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Abstract

We introduce lower-bound certificates for classical planning
tasks, which can be used to prove the unsolvability of a task
or the optimality of a plan in a way that can be verified by an
independent third party. We describe a general framework for
generating lower-bound certificates based on pseudo-Boolean
constraints, which is agnostic to the planning algorithm used.
As a case study, we show how to modify the A∗ algorithm
to produce proofs of optimality with modest overhead, us-
ing pattern database heuristics and hmax as concrete exam-
ples. The same proof logging approach works for any heuris-
tic whose inferences can be efficiently expressed as reasoning
over pseudo-Boolean constraints.

Introduction
Optimal classical planning algorithms make three promises:
that the plans they produce are correct, that no cheaper plans
achieving the goal exist, and that any task reported as un-
solvable actually is. As McConnell et al. (2011) argue in
their seminal work on certifying algorithms, there are many
good reasons not to accept such promises blindly. Instead, a
certifying planning algorithm outputs some kind of proof (a
certificate) that an independent third party can use to verify
the truthfulness of the planner’s claims.

For the correctness of plans, such a verification is per-
formed routinely: the generated plans themselves serve as
certificates for this, and plan validation tools such as VAL
(Howey and Long 2003) or INVAL (Haslum 2016) can be
used to check that the produced plans are correct. For un-
solvability, Eriksson et al. (Eriksson, Röger, and Helmert
2017, 2018; Eriksson and Helmert 2020) recently introduced
two forms of unsolvability certificates that cover very di-
verse planning algorithms.

Certifying the optimality of plans, in contrast, is still in its
infancy. The only existing work in this direction is a paper
by Mugdan, Christen, and Eriksson (2023) which describes
two approaches: one based on a compilation to unsatisfia-
bility, and one based on an extension of the unsatisfiabil-
ity proof system of Eriksson, Röger, and Helmert (2018).
The first approach is in general not computationally feasible,
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as it requires a task reformulation that increases the num-
ber of state variables and actions exponentially in the size
of the planning task. The second approach does not share
this weakness, but is not sufficiently general to encompass
a wide range of planning approaches. Mugdan, Christen,
and Eriksson identify five essential properties for optimal-
ity certificates: soundness (if an optimality certificate is ac-
cepted by the verifier, then optimality holds), completeness
(if a solution is optimal, then a certificate of its optimal-
ity exists), efficient generation (a non-certifying algorithm
can be changed to produce certificates with reasonable, at
most polynomial overhead), efficient verification (the veri-
fier runtime is polynomial in the task and certificate size),
and generality (certificates can be efficiently produced by a
wide variety of different planning algorithms rather than be-
ing algorithm-specific).

Mugdan, Christen, and Eriksson show that their approach
is sound and complete, but critically comment that “the other
three properties for practical usability do not have clear-cut
answers”. Compared to the unsolvability proof system of
Eriksson et al., their approach appears much more specific
to heuristic forward search using heuristics that are them-
selves based on some kind of forward search, such as the
hmax heuristic (Bonet and Geffner 2001). For example, it is
not at all clear how to certify heuristics computed in a back-
ward direction, such as pattern databases (Edelkamp 2001)
or other abstraction heuristics without redoing the abstract
state space exploration for every heuristic evaluation.

While in the planning community the interest in certifying
algorithms is quite recent, they are standard in the SAT com-
munity, where unsatisfiability certificates based on proof
systems like DRAT (Heule, Hunt, and Wetzler 2013) and
LRAT (Cruz-Filipe et al. 2017) are required for participat-
ing in SAT competitions and supported by formally verified
checkers (Tan, Heule, and Myreen 2023; Lammich 2020).
A recently proposed alternative are pseudo-Boolean proofs
based on cutting planes, which are supported by the for-
mally verified checker VeriPB (Bogaerts et al. 2022). Unlike
the other proof systems mentioned, cutting planes are able
to directly incorporate linear arithmetic, making them very
appealing for optimization problems such as optimal clas-
sical planning. Indeed, VeriPB has been applied to a wide
range of optimization problems such as MaxSAT (Berg et al.
2023), ILP presolving (Hoen et al. 2024), constraint pro-
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gramming (Gocht, McCreesh, and Nordström 2022; McIl-
ree and McCreesh 2023; McIlree, McCreesh, and Nordström
2024), and dynamic programming (Demirović et al. 2024).

In this work, we propose to certify plan optimality by
means of such pseudo-Boolean proofs. We claim that our
optimality certificates have all five desirable properties dis-
cussed above: they are sound, complete, efficiently generat-
able, efficiently verifiable, and general. (For space reasons,
the generality of the proof system must remain a conjecture
for the time being, but at least we show that we can cover
the techniques covered by Mugdan et al. as well as pattern
database heuristics that their approach struggles with.)

The overall concept is shown in Figure 1. In addition to
a plan, the certifying planning system produces an optimal-
ity certificate that proves that the input task has no cheaper
solution. A plan validator such as VAL verifies that the plan
solves the task and determines its cost. The optimality veri-
fier has access to the original task, the plan cost determined
by the validator, and the certificate from the planning sys-
tem. On this basis it verifies that the plan is indeed optimal.

The certificate is based on cutting planes proofs with reifi-
cation (Bogaerts et al. 2023), in which the atomic pieces
of knowledge are pseudo-Boolean constraints. Such con-
straints allow us to reason conveniently about costs of ac-
tions and bounds on costs to reach a state. Roughly speak-
ing, the certificate describes an overapproximation of which
states can be reached at which cost and shows that no goal
state can be reached at a cost below the claimed optimal plan
cost. The heart of the proof is a standard pseudo-Boolean
proof that can be verified by an off-the-shelf proof checker
such as the VeriPB system.

The paper is structured as follows: we introduce the gen-
eral framework for certifying plan optimality by provid-
ing an encoding of planning tasks as pseudo-Boolean con-
straints and defining lower-bound certificates. Next, we de-
fine heuristic certificates, which represent the concept of an
admissible heuristic estimate as pseudo-Boolean constraints.
We then show how heuristic certificates can be used to inte-
grate proof-logging into A∗, capturing the arguments for op-
timality of A∗ with an admissible heuristic on a given state
space as pseudo-Boolean constraints. Finally, we describe
how heuristic certificates for pattern database heuristics and
hmax can be generated, which amounts to proving the admis-
sibility of these heuristics with pseudo-Boolean constraints.

Background
We first introduce the STRIPS planning formalism (Fikes
and Nilsson 1971), followed by pseudo-Boolean constraints
and the cutting planes with reification proof system.

STRIPS Planning Tasks
A STRIPS planning task Π = ⟨V,A, I, G⟩ consists of a fi-
nite set V of propositional state variables, a finite set A of
actions, the initial state I ⊆ V and the goal G ⊆ V .

