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Abstract

Classical planning considers a given task and searches for a
plan to solve it. Some tasks are harder to solve than others.
We can measure the “hardness” of a task with the novelty
width and the correlation complexity. In this work, we com-
pare these measures.
Additionally, we introduce the river measure, a new measure
that is based on potential heuristics and therefore similar to
the correlation complexity but also comparable to the novelty
width. We show that the river measure is upper bounded by
the correlation complexity and by the novelty width +1.
Furthermore, we show that we can convert a planning task
with a polynomial blowup of the task size to ensure that a
heuristic of dimension 2 exists that gives rise to backtrack-
free search.

Introduction
In satisficing planning we search for a solution to a planning
task without considering the length or cost of the plan. As
the search space of planning tasks is often extremely large,
uninformed searches like blind search are infeasible. There-
fore, this problem is tackled with informed search such as
heuristic search. A heuristic guides the search by providing
an estimate of which parts of the search space should be ex-
plored earlier. Potential heuristics are a class of heuristics
introduced by Pommerening et al. (2015). Their expressive-
ness depends on their dimension.

Potential heuristics are mostly used in optimal planning.
Pommerening et al. (2015), and Pommerening, Helmert, and
Bonet (2017) showed that low dimensional potential heuris-
tics with interesting properties for optimal planning can be
synthesized in polynomial time. Corrêa and Pommerening
(2019) looked at the dimension necessary to express the per-
fect heuristic on IPC domains. Seipp et al. (2016) introduced
correlation complexity, a measure that checks what dimen-
sion is necessary for a potential heuristic to give rise to
backtrack-free search for satisficing planning. It expresses
the degree of inter-relatedness between state variables of a
planning task. In other words, how many conjunct facts have
to be taken into account for a planning task.
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The Novelty Width1 (Lipovetzky and Geffner 2012) is
an alternative measure that looks at the degree of inter-
relatedness between state variables of a planning task from
a different angle. It is based on the novelty of a state. The
novelty of a state is k if at least k facts must be consid-
ered at once to detect that a state was not yet generated
in the search. Lipovetzky and Geffner (2012) implemented
a novelty based search algorithm with run time exponen-
tial only in k. Later they refined the approach (Lipovetzky
and Geffner 2014), combined it with heuristics, and showed
competitiveness (Lipovetzky and Geffner 2017b). Yet an-
other usage of novelty is to have it as a companion for heuris-
tic search (Lipovetzky and Geffner 2017a; Francès et al.
2018; Corrêa and Seipp 2022).

The two mentioned measures have a core difference. One
talks about the search from the initial state to a goal state,
the other about walks to a goal state from any state that is
reachable and solvable.

To build a bridge for comparison we introduce a new mea-
sure, the river measure. It essentially is equal to the corre-
lation complexity but is only interested in the descending
walks starting in the initial state. This is less restrictive and
more natural. We demonstrate the relationship of the river
measure to both the correlation complexity and variants of
the novelty width. Furthermore, we introduce a task conver-
sion that reduces the river measure to 2, which highlights an
oddity of this hardness measure.

Background
We consider planning tasks in the SAS+ formalism
(Bäckström and Nebel 1995). A planning task is a tuple
Π = ⟨V, I,O, γ⟩. V is the finite set of state variables, each
v ∈ V corresponds to a finite domain dom(v). A fact is a tu-
ple of a state variable and an element of its domain (v 7→ d)
with v ∈ V, d ∈ dom(v). A partial assignment p is a set of
facts where each contained fact belongs to a different vari-
able. We denote the set of variables used in p as vars(p). We
refer to an individual fact corresponding to a variable v in p
with p[v] = d if (v 7→ d) ∈ p. A state is a partial assignment
with a fact for each state variable. We say a partial assign-

1In the original work it is simply called “width”. We call it
“novelty width” to emphasize the distinction between the different,
independent concept of width by Chen and Giménez (2007).



ment p agrees with a state s if p ⊆ s. The state I represents
the initial state.

The set O contains the operators. Each operator o ∈ O
consists of two partial assignments: a precondition pre(o)
and an effect eff(o). An operator o is applicable in state s if
pre(o) ⊆ s. Its application results in the successor state
sJoK where sJaK[v] = eff(a)[v] if v ∈ vars(eff(a)) and
sJaK[v] = s[v] otherwise. The set of successors of a state
succ(s) is the set of individual successor states of sJoK with
any applicable operator o ∈ O.

