robot carries one and the neighboring tower is on the same
level as the robot. Removing a block is only possible if the
neighboring tower is one level above the robot and it is not
carrying anything. Additionally, the robot can create/destroy

blocks in its hand if it is at the depot cell. It is not allowed to
place blocks on this cell.

Consider a task with 4 cells, one of them the depot, and
a maximal tower height of 3. The state variables (ordered as
written) are

V = {vheight2, vheight3, vheight4, vrobotAt, vrobotHand},

with domain {0, 1, 2, 3} for vheight2, vheight3 and
vheight4, dom(vrobotAt) = {cell1, cell2, cell3, cell4}, and
dom(vrobotHand) = {free, full}. Let initial state be

I ={vheight2 7→ 1, vheight3 7→ 1, vheight4 7→ 3,

vrobotAt 7→ cell2, vrobotHand 7→ free}.

The corresponding metastate I≤2 contains 16 metafacts.
1 of size 0, 5 of size 1, and 10 of size 2. An example subset
of it is:

{v∅ 7→ [], v{height2} 7→ [1], v{robotHand} 7→ [free],

v{robotAt,robotHand} 7→ [cell2, free],

v{height2,height4} 7→ [1, 3]}.

We have facts in the metastate that encode multiple facts
at once. With the metastates, we can artificially reduce the
dimension of a potential heuristic.

Definition 5 (k-synchronized heuristic). Let k ∈ N0, Π a
planning task. A function h′ : Π≤k → R ∪ {∞} is a k-
synchronized heuristic of the heuristic h on Π if h′(s≤k) =
h(s) for each state s in Π.

Lemma 1. Let Π = ⟨V, I,O, γ⟩ be a planning task. For
every potential heuristic h of dimension k on Π there exists
a k-synchronized potential heuristic h′ of dimension 1.

Proof. For each partial assignment p = {vi1 7→
di1 , . . . , vim 7→ dim} with |p| ≤ k and p ⊆ s there exists a
corresponding metafact fp = (v{i1,...,im} 7→ [di1 , . . . , dim])

in the metastate s≤k and therefore a partial assignment p′ =
{fp} of size 1. Let P ′ be the set of all possible partial as-
signments of size 1 in Π≤k. By choosing w′(p′) = w(p)
for each p we see that h(s) =

∑
p∈P(w(p) · [p ⊆ s]) =∑

p′∈P′(w′(p′) · [p′ ⊆ s≤k]) = h′(s≤k).

Looking at the contrapositive of Lemma 1 we see that we
can use the metastates of size k to check if it is impossible to
represent a given heuristic as a potential heuristic of dimen-
sion k. We will use this to prove the 2n states criterion.

In the following, we always use the metastates to be pro-
jected. If a subset D ⊆ V ≤k is used for the mapping of a
state s to a different set of metavariables D we mean with sD

the metastate s≤k projected to D, denoted as sD := (s≤k)D.
Additionally, we use N1 as N \ {0}.
Definition 6 (witnessing 2n-constellation). Let n ∈ N1,
Π = ⟨V, I,O, γ⟩ be a planning task, h be a heuris-
tic on Π. We call ⟨[s0, . . . , s2n−1], [D0, . . . , Dn−1]⟩ with

s0, . . . , s2n−1 states in Π and {D0, . . . , Dn−1} a partition
of V ≤n−1 such that:

∀d ∈ [0 : n− 1]∀g ∈ [0 : 2n−1−d − 1]∀i ∈ [0 : 2d − 1] :

sDd

g·2d+1+i
= sDd

(g+1)·2d+1−1−i

(1)
and there exists a j∗ ∈ [0, 2n−1 − 1] with

h(s2·j) ≥ h(s2·j+1) for all j ∈ [0, 2n−1 − 1] \ {j∗}

and
h(s2·j∗) > h(s2·j∗+1)

a witnessing 2n-constellation for h.

Similar, to the witnessing quartet we use the witness-
ing 2n-constellation as sufficient condition to detect a lower
bound for the dimension of a potential heuristic.

We want to shed light on the interpretation of con-
dition (1). For a fixed d = n − 1 one can consider
the states s0, . . . , s2n−1 split into 2 parts. The first part
contains s0, . . . , s2n−1−1 and the second part contains
s2n−1 , . . . , s2n−1. Variable g stays 0, only i iterates. The
left-hand side of the equation iterates through the first part
forwards and the right-hand side through the second part
backward.

For d = n− 2, one can consider the two parts split again
in the middle resulting in 4 parts. With g = 0, the left-hand
side of the equation iterates through the first part forward
and the second part backward. For g = 1, the left-hand side
of the equation iterates through the third part forward and
the fourth part backward.

For decreasing d the number of such parts doubles and the
left-hand side iterates through the odd parts forward and the
right-hand side iterates through the even parts backwards.
Until d = 0, there we produce half as many parts as states.
Variable i does not iterate, only g does. The left-hand side of
the equation iterates through the states with even index and
the right-hand side through the states with odd index.

