
Delete-Free Planning with Object Creation is Undecidable

Augusto B. Corrêa
University of Oxford, United Kingdom

University of Basel, Switzerland
augusto.blaascorrea@chch.ox.ac.uk

Abstract

In planning with object creation, actions might introduce new
objects as part of their effect. While this makes the formalism
more expressive, it also renders the plan existence problem
undecidable. A natural next step is to ask whether simpler
fragments and relaxations are still undecidable when powered
with object creation. Probably the most popular fragment is
delete-free planning, where actions can only add but never
delete atoms. In this work, we show that delete-free planning
with object creation is still undecidable. We do so by reducing
the problem of deciding whether a given atom is reached by
the chase procedure to the plan existence problem. Our result
implies that heuristics based on the delete relaxation may not
be immediately useful for the object creation setting. We then
highlight which restrictions we can apply to make delete-free
planning with object creation practical.

Introduction
In planning with object creation, actions can create new ob-
ject as part of their effects (Hoffmann et al. 2009; Fuente-
taja and de la Rosa 2016; Edelkamp, Lluch-Lafuente, and
Moraru 2019; Corrêa et al. 2024). While this simplifies the
modeling of planning tasks (e.g., Long and Fox 2003; Petrov
and Muise 2023), it renders the plan existence problem un-
decidable (Hoffmann et al. 2009; Corrêa et al. 2024).

Nonetheless, there are techniques that can tackle this
problem and that work well in different domains. In particu-
lar, Corrêa et al. (2024) showed that lifted search (cf. Corrêa
and De Giacomo 2024) can be easily extended to support ob-
ject creation without overhead. This leads us to the question
of how to extend this to heuristic search algorithms, and,
more specifically, on how to compute good heuristics.

A common family of heuristics are those computed over
delete relaxations (Bonet and Geffner 2001; Hoffmann and
Nebel 2001; Helmert and Domshlak 2009). The delete relax-
ation of a planning task simply ignores delete effects so that
actions can only add new atoms to states but never remove
them. The idea is to first compute this relaxation and then
extract a heuristic estimate by either computing a relaxed
plan or obtain a lower bound to the optimal relaxed plan.
As solving the delete relaxation is easier than solving the
original task (Bylander 1994; Erol, Nau, and Subrahmanian

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1995), this provides a good framework to extract heuristics
efficiently.

Moreover, many undecidable fragments of planning (Erol,
Nau, and Subrahmanian 1995; Helmert 2002) become de-
cidable when we restrict the input to delete-free tasks (i.e.,
tasks without delete effects, which is the same case obtained
via delete relaxation).

But is this also the case for planning with object cre-
ation? Not so. In this paper, we show that the plan exis-
tence problem for delete-free planning tasks with object cre-
ation is undecidable. We show how to encode Datalog± pro-
grams (Calı̀ et al. 2010; Calı̀, Gottlob, and Kifer 2013) as
delete-free planning tasks with object creation. The tech-
nique builds on the classical Datalog encoding of delete-free
tasks used by grounders (Helmert 2009; Corrêa et al. 2023)
and by lifted planners (Corrêa et al. 2021, 2022). We then
show that the problem of atom containment in the chase of a
Datalog± program— which is undecidable (Beeri and Vardi
1984; Calı̀, Gottlob, and Kifer 2013)—is equivalent to find-
ing a plan in the delete-free task.

Background
Throughout this paper, we use the following notation: V de-
notes a finite set of variables, C denotes a finite set of con-
stants, P denotes finite set of predicate symbols, and N de-
notes a countably infinite set of labeled nulls.1

Each p ∈ P has an arity ar(p). An atom is defined
as p(T1, . . . , Tar(p)), where T1, . . . , Tar(p) ∈ C ∪ V ∪
N are its terms, denoted as terms(p(T1, . . . , Tar(p))). If
T1, . . . , Tar(p) ⊆ C, the atom is ground. When the arity of
an atom is not relevant, we write p(T) where T represents
a tuple of terms. We also write free(p(T1, . . . , Tn)) to rep-
resent the set of (free) variables in the atom. When the in-
tended meaning is clear, we use set-theoretical notation for
tuples as well (e.g., t ∈ T , {t1, t2} ⊆ T).

