Zero-Knowledge Proofs for Classical Planning Problems: Concrete Example

Augusto B. Corrêa, Clemens Büchner, Remo Christen

University of Basel, Switzerland {augusto.blaascorrea,clemens.buechner,remo.christen}@unibas.ch

Here we give a concrete example for the protocol ZK-BOUNDEDPLANEX of the paper "Zero-Knowledge Proofs for Classical Planning Problems" (Corrêa, Büchner, and Christen 2023). We follow the notation used in the paper throughout our example.

Step 0

Both prover P and verifier V have as common input $\langle \Pi, k \rangle$ where k = 3 and Π is the planning task $\Pi = \langle \mathcal{V}, \mathcal{A}, I, G \rangle$, with

$$\begin{aligned} \mathcal{V} &= \{v_1, v_2, v_3\}, \\ \mathcal{A} &= \{a_1, a_2\}, \\ I &= \{\}, \\ G &= \{v_1, v_2, v_3\}, \end{aligned}$$

and

$$pre(a_1) = \{\},\$$

$$eff(a_1) = \{v_1\},\$$

$$pre(a_2) = \{v_1\},\$$

$$eff(a_2) = \{\neg v_1, v_2, v_3\}.$$

The plan for Π known by P is $\pi = \langle a_1, a_2, a_1 \rangle$.

Step 1

Next we detail the transformations (a)–(e) described in Step 1 of the ZK-BOUNDEDPLANEX.

(a) The first transformation adds a dummy action a_{\emptyset} to the task, leading to $\Pi_{a} = \langle \mathcal{V}_{a}, \mathcal{A}_{a}, I_{a}, G_{a} \rangle$ where

$$\begin{split} \mathcal{V}_{a} &= \mathcal{V} = \{v_{1}, v_{2}, v_{3}\} \\ \mathcal{A}_{a} &= \{a_{1}, a_{2}, a_{\varnothing}\} \\ I_{a} &= I = \{\}, \text{ and} \\ G_{a} &= G = \{v_{1}, v_{2}, v_{3}\} \end{split}$$

and

$$pre(a_{\varnothing}) = eff(a_{\varnothing}) = \{\}.$$

(b) Let us briefly refresh some definitions from the paper. Recall that

$$\begin{split} m(a) &= |vars(pre(a)) \cap vars(eff(a))|, \text{for all } a \in \mathcal{A}; \\ m^* &= \max_{a \in \mathcal{A}} m(a). \end{split}$$

In our running example, we have $m(a_1) = m(a_{\varnothing}) = 0$ and $m(a_2) = m^* = 1$ because v_1 occurs in $pre(a_2)$ as well as in $eff(a_2)$, but no other variable occurs in both the precondition and effect of the same action in \mathcal{A}_a . Hence, we introduce two new variables $m_1^{a_1}, m_1^{a_{\varnothing}}$ and six new actions $a_1^{\perp}, a_1^{\top}, a_2^{\perp}$, and $a_2^{\top}, a_{\varnothing}^{\perp}$, and a_{\varnothing}^{\perp} where

$$\begin{aligned} pre(a_{1}^{\perp}) &= \{\neg m_{1}^{a_{1}}\},\\ eff(a_{1}^{\perp}) &= \{v_{1}, m_{1}^{a_{1}}\},\\ pre(a_{1}^{\top}) &= \{m_{1}^{a_{1}}\},\\ eff(a_{1}^{\top}) &= \{v_{1}, \neg m_{1}^{a_{1}}\},\\ eff(a_{2}^{\top}) &= pre(a_{2}^{\top}) = pre(a_{2}) = \{v_{1}\},\\ eff(a_{2}^{\perp}) &= eff(a_{2}^{\top}) = eff(a_{2}) = \{\neg v_{1}, v_{2}, v_{3}\},\\ pre(a_{\varnothing}^{\perp}) &= \{m_{1}^{a_{\varnothing}}\},\\ eff(a_{\varnothing}^{\perp}) &= \{m_{1}^{a_{\varnothing}}\},\\ pre(a_{\varnothing}^{\top}) &= \{m_{1}^{a_{\varnothing}}\},\\ pre(a_{\varnothing}^{\top}) &= \{m_{1}^{a_{\varnothing}}\},\\ eff(a_{\varnothing}^{\top}) &= \{\neg m_{1}^{a_{\varnothing}}\}.\end{aligned}$$