The partial assignment γ represents the goal of the task.
Each state that agrees with γ is a goal state. We call a list of
states π = (π0, . . . , πn) a walk of length n if πi+1 is a suc-
cessor of πi for each i ∈ {0, . . . , n−1} and a plan if πn is a
goal state. A plan is optimal if its length is minimal (optimal
planning considers a cost for each operator. In this work we
ignore the cost completely. This is equivalent to assuming
a cost of 1 for each operator). The state s is reachable if a
walk from I to s exists and solvable if a plan starting in s
exists.

A heuristic is a function that maps each state of Π to a
value in R ∪ {∞}. The idea of a heuristic is to be a guid-
ance through the state space. We look at some definitions
that describe different escalations of guidance.

Definition 1 (Enforcing). We say a heuristic h enforces a
state s′ on s if s′ ∈ succ(s) and h(s) ≤ h(ŝ) for each ŝ ∈
succ(s) \ {s′} and h(s) > h(s′).

We say a heuristic h enforces a walk π = (s0, . . . , sn) if
h enforces si on si−1 for each 0 < i ≤ n.

In other words, h enforces s′ on s if s′ is the only improv-
ing successor of s under h.

Definition 2 (Hinting). We say a heuristic h hints at a state
s′ on s if s′ ∈ succ(s) and h(s) > h(s′).

We say a heuristic h hints at a walk π = (s0, . . . , sn) if h
hints at si on si−1 for each 0 < i ≤ n.

In other words, h hints at s′ on s if s′ is an improving
successor of s under h.

It is easy to see that each heuristic that enforces a state or
walk also hints at it.

A potential heuristic (Pommerening et al. 2015) is a
heuristic that is computed with a weighted count of the par-
tial assignments that agree with the given state.

hpot(s) =
∑
p∈P

(w(p) · [p ⊆ s])

where P is the set of all possible partial assignments for
the task, [p ⊆ s] is in the Iverson bracket notation, and w(p)
is the weight for the partial assignment p. In practice, most
of the weights are 0. The dimension of a potential heuristic
is maxp∈P,w(p) ̸=0|p|.

Different Measures
We want to compare these measures:

• (Optimistic/Effective) Novelty Width ((o/e)NW)
• Correlation Complexity (CC)
• River Measure (RM)

Algorithm 1: Novelty Width Search

Data: planning task Π = ⟨V, I,O, γ⟩, width k ∈ N
Result: plan π

1 if γ ⊆ I then
2 return empty plan
3 end
4 open := [I]
5 closed := ∅
6 insert each p ⊆ I with |p| = k into closed
7 while open is not empty do
8 current := pop first element of open
9 foreach candidate ∈ succ(current) do

10 if γ ⊆ candidate then
11 return extracted plan to candidate
12 else if

∃p ⊆ candidate with |p| = k, p /∈ closed
then

13 insert each p ⊆ candidate with |p| = k
into closed

14 append candidate to open
15 end
16 end
17 end
18 return fail

Novelty Width
Novelty Width Search (NWS) (Lipovetzky and Geffner
2012)2 is a variation of Breadth First Search (BFS). The
pseudo-code is shown in Algorithm 1. The difference to BFS
is the stricter pruning. NWS prunes not only the states that
are duplicates (i.e. the states in the closed set) but all states
with a novelty larger than a given parameter k. We call them
approximate duplicates. This check is done in Line 12. The
other difference to BFS is the initialization in Line 6. Instead
of inserting the initial state I into the closed set all partial as-
signments of size k that agree with I are inserted. Besides
these two differences, it is the same as BFS. The novelty of
a state s is the size of the smallest partial assignment p that
agrees with s but no other state that was generated previ-
ously in the search. The amount of partial assignments with
size k is exponential only in k. Note that the novelty of a
state is not a property of the state itself but is dependent on
the previous behavior of the search.

The novelty width is defined with the graph Gi. Its nodes
are partial assignments of size i.

Definition 3. For Π = ⟨V, I,O, γ⟩ the graph Gi is defined
inductively by:

• the partial assignment p of size |p| = i is a root in Gi iff
p agrees with I .