Table 1 shows the example values for n = 4. Looking
at the red indicated numbers we see that state s6 has to be
equal to: (i) s9 under projection to D3, (ii) s1 under projec-
tion to D2, (iii) s5 under projection to D1, and (iv) s7 under
projection to D0.

Theorem 4 (2n States Criterion). Let Π = ⟨V, I,O, γ⟩ be
a planning task, and let h be a potential heuristic. If there
exist a witnessing 2n-constellation for h, then the dimension
of h is at least n.

Proof. Assume there exists a potential heuristic h′ of di-
mension 1 on the task Π≤n−1, with h′ being an (n − 1)-
synchronized heuristic to h, and
⟨[s0, . . . , s2n−1], [D0, . . . , Dn−1]⟩ a witnessing 2n-

constellation for h
We consider the sum of all the inequalities from the wit-

nessing 2n-constellation:

2n−1−1∑
j=0

h(s2·j) >

2n−1−1∑
j=0

h(s2·j+1)

d
=

3
g 0
i 0 1 2 3 4 5 6 7

sLHS 0 1 2 3 4 5 6 7
sRHS 15 14 13 12 11 10 9 8

d
=

2

g 0 1
i 0 1 2 3 0 1 2 3

sLHS 0 1 2 3 8 9 10 11
sRHS 7 6 5 4 15 14 13 12

d
=

1

g 0 1 2 3
i 0 1 0 1 0 1 0 1

sLHS 0 1 4 5 8 9 12 13
sRHS 3 2 7 6 11 10 15 14

d
=

0

g 0 1 2 3 0 1 2 3
i 0 0 0 0 0 0 0 0

sLHS 0 2 4 6 8 10 12 14
sRHS 1 3 5 7 9 11 13 15

Table 1: Example values for n = 4 of condition (1).

We see that the left-hand side only contains states with an
even index and the right-hand side contains only states with
an odd index. With h′ being of dimension 1 and (n − 1)-
synchronized to h we can split h(st) =

∑n−1
d=0 h

′(sDd
t) −∑n−2

d=0 w(∅) and obtain

2n−1−1∑
j=0

n−1∑
d=0

h′(sDd
2·j) >

2n−1−1∑
j=0

n−1∑
d=0

h′(sDd
2·j+1) (2)

Consider sDd

g·2d+1+i
= sDd

(g+1)·2d+1−1−i
for an arbitrary d.

The index on the left-hand side is even iff i is even. The
index on the right-hand side is odd iff i is even.

We conclude that for every fixed d and for every odd x
with x ∈ [0 : 2n − 1] there exists one even y with y ∈ [0 :
2n − 1] such that

sDd
x = sDd

y (3)

With equation (3) we can iterate through all d with d ∈
[0 : n− 1] and all even numbers p with p ∈ [0 : 2n − 1]. We
find a corresponding odd q with q ∈ [0 : 2n − 1] such that
sDd
p = sDd

q and reduce (2) by removing h′(sDd
p) on the left-

hand side and h′(sDd
q) on the right-hand side. This change

does not affect the inequality. However, all summands are
removed and we get the inequality 0 > 0 which is a contra-
diction.

We conclude that there exists no (n−1)-synchronized po-
tential heuristic to h of dimension 1. With the contrapositive
of Lemma 1, we conclude that no potential heuristic h on Π
with dimension n − 1 exists. Therefore, the dimension of h
is at least n.

The 22 states criterion is equivalent to the quartet criterion
with the minor detail that {D0, D1} is a partition of V ≤1,
unlike {W,M}, which is a partition of V . The difference is
minor as V ≤1 only contains meta variables of size 1 and v∅,
which is constant.

The 21 states criterion projects the 2 states to the set {v∅}.
There, all states are the same, trivially. What remains is the

condition that there are 2 states with different heuristic val-
ues.

Corollary 2. Let n ∈ N1, Π = ⟨V, I,O, γ⟩ be a planning
task. If for each potential heuristic h that is DDA on Π there
exists a witnessing 2n-constellation for h, then the correla-
tion complexity of Π is at least n.

Proof. Follows directly from the 2n states criterion (Theo-
rem 4).

Note that these states and the partition do not have to be
the same for all DDA potential heuristics.

Folded Macro Criterion
With the shifted view from operators to states we were able
to construct a family of criteria to detect arbitrary correlation
complexity. Now we want to shift the view back to operators
and macros as they are in some sense more accessible for
higher-level arguments. We assume that each operator is in
normal form.

Definition 7. Let Π = ⟨V, I,O, γ⟩. A macro m ∈ O∗ is
critical in task Π if there is an alive state s ∈ Π such that
each s-plan contains m as a sublist.

In other words: a macro m is critical if each s-plan for an
alive state s can be recomposed into [mI ,m,mγ] with mI

and mγ possibly empty.

Definition 8 (Macro Folding). The macros −→m,←−m are n-
matching if we can recompose both into n base macros,
where the i-th base macro of −→m is the inverse of the (n −
i+ 1)-th base macro of←−m for each i ∈ [1 : n].