A state s ⊆ V of Π induces a variable assignment ρs
that maps every v ∈ s to 1 and every v /∈ s to 0. Each
action a ∈ A is a tuple ⟨pre(a), add(a), del(a), cost(a)⟩,
where pre(a) ⊆ V is the set of preconditions, add(a) ⊆ V
is the set of add effects, del(a) ⊆ V \ add(a) is the set of
delete effects, and cost(a) ∈ N0 is the cost of a. We write
evars(a) for the set add(a) ∪ del(a) of affected variables.
Action a is applicable in state s if pre(a) ⊆ s. The suc-
cessor state is sJaK = (s \ del(a))∪ add(a). For a sequence
π = a1, . . . , an of actions that are successively applicable in
state s, we write sJπK for the resulting state sJa1K . . . JanK.
If this state is a goal state, i.e. G ⊆ sJπK, then π is a plan for
s. A plan for the initial state I is a plan for task Π. The cost
of π is cost(π) =

∑n
i=1 cost(ai). A plan is optimal if there

is no plan of lower cost. Task Π is solvable if there is a plan
for Π, otherwise it is unsolvable.

Pseudo-Boolean Formulas
A Boolean variable has domain {0, 1}. A literal ℓ is a
Boolean variable x or its negation x̄. The negation of a lit-
eral ℓ = x̄ is ℓ̄ = x. A pseudo-Boolean (PB) constraint
(in normalized form) over a finite set X = {x1, . . . , xn} of
Boolean variables is an inequality∑

i
aiℓi ≥ A,

where all literals ℓi are over distinct variables from X ,
A ∈ N0 and all coefficients ai are from N0. We will
also write linear constraints more flexibly, but they can al-
ways be transformed to normalized form by simple alge-
braic transformations. As syntactic sugar, we will also write
(ℓ1∧ · · ·∧ ℓn) → ℓ as abbreviation for ℓ1+ ...+ ℓn+ ℓ ≥ 1.

A solution of the constraint is an assignment ρ : X →
{0, 1} such that the inequality is satisfied by replacing every
variable xi with ρ(xi) and every negated variable x̄i with
1−ρ(xi). We also use assignments for all literals, implicitly
requiring that ρ(x̄) = 1− ρ(x) for all variables x.

For constraint C .
=

∑
i aiℓi ≥ A, the negation ¬C is the

normalized form of
∑

i aiℓi ≤ A− 1.
A PB formula (Buss and Nordström 2021) is a finite set C

of PB constraints over a set X of variables. An assignment
ρ : X → {0, 1} is a model of the formula if it is a solution
of all constraints. If C has no model, it is unsatisfiable. We
say that a constraint C is implied by a PB formula C (written
C |= C) if every model of C is a solution of C and that PB
formula D is implied by C (written C |= D) if C |= D for all
D ∈ D.

For a partial variable assignment ρ : X ↛ {0, 1} and
constraint C, we write C↾ρ for the constraint obtained from
C by replacing each variable v in the domain of ρ by ρ(v)
and normalizing.



Cutting Planes with Reification Proof System
The VeriPB proof system (Bogaerts et al. 2023) is an exten-
sion of the cutting planes proof system. We use a subset of
the VeriPB proof system which we call cutting planes with
reification (CPR).

Proofs in the cutting planes proof system (Cook, Coullard,
and Turán 1987) are built from one axiom and three deriva-
tion rules. For any literal ℓ, the literal axiom allows us to
derive ℓ ≥ 0 without prerequisites. If we already have∑

i aiℓi ≥ A and
∑

i biℓi ≥ B, we can derive
•
∑

i(cAai + cBbi)ℓi ≥ cAA+ cBB
for every cA, cB ∈ N0 (linear combination),

•
∑

i⌈ai/c⌉ℓi ≥ ⌈A/c⌉
for every c ∈ N+ (division), and

•
∑

i min{ai, A}ℓi ≥ A (saturation).
All constraints that can be derived from a PB formula C

by these rules are implied by C.

Reverse Unit Propagation A constraint C ∈ C unit prop-
agates literal ℓ under partial assignment ρ if all models of
C↾ρ assign ℓ to 1. When this happens, we can extend ρ with
ℓ 7→ 1 and unit-propagate further literals under the extended
assignment. If this process derives a conflict (assigning 0
and 1 to the same variable) starting from the empty variable
assignment, then C is unsatisfiable.

Formula C implies constraint C by reverse unit propaga-
tion (RUP) if C ∪ {¬C} unit propagates to a conflict from
the empty assignment. Any constraint implied by RUP can
be derived by a cutting plane proof. As in VeriPB, our proof
system allows adding any constraint implied by RUP di-
rectly in a single step. This is a useful shortcut that drasti-
cally compresses many cutting plane proofs.

Reification In addition to cutting planes reasoning, our
proof system also allows reification, i.e., introducing a new
variable that represents the truth value of a constraint. If C
is a constraint and r is a new variable, we write r ⇔ C to
express that variable r must be 1 if C is true under the as-
signment and 0 otherwise. If C is

∑
i aiℓi ≥ A, this is a

shorthand notation for the two constraints

Ar̄ +
∑

i
aiℓi ≥ A, and

(M −A+ 1)r +
∑

i
aiℓ̄i ≥ M −A+ 1

where M =
∑

i ai. We use the notation r ⇒ C for the first
and r ⇐ C for the second constraint.

To summarize, a CPR proof consists of a sequence of
derivation steps from the cutting plane proof system (literal
axiom, linear combination, division, and saturation), con-
straints derived by RUP, and reifications. In addition, we al-
low the redundance-based strengthening (RED) rule from
VeriPB, which can be understood as a form of proof by con-
tradiction. We only use it in an extended version of this paper
(Dold et al. 2025) and therefore describe it there.

Lower-Bound Certificates
We propose certificates that prove that there is no plan of
lower cost than a given bound B. A typical, but not the only,

application of such lower-bound certificates is to certify that
a plan of cost B is optimal. Before we define the full frame-
work, we first introduce how we encode planning tasks by
means of PB formulas.

Encoding Planning Tasks
The PB encoding of task Π = ⟨V,A, I, G⟩ uses the proposi-
tional variables from V as Boolean variables, and variables
Vc = {c0, . . . , c⌈log2(B)⌉} as a binary representation of a
number in the range 0, . . . , B. These variables allow us to
represent pairs ⟨s, c⟩ consisting of a state s and a number
c ≤ B. In the following, one can use the intuition that s is a
state of the task, which has been reached incurring cost c. In
addition, we introduce a number of reification variables.