• ⟨p, p′⟩ is a directed edge in Gi iff p is in Gi and for every
optimal plan π = (π0, . . . , πn) for ⟨V, I,O, p⟩ there is a

2In the original work it is called i-width search, IW(i). They
defined it on the STRIPS(Fikes and Nilsson 1971) formalism. This
is no issue as the modification to BFS also works for the SAS+

version.



successor πn+1 of πn such that π followed by πn+1 is an
optimal plan for ⟨V, I,O, p′⟩ and |p′| = i.

The partial assignment p′ could be only reachable by an
operator o with |pre(o)| of arbitrary size if every optimal
plan to p leads to a state that agrees with pre(o). We can view
this as the combination of (1) state s agrees with p and (2)
s is an optimal goal3 state for ⟨V, I,O, p⟩, gives rise to the
implicit information that s agrees with pre(o). This implicit
information could be too large to be expressed explicitly as
a partial assignment in the size, we restrict ourselves to.
Definition 4 (Novelty Width). Given a planning task Π =
⟨V, I,O, γ⟩. A partial assignment p is of novelty width 0 if
it is true in I . Otherwise, its novelty width is the smallest w
such that Gw contains p.

The novelty width of a planning task is the novelty width
of γ. Denoted as NW(Π).

Note that the goal γ is not contained in Gk for any k ∈ N
for unsolvable tasks. This implies NW(Π) is unbounded if
Π is unsolvable.

If k is set to the Novelty Width of the task NWS is guar-
anteed to find an optimal plan. However, NWS can find a
sub-optimal plan with k less than the novelty width. This can
happen if the states of the optimal plan are categorized as an
approximate duplicate due to large novelty while all states in
a sub-optimal plan provide a lower novelty. Lipovetzky and
Geffner (2012) defined the effective novelty width as:
Definition 5 (Effective Novelty Width (eNW)). We call the
smallest k for which NWS(k) finds a satisficing plan for Π
the effective novelty width of Π, eNW(Π).

It is possible for two different states which are in the same
depth of the search tree to be seen as approximate duplicates
of each other, this makes the effective novelty width depen-
dent on the tie-breaking strategy.
Definition 6 (Tie-Breaking Strategy). We call a function a
tie-breaking strategy for planning task Π = ⟨V, I,O, γ⟩ if
it maps any state in Π to a total order of the operators O.

The tie-breaking strategy is responsible for the order of it-
eration in Line 9. This influences not only the order of states
in the open list (Line 14) but also which states will be pruned
(Line 12). With a tie-breaking strategy, NWS is determinis-
tic.
Definition 7 (Optimistic Novelty Width (oNW). We call the
smallest k for which a tie-breaking strategy exists such that
NWS(k) finds a satisficing plan for Π the optimistic novelty
width of Π, oNW(Π).

By definition oNW(Π) ≤ eNW(Π). In the introducing
paper, Lipovetzky and Geffner (2012) pointed out that the
novelty width is an upper bound of the effective novelty
width eNW(Π) ≤ NW(Π). Similar to NW, eNW(Π) and
oNW(Π) are unbounded if Π is unsolvable.

It is easy to see that each state in a plan found by NWS
must contain a novel partial assignment. There are at most(|V |

k

)
· Dk-many partial assignments of size k, where D is

3Meaning this state is the end of at least one optimal plan for
the given task.

the maximal domain size. This implies that the maximum
length of a plan found by NWS with input width k is uppper
bounded by (|V | ·D)k. Additionally, the time complexity of
NWS is O((|V | · D)2k) because each iteration of the inner
loop adds at least one partial assignment to the closed set
and the checks and insertions from lines 12 and 13 are of
time complexity O(

(|V |
k

)
) ⊂ O(|V |k) (assuming a constant

time for each individual check/insertion).

Correlation Complexity
For local search, one would prefer a state space topology
where the only local minima are at goal states, i.e., ev-
ery non-goal state has a successor with a lower heuristic
value (Hoffmann 2001). This implies that greedy search al-
gorithms like greedy best-first search or simple hill-climbing
directly reach the goal without back-tracking.

For the correlation complexity, this requirement is relaxed
to a subset of the state space namely the alive states.

A state is alive if it is reachable and solvable. Descend-
ing means each (non-goal) alive state has a successor with
a lower heuristic value. Dead-end avoiding means no alive
state has a successor with a lower heuristic value that is un-
solvable. The correlation complexity is based on descending
and dead-end avoiding (DDA) heuristics.

Definition 8. Let h be a heuristic for a planning task Π
with alive states SA and goal states SG. If the following two
conditions hold, then h is DDA for Π.