We say a macro m is folded one time on crease
ý

m1 if we can recompose it into 3 macros [−→m0,
ý

m1,
←−m0]

with −→m0 1-matching ←−m0. Here we call
ý

m1 the first
crease and −→m0 the 0-th crease. We say a macro m is
folded n > 1 times if it is folded once on crease

ý

mn

(the n-th crease of m) and we can recompose it into
7 macros [−→mn−1,

ý

mn−1,
←−mn−1,

ý

mn,
−→m′

n−1,
ü

mn−1,
←−m′

n−1]

where [−→mn−1,
ý

mn−1,
←−mn−1] and [−→m′

n−1,
ü

mn−1,
←−m′

n−1]

are (2n − 1)-matching, folded n− 1 times on crease
ý

mn−1

and
ü

mn−1 respectively. Both,
ý

mn−1 and
ü

mn−1 are the
(n − 1)-th creases of m, with creases(m,n − 1) we refer
to the set of (n− 1)-th creases of m.

Note that if a macro m is folded n times it is also folded
k times for all 0 ≤ k ≤ n. Asking for the k-th creases
is therefore ill-defined, without specifying how many total
creases are considered. In the following, we implicitly mean
the largest possible value we established for the considered
macro.

An intuitive interpretation of a folded macro [−→m,
ý

m,←−m]
is to view −→m as the set-up and ←−m as the tear-down. The
crease

ý

m is the actually desired action. If the macro is folded
multiple times there are recursive occurrences of this set-up
and tear-down behavior.

The Termes task described earlier with goal {vheight2 7→
1, vheight3 7→ 1, vheight4 7→ 2, } is an example for that.
The task is to remove the 3rd block from cell 4 (and keep

the other towers the same). Note that the encoding does not
distinguish the individual blocks.

The set-up for that is to carry a block to cell 2. From there
the robot can place that block on cell 3, climb on it, pick up
the block from cell 4, and carry it to cell 2. We view this
macro of 4 operators as the crease. Afterward, the tear-down
is to get rid of the auxiliary block.

To execute the set-up a secondary set-up is needed. The
robot has to move to the depot first (secondary set-up), create
a block (crease of the primary set-up), and move back up
with it (secondary tear-down).

Similarly, for the tear-down. A secondary set-up is needed
there, as well. The robot has to carry the block it holds to
the depot (secondary set-up), destroy the block (crease of
the primary tear-down), and move back up (secondary tear-
down).

The robot is required to come back to cell 2 after destroy-
ing the carried block, to pick up the auxiliary block. The
described order of operators is the only one solving the task
(without cycles or transitions after reaching the goal). There-
fore, the macro of the primary set-up and primary tear-down
are critical.

We provided this task in PDDL in Appendix B together
with the plan and a visualization of the folded macro.

Lemma 2 (Orthogonality Lemma). For any state
s and applicable, 1 time folded macro m =

[−→mn, . . . ,
−→m0,

ý

m,←−m0, . . . ,
←−mn] with crease

ý

m it holds
for all i ∈ [0 : n]:

• sJ−→mi!KJ
ý

m!K = sJý

m!KJ−→mi!K,
• vars(eff(−→mi)) ∩ vars(eff(

ý

m)) = ∅, and
• sJmK = sJý

m!K.

Proof. Case (i) i = 0: Assume sJ−→mi!KJ
ý

m!K ̸= sJý

m!KJ−→mi!K,
therefore there is a v ∈ vars(eff(−→mi)) ∩ vars(eff(

ý

m)), and
v 7→ dA is an effect of −→mi and v 7→ dB is an effect of

ý

m.
We know dA ̸= dB , due to our assumption. Then←−mi is not
applicable in state sJ−→miKJ

ý

mK as it has v 7→ dA as precon-
dition, because it is in normal form and inverse to −→mi. This
provides a contradiction to m being an applicable macro.
This also provides us that sJ−→m0!KJ

ý

m!KJ←−m0!K = sJý

m!K.
Case (ii) i > 0: Consider the macro

[−→mi−1, . . . ,
−→m0,

ý

m,←−m0, . . . ,
←−mi−1] as the crease of m

and relabel the indices to match case (i).

A variable v might appear in the effects of o ∈ ý

m and
o′ ∈ −→mi. The effect just has to be undone again in one of the
base macros

ý

m or −→mi, resulting in a ’defacto’ effect of the
macro where v does not appear.

Lemma 3 (Matching Lemma). Let n ∈ N, s0 be a state
where the macro m := [−→m,

ý

m,←−m] is applicable and −→m,←−m
are (n − 1)-matching. Let si := si−1J−→miK with −→mi being
the i-th base macro of−→m for i ∈ [1 : n−1], sn := sn−1J

ý

mK,
and sn+i := sn+i−1J←−miK with←−mi being the i-th base macro
of←−m for i ∈ [1 : n− 1]. Then for all j ∈ [0 : n− 1]

sn−1−jJ
ý

m!K = sn+j .

