
Zero-Knowledge Proofs for Classical Planning Problems:
Concrete Example

Augusto B. Corrêa, Clemens Büchner, Remo Christen
University of Basel, Switzerland

{augusto.blaascorrea,clemens.buechner,remo.christen}@unibas.ch

Here we give a concrete example for the protocol
ZK-BOUNDEDPLANEX of the paper “Zero-Knowledge
Proofs for Classical Planning Problems” (Corrêa, Büchner,
and Christen 2023). We follow the notation used in the paper
throughout our example.

Step 0
Both prover P and verifier V have as common input 〈Π, k〉
where k = 3 and Π is the planning task Π = 〈V,A, I, G〉,
with

V = {v1, v2, v3},
A = {a1, a2},
I = {},
G = {v1, v2, v3},

and

pre(a1) = {},
eff(a1) = {v1},

pre(a2) = {v1},
eff(a2) = {¬v1, v2, v3}.

The plan for Π known by P is π = 〈a1, a2, a1〉.

Step 1
Next we detail the transformations (a)–(e) described in
Step 1 of the ZK-BOUNDEDPLANEX.

(a) The first transformation adds a dummy action a∅ to the
task, leading to Πa = 〈Va,Aa, Ia, Ga〉 where

Va = V = {v1, v2, v3}
Aa = {a1, a2, a∅}

Ia = I = {}, and
Ga = G = {v1, v2, v3}

and

pre(a∅) = eff(a∅) = {}.
(b) Let us briefly refresh some definitions from the paper.

Recall that
m(a) = |vars(pre(a)) ∩ vars(eff(a))|, for all a ∈ A;
m∗ = max

a∈A
m(a).

In our running example, we have m(a1) = m(a∅) = 0
and m(a2) = m∗ = 1 because v1 occurs in pre(a2) as
well as in eff(a2), but no other variable occurs in both the
precondition and effect of the same action in Aa. Hence,
we introduce two new variables ma1

1 ,m
a∅
1 and six new

actions a⊥1 , a>1 , a⊥2 , and a>2 , a⊥∅, and a⊥∅ where

pre(a⊥1) = {¬ma1
1 },

eff(a⊥1) = {v1,ma1
1 },

pre(a>1) = {ma1
1 },

eff(a>1) = {v1,¬ma1
1 },

pre(a⊥2) = pre(a>2) = pre(a2) = {v1},
eff(a⊥2) = eff(a>2) = eff(a2) = {¬v1, v2, v3},

pre(a⊥∅) = {¬ma∅
1 },

eff(a⊥∅) = {ma∅
1 },

pre(a>∅) = {ma∅
1 }, and

eff(a>∅) = {¬ma∅
1 }.

Note that this part of the transformation does not affect
the initial state and the goal. As a result, we obtain Πb =
〈Vb,Ab, Ib, Gb〉 where

Vb = {v1, v2, v3,ma∅
1 ,ma1

1 },
Ab = {a⊥1 , a>1 , a⊥2 , a>2 , a⊥∅, a>∅},

Ib = I = {}, and
Gb = G = {v1, v2, v3}

Observe that πb = 〈a⊥1 , a⊥2 , a>1 〉 is a plan for Πb that
corresponds to π in Π. This is done by simply replacing
every i-th occurrence of a in π with a⊥ if i is odd and
with a> if i is even.

(c) In the paper, p and e were defined as follows

p(a) = |pre(a)|,
e(a) = |eff(a)|

for all a ∈ A, and

p∗ = max
a∈A′

p(a),

e∗ = max
a∈A′

e(a).

In Πb, we have p∗ = 1 because all actions in Ab have
exactly one precondition and e∗ = 3 because a⊥2 and a>2
have the most effects, namely 3. As a⊥∅ and a>∅ have only
one variable in their effects and a⊥1 and a>1 have only
two variables in their effects, we need to add two (re-
spectively one) additional variable(s) for each of them,
respectively. Hence, we need to introduce six new vari-