First-Order Languages
Let L = ⟨V, C,P⟩ be a first-order language. An inter-
pretation over a first-order language L is a tuple I =
⟨UI , {cI}c∈C , {pI}p∈P⟩ consisting of

1These are used as fresh Skolem terms; they are used only in
the definition of Datalog±.

• a finite set UI of objects called the universe;

• for each constant c ∈ C, its interpretation cI ∈ UI .

• for each predicate symbol p ∈ P , its interpretation
pI ⊆ (UI)ar(p). We sometimes write p(o1, . . . , oar(p))

to indicate that ⟨o1, . . . , oar(p)⟩ ∈ {pI}.

For the interpretation of predicates, we also define PI =
{pI}p∈P to shorten notation. In our context, interpretations
are always finite.

Delete-Free Planning with Object Creation
We use the formalism by Corrêa et al. (2024), but we restrict
it to a positive STRIPS fragment (Fikes and Nilsson 1971),
which is enough to prove undecidability.

A delete-free planning task with object creation is a tuple
Π+ = ⟨L,A, I, G⟩, where L = ⟨P, C,V⟩ is a first-order
language; A is a finite set of action schemas; I is the initial
state; G is the goal, defined below.

States are interpretations over L. We assume a fixed in-
terpretation of constants, where a constant c ∈ C is always
mapped to an object oc ∈ Us, no matter the state s (i.e.,
cs = oc for all s). Therefore, we drop the interpretation
of constants from our notation, and write states simply as
s = ⟨Us, {ps}p∈P⟩. (Later, created objects will be objects
in Us that are not interpreted by any constant.)

The goal G is a set of ground atoms, so, in particular, it
only mentions constants.

A delete-free action schema a ∈ A is a pair
a = ⟨pre(a), add(a)⟩ where each element is a set of
atoms. The set of variables of a is a pair vars(a) =
⟨params(a), fresh(a)⟩, where

• params(a) ⊆ V is the set of action parameters;

• fresh(a) ⊆ V is the set of fresh variables;

• params(a) ∩ fresh(a) = ∅.

We define vars(pre(a)) and vars(add(a)) as sets of
variables, where vars(pre(a)) ⊆ params(a), and
vars(add(a)) ⊆ params(a) ∪ fresh(a). Intuitively, ac-
tion parameters must be instantiated with objects in the
universe of the current state, and fresh variables must
be instantiated with new objects. The object selected to
instantiate a fresh variable is a called a fresh object.

The set C of constants is exactly the set of constants that
are mentioned in I , G, or in some action schema.

Given a state s and an action schema a ∈ A, a vari-
able assignment function σs,a maps variables in params(a)∪
fresh(a) to objects. We enforce the following two proper-
ties on σs,a: σs,a(v) ∈ Us for all v ∈ params(a); and
σs,a(v) /∈ Us for all v ∈ fresh(a). Any variable assignment
function maps action parameters to objects in the state, and
fresh variables to objects not in the state.

A ground action σs,a(a) is applicable in s if s |=
σs,a(pre(a)). The successor state succ(s, σs,a(a)) is defined
as follows. Let new(σs,a) be the set of new objects intro-
duced by σs,a defined as new(σs,a) = {σs,a(v) | v ∈
fresh(a)}. Then succ(s, σs,a) = ⟨U ′, {p′}p∈P⟩ is defined

as (using n = ar(p))

U ′ = Us ∪ new(σs,a),

p′ = ps ∪ {⟨o1, . . . , on⟩ | p(o1, . . . , on) ∈ σs,a(add(a))).

Therefore, the state space of our task can be interpreted as a
graph over first-order interpretations.