Proof. Let j ∈ [0 : n − 1]. Since m is folded on
crease

ý

m we conclude with Lemma 2 that sn−1−jJ
ý

m!K =

sn−1−jJ[−→mn−j+1, . . . ,
−→mn,

ý

m,←−mn . . .
←−mn−j+1]K = sn+j

by construction.

With that, we introduce the new criterion.
Theorem 5 (Folded Macro Criterion). Let Π be a planning
task and −→m and ←−m be critical macros that are (2n − 1)-
matching and folded n − 1 times, then Π has correlation
complexity of at least n+ 1.

Proof. Since −→m is critical there exists a state x where −→m
is applicable and critical. Let us consider the 2n states
s0, . . . , s2n−1 we can extract from −→m. Let s0 = x and
si = si−1JbiK, where bi is the i-th base macro of −→m. For
each DDA heuristic h on Π it holds:

h(s2·j) > h(s2·j+1) for all j ∈ [0 : 2n−1 − 1]

because −→m is critical.
Analogously, there exists a state y where←−m is applicable

and critical and we extract states s2n , . . . , s2n+1−1 from←−m
similarly. For each DDA heuristic h on Π it holds:

h(s2·j) > h(s2·j+1) for all j ∈ [2n−1 : 2n − 1].

x ̸= y, otherwise there would be a critical cycle.
In combination:

h(s2·j) > h(s2·j+1) for all j ∈ [0 : 2n − 1]

Matching the second condition of the witnessing 2n+1-
constellation.

We define the macro
ý

m := [⟨xJ−→mK, y \ xJ−→mK⟩]. This is
obviously in normal form. It it not (necessarily) an oper-
ator/macro in the original task. Nevertheless, we use it to
construct the macro m := [−→m,

ý

m,←−m]. The macro m is by
definition applicable in state x, it is folded n times, with the
n-th crease at

ý

m. The Matching Lemma and the Orthogo-
nality Lemma only require applicability, they are indifferent
about m being constructable from operators in Π.

For the first condition of the witnessing 2n+1-
constellation we have to find a fitting partition of V ≤n. We
consider D = {D0, . . . , Dn} with Dn−i := {v ∈ V ≤n \⋃n

j=n−i+1 Dj | creators(v) ∩ vars(eff(
ý

mn−i)) = ∅} with
ý

mn−i ∈ creases(m,n− i). These sets are obviously not in-
tersecting. None of them is empty because the meta-variable
vn−i with creators(vn−i) = {v1, . . . , vi−1, vi+1, . . . , vn}
and vk ∈ vars(eff(

ý

mk)) (where
ý

mk ∈ creases(m, k)) is an
element of Dn−i for each i ∈ [0 : n]. Therefore, D is a
partition of V ≤n.

Looking at a sub-sequence of the base
macros of m, focusing on the base macros
[bg·2d+1+1, . . . , bg·2d+1+2d , . . . , b(g+1)·2d+1−1] =: md,g for
an arbitrary d ∈ [0 : n] and an arbitrary g ∈ [0 : 2n−d − 1].

Since m is folded n times, the macro md,g is folded d
times with bg·2d+1+2d as d-th crease.

With the Matching Lemma (Lemma 3) we con-
clude sg·2d+1+2d−1−jJbg·2d+1+2d !K = s(g+1)·2d+1+2d+j

for all j ∈ [0, 2d − 1]. With index shift we get
sg·2d+1+iJbg·2d+1+2d !K = s(g+1)·2d+1−1−i for all i ∈
[0, 2d − 1]. Since d and g were arbitrarily chosen it holds
for all g ∈ [0 : 2n−d−1] and for all d ∈ [0 : n].

With the Orthogonality Lemma (Lemma 2) we see, that
Dd does not contain any meta-variable created by a variable
from vars(eff(bg·2d+1+2d)) and projects the difference away.
Therefore

∀d ∈ [0 : n]∀g ∈ [0 : 2n−d − 1]∀i ∈ [0 : 2d − 1] :

sDd

g·2d+1+i
= sDd

(g+1)·2d+1−1−i

We finally conclude that we can apply the 2n+1

states criterion with the witnessing 2n+1-constellation
⟨[s0, . . . , s2n+1−1], [D0, . . . , Dn]⟩ to reveal a correlation
complexity of at least n+ 1.

The folded macro criterion with n = 1 is equivalent to the
criterion from Theorem 1.

In the Appendix we provide witnessing 23-constellation
for the Termes example discussed above.

Arbitrary Correlation Complexity
The 2n states criterion and the folded macro criterion show
sufficient conditions to detect a lower bound of the dimen-
sion of a potential heuristic. They do not answer the ques-
tion if a planning task with arbitrary correlation complexity
exists. In the following, we show that the answer is yes by
applying the macro folding criterion on a Gray counter task
with an arbitrary number n of bits.