Reification variable rI is true in a model iff the state vari-
ables encode the initial state:

rI ⇔
∑
v∈I

v +
∑

v∈V\I

v̄ ≥ |V| (1)

For the goal, we introduce a reification variable rG, which
is true in a model iff the state variables encode a goal state:

rG ⇔
∑
v∈G

v ≥ |G| (2)

For the actions, we encode transitions from a state s to
successor state sJaK in a similar way to symbolic search
(e.g., Edelkamp and Kissmann 2009) or planning as satis-
fiability (e.g., Rintanen, Heljanko, and Niemelä 2006), en-
coding the successor state by means of additional variables
v′ for each state variable v. The variables ci encode a cost
by which state s can be reached, and analogously we use a
variable c′i for each ci to encode the cost to reach sJaK via
this transition. For this purpose, we need constraints that en-
sure that the difference between the two values corresponds
to the cost of the action. We do this by means of additional
reification variables ∆c=k that express that the difference
between the two numbers is k:

∆c=k ⇔
∑⌈log2 B⌉

i=0
2ic′i −

∑⌈log2 B⌉

i=0
2ici = k (3)

To express that the variables ci or c′i encode a value that
is at least k for some k ∈ {0, . . . , B}, we use reification
variables cost≥k and cost′≥k:

cost≥k ⇔
∑⌈log2 B⌉

i=0
2ici ≥ k (4)

cost′≥k ⇔
∑⌈log2 B⌉

i=0
2ic′i ≥ k (5)

Note that we do not introduce these reification variables
for all values of k up to B, which would require an exponen-
tial number of variables in the encoding size of B. Rather,
we lazily introduce only the variables used by the proof.

For handling the state variables v that are not affected by
an action, we introduce reification variables eqv,v′ that are
true in a model iff it assigns v and v′ the same value:

eqv,v′ ⇔ leqv,v′ + geqv,v′ ≥ 2

geqv,v′ ⇔ v + v′ ≥ 1

leqv,v′ ⇔ v̄ + v′ ≥ 1

(6)



For each action a ∈ A we introduce a variable ra ex-
pressing that whenever the action is applied, the cost is in-
creased by cost(a), the action precondition is satisfied, the
primed variables truthfully represent the successor state, and
the successor cost is within the cost bound:

ra ⇒ ∆c=cost(a) +
∑

v∈pre(a)

v +
∑

v∈add(a)

v′ +
∑

v∈del(a)

v′

+
∑

v∈V\evars(a)

eqv,v′ + cost′≥B ≥ 2 + |pre(a)|+ |V|
(7)

Observe that this constraint represents a conjunction: all
literals must be true to meet the bound 2 + |pre(a)|+ |V|.

Finally, reification variable rT encodes that a state transi-
tion happens, i.e., some action variable is selected:

rT ⇔
∑
a∈A

ra ≥ 1 (8)

This representation allows selecting several actions at the
same time, but only if they all lead to the same state change
under the same cost.
Definition 1. For planning task Π = ⟨V,A, I, G⟩ and cost
bound B ∈ N0, a PB task encoding is a tuple EΠ =
⟨CΠ, rI , rG, rT ⟩, where CΠ = ⟨Cinit, Cgoal, Ctrans, C≥⟩ such
that Cinit, Cgoal, Ctrans and C≥ are sets of reifications from
equations (1)–(8), Cinit from (1) and (4), Cgoal from (2) and
(4), Ctrans from (3)–(8), C≥ from (3)–(5) and rI , rG, and rT
are the reification variables introduced in (1), (2), and (8).

Certifying Unsolvability under Cost Bound
A certificate shows that the task is unsolvable under a cost
bound B, i.e., there is no plan π with cost(π) < B.

Intuitively, it is based on an invariant φ which represents
an overapproximation of the reachable state-cost pairs. An
invariant in general is a property that is preserved through
action applications, i.e. (1) whenever φ is true for state s
and cost c, and action a is applicable in s, then φ is true for
state sJaK and cost c+ cost(a).1 In addition, we require that
(2) φ is true for the initial state and cost 0. Together, (1) and
(2) ensure that φ is true in all reachable state-cost pairs. If
in addition, (3) φ is not true for any goal state with a cost
strictly lower than B, this implies that the task cannot be
solved with cost < B: initially, the invariant is true (2), it is
impossible to change this by an action application (1), so for
all reachable goal states the incurred cost is at least B (3).

In our certificates, the invariant will be defined by a se-
quence of PB reifications, and the certificate must prove
the three properties above by means of three separate CPR
proofs. We call property (1) the inductivity lemma, property
(2) the initial state lemma and property (3) the goal lemma.

We can think of the representation of the invariant as a
circuit where each gate evaluates a PB constraint. The state
variables and cost bits ci are the inputs to the circuit, and the
output of the circuit determines whether the invariant is true
for the input state-cost pair. We now formalize this notion.

1For unsolvability under a cost bound, it is sufficient to only re-
quire the invariant property for action applications within the cost
bound. We implicitly do this because our task encoding only per-
mits such action applications, cf. Eq. (7).

Definition 2. A PB circuit with input variables V is a pair
R = ⟨R, r⟩, where

• R is a sequence ⟨r1 ⇔ φ1, . . . , rn ⇔ φn⟩ of PB reifica-
tions such that each PB constraint φi only has non-zero
coefficients for variables from V ∪ {rj | j < i}, and

• r ∈ {r1, . . . , rn} is the output variable.

Slightly abusing notation, we also interpret a sequence of
PB constraints as the PB formula consisting of its compo-
nents (i.e., treat the sequence as a set). For a PB circuit ⟨R, r⟩
with input variables V ∪ Vc, we will write M(R, r) for the
represented set of pairs ⟨s, c⟩. In other words, M(R, r) con-
tains the pair ⟨s, c⟩ iff there exists a model ρ of R∪{r = 1},
such that s = {v ∈ V | ρ(v) = 1} and c =

∑
i 2

iρ(ci).
Putting the pieces together, we get the following formal

definition of lower-bound certificates. Remember that in the
encoding of the planning task, V contains the state variables
and Vc the binary variables for representing cost.

Definition 3. Let Π = ⟨V,A, I, G⟩ be a planning task and
B ∈ N0 a cost bound. Let EΠ = ⟨CΠ, rI , rG, rT ⟩ be a PB
task encoding for Π and B.

A lower-bound certificate for Π with bound B is a tuple
⟨⟨Cφ, rφ⟩,Pinit,Pind,Pgoal⟩, where

• ⟨Cφ, rφ⟩ is a PB circuit with input variables V ∪ Vc not
mentioning a primed variable.

• initial state lemma: Pinit is a CPR proof for
Cinit ∪ Cφ ∪ C≥ |= (rI ∧ cost≥1) → rφ.

• goal lemma: Pgoal is a CPR proof for
Cgoal ∪ Cφ ∪ C≥ |= (rG ∧ rφ) → cost≥B .