∀s ∈ (SA \ SG) ∃t ∈ succ(s) : h(t) < h(s)

∀s ∈ (SA \ SG)∀t ∈ succ(s) : h(t) < h(s) → t ∈ SA

We see such a heuristic hints, on every alive state at a walk
that ends in a goal state. Additionally, all walks hinted at by
h on an alive state end in a goal.

Definition 9. The correlation complexity of a task CC(Π)
is the smallest dimension for a potential heuristic on Π that
is DDA.

Note that every heuristic is trivially DDA on unsolvable
tasks because no alive state exists. This implies CC(Π) = 0
if Π is unsolvable.

(o/e)NW vs. CC
In the introducing paper of the CC Seipp et al. (2016) com-
pared it to the NW. They explained two scenarios where one
measure is arbitrary, and the other is constant. Their argu-
ments also work for the comparison to oNW and eNW. We
reiterate that.

The measures (o/e)NW and CC express a notion of how
hard a planning task is. One significant difference is that the
(o/e)NW only considers the search from the initial state to a
goal state, while the CC considers the search from all alive
states to a goal state.

This encodes some form of pessimism into the CC. To
make this more apparent consider the following modifica-
tion of a solvable task: Modify the task such that there is a
single artificial goal state and an artificial initial state with
two successors. One to the original initial state the other is
a shortcut transition from the new initial state to the new



goal. The artificial goal state is reachable by all original goal
states. This modification reduces the (o/e)NW to 1, which
matches the intuition that this task is not as hard as the origi-
nal. Yet, CC stays the same because the set of alive states did
not change (except for being projected into a space where
the additional variables exist). In contrast, the oNW contains
a form of optimism with its optimization over tie-breaking
strategies.

Looking at a task that encodes a binary counter gives
us the opposite effect. This task contains state variables
v0, . . . , vn with a domain of {0, 1} to represent each bit. In
the initial state, each bit is set to 0 and in the goal each is
set to 1. Each of the 2n operators has a representation of one
integer as precondition and a representation of the following
integer as effect. There the correlation complexity is 1 (sim-
ply choose the weight such that the variable representing the
ith bit set to 1 is −2i) while the (o/e)NW is the amount of
bits.

River Measure
We want to get rid of this pessimism and concentrate on
the search from the initial state to a goal state while staying
close to the idea of the CC. Thereby we also remove the de-
pendency on tie-breaking strategies. For that, we introduce
a new measure.

For intuition, we want to look at planning tasks with
heuristics, analogous4 to a landscape. We interpret the state
as latitude-longitude position and the heuristic as its altitude,
a successor state corresponds to a neighboring position. If
someone pours water onto one position it would flow to the
neighboring positions with lower altitude and moves further
to a neighbor with even lower altitude.

For a planning task with a DDA heuristic, we could pour
the water onto any alive state and it would flow to a goal
position, eventually. However, in satisficing planning we do
not need guidance from all alive states to goal states but only
one from the initial state. If we are guaranteed that the water
flows from the initial position to a goal position, like a river
flows from the source to the sea, we are happy. We see the
goal states as drains that remove the water from the system.

For this reason, we shift our focus from the alive states to
the wet states.

Definition 10. A state s in Π is wet under a heuristic h if h
hints at a walk π from the initial state and π contains s not
after a goal state (the initial state is trivially wet).

In other words, a state is wet if it is reachable by a de-
scending walk that does not pass the goal.

Definition 11. Let h be a heuristic for a planning task Π
with the wet states SW and goal states SG. If the following
two conditions hold, then h is WDDA for Π.

∀s ∈ (SW \ SG) ∃t ∈ succ(s) : h(t) < h(s)

∀s ∈ (SW \ SG)∀t ∈ succ(s) : h(t) < h(s) → t ∈ SW

4This mental model is the same as the one used for high water-
marks (Wilt and Ruml 2014). However, in this work, we avoid local
minima between the initial state and the goal completely instead of
filling them up.

The first condition guarantees that each non-goal state in
SW has successor with a lower heuristic value and the sec-
ond guarantees that such a state is part of SW. We see for a
WDDA heuristic all walks it hints at on the initial state lead
to a goal (not necessarily end in one).

WDDA retains the key characteristics of DDA: for any
task, greedy search algorithms using a heuristic satisfying
the WDDA property are led towards a goal state without en-
countering local minima and hence without back-tracking.