A plan π = ⟨σs0,a1
(a1), . . . , σsn−1,an

(an)⟩ for Π+ is a
sequence of ground actions such that s0, . . . , sn are states
where s0 = I and σsi−1,ai

(ai) is applicable in si−1 and
si = succ(si−1, σsi−1,ai

) for 1 ≤ i ≤ n, and sn |= G.
We define the following decision problem, which asks

whether a plan exists for a given delete-free task with ob-
ject creation:

Definition 1 (DELETEFREE-OBJCREATION-PLANEX)
Given a delete-free planning task with object creation Π+,
is there a plan for Π+?

Later, we show that this problem is undecidable.

Datalog± and the Chase Procedure
We base our definitions on the ones by Calı̀ et al. (2010). We
also assume basic knowledge about Datalog (Ceri, Gottlob,
and Tanca 1989).

General A homomorphism from a set A1 of atoms to a
set A2 of atoms is a mapping h : terms(A1) 7→ terms(A2)
such that if t ∈ C then h(t) = t, and if p(t1, . . . , tn) ∈
A1 then p(h(t1), . . . , h(tn)) ∈ A2. Homomorphisms extend
naturally to conjunctions of atoms.

Datalog± A Datalog± program is a pair D± = ⟨F ,R⟩,
where F is a finite set of ground atoms called the facts, and
R is the set of rules of the form

∃Y q(T ,Y)← p1(T1), . . . , pn(Tn). (1)

where q, p1, . . . , pn ∈ P , T ⊆
⋃n

i=1 free(Ti) and Y ∩
(
⋃n

i=1 free(Ti)) = ∅. The existential quantification in the
head ranges over an infinite universal domain C ∪ N . Note
that if Y = ∅, then r is a “regular” Datalog rule. When
Y ̸= ∅, r is called a tuple-generating dependency (tgd).

The set body(r) = {p1(T1), . . . , pn(Tn)} is the body of
the rule, and the singleton set head(r) = {q(T ,Y)} is the
atom in head of the rule. Given r ∈ R, free(r) denotes the
set of free variables occurring in r.

For a rule r and a set of atomsM, we say thatM satis-
fies r, denotedM |= r, if for every homomorphism h from
body(r) to M, there is a homomorphism g from head(r)
toM that is consistent with h, i.e., h(v) = g(v) for every
v ∈ free(r). These definitions are extended to sets of rules:
givenR, we writeM |= R ifM |= r for every r ∈ R.

A set of atoms M is a model of D± = ⟨F ,R⟩ if F ⊆
M and M |= R. A model M is a universal model if it
is a model and, given any other model M′, then there is
homomorphism fromM toM′.

Universal models are not necessarily unique (up to iso-
morphism) and can be infinite. Moreover, any two universal
modelsM1 andM2 are homomorphically equivalent.

Example 1 Consider the following Datalog± program
D± = ⟨F ,R⟩:

next(0, 1).
∃Z next(Y,Z)← next(X,Y).

The following model of D± is a universal model:

M = {next(0, 1), next(1, ν2), next(ν2, ν3), next(ν3, ν4) . . . },

where νi ∈ N for i ≥ 2.

The Chase The chase procedure (Beeri and Vardi 1984) is
used to repair a database with respect to a set of rules, such
that the final result satisfies all the rules. The idea is to build
a universal model step-by-step while satisfying all rules. We
call both the procedure and its result as the chase. We re-
strict our discussion to the oblivious chase (Calı̀, Gottlob,
and Kifer 2013).

Given a Datalog± program D± = ⟨F ,R⟩, a set of atoms
D, and a rule r like (1), we say that r is applicable to D if
there exists a homomorphism h such that h(body(r)) ⊆ D.

Let r be a rule that is applicable to D using a homomor-
phism h. The extension h′ of h maps each existentially quan-
tified variable y ∈ Y in head(r) to a fresh labeled null from
N — i.e., a labeled null not occurring in D. The result of
this application is a database D′ = D ∪ h′(head(r)). We

write this application as D
r,h→ D′.