• inductivity lemma: Pind is a CPR proof for
Ctrans ∪ Cφ ∪ C′

φ ∪ C≥ |= (rφ ∧ rT ) → r′φ, where C′
φ is

a copy of Cφ where all PB variables are replaced with
their primed version.

Lower-bound certificates are sound:

Theorem 1. If there is a lower-bound certificate for plan-
ning task Π with bound B, then the task has no plan π with
cost(π) < B.

Proof. Assume there is a plan π = ⟨a1, . . . , an⟩ with
cost(π) < B. It induces a sequence of state-cost pairs
⟨s0, g0⟩, . . . , ⟨sn, gn⟩ such that s0 is the initial state, g0 = 0,
and for all i ∈ {1, . . . , n}, si = si−1JaiK and gi = gi−1 +
cost(ai). Note that sn is a goal state and gn = cost(π) < B.

By the initial state lemma, ⟨s0, g0⟩ is in M(Cφ, rφ). In
rT , the PB encoding captures all action applications that do
not exceed the cost bound, which is the case for the ac-
tion applications in π because cost(π) < B. Thus, by the
inductivity lemma, we get that ⟨si, gi⟩ ∈ M(Cφ, rφ) for
all i ∈ {1, . . . , n}. By the goal lemma, we have for all
⟨s, g⟩ ∈ M(Cφ, rφ) that g ≥ B if s is a goal state. Since
sn is a goal state, and ⟨sn, gn⟩ ∈ M(Cφ, rφ), this implies
that gn ≥ B, a contradiction to gn < B.

The verifier component (see Fig. 1) receives the planning
task, the lower-bound certificate, and the validated plan cost.
Inside, it confirms that the reifications in EΠ are a system of
PB constraints that encode the original planning task. Addi-
tionally, it generates ⟨C′

φ, r
′
φ⟩ based on ⟨Cφ, rφ⟩ by creating



a copy of each PB reification in Cφ where all variables are
replaced by their primed counterparts. It then verifies that
the proofs Pinit, Pgoal and Pind actually derive the statements
in Definition 3. Only if all these steps are successful, the
verifier confirms that the provided plan cost is optimal.

This concludes our formalization of lower-bound certifi-
cates and their verification. Lower-bound certificates are ef-
ficiently verifiable: the verifier runs in polynomial time be-
cause the underlying PB proof checker does and all steps
other than the proof checking are easy to perform in polyno-
mial time. In the rest of the paper we describe a case study
of how certain optimal classical planning algorithms can be
augmented to efficiently generate lower-bound certificates.
Because the algorithms we discuss are complete, this also
shows that lower-bound certificates are complete.

Proof-Logging Heuristic Search
We now examine how a planner can be transformed into
a proof-logging system, in our case a planner that emits a
lower-bound certificate for the cost of the found plan. The
idea is to already log most relevant information about its
internal reasoning during its normal operation, keeping the
overhead for generating the proof low.

A∗ search (Hart, Nilsson, and Raphael 1968) with an ad-
missible heuristic h, i.e. a distance estimator that provides
a lower bound on the goal distance of a state, is the most
common approach for optimal planning as heuristic search.

It maintains a priority queue Open of states s, ordered by
f = g + h(s), where g is the best known cost to reach s
from the initial state. The open list is initialized with the
initial state. A∗ removes a state s from the list and expands it
until it removes a goal state. A state expansion generates all
successor states and adds them to the open list if the implicit
path via s improves its g-value.

One challenge when transforming the approach into a
proof-logging system is that the bound B that should be cer-
tified is only known once a plan has been found. To handle
this, we will use “placeholder” PB variables K≥l and K ′

≥l

with integers l. Once B is known, the proof will be aug-
mented by reifications that give them the intended meaning.
The idea is that they represent cost≥l and cost′≥l, but l will
not necessarily be in the range {0, . . . , B}. For l < 0, we
will instead use 0, and for l > B, we will use B. So the
reifications for these variables will be

K≥l ⇔ cost≥min{B,max{0,l}} and (9)

K ′
≥l ⇔ cost′≥min{B,max{0,l}} (10)

By K, we denote the (infinite) set of all such variables. Upon
termination A∗ adds a set CK of reifications for the finitely
many such variables that actually occur in the proof. In the
proofs in this paper, we will silently switch from K≥··· to
the corresponding cost≥··· expression, implicitly using (9).

The following two lemmas establish that these clipped
costs behave as expected.2 Intuitively, the first lemma says

2Throughout the paper, we omit proofs of technical lemmas that
do not provide further insight. These proofs are included in the
extended version of this paper (Dold et al. 2025).

that if the costs represented by the variables in Vc exceed
j + k, they also exceed the smaller value j:
Lemma 1. Let j ∈ Z and k ∈ N0. It is possible to derive
cost≥min{B,max{0,j+k}} → cost≥min{B,max{0,j}} from C≥.

The second lemma informally states that if the costs al-
ready exceed l and we spend cost m, the successor cost ex-
ceeds l +m (clipping all costs into {0, . . . , B}).
Lemma 2. For l ∈ Z and m ∈ N0 it is
possible to derive (cost≥min{B,max{0,l}} ∧ ∆c=m) →
cost′≥min{B,max{0,l+m}} from C≥.

Proof-Logging Heuristics
Parts of the overall proof must be contributed by the heuris-
tic. Intuitively, this contribution can be seen as a certificate
that shows that it is impossible to reach the goal with a total
cost strictly less than B from a state s that has been reached
incurring a cost of at least c. For an admissible heuristic, this
will naturally be the case for all c where c+ h(s) ≥ B. We
will later see examples for different heuristics where some
use the same invariant for all states and others generate a
new invariant for each evaluated state.

Throughout its execution (a potential initialization phase
and evaluations for a number of states), the heuristic main-
tains its own PB circuit ⟨H, rh⟩ with input variables V and
K. We assume that the heuristic uses its own namespace, so
it does not introduce reification variables that are also intro-
duced by the search or some other heuristic. Whenever the
search uses the heuristic to evaluate a state s, the heuristic
not only returns the estimate but also a PB variable rhs with
the following requirements:

• M(H, rhs ) contains all pairs ⟨s, ĉ⟩ with ĉ+ h(s) ≥ B.
• If M(H, rhs ) contains pair ⟨ŝ, ĉ⟩, it contains all pairs
⟨s̃, c̃⟩ such that s̃ is reachable from ŝ with overall cost
c̃ < B (i.e., there is an action sequence π with ŝJπK = s̃
and c̃ = ĉ+ cost(π) < B).

• M(H, rhs ) contains no pair ⟨ŝ, ĉ⟩ where ŝ is a goal state
and ĉ < B.