With that, we introduce the river measure (RM).
Definition 12. The RM of a task RM(Π) is the smallest di-
mension of a potential heuristic on Π that is wet descending
and dead-end avoiding (WDDA).

This means each wet state (that is not a goal state) has a
successor with a lower heuristic value. Successors of a wet
state (that is not a goal state) with a lower heuristic value are
wet, too.

Note that no heuristic exists on unsolvable tasks that is
WDDA. This implies RM(Π) is unbounded if Π is unsolv-
able.

To talk about individual states of a task we define the RM
of a state.
Definition 13. The RM of a state s in Π = ⟨V, I,O, γ⟩ is
RM(s) = RM(⟨V, s,O, γ⟩).

CC vs. RM
The most apparent similarity between the two is the dis-
regard for the difficulty to actually synthesize a potential
heuristic with the required property. Additionally, it is easy
to see that each DDA heuristic is also WDDA. This implies
that CC(Π) ≥ RM(Π). Helmert et al. (Helmert et al. 2022)
studied multiple modifications of the DDA property. Each
of them implies the WDDA property. From this implication
and their results, we conclude that the synthesis of a WDDA
heuristic is in Σp

2, which is the second level of the polyno-
mial hierarchy.

We saw in the comparison to (o/e)NW that even in easy
tasks “bad” alive states could cause a large CC. If a single
alive state exists that requires d dimension in the potential
heuristic to construct a descending walk to the goal from it,
then the CC is at least d. Even if that state is far away from
the initial state and the goal state. The state could also be
reachable only by traversing through goal states. However,
focusing on individual states does not reveal the entire pic-
ture.

The maximal RM over all alive states is not guaranteed to
be the CC of the task, we consider the following planning
task as a counterexample. A binary counter that counts from
11 down to 00, but it is first decided if a little endian or big
endian counting is used. The state space is depicted in Figure
1.

For all states s with (v 7→ little endian) the weights
w(b0 7→ 1) = 1 and w(b1 7→ 1) = 2 provide a potential
heuristic of dimension 1 that is WDDA from s.

For all other states s′ the weights w(v 7→ undecided) =
1, w(v 7→ little endian) = 2, w(b0 7→ 1) = 2 and
w(b1 7→ 1) = 1 provide a potential heuristic of dimension 1
that is WDDA from s′.
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Figure 1: Reachable state space of the little/big endian bi-
nary counter. The first symbol inside the node indicates the
assignment of v with U for undecided, L for little endian,
and B for big endian. The second symbol shows the assign-
ment of bit b0 and the third of bit b1.

However, the CC of the task is at least
2. This can be shown with the criterion5

from Seipp et al. (2016) since the operators
⟨{v 7→ big endian, b0 7→ 1, b1 7→ 0}, {b0 7→ 0, b1 7→ 1}⟩
and ⟨{v 7→ littel endian, b0 7→ 0, b1 7→ 1}, {b0 7→ 1, b1 7→
0}⟩ are both critical but inverse of each other.

The CC is equal to the RM if only a single walk π from
the initial state to the goal exists. A WDDA heuristic h hints
only at π. Since this is the only walk to a goal the states in π
are exactly the alive states. We see that the wet states are the
alive states and conclude that h is also DDA.

oNW vs. RM
A plan found by NWS with input width k can be enforced by
a potential heuristic of dimension k+1. For the constructive
proof, we use discriminating facts.
Definition 14 (Discriminating Facts). Let s, s′ be states. If
s ̸= s′ then there exists at least one fact (v 7→ d′) ∈ s′ with
(v 7→ d′) /∈ s. We call the set of such facts the discriminat-
ing facts from s to s′. We denote the set of discriminating
facts as δ(s, s′) := s′ \ s.

Let δ×(s, s′) be one arbitrarily chosen element from the
discriminating facts δ(s, s′).
Theorem 1. If NWS with input width k finds a plan π for
⟨V, I,O, γ⟩ (with any tie-breaking strategy) then a potential
heuristic of dimension k + 1 exists that enforces π on I .

Proof. We assume k < |V | because a potential heuristic of
dimension |V | holds no restriction. We can assign each state
a heuristic value individually. It is trivial that an enforcing
potential heuristic of dimension |V | exists.

We look at the search tree of an NWS with input width
k that found a plan π for a planning task Π = ⟨V, I,O, γ⟩.
That plan π traverses through the states π0, π1, . . . , πL with
π0 = I . We will construct a potential heuristic h that en-
forces π on I .

