
Grounding Planning Tasks Using Tree Decompositions and Iterated Solving
(Extended Abstract)†

Augusto B. Corrêa1, Markus Hecher2,3, Malte Helmert1, Davide Mario Longo2,
Florian Pommerening1, Stefan Woltran2

1University of Basel, Switzerland
2TU Wien, Institute of Logic and Computation, Austria

3Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA
{augusto.blaascorrea,malte.helmert,florian.pommerening}@unibas.ch

hecher@mit.edu, davidem.longo@gmail.com, woltran@dbai.tuwien.ac.at

Classical planning tasks are usually described using first-
order languages (Haslum et al. 2019). However, most clas-
sical planners use propositional representations. Planners
then need to ground the task before they can solve it. In
the planning literature, the most popular grounder is the one
used by Fast Downward (Helmert 2006; Helmert 2009), de-
noted here as FD. The key idea of FD is to encode a delete-
relaxed version of the task (Bonet and Geffner 2001) as a
Datalog program. Grounding this Datalog program gives us
all delete-relaxed reachable atoms of the task.

In this work, we study how to ground planning tasks
more efficiently. Following FD, we use Datalog programs to
ground planning tasks. Inspired by recent progress in lifted
planning, database theory, and algorithmics, we develop a
new method to ground these Datalog programs. Our new al-
gorithm grounds more tasks than any other tested grounder.

Grounding Planning Tasks using Datalog
We illustrate the main idea of the FD grounder using an ex-
ample. For a complete formalization and detailed explana-
tion, we refer to the conference version (Corrêa et al. 2023).
A planning task Π is associated to a set P of predicates, a
set C of constants, a set A of action, an initial state I , and
a goal G. Each action has preconditions and effects, which
are sets of atoms over P . The initial state I describes which
ground atoms are initially true, and the goal G is the set of
atoms that we want to make true.

Consider a task Π with a single action A with two param-
eters x and y, preconditions {p(x), p(y),¬q(x, x)}, and ef-
fect {q(x, y)}. Furthermore, let us define I as {p(0), p(1)}.
(The goal G does not influence our simplified example.)
FD grounds this task by first obtaining its delete-relaxation
(Bonet and Geffner 2001): it ignores all negated precondi-
tions and negated effects. The delete-relaxation of Π can be
encoded as the following Datalog program:

p(0). p(1).

A(x, y)← p(x), p(y).

q(x, y)← A(x, y).

†This is an abridged version of a paper published at ICAPS
2023 (Corrêa et al. 2023).

The canonical model of this program has all atoms that
are relaxed-reachable. This is an overapproximation of all
atoms needs to solve the original task, and it might contain
atoms that are not reachable in the original (non-relaxed)
task. However, this information can still be useful (e.g., to
compute heuristics), and guarantees that the ground repre-
sentation can be computed efficiently (Dantsin et al. 2001)
while preserving all solutions of the original task.

To find this canonical model, FD first decomposes the
rules into smaller ones that might be easier to ground. The
decomposition strategy enforces that all new rules have a
body with at most two atoms. The idea is to simulate a
join tree, similarly to what is done by Bichler, Morak, and
Woltran (2016). However, the specifics of this decomposi-
tion are mostly heuristic. FD tries to simply maximize the
number of joining variables when decomposing rules. This
greedy decision leads to bad decompositions in some cases,
which produces too many intermediate atoms.

Our Work
We first compared FD to off-the-shelf logic programming
grounders, such as gringo (Gebser et al. 2011), to esti-
mate how far FD is from state-of-the-art grounders. We use
a benchmark set containing 862 tasks that are hard to ground
(Lauer et al. 2021). Each run had a 4 GiB memory limit and
30 minutes time limit. FD grounds 689 of these tasks, while
gringo can ground 752. As gringo is a state-of-the-art
grounder, it is unsurprising that it has better performance.

Corrêa et al. (2020) show that most planning domains pro-
duce acyclic Datalog rules. Logic programs with acyclic
rules or, more generally, with rules of low (hyper) treewidth
can be ground efficiently (Morak and Woltran 2012). To
exploit this, we used lpopt (Bichler, Morak, and Woltran
2016) to preprocess the Datalog programs given to gringo.
By doing so, we decompose the rules to speed up the
grounder. This is similar to the decomposition approach
used in FD, but lpopt uses structural information while FD
does not. We denote this new version as gringo+lpopt.
Overall, gringo+lpopt cannot ground any additional
task compared to gringo. lpopt does not help gringo
because of the action predicates. These are predicates repre-
senting possible instantiation of actions – such as predicate



A in the previous example – and they have the maximum
arity, containing all parameters in the body. Hence, lpopt
cannot find useful decompositions of the rules.