A chase sequence D0
r0,h0→ · · · rn,hn→ Dn+1, where D0 =

F , r1, . . . , rn ∈ R, and ⟨ri, hi⟩ ≠ ⟨rj , hj⟩ for any i ̸= j,2
is a sequence of applications and results from F .

The chase is not guaranteed to terminate: we might have

an infinite chase sequence D0
r0,h0→ · · · ri,hi→ Di+1

ri+1,hi+1→
· · · . For example, the chase runs forever in the program of
Example 1. But we can still consider its results in the limit.
We thus define:

chase(F ,R) =
∞⋃
i=0

Di

And its associated atom entailment problem:

Definition 2 (ATOMINCHASE) Given a Datalog± pro-
gram D± = ⟨F ,R⟩ and an atom q(c1, . . . cn) where q ∈ P
and c1, . . . , cn ∈ C, is q(c1, . . . cn) in chase(F ,R)?

The following theorem can be derived by the earlier re-
sults by Beeri and Vardi (1984), and was later explicitly
proven by other works (e.g., Calı̀, Gottlob, and Kifer 2013):

Theorem 1 ATOMINCHASE is undecidable.

Undecidability of Delete-Free Planning with
Object Creation

Next, we show that delete-free planning with object cre-
ation is undecidable. We will reduce ATOMINCHASE to
DELETEFREE-OBJCREATION-PLANEX. But before diving
into the main proof, we introduce a few useful lemmas.

2This forbids the application of a rule r with a same homomor-
phism h but with different extensions.

Assume that π+ is a plan for a delete-free planning task
with object creation Π+. Assume also that π+ contains two
ground actions σs1,a(a) and σs2,a(a) such that

σs1,a(v) = σs2,a(v), for all v ∈ params(a). (2)

Ground actions σs1,a(a) and σs2,a(a) are redundant. Re-
dundant actions only differ in the objects they create. In the
delete-free semantics we only need the objects created by the
first applied redundant action (let’s say, σs1,a(a)), eliminat-
ing the necessity of the second redundant action (σs2,a(a))
in our plan.
Lemma 2 Let Π+ be a delete-free planning task with object
creation, and let π+ be a plan for Π+ containing two redun-
dant actions σs1,a(a) and σs2,a(a), where σs1,a(a) occurs
first. Then, there exists a plan π̂+ where σs2,a(a) does not
occur and |π̂+| < |π+|.
Proof. First, assume the simple case when fresh(a) = ∅. This
implies that

σs1,a(add(a)) = σs2,a(add(a)).

As we are dealing with delete-free tasks, once we add an
atom p to a state s, all atoms reached from s will con-
tain p. Therefore, once σs1,a(a) is applied in π+, applying
σs2,a(a) does not add any new atom — they were all added
by σs1,a(a). So σs2,a(a) has no impact in π+, and simply
removing σs2,a(a) from π+ yields a plan π̂+.

Now, consider the case where fresh(a) ̸= ∅. This means
that the add lists are different, because the fresh variables of
a must always be instantiated with different objects.

Let {o11, . . . , o1n} and {o21, . . . , o2n}, for n ≥ 1, be the new
objects introduced by σs1,a(a) and σs2,a(a) respectively. We
claim that whenever we use an object o2i in π+, we can use
o1i instead, for 1 ≤ i ≤ n.

When σs2,a(a) is applied, for any atom
p(o1, . . . , o

2
i , . . . , om) added by σs2,a(a) there is al-

ready an atom p(o1, . . . , o
1
i , . . . , om) in the state s2, which

was added by σs1,a(a) (which was applied before by
definition). So in any subsequent action σs′,a′(a′), for
which p(o1, . . . , o

2
i , . . . , om) ∈ σs′,a′(pre(a′)), the action

is still applicable in s′ if we replace o2i with o1i , since we do
not have negated atoms in the precondition.