Let pπi be one arbitrarily chosen partial assignment that
was novel in πi with |pπi | = k. The idea is to give pπi a strong
negative weight to ensure h(πi−1) > h(πi). However, we
have to watch out for successors other than πi and give them
strong positive weights to ensure that h enforces πi on πi−1.

We can divide succ(πi−1) into the disjoint sets
{πi}, {πi−1} ∩ succ(πi−1), Si, Ci, Zi with:

• Si := {si ∈ succ(πi−1) | pπi ⊆ si, si ̸= πi}
5Theorem 5 (Seipp et al. 2016).

• Ci := {ci ∈ succ(πi−1) | pπi ⊈ ci, p
π
i−1 ⊆ ci, ci ̸=

πi−1}
• Zi := {zi ∈ succ(πi−1) | pπi ⊈ zi, p

π
i−1 ⊈ zi}

The set Si contains the successors that also agree with the
novel assignment pπi . The set Ci contains the successors that
also agree with the assignment pπi−1 that was novel in πi−1

and do not agree with the novel assignment pπi . The set Zi

contains the successors that do not agree with pπi nor with
pπi−1.

Consider the sets of facts:

• Sδ
i := {δ×(πi, si) | si ∈ Si}

• Cδ
i := {δ×(πi−1, ci) | ci ∈ Ci}

and the set of partial assignments:

• Sp
i := {pπi ∪̇{δsi } | δsi ∈ Sδ

i }
• Cp

i := {pπi−1∪̇{δci } | δci ∈ Cδ
i }

A successor x of πi−1 agrees with a fact in Sδ
i , implies

x ̸= πi and a successor x of πi−1 agrees with a fact in Cδ
i ,

implies x ̸= πi−1.
We now assign weights to the partial assignments in {pπi },

Sp
i , and Cp

i .
It could be the case that one ci ∈ Ci agrees with more pπj

with j < i than πi−1 does. This would lead to more negative
summands in the evaluation of the potential heuristic, which
could lead to h(ci) < h(πi−1) meaning h would not enforce
πi on πi−1. To compensate for that we give all pπi−1 ∪ {δci }
in Cp

i a strong positive weight.
Let n := |V | be the number of state variables in the con-

sidered task Π and the auxiliary constant Ω :=
(

n
k+1

)
+ 2.

We chose the weights for the potential heuristic with:

• w(pπi ) := −Ω2·i

• w(spi ) := +Ω2·i+1 for all spi ∈ Sp
i

• w(cpi ) := +Ω2·i−1 for all cpi ∈ Cp
i

for each i ∈ {0, . . . , L}. For all other partial assignments
the weight is 0. We see that the largest partial assignment
with a non-zero weight is of size k + 1 and therefore h is of
dimension k + 1.

For any state x the heuristic h is evaluated with

h(x) =

L∑
j=0

−Ω2j · [pπj ⊆ x] +

L∑
j=0

∑
sp∈Sp

j

Ω2j+1 · [sp ⊆ x]

+

L∑
j=0

∑
cp∈Cp

j

Ω2j−1 · [cp ⊆ x]

Since pπj does not agree with any xi ∈ succ(πi−1) where
j > i, we can reduce h(xi) to

h(xi) =

i∑
j=0

−Ω2j · [pπj ⊆ xi] +

i∑
j=0

∑
sp∈Sp

j

Ω2j+1 · [sp ⊆ xi]

+

i∑
j=0

∑
cp∈Cp

j

Ω2j−1 · [cp ⊆ xi]



For the lower bound of h(πi), we consider the case that
πi agrees with all partial assignments with a negative weight
and none of the partial assignments with a positive weight.
We conclude the lower bound:

i∑
j=0

−Ω2j + 0 + 0 ≤ h(πi)

For the upper bound, we consider that pπi agrees with πi

and there are
(

n
k+1

)
partial assignments of size k + 1 that

agree with a given state. We conclude the upper bound:

h(πi) ≤ −Ω2i +

(
n

k + 1

)
Ω2·(i−1)+1 + 0

≤ −(Ω · Ω2i−1) +

(
n

k + 1

)
Ω2·(i−1)+1

< −Ω2i−1 for Ω >

(
n

k + 1

)
+ 1

≤
i−1∑
j=0

−Ω2j

≤ h(πi−1)

and h(πi) ≤ 0.
For any si ∈ Si there is at least one sp ∈ Sp

i that agrees
with si. This implies the lower bound:

h(si) ≥
i∑

j=0

−Ω2j + 1 · Ω2i+1 + 0

≥ −2 · Ω2i +Ω2i+1 for Ω > 2

≥ 0 for Ω > 2

≥ h(πi−1)