Note that this part of the transformation does not affect the initial state and the goal. As a result, we obtain $\Pi_b = \langle \mathcal{V}_b, \mathcal{A}_b, I_b, G_b \rangle$ where

$$\begin{split} \mathcal{V}_{\mathsf{b}} &= \{v_1, v_2, v_3, m_1^{a_{\varnothing}}, m_1^{a_1}\},\\ \mathcal{A}_{\mathsf{b}} &= \{a_1^{\bot}, a_1^{\top}, a_2^{\bot}, a_2^{\top}, a_{\varnothing}^{\bot}, a_{\varnothing}^{\top}\},\\ I_{\mathsf{b}} &= I = \{\}, \text{ and }\\ G_{\mathsf{b}} &= G = \{v_1, v_2, v_3\} \end{split}$$

Observe that $\pi_b = \langle a_1^{\perp}, a_2^{\perp}, a_1^{\top} \rangle$ is a plan for Π_b that corresponds to π in Π . This is done by simply replacing every *i*-th occurrence of *a* in π with a^{\perp} if *i* is odd and with a^{\top} if *i* is even.

(c) In the paper, p and e were defined as follows

$$p(a) = |pre(a)|$$
$$e(a) = |eff(a)|$$

for all $a \in A$, and

$$p^* = \max_{a \in \mathcal{A}'} p(a),$$
$$e^* = \max_{a \in \mathcal{A}'} e(a).$$

In Π_b , we have $p^* = 1$ because all actions in \mathcal{A}_b have exactly one precondition and $e^* = 3$ because a_2^{\perp} and a_2^{\top} have the most effects, namely 3. As a_{\varnothing}^{\perp} and a_{\varnothing}^{\top} have only one variable in their effects and a_1^{\perp} and a_{\boxtimes}^{\top} have only two variables in their effects, we need to add two (respectively one) additional variable(s) for each of them, respectively. Hence, we need to introduce six new variables $e_1^{a_1^{\perp}}$, $e_1^{a_1^{\perp}}$, $e_1^{a_{\boxtimes}^{\perp}}$, $e_2^{a_{\boxtimes}^{\perp}}$, and $e_2^{a_{\boxtimes}^{\perp}}$. Furthermore, we define the new actions \overline{a}_1^{\perp} , \overline{a}_1^{\top} , \overline{a}_2^{\perp} , $\overline{a}_{\boxtimes}^{\perp}$, and $\overline{a}_{\boxtimes}^{\nabla}$ where

$$\begin{aligned} pre(\overline{a}_{1}^{\perp}) &= pre(a_{1}^{\perp}) = \{\neg m_{1}^{a_{1}}\}, \\ eff(\overline{a}_{1}^{\perp}) &= \{v_{1}, m_{1}^{a_{1}}, \neg e_{1}^{a_{1}^{\perp}}\}, \\ pre(\overline{a}_{1}^{\top}) &= pre(a_{1}^{\top}) = \{m_{1}^{a_{1}}\}, \\ eff(\overline{a}_{1}^{\top}) &= \{v_{1}, \neg m_{1}^{a_{1}}, \neg e_{1}^{a_{1}^{\top}}\}, \\ pre(\overline{a}_{2}^{\perp}) &= pre(\overline{a}_{2}^{\top}) = pre(a_{2}) = \{v_{1}\}, \\ eff(\overline{a}_{2}^{\perp}) &= eff(\overline{a}_{2}^{\top}) = eff(a_{2}) = \{\neg v_{1}, v_{2}, v_{3}\}, \\ pre(\overline{a}_{\varnothing}^{\perp}) &= pre(a_{\varnothing}^{\perp}) = \{\neg m_{1}^{a_{\varnothing}}\}, \\ eff(\overline{a}_{\varnothing}^{\perp}) &= \{m_{1}^{a_{\varnothing}}, \neg e_{1}^{a_{\ominus}^{\perp}}, \neg e_{2}^{a_{\ominus}^{\perp}}\}, \\ pre(\overline{a}_{\varnothing}^{\top}) &= pre(a_{\varnothing}^{\top}) = \{m_{1}^{a_{\varnothing}}\}, \text{ and} \\ eff(\overline{a}_{\varnothing}^{\top}) &= \{\neg m_{1}^{a_{\varnothing}}, \neg e_{1}^{a_{\ominus}^{\top}}, \neg e_{2}^{a_{\ominus}^{\top}}\} \end{aligned}$$