This motivation leads to the following definition:
Definition 4. Let Π = ⟨V,A, I, G⟩ be a planning task and
B ∈ N0 a cost bound. Let ⟨CΠ, rI , rG, rT ⟩ be the PB task
encoding for Π and B and s be a state over V .

A heuristic certificate for state s of Π with bound B is a
tuple ⟨⟨H, rhs ⟩,Ph

s ,Ph
s,ind,Ph

s,goal⟩, where

• ⟨H, rhs ⟩ is a PB circuit with input variables V ∪ K not
mentioning a primed variable.

• state lemma: Ph
s is a CPR proof for

Cs ∪H ∪ C≥ ∪ CK |= (rs ∧ cost≥max{0,B−h(s)}) → rhs ,
where Cs = {rs ⇔

∑
v∈s v +

∑
v∈V\s v̄ ≥ |V|}.

• goal lemma: Ph
s,goal is a CPR proof for

Cgoal ∪H ∪ C≥ ∪ CK |= (rG ∧ rhs ) → cost≥B .
• inductivity lemma: Ph

s,ind is a CPR proof for

Ctrans ∪H ∪H ′ ∪ C≥ ∪ CK |= (rhs ∧ rT ) → r′
h
s ,

where H ′ is a copy of H where all PB variables are re-
placed with their primed version.



As mentioned earlier, heuristic certificates can be seen as
certificates for state s where some cost of at least B − h(s)
has already been spent to reach s. Thus it is no coinci-
dence that these heuristic certificates also structurally resem-
ble lower-bound certificates under cost bound B.

We will later showcase for pattern database heuristics and
hmax how such heuristic certificates can be generated. But
first we show how they contribute to the overall lower-bound
certificate generated by A∗.

Proof-Logging A∗

The invariant from a proof-logging A∗ search will conceptu-
ally cover two aspects: (1) the invariant is true for all closed
states with their corresponding cost from the initial state.
For these states, the heuristic estimates cannot rule out that
they could be traversed with the corresponding cost by an
optimal plan. (2) the invariant is also true for any state-cost
pair for which any invariant is true that was produced by the
heuristic to actually rule states out. The first part considers
the distances from the initial state to the states in the closed
list, while the second part considers the distances from the
states in the open list to a goal.

Proof-logging A∗ maintains a sequence A of reifications
and a proof log L of derivations. During its initialization, the
heuristic already writes some information to A and L.

Whenever A∗ removes a state s with g-value g from the
open list, it adds a reification

rs,g≥g ⇔
∑
v∈s

v +
∑

v∈V\s

v̄ + cost≥g ≥ |V|+ 1 (11)

to A, characterizing all pairs ⟨s, g̃⟩ with g̃ ≥ g. In addi-
tion, it adds ⟨s, g⟩ to the initially empty collection Closed.
It also logs some derivations in L that we describe later. If a
successor s′ with g-value g′ is not added to Open because
A∗’s duplicate detection is aware of an earlier encounter
with g′′ ≤ g′, it uses Lemma 1 and logs

K ′
≥g′ → K ′

≥g′′ . (12)

Whenever the search uses the heuristic to evaluate a state,
the heuristic can extend A with further reifications, adds
derivations for the corresponding state lemma, inductivity
lemma and goal lemma to L and returns the corresponding
PB variable rhs to the search. In addition, we require it to log
a proof for the state lemma in terms of the primed variables.

When the search terminates, it adds to A a reification

rA∗ ⇔
∑

⟨s,g⟩∈Closed

rs,g≥g +
∑

⟨s,g,h⟩∈Open

rhs ≥ 1 (13)

and prepends A with the necessary reifications (9) and (10),
where B is the cost of the found plan.

In the following we explain how we can generate the three
proofs Pinit,Pind and Pgoal for the PB circuit ⟨A, rA∗⟩. This
generation relies on the correctness of A∗. However, the ver-
ifier receiving the generated proofs relies only on the cor-
rectness of the derivation rules of CPR. We start by showing
how L can be extended to Pinit.
Lemma 3. RUP can derive the initial state lemma (rI ∧
cost≥1) → rA∗ from Cinit ∪A ∪ C≥.

Proof. Assume (a) rI ≥ 1, (b) cost≥1 ≥ 1, and (c) rA∗ ≥ 1.
From (a) and (1), we receive (d) v ≥ 1 for each v ∈ I and
v ≥ 1 for each v ∈ V \ I . Reification (4) and (b) express∑⌈log2 B⌉

i=0 2ici < 1, from them we get for all ci ∈ Vc that
ci ≥ 1. With (4), we receive cost≥0, which with (d) and (11)
gives rI,g≥0 ≥ 0. Since ⟨I, 0⟩ is in Closed, with (a) and (13)
we get rA∗ ≥ 1, contradicting (c).

The proof Pgoal builds on the goal lemmas logged by the
heuristic:
Lemma 4. It is possible to derive the goal lemma (rG ∧
rA∗) → cost≥B from Cgoal ∪A ∪ C≥.

Proof. The heuristic certificate can derive the goal lemma
for all open states. The rest is then by RUP, assuming (a)
rG ≥ 1, (b) rA∗ ≥ 1 and (c) cost≥B ≥ 1.

From (2) and (a) we get that (d) v ≥ 1 for all goal vari-
ables. For all closed pairs ⟨s, g⟩, s is not a goal state or it is
the reached goal state s⋆ with g = B. If s is not a goal state,
then some v ∈ G is false in s and (11) yields with (d) that
rs,g≥g ≥ 1. We also get rs⋆,g≥B ≥ 1 from (11), using (c).

For all variables rhs , the goal lemma provided by the
heuristic implies with (a) and (c) that rhs ≥ 1, so overall
we get with (13) that rA∗ ≥ 1, contradicting (b).

To support the derivation of the inductivity lemma, A∗ al-
ready extends L upon every expansion for every action with
the derivation described in the following lemma:
Lemma 5. For every action a applicable in s and state s
closed with cost g, it is possible to derive (rs,g≥g ∧ ra) →
r′A∗ from Ctrans ∪A ∪A′ ∪ C≥.

Proof. We first establish by Lemma 2 that (a) (cost≥g ∧
∆c=cost(a)) → cost′≥min{B,g+cost(a)}.

The desired constraint follows by RUP: Assume (b)
rs,g≥g ≥ 1, (c) ra ≥ 1, and (d) r′A∗ ≥ 1.

From (b), we can derive with (11) that (e) v ≥ 1 for all
v ∈ s, (f) v ≥ 1 for all v ∈ V \ s, and (g) cost≥g ≥ 1. We
use (c) with (7) to derive (h) ∆c=cost(a) ≥ 1. With (h), (g),
and (a) we get (i) cost′≥min{B,g+cost(a)} ≥ 1. If s is a goal
state then g = B and we get from (i) and (7) that ra ≥ 1,
contradicting (c).