We can then obtain a plan π̂+ by removing σs2,a(a) from
π+, and replacing every occurrence of the objects o21, . . . , o

2
n

created by σs2,a(a) with their respective objects o11, . . . , o
1
n

created by σs1,a(a). As just argued, the preconditions of all
actions using o2i are still applicable when replacing o2i by
o1i . Moreover, as the goal only mentions constants appear-
ing in the initial state, its reachability is not affected by the
removal of o2i . Last, as σs2,a(a) occurs after σs1,a(a) in π+

(by assumption), the new plan is still applicable, since the
first action is either σs1,a(a) or another action which were
not modified nor removed.

As the new plan π̂+ has one action fewer than π+, it fol-
lows directly that |π̂+| < |π+|.

□
A plan without redundant actions is called a simple plan.

Lemma 3 If a delete-free planning task with object creation
Π+ is solvable, then it has a simple plan.

Proof. Given a plan π+ for Π+, we can remove redundant
actions one by one as described in Lemma 2, until none is
left. Note that as we remove actions, other actions might be-
come redundant. However, as our first plan is finite, we only
remove a finite number of actions from it. □

We are now ready to prove undecidability.

Theorem 4 DELETEFREE-OBJCREATION-PLANEX is un-
decidable.

Proof. Given a Datalog± program D± = ⟨F ,R⟩ and a
ground atom q(c1, . . . , cn), we reduce the problem of check-
ing if q(c1, . . . , cn) ∈ chase(F ,R) to a delete-free plan-
ning task with object creation Π+.

Π+ has the same predicate symbols as D. The set C of
constants in Π+ contains all constants occurring in F .

Our task has one action schema for each r ∈ R. Given a
rule r in the form

∃Y q(X,Y)← p1(X1), . . . , pn(Xn).

we introduce an action schema ar to Π+ where

params(ar) = X

fresh(ar) = Y

pre(ar) = body(r)
add(ar) = head(r).

In the initial state I = ⟨UI , {cI}c∈C , {PI}⟩, the interpreta-
tion of constants {cI}c∈C maps each constant c to an object
oc ∈ UI , and the interpretation PI contains p(oc1 , . . . , ocn)
iff p(c1, . . . , cn) ∈ F . The universe UI contains all objects
mentioned in PI .

The goal G is the singleton set {q(oc1 , . . . , ocn)}.
There is an one-to-one correspondence between actions

and rules, and the initial state corresponds to the initial set
I of facts F . Assume action schema a corresponds to a
rule r. Then there exists a ground action σs,a(s) applica-
ble in a given state s iff there also exists a homomorphism
h(body(r)) such that r is applicable to the database D = s.
It is easy to construct h from σs,a: let h(X) = σs,a(X) for
all X ∈ free(r). Since free(r) = params(a), this is well-
defined. Moreover, we can compute the extension h′ as fol-
lows: h′(Y) = σs,a(Y) for all Y ∈ fresh(a). This works
because fresh(a) corresponds to the existentially quantified
variables in r. Thus, applying an action to a state is equiva-
lent to an oblivious application of a rule in the chase, where
the database corresponds to the state. The other way around
(from applicable rules to ground actions) is analogous.

If there exists a chase sequence D0
r0,h0→ · · · rn,hn→ Dn+1

that reaches q(c1, . . . , cn) in the chase, then this sequence
can be transformed into a sequence of ground actions, which
corresponds to a plan, as D0 = F = I and the goal of
our task is to reach q(c1, . . . , cn). Each pair ⟨ri, hi⟩ can be
converted into a ground action as just described above. Note
that we can also convert any action to a pair ⟨ri, hi⟩, simply
applying the inverse mapping.