Gray Counter Task
The Gray Counter Task with 3 bits is the example Seipp
et al. (2016) provided with correlation complexity 3. It it-
erates through all binary numbers of a given length in an
order such that consecutive numbers differ on only one bit,
this is known as the Gray code (Gray 1953).
Definition 9 (Gray Counter Task). The gray counter task of
n bits is a planning task Πn = ⟨Vn, In, On, γn⟩ with the
state variables Vn = {v0, . . . , vn−1} with domain {0, 1},
the initial state In = {vi 7→ 0|i ∈ [0 : n−1]}, the operators

On ={⟨{v0 7→ 0}, {v0 7→ 1}⟩, ⟨{v0 7→ 1}, {v0 7→ 0}⟩}

∪
n⋃

i=1

{−→oj ,←−oj}

with for each j ∈ [1 : n− 1]:

pre(−→oj) ={vj 7→ 0, vj−1 7→ 1}
∪ {vi 7→ 0 | 0 ≤ i < j − 1}

eff(−→oj) ={vj 7→ 1}
pre(←−oj) ={vj 7→ 1, vj−1 7→ 1}

∪ {vi 7→ 0 | 0 ≤ i < j − 1}
eff(←−oj) ={vj 7→ 0}

and the goal γn = {vn−1 7→ 1}∪{vi 7→ 0 | i ∈ [0 : n−2]}.
The task ⟨V, γ,O, I⟩ is a reverse gray counter task if

⟨V, I,O, γ⟩ is a gray counter task.

We can also view it as a recursive construction. The gray
counter task of 1 bit is a planning task Π = ⟨V, I,O, γ⟩ with
the state variables V = {v0} with domain {0, 1}, the initial
state I = {v0 7→ 0}, the operators O = {⟨{v0 7→ 0}, {v0 7→
1}⟩, ⟨{v0 7→ 1}, {v0 7→ 0}⟩} and the goal γ = {v0 7→ 1}.

The gray counter task of n bits is a planning task Π with
the state variables V = {v0, . . . , vn−1} (each with domain
{0, 1}) that can be decomposed into two tasks Π1/2, a gray
counter task of size n − 1 on the variables {v0, . . . , vn−2}
with an additional constant state variable vn−1 7→ 0 and
Π2/2, a reverse gray counter task of size n − 1 on the vari-
ables {v0, . . . , vn−2} with an additional constant state vari-
able vn−1 7→ 1. The initial state of Π is the initial state of
Π1/2, the single goal state of Π is the single goal state of
Π2/2 and the operators of Π is the set containing:
• each operator of Π1/2 and Π2/2,
• the operator with the goal state from Π1/2 as precondi-

tion and the initial state from Π2/2 as effect and
• the operator with the initial state from Π2/2 as precondi-

tion and the goal state from Π1/2 as effect.
By looking at the Gray counter task through the lens of re-

cursion it is clear what our macros have to be. We choose−→m
to be the macro that solves Π1/2 and←−m the macro that solves
Π2/2, both have 2n−1 − 1 base macros, namely the original
operators. They are obviously (2n−1 − 1)-matching as they
solve inverse problems. By the recursive construction of the
gray counter task −→m,←−m are both folded n − 2 times. This
fits the condition of the folded macro criterion and reveals
a correlation complexity of n for the gray counter task on n
bits.

This shows that planning tasks of arbitrary correlation
complexity do exist. In the following we look at some tasks
of domains from literature and their correlation complexity.

Correlation Complexity of Common Planning
Domains
Seipp et al. (2016) investigated the common benchmark do-
mains Blocksworld (e.g., Slaney and Thiébaux 2001), Grip-
per (IPC 1998), Spanner (IPC 2014) and VisitAll (IPC 2011)
theoretically for their correlation complexity and detected a
correlation complexity of 2 for each of them. Additionally,
Corrêa and Pommerening (2019) did an empirically study on
lower bounds for the optimal correlation complexity i.e. the
dimension required to express the perfect heuristic for a dif-
ferent set of common benchmark domains. The new tools in-
troduced in this work help us to investigate further domains
for their correlation complexity. With the above introduced
2n states criterion we show that each domain that can di-
rectly encode a Turing Machine (TM) of arbitrary memory
size has unbounded correlation complexity.

What do we mean by encoding a finite tape Turing ma-
chine directly?
Definition 10 (direct TM encoding). A TM is defined as
⟨Z, z0, z∗,Γ, δ⟩ with Z the set of internal states, z0, z∗ ∈ Z
where z0 is the initial state and z∗ is the accepting state,
Γ the set of tape symbols, and δ : (Z \ z∗) × Γ →
Z × Γ× {−1,+1} the transition function.

A planning task Π encodes a TM directly if it is solvable
and
• for each configuration c that TM traverses there is a cor-

responding landmark state sc,
• if TM traverses c1 before c2 then each plan traverses sc1

before sc2 , and
• there is a subset V tape of V such that:

– s
V \V tape

c1 = s
V \V tape

c2 for each configuration c1, c2
that TM traverses and the internal state and the head
position of c1 and c2 are the same.

– Each variable in vti ∈ V tape corresponds to a cell ti
of the tape and for each c traversed by TM with symbol
a in cell ti the state sc contains the fact vti 7→ dti,a.