As a result, we obtain $\Pi_{c} = \langle \mathcal{V}_{c}, \mathcal{A}_{c}, I_{c}, G_{c} \rangle$ where

$$\begin{split} \mathcal{V}_{\rm c} &= \{v_1, v_2, v_3, m_1^{a_1}, m_1^{a_{\varnothing}}, \\ &e_1^{a_1^{\perp}}, e_1^{a_1^{\top}}, e_1^{a_{\varnothing}^{\perp}}, e_1^{a_{\varnothing}^{\perp}}, e_2^{a_{\varnothing}^{\perp}}, e_2^{a_{\varnothing}^{\top}} \}, \\ \mathcal{A}_{\rm c} &= \{\overline{a}_1^{\perp}, \overline{a}_1^{\top}, \overline{a}_2^{\perp}, \overline{a}_2^{\top}, \overline{a}_{\varnothing}^{\perp}, \overline{a}_{\varnothing}^{\top} \}, \\ I_{\rm c} &= I = \{\}, \text{ and } \\ G_{\rm c} &= G = \{v_1, v_2, v_3\} \end{split}$$

The plan π_b is changed by simply using the corresponding new actions. Thus, the plan for Π_c is $\pi_c = \langle \overline{a}_1^{\perp}, \overline{a}_2^{\perp}, \overline{a}_1^{\top} \rangle$, which corresponds to π_b in Π_b .

(d) Recall that ρ is a function permuting variables labels and swapping the truth values of a subset of variables that is chosen uniformly at random. These swaps are done consistently across the entire task. To simplify our example, we will use ρ as a function mapping \mathcal{V} to some alphabet { $\rho_1, \ldots, \rho_{11}$ } although it should be a permutation function. Also to make the example easier, we modify the names given to the actions. Note that *a priori* action names are simply syntactic sugar as they are simply identified by their preconditions and effects, which will already be permuted by ρ .

Assume ρ is such that the variables are renamed as fol-

lows:

$$\begin{array}{ll} \rho_{1} := v_{3}, & a_{1}^{\rho} := \overline{a}_{1}^{\perp}, \\ \rho_{2} := e_{1}^{a_{1}^{\perp}}, & a_{2}^{\rho} := \overline{a}_{2}^{\top}, \\ \rho_{3} := \neg v_{2}, & a_{3}^{\rho} := \overline{a}_{2}^{\perp}, \\ \rho_{4} := m_{1}^{a_{1}}, & a_{4}^{\rho} := \overline{a}_{1}^{\perp}, \\ \rho_{5} := v_{1}, & a_{5}^{\rho} := \overline{a}_{\varnothing}^{\top}, \\ \rho_{6} := \neg e_{1}^{a_{1}^{\top}} & a_{6}^{\rho} := \overline{a}_{\varnothing}^{\perp}, \\ \rho_{7} := \neg e_{2}^{a_{\varnothing}^{\perp}}, \\ \rho_{8} := e_{1}^{a_{\varphi}^{\perp}}, \\ \rho_{9} := \neg m_{1}^{a_{\varnothing}}, \\ \rho_{10} := e_{1}^{a_{\varphi}^{\perp}}, \\ and \\ \rho_{11} := e_{2}^{a_{\varphi}^{\top}}; \end{array}$$

(If we write $\rho := \neg v$ we mean ρ corresponds to the old variable v but its value in I_c is inverted.) Then $\Pi_d = \langle \mathcal{V}_d, \mathcal{A}_d, I_d, G_d \rangle$ looks as follows:

$$\begin{aligned} \mathcal{V}_{d} &= \{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}, \rho_{6}, \rho_{7}, \rho_{8}, \rho_{9}, \rho_{10}, \rho_{11}\}, \\ \mathcal{A}_{d} &= \{a_{1}^{\rho}, a_{2}^{\rho}, a_{3}^{\rho}, a_{4}^{\rho}, a_{5}^{\rho}, a_{6}^{\rho}\}, \\ I_{d} &= \{\rho_{3}, \rho_{6}, \rho_{7}, \rho_{9}\}, \text{ and } \\ G_{d} &= \{\rho_{1}, \neg \rho_{3}, \rho_{5}\} \end{aligned}$$