Analogously, if there exists a plan for Π+, then it can
be transformed into a chase sequence corresponding to a
derivation of q(oc1 , . . . , ocn). From Lemma 3 we know that

if Π+ is solvable, it has a simple plan, and we can transform
any plan into a simple one. So it is sufficient to consider
only simple plans, which are equivalent to chase sequences.
As our initial state encodes the initial set of facts of D±, the
goal atom q(oc1 , . . . , ocn) is only reachable in Π+ (i.e., the
task is solvable) iff q(c1, . . . , cn) ∈ chase(F ,R). □

Discussion

Related Results In contrast to our result, planning with in-
finitely many constants and finite initial states becomes de-
cidable when restricted to the delete-free case (Erol, Nau,
and Subrahmanian 1995). The same happens to numeric
planning (Hoffmann 2003). On the flip side, our result is
closely related to planning with function symbols (Erol, Nau,
and Subrahmanian 1995; Geffner 2000). Similar to our case,
planning with function symbols is undecidable, and so is
its delete-free version. It is possible to reduce from delete-
free planning with function symbols to delete-free planning
with object creation. However, we favor our proof because of
the one-to-one correspondence between planning tasks and
Datalog± programs, which immediately let us extend results
for decidable fragments from the Datalog± literature (Calı̀
et al. 2010; Calı̀, Gottlob, and Kifer 2013).

And Now? Our result also brings an indirect problem:
computing heuristic based on relaxed plans is undecidable
for tasks with object creation. To compute good heuristics,
we cannot rely on delete-relaxation alone. We can use some
insights from our theoretical results to help us come up with
decidable heuristic functions. For example, we can further
relax our problem by assuming that all created objects are
homomorphic,3 or refine this relaxation such that objects
created by a same action schema are homomorphic. This
brings us back into a decidable case — the total number of
objects is now bounded — while still giving us a distance
estimate. The idea is not far from the work by Horčı́k, Fišer,
and Torralba (2022), but here we would restrict homomor-
phisms just for the fresh objects.

Another possibility is to study different decidable frag-
ments of delete-free planning with object creation. One way
is to look for cases where ATOMINCHASE is decidable, as
we demonstrated that plan existence for delete-free planning
tasks with object creation and atom entailment in the chase
have a one-to-one correspondence. There is an extensive
body of work introducing fragments of Datalog± for which
the chase is guaranteed to terminate (Calı̀ et al. 2010; Calı̀,
Gottlob, and Kifer 2013). These fragments are usually based
on the structure of the rules (e.g., guarded or linear rules). It
would be an interesting first step to study if, when we encode
our planning tasks as Datalog± programs (by adapting know
conversions such as the one by Helmert (2009)), these pro-
grams fall into the decidable cases. If so, we can try to adapt
the algorithms to compute models for Datalog± programs to
extract heuristics.

3Here we refer to object homomorphism, not atom homomor-
phism as in the definition of Datalog±.

Acknowledgments
Thanks to Giuseppe De Giacomo, Malte Helmert, Florian
Pommerening, Travis Rivera Petit, Sasha Rubin, and Prze-
mysław Wałega for their comments on earlier versions of
this work, and to Phokion Kolaitis and Andreas Pieris for
answering my questions about the chase procedure.

This paper was partially funded by the Swiss National
Science Foundation (SNSF) as part of the project “Lifted
and Generalized Representations for Classical Planning”
(LGR-Plan).