Only TMs that halt can be encoded directly. The entry of
a single cell could be encoded by multiple state variables in
V tape but each v ∈ V tape encodes only one cell. Since V
is finite the tape has to be finite, too. The initial state of the
planning task encodes the initial configuration of the TM,
including the input on the tape.

Bylander (1994) described (in Theorem 3.1) a way to
transform a TM into a planning task. This planning task en-
codes said TM directly.

Consider a Turing machine that reads the input string,
changes it to the next string according to the gray code, and
sets the head back to the initial position. The machine re-
peats this until the final value of the gray code is represented
by the tape. With an initial input of n-many 0’s the corre-
lation complexity of the task simulating such a Turing ma-
chine is at least n. This can be shown with the 2n states
criterion with the states that represent the Turing machine at
the beginning of the described loop.

Culberson (1997) showed how to encode TMs into
Sokoban tasks. This corresponds to a direct encoding, too.

Helmert (2006) showed an encoding of TMs into Promela
tasks. However, this encoding does not fit our definition.
There the content of the cell at the position of the head and
the position of the head is encoded in one variable and is
therefore not a direct encoding. The partition of V is not pos-
sible. This is not the relevant hurdle, as we can still apply the
Macro Folding Criterion on a Promela task that represents
the described TM in Helmert’s encoding. The two macros
bring the Promela-process that represents the cell which rep-
resents the second most significant bit to the process-state
that represents the TM symbol 1, 0 respectively. The rele-
vant hurdle is the PDDL encoding (Edelkamp 2003) as it
allows to activate multiple Promela-transitions without ex-
ecuting them directly. This provides too much freedom to
easily detect critical, matching macros.

In the 1st Combinatorial Reconfiguration Challenge
(CoRe Challenge 2022) Christen et al. (2023) encoded the
independent set reconfiguration (ISR) problem as a planning
task. The graph track asked for an instance with a long solu-
tion. They provided one that encodes a Gray counter where
each bit is represented by a gadget of 5 nodes. We can apply
the macro folding criterion on this instance, too. This reveals
a correlation complexity of at least n/5 for their graph track
submissions, where n is the number of nodes in the instance
graph.

The earlier described Termes task has correlation com-
plexity of at least 3. We discussed that the primary set-up
and the primary tear-down are critical macros. They are
3-matching and folded once. With that, we can apply the
macro folding criterion to confirm a correlation complexity
of at least 3.

Discussion
We were not able to find further common planning domains
that allow tasks with a correlation complexity larger than
2. The way we found the ones we did was by construct-
ing a task with only one (cycle free) solution. Without that,
there is often some freedom (similar to the Promela domain)
which hinders us from finding matching pairs of critical,
folded macro.

Lacking further examples of common planning domains
where we can apply our new criteria might be a downside
for their relevance, on the one hand. On the other hand, it
strengthens our belief that potential heuristics are often suf-
ficiently expressive even with low dimensions. The criterion
gave further insight into what is challenging for potential
heuristics but also provides a possible approach to tackle
such challenges, namely with macros. Investigating plan-
ning based on macros (Jonsson 2009) seems to be a good
candidate to accompany low dimensional potential heuris-
tics. Planning based on macros is strong in the shortcomings
of low dimensional potential heuristics.

We found a generalization of the criterion from Theorem
1 for arbitrary correlation complexity. There might be a gen-
eralization to detect arbitrary correlation complexity for the
criterion from Theorem 2, which incorporates dangerous op-
erators. Such a criterion could provide further insight.

Related Work
The most significant difference between the Π≤k construc-
tion and the Pm construction by Haslum (2009), the ΠC

compilation by Steinmetz and Hoffmann (2018), or fluent
merging by van den Briel, Kambhampati, and Vossen (2007)
is that the ΠC construction does not describe a valid plan-
ning task. The operators are not fitting to the resulting state
space (it would be possible to extend the definition in a way
that we construct matching operators with metavariables in
the precondition and effects. However, this would be rather
cumbersome and unnecessary since we do not need the op-
erators for our arguments).

The additional variables in a ΠC compilation have a bi-
nary domain and each additional variable represents a par-
tial assignment. In other words, a conjunction of facts. The
metafacts in the Π≤k construction represent a combination
of facts. The domain of such a metavariable is the cartesian
product of the corresponding domains. The set of partial as-
signments that are considered by a ΠC compilation, is not
further specified. If C contains all partial assignments of size
≤ k, then we can interpret the additional facts from the ΠC

compilation as the translation into STRIPS of the additional
facts from Π≤k.

Fluent merging is defined on a finite domain representa-
tion and merging two variables combines their domains by

a cartesian product like the Π≤k construction. However, flu-
ent merging replaces the variables it merges with the new
one. Fluent merging reduces the number of state variables
while the Π≤k construction increases the number of state
variables.

The Pm construction is defined on propositional STRIPS
tasks, while the Π≤k construction and the ΠC compilation
are defined on tasks in finite domain representation. How-
ever, the Pm construction considers all partial assignments
of size ≤ m and is in this regard similar to the Π≤k con-
struction.