where

$$\begin{array}{l} pre(a_{1}^{\rho}) = \{\rho_{4}\},\\ eff(a_{1}^{\rho}) = \{\neg \rho_{4}, \rho_{5}, \rho_{6}\},\\ pre(a_{2}^{\rho}) = \{\rho_{5}\},\\ eff(a_{2}^{\rho}) = \{\rho_{1}, \neg \rho_{3}, \neg \rho_{5}\},\\ pre(a_{3}^{\rho}) = \{\rho_{5}\},\\ eff(a_{3}^{\rho}) = \{\rho_{1}, \neg \rho_{3}, \neg \rho_{5}\},\\ pre(a_{4}^{\rho}) = \{\neg \rho_{4}\},\\ eff(a_{4}^{\rho}) = \{\neg \rho_{2}, \rho_{4}, \rho_{5}\},\\ pre(a_{5}^{\rho}) = \{\neg \rho_{9}\},\\ eff(a_{5}^{\rho}) = \{\neg \rho_{8}, \rho_{9}, \neg \rho_{11}\},\\ pre(a_{6}^{\rho}) = \{\rho_{7}, \neg \rho_{9}, \neg \rho_{10}\}. \end{array}$$

Observe that $\pi_d = \langle a_4^{\rho}, a_3^{\rho}, a_1^{\rho} \rangle$ is the plan for Π_d that corresponds to π_c in Π_c .

(e) After introducing the artificial initial and goal state as well as the initial and goal actions, we obtain $\Pi_e = \langle \mathcal{V}_e, \mathcal{A}_e, I_e, G_e \rangle$ where

$$\mathcal{V}_{e} = \{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}, \rho_{6}, \rho_{7}, \rho_{8}, \rho_{9}, \rho_{10}, \rho_{11}, v_{I}, v_{*}\},\$$

$$\mathcal{A}_{e} = \{\hat{a}_{1}^{\rho}, \hat{a}_{2}^{\rho}, \hat{a}_{3}^{\rho}, \hat{a}_{4}^{\rho}, \hat{a}_{5}^{\rho}, \hat{a}_{6}^{\rho}, a_{I}, a_{*}\},\$$

$$I_{e} = \{v_{I}\}, \text{ and }$$

$$G_{e} = \{\neg \rho_{1}, \dots, \neg \rho_{11}, \neg v_{I}, v_{*}\}$$

where

$$\begin{aligned} pre(\hat{a}_{1}^{\rho}) &= \{\rho_{4}, \neg v_{I}\},\\ eff(\hat{a}_{1}^{\rho}) &= \{\gamma \rho_{4}, \rho_{5}, \rho_{6}\},\\ pre(\hat{a}_{2}^{\rho}) &= \{\rho_{5}, \neg v_{I}\},\\ eff(\hat{a}_{2}^{\rho}) &= \{\rho_{1}, \neg \rho_{3}, \neg \rho_{5}\},\\ pre(\hat{a}_{3}^{\rho}) &= \{\rho_{5}, \neg v_{I}\},\\ eff(\hat{a}_{3}^{\rho}) &= \{\rho_{1}, \neg \rho_{3}, \neg \rho_{5}\},\\ pre(\hat{a}_{4}^{\rho}) &= \{\gamma \rho_{4}, \neg v_{I}\},\\ eff(\hat{a}_{4}^{\rho}) &= \{\gamma \rho_{2}, \rho_{4}, \rho_{5}\},\\ pre(\hat{a}_{5}^{\rho}) &= \{\gamma \rho_{9}, \neg v_{I}\},\\ eff(\hat{a}_{5}^{\rho}) &= \{\gamma \rho_{8}, \rho_{9}, \neg \rho_{11}\},\\ pre(\hat{a}_{6}^{\rho}) &= \{\rho_{9}, \neg v_{I}\},\\ eff(\hat{a}_{6}^{\rho}) &= \{\gamma \rho_{7}, \neg \rho_{9}, \rho_{10}\},\\ pre(a_{I}) &= \{v_{I}\},\\ eff(a_{I}) &= \{\rho_{3}, \rho_{6}, \rho_{7}, \rho_{9}, \neg v_{I}\},\\ pre(a_{*}) &= \{\gamma \rho_{1}, \ldots, \neg \rho_{11}, \neg v_{I}, v_{*}\} \end{aligned}$$

