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Introduction
Operator counting heuristics (Pommerening et al. 2014) es-
timate the cost to the closest goal state by counting the mini-
mum number of operators needed to achieve the goal condi-
tion. The idea behind operator counting is to use constraints
to encode how often an operator needs to occur in a possi-
ble plan. These constraints express properties that every plan
must satisfy. For example, an operator counting constraint
could represent that every plan must contain operator o1 or
operator o2 at least once. The set of constraints forms a lin-
ear program (LP), and planners use the optimal solution of
this LP as the heuristic value for the state being evaluated.
So far, these heuristics have been used in optimal planning
(e.g., Pommerening, Röger, and Helmert 2013; Pommeren-
ing, Helmert, and Bonet 2017; Pommerening 2017).

In our work, we extend the application of operator count-
ing heuristics to satisficing planning. In particular, we fo-
cus on the post-hoc optimization constraints (Pommerening,
Röger, and Helmert 2013). The key idea of our method is to
not use an LP-solver to compute a heuristic, but to solve the
constraints greedily, one-by-one. In this way, we give up the
requirement of an optimal solution to satisfy the constraints,
but our heuristic computation becomes much faster, and we
solve the integer version of problem.

We detail our algorithm next. We introduce the OP-
COUNT4SAT planner that uses these ideas and participated
on the International Planning Competition (IPC) 2023 on the
satisficing and agile tracks. OPCOUNT4SAT is built directly
on top of Fast Downward (Helmert 2006, 2009).

We assume that the reader is familiar with abstractions
in classical planning and, in particular, with the concept
of pattern databases (PDB) (e.g., Culberson and Schaeffer
1998; Edelkamp 2002). For more details on post-hoc op-
timization, we refer to the work by Pommerening, Röger,
and Helmert (2013). For a thorough discussion on operator
counting heuristics (and other LP-based techniques in plan-
ning), we recommend the work by Pommerening (2017).

Post-Hoc Optimization
Post-hoc optimization (Pommerening, Röger, and Helmert
2013) is a technique to make PDB heuristics more informed.
It uses the notion of operator counting to get better esti-
mates than simply getting the maximum or summing mul-

tiple heuristics values. Let Counto ∈ N0 be a variable esti-
mate how many times operator o is needed to reach a goal.
We know that hP (s) – i.e., the heuristic value from a pattern
P in state s – cannot be higher than the cost of all opera-
tors used in the abstract plan. More formally, we define a
post-hoc optimization constraint:

hP (s) ≤
∑
o∈OP

cost(o)Counto,

where OP is the subset of the operators (in the original task)
that affect the pattern P . We say that an operator o affects
the pattern P if it (i) has a variable v from P in its effect,
and (ii) whenever v ∈ P occurs both in the effect and the
precondition of o, then they have different values.

The main idea is that we have one post-hoc optimization
constraint for each pattern P1, . . . , Pk, and satisfying all of
k constraints simultaneously will give us a more informative
heuristic than simply aggregating the hP1(s), . . . , hPm(s)
values by their maximum value. Moreover, if we minimize
the total cost of the operators “counted” to satisfy these con-
straints, we are still guaranteed to have an admissible heuris-
tic value (Pommerening, Röger, and Helmert 2013).

Let O be the set of operators of the original task. We can
frame this idea using the following integer program (IP):

Minimize
∑
o∈O

cost(o)Counto (1)

hP (s) ≤
∑
o∈OP

cost(o)Counto (2)

Counto ≥ 0 (3)

where (2) is quantified for all P ∈ {P1, . . . , Pk}, and (3) is
quantified for all o ∈ O.

The optimal value of this IP can be used as a heuristic
for planning. Of course, computing one IP for every evalu-
ated state is too expensive, so planners use the LP-relaxation
of this program to come up with an admissible heuristic
quickly.

Our Approach
We introduce a method to use post-hoc optimization as
a heuristic function for satisficing planning, called OP-
COUNT4SAT. It solves the IP problem of the post-hoc op-



timization heuristic aiming to minimize the objective func-
tion with a simple and fast greedy algorithm, but without
optimality guarantees.

OPCOUNT4SAT iteratively satisfies each constraint in
some arbitrary order. In our submission, we consider first
constraints that are generated by smaller patterns. For each
operator o, the algorithm maintains the current count of op-
erators Counto globally. All operators start with the count
set to zero. Then, for each constraint, it iteratively incre-
ments the value of each Counto, until the constraint is satis-
fied. Note that the count of operators in a constraint can be
incremented many times in sequence before the constraint
is satisfied. Once the constraint is satisfied, we move on to
the next constraint. No operator is incremented if the current
global count of operators Counto already satisfies the con-
straint. The value of the heuristic function returned by the
algorithm is the sum of the counts of the operators.

We use constraints from Sys1, Sys2, Sys3, and Sys4 – the
systematically generated patterns with 1, 2, 3, and 4 vari-
ables (Pommerening, Röger, and Helmert 2013). However,
it might be impractical to comptue Sys3 and Sys4. Therefore,
we limit the number of patterns used from Sys3 and Sys4
to the sum of the number of patterns from Sys1 and Sys2.
The patterns used from Sys3 and Sys4 are randomly selected
from the respective sets. Finally, we use a memory limit of
3.2 GiB for the PDB construction. If this limit is reached, we
simply compute the heuristic with the PDBs already built.

Result Analysis
Our submission of OpCount4Sat used a greedy best-first
search algorithm guided by the heuristic function described
above. In the satisficing track, the planner solved 53 out
of 140 tasks if we consider the domain version in which
the planner solved the most tasks (normalized or not). Both
memory and time were limiting factors. For example, the
planner failed to solve 16 tasks of Labyrinth due to mem-
ory limit, and it failed to solve 11 tasks of Folding and 13
tasks of Slitherlink due to time limit. Also, OpCount4Sat
supports a limited fragment of PDDL – it does not support
conditional effects and derived variables, for example. Thus,
it did not run for neither version (original and normalized)
of the Rubik’s Cube domain.

In the agile track, OpCount4Sat only solved 30 out of
the 140 tasks. The issues mentioned for the satisficing track
still apply here. The shorter time limit (5 minutes) impacted
the planner’s performance in some particular domains. For
example, the coverage in the Ricochet Robots domain de-
creased from 14 to 0. This happened because the genera-
tion of the PDBs already takes more than 2 minutes even in
the smallest instance, leaving only a few seconds left for the
search.
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