ables ea
⊥
1

1 , ea
>
1

1 e
a⊥∅
1 , e

a>∅
1 e

a⊥∅
2 , and e

a>∅
2 . Furthermore, we

define the new actions a⊥1 , a>1 , a⊥2 , a>2 , a⊥∅, and a>∅ where

pre(a⊥1) = pre(a⊥1) = {¬ma1
1 },

eff(a⊥1) = {v1,ma1
1 ,¬e

a⊥1
1 },

pre(a>1) = pre(a>1) = {ma1
1 },

eff(a>1) = {v1,¬ma1
1 ,¬e

a>1
1 },

pre(a⊥2) = pre(a>2) = pre(a2) = {v1},
eff(a⊥2) = eff(a>2) = eff(a2) = {¬v1, v2, v3},

pre(a⊥∅) = pre(a⊥∅) = {¬ma∅
1 },

eff(a⊥∅) = {ma∅
1 ,¬ea

⊥
∅

1 ,¬ea
⊥
∅

2 },
pre(a>∅) = pre(a>∅) = {ma∅

1 }, and

eff(a>∅) = {¬ma∅
1 ,¬ea

>
∅

1 ,¬ea
>
∅

2 }.

As a result, we obtain Πc = 〈Vc,Ac, Ic, Gc〉 where

Vc = {v1, v2, v3,ma1
1 ,m

a∅
1 ,

e
a⊥1
1 , e

a>1
1 , e

a⊥∅
1 , e

a>∅
1 , e

a⊥∅
2 , e

a>∅
2 },

Ac = {a⊥1 , a>1 , a⊥2 , a>2 , a⊥∅, a>∅},
Ic = I = {}, and
Gc = G = {v1, v2, v3}

The plan πb is changed by simply using the corre-
sponding new actions. Thus, the plan for Πc is πc =
〈a⊥1 , a⊥2 , a>1 〉, which corresponds to πb in Πb.

(d) Recall that ρ is a function permuting variables labels and
swapping the truth values of a subset of variables that
is chosen uniformly at random. These swaps are done
consistently across the entire task. To simplify our ex-
ample, we will use ρ as a function mapping V to some
alphabet {ρ1, . . . , ρ11} although it should be a permuta-
tion function. Also to make the example easier, we mod-
ify the names given to the actions. Note that a priori ac-
tion names are simply syntactic sugar as they are simply
identified by their preconditions and effects, which will
already be permuted by ρ.

Assume ρ is such that the variables are renamed as fol-

lows:

ρ1 := v3, aρ1 := a>1 ,

ρ2 := e
a⊥1
1 , aρ2 := a>2 ,

ρ3 := ¬v2, aρ3 := a⊥2 ,

ρ4 := ma1
1 , aρ4 := a⊥1 ,

ρ5 := v1, aρ5 := a>∅, and

ρ6 := ¬ea
>
1

1 aρ6 := a⊥∅.

ρ7 := ¬ea
⊥
∅

2 ,

ρ8 := e
a>∅
1 ,

ρ9 := ¬ma∅
1 ,

ρ10 := e
a⊥∅
1 , and

ρ11 := e
a>∅
2 ;

(If we write ρ := ¬v we mean ρ corresponds to the old
variable v but its value in Ic is inverted.) Then Πd =
〈Vd,Ad, Id, Gd〉 looks as follows:

Vd = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8, ρ9, ρ10, ρ11},
Ad = {aρ1, a

ρ
2, a

ρ
3, a

ρ
4, a

ρ
5, a

ρ
6},

Id = {ρ3, ρ6, ρ7, ρ9}, and
Gd = {ρ1,¬ρ3, ρ5}

where

pre(aρ1) = {ρ4},
eff(aρ1) = {¬ρ4, ρ5, ρ6},

pre(aρ2) = {ρ5},
eff(aρ2) = {ρ1,¬ρ3,¬ρ5},

pre(aρ3) = {ρ5},
eff(aρ3) = {ρ1,¬ρ3,¬ρ5},

pre(aρ4) = {¬ρ4},
eff(aρ4) = {¬ρ2, ρ4, ρ5},

pre(aρ5) = {¬ρ9},
eff(aρ5) = {¬ρ8, ρ9,¬ρ11},

pre(aρ6) = {ρ9}, and

eff(aρ6) = {ρ7,¬ρ9,¬ρ10}.