For any ci ∈ Ci there is at least one cp ∈ Cp
i that agrees

with ci. The partial assignment pπi does not agree with ci.
This implies the lower bound:

h(ci) ≥
i−1∑
j=0

−Ω2j + 0 + 1 · Ω2i−1

≥ −2 · Ω2i−2 +Ω2i−1 for Ω > 2

≥ 0 for Ω > 2

≥ h(πi−1)

The partial assignments pπi and pπi−1 do not agree with
any zi ∈ Zi. This implies the lower bound:

h(zi) ≥
i−2∑
j=0

−Ω2j + 0 + 0

≥ h(πi−1)

We conclude that each successor x ∈ succ(πi−1) \ {πi}
holds h(πi−1) ≤ h(x) and h(πi−1) > h(πi). This implies
that h enforces πi on πi−1 for each i ∈ {0, . . . , L} and there-
fore h enforces π.

Note that NWS can find a plan with k smaller than the
novelty width. We remember, NWS finds a satisficing plan
with the fitting tie-breaking strategy and k = oNW(Π). In
the proof above it is not used that k is the novelty with but
only that NWS with input width k found a (satisficing) plan.

This shows the upper bound for the river measure
RM(Π) ≤ oNW(Π) + 1 ≤ NW(Π) + 1.

The representation of each weight in above proof requires
a number of bits polynomial in |V | and exponential in oNW.
To be more precise O(log((|V |2)|V |oNW

)) = O(|V |oNW · 2 ·
log(|V |)).

Conversion
We take a look at how we can change the hardness of a plan-
ning task according to the measures in a way that contradicts
the intuition of hard and easy tasks.

There is a way to convert a planning task to an equivalent
task in the sense that the original is solvable iff the converted
task is solvable and a plan for one is easily translatable into
a plan for the other.

The conversion is linear in the optimal plan length of the
original task. The number of operators grows linearly by the
optimal plan length. The conversion has an oNW of 1. This
implies that the RM of such a converted task is always 2.

We add a step counter to the planning task. The step is
counted by each operator. The plan length does not change
but the amount of operators increases at least by a factor of
the shortest plan length.
Definition 15 (E-Conversion). Let Π = ⟨V, I,O, γ⟩ be a
planning task with optimal plan length L. The E-conversion
of Π is the planning task ΠE = ⟨V E , IE , OE , γ⟩ with

V E =V ∪ {t}
OE ={⟨pre(o) ∪ {(t 7→ i− 1)},

eff(o) ∪ {(t 7→ i)}⟩|i ∈ {1, . . . , L}, o ∈ O}
IE =I ∪ {(t 7→ 0)}

and a domain of {0, . . . , L} for the new state variable t.
It is easy to see that the E-conversion ΠE is identical to

the original task Π except for the counter that updates with
every step. A projection to the original state variables returns
the original task. We can easily extract a plan for the original
task from a plan for its E-conversion.
Theorem 2. Let Π = ⟨V, I,O, γ⟩ be a planning task.

NW(ΠE) ≤ NW(Π).

Proof. Looking at the graphs Gi(Π) and Gi(ΠE) we see that
Gi(Π) is a subgraph of Gi(ΠE), meaning if γ is a node
in Gi(Π), it is one in Gi(ΠE), too but not necessarily vice
versa.

Theorem 3. Let Π = ⟨V, I,O, γ⟩ be a planning task.

oNW(ΠE) = 1.

Proof. With the right tie-breaking strategy and input width
1, NWS iterates through the foreach loop in a way that in
each depth it first adds the state πi of a plan into the open list.
This is possible as {(t 7→ i)} ⊆ πi is a partial assignment of
size 1 that is not in the closed set, yet.



Theorem 4. A plan enforcing, potential heuristic of dimen-
sion 2 exists for the E-conversion ΠE of any planning task
Π.

Proof. Since {(v′i 7→ 1)} is a novel partial assignment in
each state πE

i the optimistic novelty width is 1. We conclude
with Theorem 1 that a plan enforcing potential heuristic of
dimension 2 exists.