References
Beeri, C.; and Vardi, M. Y. 1984. A Proof Procedure for
Data Dependencies. Journal of the ACM, 31(4): 718–741.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1): 5–33.
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence,
69(1–2): 165–204.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming the In-
finite Chase: Query Answering under Expressive Relational
Constraints. Journal of Artificial Intelligence Research, 48:
115–174.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; and Pieris, A. 2010.
Datalog+/-: A Family of Languages for Ontology Querying.
In de Moor, O.; Gottlob, G.; Furche, T.; and Sellers, A. J.,
eds., Datalog Reloaded - First International Workshop (Dat-
alog 2010), 351–368. Springer.
Ceri, S.; Gottlob, G.; and Tanca, L. 1989. What you Al-
ways Wanted to Know About Datalog (And Never Dared to
Ask). IEEE Transactions on Knowledge and Data Engineer-
ing, 1(1): 146–166.
Corrêa, A. B.; and De Giacomo, G. 2024. Lifted Planning:
Recent Advances in Planning Using First-Order Represen-
tations. In Larson, K., ed., Proceedings of the 33rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2024), 8010–8019. IJCAI.
Corrêa, A. B.; De Giacomo, G.; Helmert, M.; and Rubin, S.
2024. Planning with Object Creation. In Bernardini, S.; and
Muise, C., eds., Proceedings of the Thirty-Fourth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2024), 104–113. AAAI Press.
Corrêa, A. B.; Francès, G.; Pommerening, F.; and Helmert,
M. 2021. Delete-Relaxation Heuristics for Lifted Classical
Planning. In Goldman, R. P.; Biundo, S.; and Katz, M., eds.,
Proceedings of the Thirty-First International Conference on
Automated Planning and Scheduling (ICAPS 2021), 94–102.
AAAI Press.
Corrêa, A. B.; Hecher, M.; Helmert, M.; Longo, D. M.;
Pommerening, F.; and Woltran, S. 2023. Grounding Plan-
ning Tasks Using Tree Decompositions and Iterated Solving.
In Koenig, S.; Stern, R.; and Vallati, M., eds., Proceedings
of the Thirty-Third International Conference on Automated
Planning and Scheduling (ICAPS 2023). AAAI Press.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2022. The FF Heuristic for Lifted Classical Plan-
ning. In Honavar, V.; and Spaan, M., eds., Proceedings of

the Thirty-Sixth AAAI Conference on Artificial Intelligence
(AAAI 2022), 9716–9723. AAAI Press.
Edelkamp, S.; Lluch-Lafuente, A.; and Moraru, I. 2019.
Introducing Dynamic Object Creation to PDDL Planning.
https://openreview.net/forum?id=rkxRj58y5N.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995.
Complexity, Decidability and Undecidability Results for
Domain-Independent Planning. Artificial Intelligence,
76(1–2): 75–88.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2: 189–208.
Fuentetaja, R.; and de la Rosa, T. 2016. Compiling irrelevant
objects to counters. Special case of creation planning. AI
Communications, 29(3): 435–467.
Geffner, H. 2000. Functional Strips: A More Flexible Lan-
guage for Planning and Problem Solving. In Minker, J., ed.,
Logic-Based Artificial Intelligence, volume 597 of Kluwer
International Series In Engineering And Computer Science,
chapter 9, 187–209. Dordrecht: Kluwer.
Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In Ghallab, M.;
Hertzberg, J.; and Traverso, P., eds., Proceedings of the Sixth
International Conference on Artificial Intelligence Planning
and Scheduling (AIPS 2002), 303–312. AAAI Press.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating ‘Ignoring Delete Lists’ to Numeric State Variables.
Journal of Artificial Intelligence Research, 20: 291–341.
Hoffmann, J.; Bertoli, P.; Helmert, M.; and Pistore, M. 2009.
Message-Based Web Service Composition, Integrity Con-
straints, and Planning under Uncertainty: A New Connec-
tion. Journal of Artificial Intelligence Research, 35: 49–117.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Horčı́k, R.; Fišer, D.; and Torralba, Á. 2022. Homomor-
phisms of Lifted Planning Tasks: The Case for Delete-free
Relaxation Heuristics. In Honavar, V.; and Spaan, M., eds.,
Proceedings of the Thirty-Sixth AAAI Conference on Artifi-
cial Intelligence (AAAI 2022), 9767–9775. AAAI Press.
Long, D.; and Fox, M. 2003. The 3rd International Planning
Competition: Results and Analysis. Journal of Artificial In-
telligence Research, 20: 1–59.
Petrov, A.; and Muise, C. 2023. Automated Planning Tech-
niques for Elementary Proofs in Abstract Algebra. In ICAPS
2023 Scheduling and Planning Applications woRKshop.