Conclusion
We have shown that the correlation complexity of a plan-
ning task can be arbitrarily large. This means no fixed di-
mension for potential heuristics, in combination with simple
hill climbing, will be sufficient for satisficing planning on ar-
bitrary domains. It is in some cases possible to detect a large
correlation complexity with the newly introduced 2n states
criterion and Folded Macro criterion. We also showed that
if a domain can encode a Turing machine in a certain way,
then we can create tasks of arbitrary correlation complexity
in this domain.

With the new criteria, we gained a deeper understanding
of what structure causes a large correlation complexity.

Acknowledgements
We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639). Moreover, this research was partially sup-
ported by TAILOR, a project funded by the EU Horizon
2020 research and innovation programme under grant agree-
ment no. 952215.

Additionally, we would like to thank Augusto B. Corrêa
and the anonymous reviewers for their valuable feedback on
this paper.

Appendix A
Corollary 3. The quartet criterion is a generalization of the
criterion from Theorem 2.

We show that the condition of the criterion from Theorem
2 implies the existence of a witnessing quartet.

Proof. The correlation complexity requires by definition a
descending, dead-end avoiding heuristic.

If Π = ⟨V, I,O, γ⟩ is a planning task in normal form with
the operator o that is dangerous and critical in Π then for
each DDA heuristic h there exist reachable states s, sJoK,
s′, s′JoK with s, sJoK, s′ alive and s′JoK unsolvable and o
applicable in s and s′ and h(s) > h(sJoK) and h(s′JoK) ≥
h(s′).

Let M := vars(pre(o)) and W := V \M . With Π is in
normal form we conclude sM = s′M and sJoKM = s′JoKM .
Because of eff(o) ⊆ pre(o), applying the operator o does
not affect any variable in W . Therefore, sW = sJoKW and
s′W = s′JoKW .

It remains to show that {M,W} is a partition of V .
Therefore, we assume vars(pre(o)) = V . This implies that
pre(o) is the only state where o is applicable and therefore
sJoK = s′JoK but the one is solvable while the other is un-
solvable. We conclude that the assumption is wrong and that
vars(pre(o)) ⊊ V . Considering that o is critical. This im-
plies that ∅ ≠ eff(o). Since o is in normal form we know that
vars(eff(o)) ⊆ vars(pre(o)) and therefore ∅ ⊊ vars(pre(o)).
So with M = vars(pre(o)) we conclude ∅ ⊊ M ⊊ V .
Therefore, {M,W} is a partition of V .

This shows there exists the witnessing quartet
⟨[s, sJoK, s′JoK, s′], [W,M]⟩ for h.

Appendix B
In the following we provide cc3.pddl – A PDDL file of
the Termes task discussed in the paper. The additional goal
condition (not (has-block)) would make it more
similar to the IPC9 tasks without changing anything men-
tioned in the paper besides the plan (shown in Fig. 1), there
the operators move-down pos-2 n1 pos-1 n0 and
destroy-block pos-1 would be added to the end of
the plan.

(define (problem termes-cc3)
(:domain termes)
; termes-cc3
; Initial state:
; 0D R1 1 3
; Goal state:
; 0 1 1 2
; Maximal height: 3
(:objects

n0 - numb
n1 - numb
n2 - numb
n3 - numb
pos-1 - position
pos-2 - position
pos-3 - position
pos-4 - position

)
(:init

(height pos-1 n0)
(height pos-2 n1)
(height pos-3 n1)
(height pos-4 n3)
(at pos-2)
(IS-DEPOT pos-1)
(SUCC n1 n0)
(SUCC n2 n1)
(SUCC n3 n2)
(NEIGHBOR pos-1 pos-2)
(NEIGHBOR pos-2 pos-1)
(NEIGHBOR pos-2 pos-3)
(NEIGHBOR pos-3 pos-2)
(NEIGHBOR pos-3 pos-4)
(NEIGHBOR pos-4 pos-3)

)

move-down pos-2 n1 pos-1 n0
create-block pos-1

move-up pos-1 n0 pos-2 n1
place-block pos-2 pos-3 n1 n2
move-up pos-2 n1 pos-3 n2
remove-block pos-3 pos-4 n3 n2
move-down pos-3 n2 pos-2 n1

move-down pos-2 n1 pos-1 n0
destroy-block pos-1

move-up pos-1 n0 pos-2 n1
remove-block pos-2 pos-3 n2 n1

Figure 1: The only cycle free solution to cc3.pddl with-
out useless operators (e.g. transitions after reaching a goal
state). The operators are color coded (and indented) to show
to which crease of the folded macro they belong. Red is the
2nd crease (0 tabs), green are the 1st creases (1 tab) and blue
are the 0-th creases (2 tabs). The last operator is not part of
the folded macro.

(:goal
(and

(height pos-1 n0)
(height pos-2 n1)
(height pos-3 n1)
(height pos-4 n2)

)
)
)

Following the constructive proof of Theorem 5 with
the primary set-up/tear-down from the Termes example we
get the following partition of V ≤3 for the witnessing 23-
constellation:

D2 = {v∅, v{height2}, v{robotAt}, v{robotHand}, v{height2,robotAt},

v{height2,robotHand}, v{robotAt,robotHand}},
D1 = {v{height3}, v{height4}, v{height2,height3}, v{height2,height4},

v{height3,height4}, v{height3,robotAt}, v{height4,robotAt}},
D0 = {v{height3,robotHand}, v{height4,robotHand}}.