Otherwise, we define s̃ = sJaK and use (7), (c), (e), (f),
(g), and (6) to derive that (j) the primed state variables en-
code s̃ and that (k) K ′

≥g+cost(a) ≥ 1.
If the successor was not considered because of a duplicate

⟨s̃, ĝ⟩ with ĝ < g + cost(a), we use the derived constraint
(12) to derive (k’) K ′

≥ĝ ≥ 1.
If ⟨s̃, g + cost(a)⟩ ∈ Closed or ⟨s̃, ĝ⟩ ∈ Closed, respec-

tively, we use the primed version of (11) with (j) and (k) or
(k’) to derive rs̃,g≥g+cost(a)

′ ≥ 1 or rs̃,g≥ĝ
′ ≥ 1. With the

primed version of (13) we derive r′A∗ ≥ 1, contradicting (d).
Otherwise, there is an entry for s̃ in Open. Since A∗ closes

all states with f < B, we know that in this case g+cost(a)+
h(s̃) ≥ B, so g+cost(a) ≥ max{0, B−h(s̃)}. We can thus
use (j) and (k) with the primed version of the state lemma for
s̃ from the heuristic and receive rhs̃

′ ≥ 1. The primed version
of (13) yields r′A∗ ≥ 1, contradicting (d).



Lemma 6. For every state s closed with cost g, it is possible
to derive (rs,g≥g ∧ rT ) → r′A∗ from Ctrans ∪A ∪A′ ∪ C≥.

Proof. We establish by Lemma 5 that (a) (rs,g≥g ∧ ra) →
r′A∗ for every action a ∈ A that is applicable in s.

Then RUP derives the constraint: Assume (b) rs,g≥g ≥ 1,
(c) rT ≥ 1, and (d) r′A∗ ≥ 1. With (a), (b) and (d) we derive
ra ≥ 1 for each action a applicable in s. From (b), we can
derive with (11) that (e) v ≥ 1 for all v ∈ s, (f) v ≥ 1 for all
v ∈ V \ s, and if a is not applicable in s, some precondition
is violated and we use (f) and (7) to derive ra ≥ 1. With (8),
this yields rT ≥ 1, contradicting (c).

These derivations are already logged during the execution
of the search. We extend the log with derivations from the
following lemma to generate Pind:

Lemma 7. It is possible to derive the inductivity lemma
(rA∗ ∧ rT ) → r′A∗ from Ctrans ∪A ∪A′ ∪ C≥.

Proof. We first derive by RUP for every s with some
⟨s, g, h⟩ ∈ Open that (a) (rhs ∧ rT ) → r′A∗ : From the as-
sumption r′A∗ ≥ 1, we get r′hs ≥ 1. Using the inductivity
lemma from the heuristic for s with the other assumptions
rhs ≥ 1 and rT ≥ 1, we get the contradiction.

For every state s expanded with cost g, we get (b)
(rs,g≥g ∧ rT ) → r′A∗ as described in Lemma 6.

Afterwards RUP can derive the constraint, assuming (c)
rA∗ ≥ 1, (d) rT ≥ 1, and (e) r′A∗ ≥ 1.

For every open state s, we get from (a,d,e) that (f) rhs ≥ 1.
For every state s closed with g-value g, we get from (b, d, e)
that (g) rs,g≥g ≥ 1. With (13), we get from (f) and (g) that
rA∗ ≥ 1, contradicting (c).

To analyze the overhead of proof-logging A∗, we assume
that each proof from the heuristic is provided with only a
constant-factor overhead to the heuristic computation time.
Logging a single reification constraint (11) is an operation
that requires time linear in |V|. A constraint of this kind has
to be logged for each closed state. This is still a constant-
factor overhead because the closed state has to be generated
first, which is an operation with time linear in |V|, too. The
reification of (13) is linear in the number of states generated.
Both the goal lemma and the initial state lemma are logged
by single RUP statements of constant size.

In the proof of the inductivity lemma we first use as many
constant-size statements as there are open states. The second
RUP subproof in the inductivity lemma requires the con-
straint from Lemma 6 specified on each state s ∈ Closed,
which in turn requires the constraint from Lemma 5 speci-
fied on each applicable action in s. This amortizes with the
generation of the successors of s when s moves from Open
to Closed. We see that in total there is a constant-factor over-
head to the proof-logging of A∗.

Proof-Logging Pattern Database Heuristics
Abstraction heuristics such as pattern database (PDB)
heuristics use goal distances in an induced abstract task
for the heuristic estimates. Let Π = ⟨V,A, I, G⟩ be a
STRIPS planning task. A PDB heuristic is defined in terms

of a pattern P ⊆ V and its abstraction function α maps
each state s over V to an abstract state α(s) over P as
α(s) = s ∩ P . Each action a ∈ A induces the abstract ac-
tion aα with pre(aα) = pre(a)∩P , add(aα) = add(a)∩P ,
del(aα) = del(a)∩P , and cost(aα) = cost(a). The abstract
goal Gα is G ∩ P . The heuristic estimate of the PDB for
state s is the cost of an optimal solution of the abstract task
⟨P, {aα | a ∈ A}, α(s), Gα⟩ or ∞ if it is unsolvable. This is
a lower bound of the goal distance of s in Π, as any solution
of the concrete task corresponds to a solution of the abstract
task with equal cost. In practice, a PDB heuristic does not
build an abstract task for each heuristic evaluation but pre-
computes the abstract goal distances d(sα) for all abstract
states sα and stores them in a so-called pattern database.
When a concrete state s is evaluated, the PDB heuristic com-
putes α(s) and returns the stored goal distance d(α(s)) as
the heuristic estimate h(s).

The invariant for a PDB heuristic should hold for all pairs
⟨s, c⟩ such that the abstract goal distance d of α(s) is already
so high that c + d ≥ B, and thus it is impossible to reach
the goal from s with a strictly lower cost than B if reaching
s already costs c.

Let Sα be the set of all abstract states. For each sα ∈ Sα,
the heuristic introduces two PB variables. The variable rsα is
true iff the variables from V encode a state s with α(s) = sα
by adding a reification

rsα ⇔
∑

v∈sα
v +

∑
v∈P\sα

v̄ ≥ |P |. (14)

The variable rsα≥B−d(sα) is true iff the variables from V and
Vc encode a pair ⟨s, c⟩ such that α(s) = sα and c ≥
max{B − d(sα), 0} by adding reification

rsα≥B−d(sα) ⇔ rsα +K≥B−d(sα) ≥ 2. (15)

As a final reification for the invariant the heuristic adds

rPDB ⇔
∑

sα∈Sα

rsα≥B−d(sα) ≥ 1. (16)

The PB circuit for any state then is ⟨HPDB, rPDB⟩, where
HPDB is the sequence of all reifications (14), (15) and (16).
On the evaluation of a state s, the heuristic always returns
reification variable rPDB to the search. In the following we
discuss how the required proofs can be generated. This gen-
eration relies on the correctness and admissibility of the
PDB heuristic, but the generated proofs themselves do not.