Observe that πd = 〈aρ4, a
ρ
3, a

ρ
1〉 is the plan for Πd that

corresponds to πc in Πc.
(e) After introducing the artificial initial and goal state as

well as the initial and goal actions, we obtain Πe =
〈Ve,Ae, Ie, Ge〉 where

Ve = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8, ρ9, ρ10, ρ11, vI , v∗},
Ae = {âρ1, â

ρ
2, â

ρ
3, â

ρ
4, â

ρ
5, â

ρ
6, aI , a∗},

Ie = {vI}, and
Ge = {¬ρ1, . . . ,¬ρ11,¬vI , v∗}

where

pre(âρ1) = {ρ4,¬vI},
eff(âρ1) = {¬ρ4, ρ5, ρ6},

pre(âρ2) = {ρ5,¬vI},
eff(âρ2) = {ρ1,¬ρ3,¬ρ5},

pre(âρ3) = {ρ5,¬vI},
eff(âρ3) = {ρ1,¬ρ3,¬ρ5},

pre(âρ4) = {¬ρ4,¬vI},
eff(âρ4) = {¬ρ2, ρ4, ρ5},

pre(â5
ρ) = {¬ρ9,¬vI},

eff(â5
ρ) = {¬ρ8, ρ9,¬ρ11},

pre(â6
ρ) = {ρ9,¬vI},

eff(â6
ρ) = {¬ρ7,¬ρ9, ρ10}.

pre(aI) = {vI},
eff(aI) = {ρ3, ρ6, ρ7, ρ9,¬vI},

pre(a∗) = {ρ1,¬ρ3, ρ5,¬vI}, and
eff(a∗) = {¬ρ1, . . . ,¬ρ11,¬vI , v∗}.

Finally, note that we can transform the plan πd into a
valid plan for Πe simply by appending aI and a∗ to the
plan and switching each action to its new corresponding
one. Thus, πe = 〈aI , âρ4, â

ρ
3, â

ρ
1, a∗〉 is the plan for Πe

that corresponds to πd in Πd.
Given that the entire task transformation is called Π̂ =
Πe in the main paper, we also refer to πe as π̂.

Step 2
The prover P then creates the sequence of states S =
〈s0, s1, s2, s3, s4, s5〉 where

s0 = {vI}
s1 = {ρ3, ρ6, ρ7, ρ9}
s2 = {ρ3, ρ4, ρ5, ρ6, ρ7, ρ9}
s3 = {ρ1, ρ4, ρ6, ρ7, ρ9}
s4 = {ρ1, ρ5, ρ6, ρ7, ρ9}
s5 = {v∗}.

P sends Commit(Π̂),Commit(π̂), and Commit(S) to V .

Step 3
Recall that ` = k + 2 = 5 in our case, as k = 3. V checks
that |Commit(π̂)| > ` = 5. This is not the case, so V contin-
ues the protocol: it picks a random bit b ∈ {0, 1} and sends
it to P .

If b = 0, the case is trivial: P sends the function σ used
to produce Π̂ and V checks that σ(Π) = Π̂. In our example,
this is true so V would accept the protocol.

Let us continue the protocol assuming that b = 1. Then P
opens s0 and s5 from Commit(S).

Step 4
V checks if the opened states are what it expects: s0 should
be the initial state {vI} as defined by the protocol; s5 should

be the unique goal state {v∗} as defined by the protocol. V
verifies that this is indeed the case.

The protocol continues: V now uniformly chooses an in-
teger m ∈ {1, 2, 3, 4, 5} and sends it to P . In our example,
let us assume that V picked m = 3 – although any choice
would lead to the same protocol conclusion. This means that
the verifier will check the third transition of the plan, de-
noted as (s2, â

ρ
3, s3).

Step 5
P opens V̂ from Commit(Π̂), and reveals âρ3 from
Commit(Â). As m = 3, P also opens s2 and s3 from
Commit(S), as well as âρ3 from Commit(π̂). Note that P re-
veals âρ3 twice: once in Â and once in π̂. This is done so the
verifier can check that the action in the transition is indeed
in the transformed task description.
V then checks that all variables used in s2, â

ρ
3 and s3 are

indeed in V̂ . This is clearly the case in our example.
It also compares the action âρ3 obtained from Commit(Â)

and the action obtained from the third transition of
Commit(π̂). Both of them are indeed âρ3. Last, V computes
s2Jâ

ρ
3K. This is also true, so V finally accepts the protocol.

References
Corrêa, A. B.; Büchner, C.; and Christen, R. 2023. Zero-
Knowledge Proofs for Classical Planning Problems. In
Chen, Y.; and Neville, J., eds., Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence (AAAI
2023). AAAI Press.