Finally, note that we can transform the plan π_d into a valid plan for Π_e simply by appending a_I and a_* to the plan and switching each action to its new corresponding one. Thus, $\pi_e = \langle a_I, \hat{a}_4^{\rho}, \hat{a}_3^{\rho}, \hat{a}_1^{\rho}, a_* \rangle$ is the plan for Π_e that corresponds to π_d in Π_d .

Given that the entire task transformation is called $\hat{\Pi} = \Pi_e$ in the main paper, we also refer to π_e as $\hat{\pi}$.

Step 2

The prover P then creates the sequence of states $S = \langle s_0, s_1, s_2, s_3, s_4, s_5 \rangle$ where

$$s_{0} = \{v_{I}\}$$

$$s_{1} = \{\rho_{3}, \rho_{6}, \rho_{7}, \rho_{9}\}$$

$$s_{2} = \{\rho_{3}, \rho_{4}, \rho_{5}, \rho_{6}, \rho_{7}, \rho_{9}\}$$

$$s_{3} = \{\rho_{1}, \rho_{4}, \rho_{6}, \rho_{7}, \rho_{9}\}$$

$$s_{4} = \{\rho_{1}, \rho_{5}, \rho_{6}, \rho_{7}, \rho_{9}\}$$

$$s_{5} = \{v_{*}\}.$$

P sends $Commit(\hat{\Pi}), Commit(\hat{\pi}), and Commit(S)$ to V.

Step 3

Recall that $\ell = k + 2 = 5$ in our case, as k = 3. V checks that $|Commit(\hat{\pi})| > \ell = 5$. This is not the case, so V continues the protocol: it picks a random bit $b \in \{0, 1\}$ and sends it to P.

If b = 0, the case is trivial: P sends the function σ used to produce $\hat{\Pi}$ and V checks that $\sigma(\Pi) = \hat{\Pi}$. In our example, this is true so V would accept the protocol.

Let us continue the protocol assuming that b = 1. Then P opens s_0 and s_5 from Commit(S).

Step 4

V checks if the opened states are what it expects: s_0 should be the initial state $\{v_I\}$ as defined by the protocol; s_5 should be the unique goal state $\{v_*\}$ as defined by the protocol. V verifies that this is indeed the case.

The protocol continues: V now uniformly chooses an integer $m \in \{1, 2, 3, 4, 5\}$ and sends it to P. In our example, let us assume that V picked m = 3 – although any choice would lead to the same protocol conclusion. This means that the verifier will check the third transition of the plan, denoted as $(s_2, \hat{a}_3^{\rho}, s_3)$.

Step 5

P opens $\hat{\mathcal{V}}$ from *Commit*(Π), and reveals \hat{a}_3^{ρ} from *Commit*($\hat{\mathcal{A}}$). As m = 3, *P* also opens s_2 and s_3 from *Commit*($\hat{\mathcal{S}}$), as well as \hat{a}_3^{ρ} from *Commit*($\hat{\pi}$). Note that *P* reveals \hat{a}_3^{ρ} twice: once in $\hat{\mathcal{A}}$ and once in $\hat{\pi}$. This is done so the verifier can check that the action in the transition is indeed in the transformed task description.

V then checks that all variables used in s_2 , \hat{a}_3^{ρ} and s_3 are indeed in $\hat{\mathcal{V}}$. This is clearly the case in our example.

It also compares the action \hat{a}_3^{ρ} obtained from $Commit(\hat{A})$ and the action obtained from the third transition of $Commit(\hat{\pi})$. Both of them are indeed \hat{a}_3^{ρ} . Last, V computes $s_2[\![\hat{a}_3^{\rho}]\!]$. This is also true, so V finally accepts the protocol.

References

Corrêa, A. B.; Büchner, C.; and Christen, R. 2023. Zero-Knowledge Proofs for Classical Planning Problems. In Chen, Y.; and Neville, J., eds., *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI* 2023). AAAI Press.