We begin with the state lemma, which requires a new
proof for each evaluated state.

Lemma 8. RUP can derive the state lemma
(rs∧cost≥max{0,B−h(s)}) → rPDB from Cs∪HPDB∪C≥∪CK ,
where Cs = {rs ⇔

∑
v∈s v +

∑
v∈V\s v̄ ≥ |V|}.

Since the PB circuit for the heuristic is the same for all
evaluated states, we only need to include the proof for the
goal lemma and for the inductivity lemma once in the overall
generated proof. For the goal lemma, we use the following:

Lemma 9. RUP can derive the goal lemma
(rG ∧ rPDB) → cost≥B from Cgoal ∪HPDB ∪ C≥ ∪ CK .



For the inductivity lemma, we develop the derivation by
means of four lemmas. The first one derives that applying
an induced abstract action aα in abstract state sα leads to
the abstract successor state.

Lemma 10. For each action a ∈ A and abstract state sα
such that aα is applicable in sα, RUP can derive
(rsα ∧ra) → rsαJaαK′ from Ctrans∪HPDB∪H ′

PDB∪C≥∪CK .

The next lemma again considers individual actions and
abstract states, but takes cost into account and derives that
the invariant of the certificate is true for the successor state-
cost pair.

Lemma 11. For each action a ∈ A and abstract state sα
such that aα is applicable in sα, it is possible to derive
(rsα≥B−d(sα) ∧ ra) → r′PDB from Ctrans ∪ HPDB ∪ H ′

PDB ∪
C≥ ∪ CK .

Proof. We start by deriving some constraints over costs that
we will use later in a RUP proof.

First, we derive (a) (K≥B−d(sα) ∧ ∆c=cost(a)) →
K ′

≥B−d(sα)+cost(a) as described in Lemma 2.
We know that for the abstract goal distance it holds that

d(sαJaαK) + cost(aα) ≥ d(sα). Together with cost(aα) =
cost(a), we get B− d(sαJaαK) ≤ B− d(sα) + cost(a). We
use this to derive (b) K ′

≥B−d(sα)+cost(a) → K ′
≥B−d(sαJaαK)

as described in Lemma 1. In addition, we establish (c) (rsα∧
ra) → rsαJaαK′ by RUP (Lemma 10).

Now we can derive the constraint in the claim by RUP,
assuming that (d) rsα≥B−d(sα) ≥ 1, (e) ra ≥ 1, and (f)

r′PDB ≥ 1. From (d), we get with (15) that (g) rsα ≥ 1
and (h) K≥B−d(sα) ≥ 1. From (e),(g) and (c) we derive (i)
rsαJaαK′ ≥ 1.

From (e) and (7), we derive (j) ∆c=cost(a) ≥ 1.
From (a) together with (h) and (j) we derive that (k)
K ′

≥B−d(sα)+cost(a) ≥ 1. From (b) together with (k) we de-
rive that (l) K ′

≥B−d(sαJaαK) ≥ 1. We get with this, (i) and the

primed constraint (15) from HPDB that rsαJaαK
≥B−d(sαJaαK)

′
. With

the primed version of (16) from H ′
PDB this yields r′PDB ≥ 1,

contradicting (f).

The third lemma generalizes the previous lemma from in-
dividual actions to the entire transition relation.

Lemma 12. For each abstract state sα it is possible to de-
rive (rsα≥B−d(sα) ∧ rT ) → r′PDB from Ctrans ∪HPDB ∪H ′

PDB ∪
C≥ ∪ CK .

Proof sketch. For each action a ∈ A that is applicable in sα,
establish (rsα≥B−d(sα) ∧ ra) → r′PDB with Lemma 11. Then
the desired constraint can be derived by RUP.

The final step for the inductivity lemma generalizes this
from individual abstract states to the entire PB circuit of the
heuristic.

Lemma 13. It is possible to derive the inductivity lemma
(rPDB ∧ rT ) → r′PDB from Ctrans ∪HPDB ∪H ′

PDB ∪C≥ ∪CK .

Proof sketch. Establish (rsα≥B−d(sα) ∧ rT ) → r′PDB for each
abstract state sα by Lemma 12. The rest follows by RUP.

We considered PDB heuristics as one example of abstrac-
tions because they have a particularly simply structured ab-
straction function. To adapt the approach to other abstrac-
tion heuristics, the overall line of argument still works but
we would have to replace (14) with one or more reifications
that allow to identify the concrete states that correspond to a
given abstract state. In addition, the derivations from Lem-
mas 8, 9 and 10 need to be adapted accordingly.

The described proof logging only has a constant-factor
overhead for a somewhat naive implementation of PDBs.
While the state and goal lemma only require a single
RUP statement, the inductivity lemma requires effort in
O(|Sα||A|), iterating once over all actions for each abstract
state. A better PDB implementation can deal more effi-
ciently with abstract states that are not reverse-reachable.
In the extended version of this paper we describe a vari-
ant of the certificate that does not explicitly represent such
states and which guarantees a constant-factor overhead also
for such a more efficient computation of PDBs.

Proof-Logging hmax

The maximum heuristic (Bonet and Geffner 2001) is based
on a relaxation of the planning task that makes two simpli-
fying assumptions: first, actions do not delete variables; sec-
ond, the cost of making a set of variables true corresponds
to the cost of making its most expensive variable true; since
action preconditions are sets of variables, the relaxation af-
fects the cost of enabling action applications, which in turn
affects the cost to make the individual variables true. For this
reason, the heuristic is mathematically specified by a system
of equations. The maximum heuristic hmax(s) is hmax(s,G),
where hmax(s, V ) is the pointwise greatest function with
hmax(s, V ) =
0 if V ⊆ s

min
a∈A,

v∈add(a)

(cost(a) + hmax(s, pre(a))) if |V | = 1
and V ̸⊆ s

max
v∈V

hmax(s, {v}) otherwise

For v ∈ V , the max value is V max(v) = hmax(s, {v}),
which can be seen as the cost of making v true (starting
from s) under this relaxation. The heuristic certificate will
build on the following insight: since hmax is admissible, it
will be impossible to reach the goal from s with overall cost
< B if the cost to reach s already exceeds B − hmax(s).
If in a state ŝ additional variables are true, the state can be
closer to the goal but under the relaxation of the heuristic
the advantage gained from an individual variable v will be
at most V max(v), so for arbitrary non-empty states ŝ, the
goal cannot be reached if the cost to reach ŝ already exceeds
B − hmax(s) +maxv∈ŝ V

max(v) (note that V max(v) = 0 for
v ∈ s), even under the relaxation of the heuristic. In the
delete-relaxed task, the empty state cannot be closer to the
goal than s, so we can use bound B − hmax(s).