The 23 states are shown in Fig. 2.

References
Bylander, T. 1994. The Computational Complexity of Proposi-
tional STRIPS Planning. Artificial Intelligence, 69(1–2): 165–
204.
Christen, R.; Eriksson, S.; Katz, M.; Muise, C.; Petrov, A.;
Pommerening, F.; Seipp, J.; Sievers, S.; and Speck, D. 2023.
PARIS: Planning Algorithms for Reconfiguring Independent
Sets. In Gal, K.; Nowé, A.; Nalepa, G. J.; Fairstein, R.; and
Rădulescu, R., eds., Proceedings of the 26th European Con-
ference on Artificial Intelligence (ECAI 2023), 453–460. IOS
Press.
Coles, A.; Fox, M.; and Smith, A. 2007. Online Identifica-
tion of Useful Macro-Actions for Planning. In Proceedings of
the Twenty-Second AAAI Conference on Artificial Intelligence
(AAAI 2007), 97–104. AAAI Press.

0R113start

R0113

R′
0113

0R′
113 0R′

122

R′
0122

R0122

0R122

Figure 2: Visualization of the critical, 2-times folded macro
for cc3.pddl in 3D. The color coding is the same as in the
plan shown in Fig. 1. In each node, the numbers from left to
right indicate the height of the tower on the cells 1-4. The
change of heights is represented by the lateral dimension.
The R represents the position of the robot and the subscript
the height of the tower it is on. The change of the robot posi-
tion is represented by the longitudinal dimension. The prime
on R′ indicates that the robot carries a block. The change of
free hand is represented by the vertical dimension.

Corrêa, A. B.; and Pommerening, F. 2019. An Empirical Study
of Perfect Potential Heuristics. In Lipovetzky, N.; Onaindia,
E.; and Smith, D. E., eds., Proceedings of the Twenty-Ninth In-
ternational Conference on Automated Planning and Scheduling
(ICAPS 2019), 114–118. AAAI Press.
Culberson, J. C. 1997. Sokoban is PSPACE-complete. Techni-
cal Report TR 97-02, Department of Computing Science, The
University of Alberta, Edmonton, Alberta, Canada.
Edelkamp, S. 2003. Limits and Possibilities of PDDL for
Model Checking Software. In Edelkamp, S.; and Hoffmann,
J., eds., Proceedings of the ICAPS 2003 Workshop on the Com-
petition: Impact, Organisation, Evaluation, Benchmarks.
Gray, F. 1953. Pulse code communication. US Patent
2,632,058.
Haslum, P. 2009. hm(P) = h1(Pm): Alternative Characteri-
sations of the Generalisation from hmax to hm. In Gerevini,
A.; Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings of
the Nineteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2009), 354–357. AAAI Press.
Helmert, M. 2006. New Complexity Results for Classical Plan-
ning Benchmarks. In Long, D.; Smith, S. F.; Borrajo, D.; and
McCluskey, L., eds., Proceedings of the Sixteenth International
Conference on Automated Planning and Scheduling (ICAPS
2006), 52–61. AAAI Press.
Helmert, M.; Sievers, S.; Rovner, A.; and Corrêa, A. B. 2022.
On the Complexity of Heuristic Synthesis for Satisficing Clas-
sical Planning: Potential Heuristics and Beyond. In Thiébaux,
S.; and Yeoh, W., eds., Proceedings of the Thirty-Second Inter-
national Conference on Automated Planning and Scheduling
(ICAPS 2022), 124–133. AAAI Press.

Jonsson, A. 2009. The Role of Macros in Tractable Planning.
Journal of Artificial Intelligence Research, 36: 471–511.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015.
From Non-Negative to General Operator Cost Partitioning. In
Bonet, B.; and Koenig, S., eds., Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence (AAAI 2015),
3335–3341. AAAI Press.
Seipp, J.; Pommerening, F.; Röger, G.; and Helmert, M. 2016.
Correlation Complexity of Classical Planning Domains. In
Kambhampati, S., ed., Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016), 3242–
3250. AAAI Press.
Slaney, J.; and Thiébaux, S. 2001. Blocks World revisited. Ar-
tificial Intelligence, 125(1–2): 119–153.
Steinmetz, M.; and Hoffmann, J. 2018. LP Heuristics over Con-
junctions: Compilation, Convergence, Nogood Learning. In
Lang, J., ed., Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence (IJCAI 2018), 4837–4843. IJ-
CAI.
van den Briel, M.; Kambhampati, S.; and Vossen, T. 2007. Flu-
ent Merging: A General Technique to Improve Reachability
Heuristics and Factored Planning. In ICAPS 2007 Workshop on
Heuristics for Domain-Independent Planning: Progress, Ideas,
Limitations, Challenges.