The eNW(ΠE) is in between oNW(ΠE) = 1 and
NW(ΠE) ≤ NW(Π).

The time complexity of running NWS with input width
k on task ΠE is O((|V | · D + L)k) where L is the length
of a plan for Π and L ≤ (|V | · D)oNW(Π). Resulting in a
time complexity of O((|V | ·D)k·oNW(Π)). That means if the
difference between NW(Π) and oNW(Π) is large, then run-
ning NWS on Π could in theory be beneficial. The question
is if such tasks do exist.

This shows that the measures eNW, oNW, and RM are
very dependent on the representation of the task.

Discussion
We see that adding state variables can reduce the hardness
of a task. This might contradict one’s intuition that tasks of
larger size tend to be harder. After all the state space in-
creases.

However, this conversion is not meant to help the plan-
ner but the pair of heuristic and algorithm. The assignment
of the additional state variable in a given state implies to-
gether with the behavior of the algorithm and heuristic fur-
ther, compact information about the walk to said state.

We can view this as the combination of s agrees with
p ⊇ {(t 7→ x)} (x ∈ dom(t)) and s is reached by a descend-
ing walk under h gives rise to further implicit information
about s. Similarly to the edges in the Gi graph, such implicit
information could be too large to be expressed explicit as a
partial assignment in the size, we restrict ourselves to.

Without these, it would have to rely on features of greater
size to extract the necessary information to provide the guid-
ance we ask for.

For the NWS which works without a heuristic, this argu-
ment can not be made. Even though the oNW is reduced
by the conversion the measure becomes utterly useless. The
idea was to have a modified duplicate check that prunes
more states than BFS. With the conversion, this aspect is
lost. States in the converted task are never seen as approxi-
mate duplicates of each other unless they would be true du-
plicates in the original task and reached by a walk of equal
length. This happens because the added state variables pro-
vide a novel fact after each step interacting with the counter.

Adding unnecessary state variables to reduce the hard-
ness can be viewed the other way around. Removing un-
necessary state variables might increase the RM. We look
at the Visit-All domain from the international planning
competition (IPC 2011). The task we consider has an
agent that starts in the middle of a 3 by 3 grid. The
goal is to visit the corner locations 0-0, 0-2, 2-0, and
2-2. A potential heuristic of dimension 1 with the weight
w({location-x-y-is-visited 7→ true}) = −1 for

each location would provide a WDDA heuristic. However,
planners performing a goal-based relevance analysis remove
the location-x-y-is-visited variables if they are
not goal variables. This includes all planners that use the
preprocessing step of FF (Hoffmann and Nebel 2001) or the
translation step of Fast Downward (Helmert 2009). Remov-
ing these seemingly irrelevant variables causes an RM of 2,
while the original task has an RM of 1.

In any plan the agent has to move onto one of the edge lo-
cations (0-1, 1-0, 1-2, or 2-1) in the first step. For a WDDA
heuristic, the weight for this location must be lower than for
the middle one because no fact changes besides these two.
The agent has to get to at least a second edge location to
solve the task. This second edge location has to have a bet-
ter heuristic value than the first one for a descending heuris-
tic. However, all edge locations are reachable in the initial
state. The agent could get to the edge location with the low-
est weight first and end up being stuck in a local minimum.

The oNW is not affected in this example. Each state of the
optimal plan provides a novel fact about the agent’s position.
Therefore the oNW is 1. The CC is also not affected because
the state with the agent on the middle location and all edge
locations visited is an alive state. Therefore the CC is 2.

Conclusion
We introduced the river measure as a new measure for the
“hardness” of planning tasks. We compared it to the exist-
ing measures and showed that it is upper bounded by the
correlation complexity and by the effective novelty width
+1. RM(Π) ≤ CC(Π) and RM(Π) ≤ oNW(Π) + 1 ≤
eNW(Π) + 1 ≤ NW(Π) + 1. Additionally, we explained
a conversion for arbitrary planning tasks with a growth of
task description size linear to the size of the original plan
that reduces the river measure to 2.

This indicates the expressive power of potential heuristics
with bounded dimension and the value seemingly unneces-
sary state variables can provide.

Acknowledgements
We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639). Moreover, this research was partially sup-
ported by TAILOR, a project funded by the EU Horizon
2020 research and innovation programme under grant agree-
ment no. 952215.

References
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