One wonders what happens if we simply remove the ac-
tion predicates. In our example above, we then only have
a single rule q(x, y) ← p(x), p(y). This makes the pro-
grams much easier to ground. In fact, when action pred-
icates are removed, gringo+lpopt can ground all 862
tasks in the benchmark set. Unfortunately, we do not know
which ground actions are relaxed-reachable anymore, we
only know the relaxed-reachable atoms. This is not enough
information for most planners in the literature.

To reconstruct the ground actions, we first compute the
relaxed-reachable atoms using gringo+lpopt as in the
previous paragraph. Then we use this information to com-
pute the actions in a second step. This second step trans-
forms each action A into a logic program, and iteratively
finds stable models for this program, such that each stable
model corresponds to a relaxed-reachable instantiation of A.
This method is called grounding via iterated solving.

Given the rule r

A-applicable(t)← q1(t1), . . . , qn(tn).

we create a logic program L as follows. For every variable
V in r, we introduce a fresh predicate V -assign and the fol-
lowing choice rule:

1 {V -assign(X) : qk(X)} 1.
where X is a new variable and qk is a unary predicate such
that qk(V ) is in the body of r.1 This rule forces the stable
model to pick exactly one constant for each variable and thus
form a variable assignment.

Further, for every (non-ground) atom qi(ti) in the body of
r with variables {V1, . . . , Vk}, we introduce the rule
⊥ ←V1-assign(X1), . . . , Vk-assign(Xk),¬qi(X1, . . . , Xk).

This rule guarantees that the assignment encoded in the
V -assign predicates is consistent with the instantiations of
qi in all stable models of L.

We implemented this grounding via iterated solving and
it outperforms gringo. While gringo grounds 752 tasks,
our iterated solving method iterated grounds 798. If
we add more information to iterated, such as inequal-
ities, it can ground up to 808 tasks. This is more than any
other method that grounds actions. However, iterated
consumes much more time than gringo even for simple
tasks. Considering that planners need to still find a plan af-
ter grounding it, this can be harmful.

One could assume that giving more time or memory to
iterated would lead us to ground all tasks in our set,
since they can be ground when actions predicates are re-
moved. Not so. We show, via model-counting, that for
6 tasks we still have chances of grounding, but for the re-
maining tasks this is out of reach. In these tasks, the num-
ber of ground actions is at least 1013. The amount of stor-
age to represent these tasks is prohibitive, so improving our
grounder would not solve the problem. Hence, we believe
that iterated is close to the practical limit for this set.

1This predicate is guaranteed to exist due to the normalization
of planning tasks. See the original paper for more details.

Conclusion
Overall, we studied how to improve grounding algorithms
for planning. We compared standard algorithms in the plan-
ning literature to off-the-shelf grounders. These off-the-
shelf grounders can already improve the performance of
planners. We also introduced a new method, called ground-
ing via iterated solving that grounds more tasks but is slower.
This new method can be applied to ground other logic pro-
grams that are not related to planning. Our approach is de-
signed for positive programs with large predicate arities in
the rule heads of programs. In particular, it can help in cases
where the density of structures is such that they cannot be
sufficiently exploited any more.

References
Bichler, M.; Morak, M.; and Woltran, S. 2016. lpopt: A
rule optimization tool for answer set programming. In Pro-
ceedings of the Twenty-Sixth International Symposium on
Logic-Based Program Synthesis and Transformation (LOP-
STR 2016), 114–130. Springer.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted successor generation using query optimiza-
tion techniques. In Proc. ICAPS 2020, 80–89.
Corrêa, A. B.; Hecher, M.; Helmert, M.; Longo, D. M.;
Pommerening, F.; and Woltran, S. 2023. Grounding plan-
ning tasks using tree decompositions and iterated solving. In
Proc. ICAPS 2023.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys 33(3):374–425.
Gebser, M.; Kaminski, R.; König, A.; and Schaub, T. 2011.
Advances in gringo series 3. In Delgrande, J. P., and Faber,
W., eds., Proceedings of the Eleventh International Confer-
ence on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2011), 345–351. Springer Berlin Heidelberg.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language, volume 13 of Synthesis Lectures on Artificial In-
telligence and Machine Learning. Morgan & Claypool.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. AIJ 173:503–535.
Lauer, P.; Torralba, Á.; Fis̆er, D.; Höller, D.; Wichlacz, J.;
and Hoffmann, J. 2021. Polynomial-time in PDDL input
size: Making the delete relaxation feasible for lifted plan-
ning. In Proc. IJCAI 2021, 4119–4126.
Morak, M., and Woltran, S. 2012. Preprocessing of complex
non-ground rules in answer set programming. Technical Re-
port DBAI-TR-2011-72 (Revised Version), Technische Uni-
versität Wien.