A typical efficient implementation of the maximum
heuristic only determines the max value for all v with



V max(v) < hmax(s). We can still build a valid heuristic cer-
tificate, requiring that the cost B has already been exceeded
for states that contain a variable for which V max(v) ≥
hmax(s). For the formal definition of the certificate, we
will handle this aspect by an auxiliary value Wmax(v) =
min{V max(v), hmax(s)}.

For each v ∈ V , the heuristic adds a reification:

rv,s ⇔ v̄ +K≥B−hmax(s)+Wmax(v) ≥ 1 (17)

In addition, it adds the following reification:

rmax
s ⇔ K≥B−hmax(s) +

∑
v∈V

rv,s ≥ |V|+ 1 (18)

The PB circuit for state s then is ⟨Hmax,s, r
max
s ⟩, where

Hmax,s is the sequence of all reifications (17) and (18).
Intuitively, (17) expresses the implication that the cost

is at least B − hmax(s) + Wmax(v) if v is true. Equa-
tion (18) corresponds to a conjunction of K≥B−hmax(s) and
such implications for each variable, so overall rmax

s will
be true for all state value pairs ⟨ŝ, ĉ⟩, where ŝ ̸= ∅ and
ĉ ≥ maxv∈ŝ{B − hmax(s) + Wmax(v)} or where ŝ = ∅
and ĉ ≥ B − hmax(s).
Lemma 14. RUP can derive the state lemma
(rs ∧ cost≥max{0,B−hmax(s)}) → rmax

s from Cs ∪ Hmax,s ∪
C≥ ∪ CK , where Cs = {rs ⇔

∑
v∈s v +

∑
v∈V\s v̄ ≥ |V|}.

A single RUP statement is sufficient for the goal lemma:
Lemma 15. RUP can derive the goal lemma
(rG ∧ rmax

s ) → cost≥B from Cgoal ∪Hmax,s ∪ C≥ ∪ CK .

For the inductivity lemma, we first show an analogous
statement for a single action.
Lemma 16. For every action a, it is possible to derive
(rmax

s ∧ra) → rmax
s

′ from Ctrans ∪Hmax,s∪H ′
max,s∪C≥∪CK .

Proof sketch. The overall argument of the proof is as fol-
lows:

If the action has a precondition p, we can conclude
that p ≥ 1, which allows us to derive with (17) that
K≥B−hmax(s)+Wmax(p) ≥ 1. We can establish K ′

≥B−hmax(s)

using Lemmas 1 and 2.
To establish r′v,s ≥ 1 for all variables, we consider the

precondition with maximal Wmax value.
If Wmax(p) = hmax(s), then K≥B−hmax(s)+Wmax(p) ≥ 1

corresponds to K≥B ≥ 1. We derive K ′
≥B ≥ 1, which is

sufficient to establish r′v,s ≥ 1.
If Wmax(p) < hmax(s), we establish r′v,s ≥ 1 depend-

ing on whether and how v occurs in the effect of a. If it is
a delete effect, then v′ ≥ 1. If it is an add effect, we ex-
ploit that p has maximal Wmax value among the precondi-
tions, so from the definition of the maximum heuristic we
can see that Wmax(v) ≤ Wmax(p) + cost(a). Establish-
ing K ′

≥B−hmax(s)+Wmax(p)+cost(a) and using this insight gives
K ′

≥B−hmax(s)+Wmax(v) ≥ 1. If v /∈ evars(a), we can carry
over the reason for rv,s ≥ 1 to the primed variables.

If the precondition of the action is empty, we build
on K≥B−hmax(s), which gives K ′

≥B−hmax(s)+cost(a) and

K ′
≥B−hmax(s) using Lemmas 1 and 2. For establishing r′v,s ≥

1 for all variables, we proceed as before for the case
Wmax(p) < hmax(s) (replacing Wmax(p) with 0). For the
special case hmax(s) = 0, we can instead use the shorter ar-
gument as in the previous case Wmax(p) = hmax(s), building
on K≥B ≥ 1.

The technical details are included in the extended version
of this paper (Dold et al. 2025).

The full inductivity lemma follows quite directly.

Lemma 17. It is possible to derive the inductivity lemma
(rmax

s ∧rT ) → rmax
s

′ from Ctrans∪Hmax,s∪H ′
max,s∪C≥∪CK .

Proof sketch. Establish with Lemma 16 for every a ∈ A that
(rmax

s ∧ra) → rmax
s

′. Then derive the constraint by RUP.

Extending hmax with proof logging only leads to the fol-
lowing overhead: adding reifications (17) for each v ∈ V
and (18) takes additional time linear in |V| because h(s) and
the values necessary for Wmax are already computed during
the normal evaluation. In addition, the implementation has
to reinitialize some values for each variable before each new
evaluation, so the overhead is within a constant factor.

The state and goal lemmas each only require a single RUP
statement. For the inductivity lemma, we need to establish
the constraint from Lemma 16 for every action. For each ac-
tion where hmax(s, pre(a)) ≥ hmax(s), we require constant
effort. For all other actions, the effort for the action is linear
in the number of variables.

Conclusion
We introduced lower-bound certificates for classical plan-
ning, which can be used to verify the optimality of optimal
planners. The certificates are sound, complete and efficiently
verifiable. We showed them to be efficiently generatable in
a case study on A∗ with hmax or pattern database heuristics.

We believe these certificates to be much more general than
the ones considered in previous research because they work
on a more fundamental level of abstraction, build on an es-
tablished proof systems that has proved its utility in many
other areas of AI, and are able to directly incorporate numer-
ical reasoning. In future work, this generality has to be con-
firmed by applying these certificates to other optimal plan-
ning approaches that current approaches cannot handle. In
particular, we believe that pseudo-Boolean constraints can
generically handle the concept of cost partitioning (Katz and
Domshlak 2010), perhaps the most important optimal plan-
ning technique, because they are able to reason numerically
at the level of individual state transitions in a way that pre-
viously proposed certificates cannot.
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Schindler, T. 2025. Pseudo-Boolean Proof Logging for Op-
timal Classical Planning. arXiv:2504.18443 [cs.AI].
Edelkamp, S. 2001. Planning with Pattern Databases. In
Proc. ECP 2001, 84–90.
Edelkamp, S.; and Kissmann, P. 2009. Optimal Symbolic
Planning with Action Costs and Preferences. In Proc. IJCAI
2009, 1690–1695.
Eriksson, S.; and Helmert, M. 2020. Certified Unsolvability
for SAT Planning with Property Directed Reachability. In
Proc. ICAPS 2020, 90–100.
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